/*
* timer2.c
*
* Created on: 2 Apr 2018
* Author: Mike
*/
#include "ch.h" // needs for all ChibiOS programs
#include "hal.h" // hardware abstraction layer header
#include "timer2.h"
#define MICROSECS_PULSE 1
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the
// first pulse longer than 1/300 of a second as being a proper closure .
// the TIM2 counter counts in 1uS increments,
#define BREAKER_COUNT_MIN (1E6/(MICROSECS_PULSE * 300))
#define COUNT_FROM_RPM(RPM) ((1E6/(MICROSECS_PULSE * 30 / (RPM ) )))
int16_t nominal = 0;
uint16_t halfRot;
int16_t phase10 = 100; // 10 degrees
volatile uint16_t sampleVar;
volatile uint16_t sampleRef;
volatile uint16_t lastSampleRef = 0;
volatile uint8_t refCount = 0;
volatile uint8_t varCount = 0;
volatile uint16_t samplePeriod = 0 ;
static signed phaseSamp = 0;
static uint8_t validPhaseSamp = 0;
int gainControl = 1000 ;
uint16_t rpm;
signed count;
signed delta;
void recalcPhase()
{
nominal = halfRot * (long) (phase10)/ 3600;
}
void adjustRPM(void)
{
if(rpm < 600)
rpm = 600;
if(rpm > 5000)
rpm = 5000;
}
uint16_t setRPM(uint16_t rpm_ )
{
if(rpm_ >= 600 && rpm_ < 6000)
{
rpm = rpm_;
adjustRPM();
}
return halfRot;
}
uint16_t getRPM(void)
{
return rpm;
}
signed getDelta(void)
{
return delta;
}
signed getCount(void)
{
return count;
}
void setGain(int gain)
{
gainControl = gain;
}
void processPhase ( void )
{
// lpcl
chSysLock();
const signed pdClip = 10000;
static signed pd;
if(validPhaseSamp)
{
pd = phaseSamp - nominal;
validPhaseSamp = 0;
if(pd > pdClip)
pd = pdClip;
if(pd < -pdClip)
pd = -pdClip;
}
chSysUnlock();
delta = pd;
static int sampleAverage = 0;
static int phaseAverage = 0;
const int freqScale = 6;
const int phaseScale = 50;
sampleAverage = sampleAverage + (samplePeriod - sampleAverage/freqScale);
int32_t arr;
// if(lock)
int intSample = sampleAverage / freqScale;
static unsigned strange = 0;
int deltaPd= pd/ phaseScale;
if(pd < -2000 || pd > 2000)
{
strange++;
}
arr = intSample + deltaPd;
if(arr > 65535)
arr = 65535;
if(arr < 1000)
arr = 1000;
count = arr;
TIM2->ARR = arr -1;
nominal = intSample * (long) (phase10)/ 3600;
float nomRPM = 30E6 / (MICROSECS_PULSE * arr);
rpm = nomRPM ;
adjustRPM();
}
// set the timing advance from reference in 0.1 degrees units
void setAdvance(int16_t deg10)
{
phase10 = deg10;
}
// specialist timer setup :
void initTimer2()
{
rccEnableTIM2(FALSE);
rccResetTIM2();
TIM2->PSC = 72*MICROSECS_PULSE;
TIM2->ARR = 60000;
TIM2->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN |
TIM_CR1_ARPE );
/// pulse width 200 uS
TIM2->CCR1 = 200/MICROSECS_PULSE;
TIM2->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P ; //enabled and active high
TIM2->CCMR1 = TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 |
TIM_CCMR1_OC1PE ;
TIM2->CR2 = TIM_CR2_MMS_1 ; // trigger out is 010 = update
// change the TIM2 CC2 to TIM3 CC1
rccEnableTIM3(FALSE);
rccResetTIM3();
// TIM3 on the PA6 ... pins : remap code 00
AFIO->MAPR &= ~ AFIO_MAPR_TIM3_REMAP;
TIM3->PSC = 72*MICROSECS_PULSE;
TIM3->ARR = 0xFFFF;
TIM3->CCMR1 = TIM_CCMR1_CC1S_0 /* | TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_2 */ ; // filter 16, input
// link TIM3 ITR2 to TIM2 reload
// use TS = 001 to make TRC from Tim2 TRIGGER
TIM3->SMCR &= ~(TIM_SMCR_TS_Msk );
TIM3->SMCR |= TIM_SMCR_TS_0; // select ITR2 as trigger source TRC
TIM3->CCMR1 |= TIM_CCMR1_CC2S_1 | TIM_CCMR1_CC2S_0 ; // The CC2S bits are 11, use TRC
TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC2E;
TIM3->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | TIM_CR1_ARPE );
nvicEnableVector(TIM3_IRQn,
4);
TIM3->DIER |= TIM_DIER_CC1IE | TIM_DIER_CC2IE;
}
// timer 3 interrupt
void VectorB4(void)
{
if(TIM3->SR & TIM_SR_CC1IF)
{
uint16_t sample = TIM3->CCR1;
// if(sample-lastSampleRef > 1000 /*BREAKER_COUNT_MIN */)
{
samplePeriod = sample-sampleRef;
sampleRef = sample;
++refCount;
}
lastSampleRef= sample;
}
if(TIM3->SR & TIM_SR_CC2IF)
{
sampleVar = TIM3->CCR2;
++varCount;
}
if(refCount == 1 && varCount == 1)
{
if(sampleRef == sampleVar)
phaseSamp = 0;
else
{
uint16_t refToVar = sampleRef - sampleVar;
uint16_t varToRef = sampleVar - sampleRef;
if(refToVar < varToRef)
phaseSamp = refToVar;
else if(varToRef <= refToVar)
phaseSamp = -varToRef;
}
validPhaseSamp = 1;
refCount=0;
varCount=0;
}
// frequency error, should deal with by direct period measurement
if(refCount > 1 || varCount > 1 )
{
refCount = 0;
varCount = 0;
}
}