/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
*
* COPYRIGHT(c) 2016 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_hal.h"
/* USER CODE BEGIN Includes */
#include "serial.h"
#include "plx.h"
#include "misc.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim6;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
// the TIM2 counter counts in 10uS increments,
#define BREAKER_MIN (RPM_COUNT_RATE/300)
volatile char TimerFlag = 0;
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
volatile char NoSerialIn = 0;
// storage for ADC
long ADC_samples[6];
// Rev counter processing from original RevCounter Project
unsigned int RPM_Diff = 0;
unsigned int RPM_Count_Latch = 0;
// accumulators
unsigned int RPM_Pulsecount = 0;
unsigned int RPM_FilteredWidth = 0;
unsigned int Coded_RPM = 0;
unsigned int Coded_CHT = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM6_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
void ConfigureDMA(void) {
hdma_adc.Instance = DMA1_Channel1;
hdma_adc.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_adc.Init.Mode = DMA_CIRCULAR; // make the DMA loop automatically
hdma_adc.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_adc);
__HAL_LINKDMA(&hadc, DMA_Handle, hdma_adc);
}
void plx_sendword(int x) {
PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
PutCharSerial(&uc1, (x) & 0x3F);
}
void ProcessRPM(int instance) {
// compute the timer values
// snapshot timers
unsigned long RPM_Pulsewidth;
unsigned long RPM_Count_Val;
__disable_irq(); // copy the counter value
RPM_Count_Val = RPM_Count;
__enable_irq();
// do calculations
// if there is only one entry, cannot get difference
if (RPM_Count_Latch != RPM_Count_Val) {
while (1) {
unsigned int base_time;
unsigned int new_time;
// if we are at N-1, stop.
unsigned int next_count = RPM_Count_Latch + 1;
if (next_count == RPM_SAMPLES) {
next_count = 0;
}
if (next_count == RPM_Count_Val) {
break;
}
base_time = RPM_Time[RPM_Count_Latch];
new_time = RPM_Time[next_count];
RPM_Count_Latch = next_count;
if (new_time > base_time) {
RPM_Pulsewidth = new_time - base_time; // not wrapped
} else {
RPM_Pulsewidth = new_time + (~base_time) + 1; // deal with wrapping
}
RPM_Diff += RPM_Pulsewidth;
// need to check if this is a long pulse. If it is, keep the answer
if (RPM_Pulsewidth > BREAKER_MIN) {
RPM_Pulsecount++; // count one pulse
RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
RPM_Diff = 0; // reset accumulator of all the narrow widths
}
}
}
if (RPM_Pulsecount > 0) {
// now have time for N pulses in clocks
// need to scale by 19.55: one unit is 19.55 RPM
// 1Hz is 60 RPM
Coded_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
/ (RPM_FilteredWidth) + 0.5;
#if !defined MY_DEBUG
// reset here unless we want to debug
RPM_Pulsecount = 0;
RPM_FilteredWidth = 0;
#endif
}
// send the current RPM calculation
plx_sendword(PLX_RPM);
PutCharSerial(&uc1, instance);
plx_sendword(Coded_RPM);
}
// this uses a MAX6675 which is a simple 16 bit read
// SPI is configured for 8 bits so I can use an OLED display if I need it
void ProcessCHT(int instance)
{
uint8_t buffer[2];
HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_RESET);
HAL_SPI_Receive(&hspi1, buffer, 2, 2);
HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
uint16_t obs = (buffer[0]<<8)| buffer[1];
uint8_t good = (obs & 4)==0;
if(good)
{
Coded_CHT = obs>>5;
}
plx_sendword(PLX_EGT);
PutCharSerial(&uc1, instance);
plx_sendword(Coded_CHT);
}
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC_Init();
MX_SPI1_Init();
MX_TIM2_Init();
MX_TIM6_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
__HAL_RCC_SPI1_CLK_ENABLE()
; // Temp sensor port
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX comms port
__HAL_RCC_USART2_CLK_ENABLE()
; // Debug comms port
__HAL_RCC_ADC1_CLK_ENABLE()
; // enable the ADC
__HAL_RCC_TIM6_CLK_ENABLE()
;
ConfigureDMA();
// HAL_ADC_Start_DMA(&g_AdcHandle, g_ADCBuffer, ADC_BUFFER_LENGTH);
/* setup the USART control blocks */
init_usart_ctl(&uc1, huart1.Instance);
init_usart_ctl(&uc2, huart2.Instance);
EnableSerialRxInterrupt(&uc1);
EnableSerialRxInterrupt(&uc2);
HAL_TIM_Base_Start_IT(&htim6);
PutCharSerial(&uc2, 'A');
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
int c;
char send = 0;
// poll the input for a stop bit or timeout
if(PollSerial(&uc1))
{
c = GetCharSerial(&uc1);
if (c != PLX_Stop)
{
PutCharSerial(&uc1,c); // echo all but the stop bit
} else { // must be a stop character
send = 1; // start our sending process.
}
}
// sort out auto-sending
if (TimerFlag)
{
if (NoSerialIn)
{
PutCharSerial(&uc1,PLX_Start);
send = 1;
}
}
if (send)
{
send = 0;
ProcessRPM(0);
ProcessCHT(0);
PutCharSerial(&uc1,PLX_Stop);
}
}
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* ADC init function */
static void MX_ADC_Init(void)
{
ADC_ChannelConfTypeDef sConfig;
/**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC1;
hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc.Init.Resolution = ADC_RESOLUTION_12B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
hadc.Init.ContinuousConvMode = DISABLE;
hadc.Init.NbrOfConversion = 6;
hadc.Init.DiscontinuousConvMode = DISABLE;
hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc.Init.DMAContinuousRequests = DISABLE;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_4CYCLES;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_12;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_13;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = 5;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = 6;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/* SPI1 init function */
static void MX_SPI1_Init(void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
}
/* TIM2 init function */
static void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_IC_InitTypeDef sConfigIC;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 320;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 0;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
HAL_TIM_MspPostInit(&htim2);
}
/* TIM6 init function */
static void MX_TIM6_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
htim6.Instance = TIM6;
htim6.Init.Prescaler = 3200;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 1000;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
/* USART1 init function */
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
* Free pins are configured automatically as Analog (this feature is enabled through
* the Code Generation settings)
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pins : PC13 PC14 PC15 PC6
PC7 PC8 PC9 PC10
PC11 PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PH0 PH1 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PA0 PA1 PA8 PA11
PA12 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : LED_Blink_Pin */
GPIO_InitStruct.Pin = LED_Blink_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB2 PB12 PB13 PB14
PB15 PB4 PB5 PB6
PB7 PB8 PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PD2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1) {
}
/* USER CODE END Error_Handler */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/