Subversion Repositories EngineBay2

Rev

Rev 8 | Rev 10 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /**
  2.   ******************************************************************************
  3.   * File Name          : main.c
  4.   * Description        : Main program body
  5.   ******************************************************************************
  6.   *
  7.   * COPYRIGHT(c) 2016 STMicroelectronics
  8.   *
  9.   * Redistribution and use in source and binary forms, with or without modification,
  10.   * are permitted provided that the following conditions are met:
  11.   *   1. Redistributions of source code must retain the above copyright notice,
  12.   *      this list of conditions and the following disclaimer.
  13.   *   2. Redistributions in binary form must reproduce the above copyright notice,
  14.   *      this list of conditions and the following disclaimer in the documentation
  15.   *      and/or other materials provided with the distribution.
  16.   *   3. Neither the name of STMicroelectronics nor the names of its contributors
  17.   *      may be used to endorse or promote products derived from this software
  18.   *      without specific prior written permission.
  19.   *
  20.   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21.   * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22.   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  23.   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  24.   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25.   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  26.   * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  27.   * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  28.   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29.   * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30.   *
  31.   ******************************************************************************
  32.   */
  33. /* Includes ------------------------------------------------------------------*/
  34. #include "stm32l1xx_hal.h"
  35.  
  36. /* USER CODE BEGIN Includes */
  37. #include "serial.h"
  38. #include "plx.h"
  39. #include "misc.h"
  40. /* USER CODE END Includes */
  41.  
  42. /* Private variables ---------------------------------------------------------*/
  43. ADC_HandleTypeDef hadc;
  44. DMA_HandleTypeDef hdma_adc;
  45.  
  46. SPI_HandleTypeDef hspi1;
  47.  
  48. TIM_HandleTypeDef htim2;
  49. TIM_HandleTypeDef htim6;
  50.  
  51. UART_HandleTypeDef huart1;
  52. UART_HandleTypeDef huart2;
  53.  
  54. /* USER CODE BEGIN PV */
  55. /* Private variables ---------------------------------------------------------*/
  56.  
  57.  
  58. // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
  59. // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
  60. // the TIM2 counter counts in 10uS increments,
  61.  
  62. #define BREAKER_MIN (RPM_COUNT_RATE/300)
  63.  
  64.  
  65. volatile char TimerFlag = 0;
  66.  
  67. volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
  68. volatile char NoSerialIn = 0;
  69.  
  70. // storage for ADC
  71. long ADC_samples[6];
  72.  
  73. // Rev counter processing from original RevCounter Project
  74. unsigned int RPM_Diff = 0;
  75. unsigned int RPM_Count_Latch = 0;
  76. // accumulators
  77. unsigned int RPM_Pulsecount = 0;
  78. unsigned int RPM_FilteredWidth = 0;
  79.  
  80. unsigned int Coded_RPM = 0;
  81. unsigned int Coded_CHT = 0;
  82.  
  83. /* USER CODE END PV */
  84.  
  85. /* Private function prototypes -----------------------------------------------*/
  86. void SystemClock_Config(void);
  87. void Error_Handler(void);
  88. static void MX_GPIO_Init(void);
  89. static void MX_DMA_Init(void);
  90. static void MX_ADC_Init(void);
  91. static void MX_SPI1_Init(void);
  92. static void MX_TIM2_Init(void);
  93. static void MX_TIM6_Init(void);
  94. static void MX_USART1_UART_Init(void);
  95. static void MX_USART2_UART_Init(void);
  96.  
  97. void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
  98.                
  99.  
  100. /* USER CODE BEGIN PFP */
  101. /* Private function prototypes -----------------------------------------------*/
  102.  
  103. /* USER CODE END PFP */
  104.  
  105. /* USER CODE BEGIN 0 */
  106.  
  107. void ConfigureDMA(void) {
  108.         hdma_adc.Instance = DMA1_Channel1;
  109.         hdma_adc.Init.Direction = DMA_PERIPH_TO_MEMORY;
  110.         hdma_adc.Init.PeriphInc = DMA_PINC_DISABLE;
  111.         hdma_adc.Init.MemInc = DMA_MINC_ENABLE;
  112.         hdma_adc.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
  113.         hdma_adc.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
  114.         hdma_adc.Init.Mode = DMA_CIRCULAR; // make the DMA loop automatically
  115.         hdma_adc.Init.Priority = DMA_PRIORITY_LOW;
  116.         HAL_DMA_Init(&hdma_adc);
  117.         __HAL_LINKDMA(&hadc, DMA_Handle, hdma_adc);
  118.  
  119. }
  120.  
  121. void plx_sendword(int x) {
  122.         PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
  123.         PutCharSerial(&uc1, (x) & 0x3F);
  124. }
  125.  
  126. void ProcessRPM(int instance) {
  127. // compute the timer values
  128. // snapshot timers
  129.         unsigned long RPM_Pulsewidth;
  130.         unsigned long RPM_Count_Val;
  131.         __disable_irq(); // copy the counter value
  132.         RPM_Count_Val = RPM_Count;
  133.         __enable_irq();
  134. // do calculations
  135. // if there is only one entry, cannot get difference
  136.         if (RPM_Count_Latch != RPM_Count_Val) {
  137.                 while (1) {
  138.                         unsigned int base_time;
  139.                         unsigned int new_time;
  140.                         // if we are at N-1, stop.
  141.                         unsigned int next_count = RPM_Count_Latch + 1;
  142.                         if (next_count == RPM_SAMPLES) {
  143.                                 next_count = 0;
  144.                         }
  145.                         if (next_count == RPM_Count_Val) {
  146.                                 break;
  147.                         }
  148.                         base_time = RPM_Time[RPM_Count_Latch];
  149.                         new_time = RPM_Time[next_count];
  150.                         RPM_Count_Latch = next_count;
  151.                         if (new_time > base_time) {
  152.                                 RPM_Pulsewidth = new_time - base_time; // not wrapped
  153.                         } else {
  154.                                 RPM_Pulsewidth = new_time + (~base_time) + 1; // deal with wrapping
  155.                         }
  156.  
  157.                         RPM_Diff += RPM_Pulsewidth;
  158.                         // need to check if this is a long pulse. If it is, keep the answer
  159.                         if (RPM_Pulsewidth > BREAKER_MIN) {
  160.                                 RPM_Pulsecount++; // count one pulse
  161.                                 RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
  162.                                 RPM_Diff = 0; // reset accumulator of all the narrow widths
  163.                         }
  164.                 }
  165.  
  166.         }
  167.  
  168.         if (RPM_Pulsecount > 0) {
  169.  
  170.                 // now have time for N pulses in clocks
  171.                 // need to scale by 19.55: one unit is 19.55 RPM
  172.                 // 1Hz is 60 RPM
  173.                 Coded_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
  174.                                 / (RPM_FilteredWidth) + 0.5;
  175. #if !defined MY_DEBUG
  176.                 // reset here unless we want to debug
  177.                 RPM_Pulsecount = 0;
  178.                 RPM_FilteredWidth = 0;
  179. #endif
  180.         }
  181.  
  182. // send the current RPM calculation
  183.         plx_sendword(PLX_RPM);
  184.         PutCharSerial(&uc1, instance);
  185.         plx_sendword(Coded_RPM);
  186. }
  187.  
  188.  
  189. // this uses a MAX6675 which is a simple 16 bit read
  190. // SPI is configured for 8 bits so I can use an OLED display if I need it
  191. void ProcessCHT(int instance)
  192. {
  193.         uint8_t buffer[2];
  194.                    HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_RESET);
  195.  
  196.  
  197.                    HAL_SPI_Receive(&hspi1, buffer, 2, 2);
  198.  
  199.                    HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
  200.  
  201.  
  202.                    uint16_t obs = (buffer[0]<<8)| buffer[1];
  203.  
  204.                    uint8_t  good = (obs & 4)==0;
  205.                    if(good)
  206.                    {
  207.                    Coded_CHT = obs>>5;
  208.                    }
  209.         plx_sendword(PLX_EGT);
  210.         PutCharSerial(&uc1, instance);
  211.         plx_sendword(Coded_CHT);
  212.  
  213. }
  214.  
  215. /* USER CODE END 0 */
  216.  
  217. int main(void)
  218. {
  219.  
  220.   /* USER CODE BEGIN 1 */
  221.  
  222.   /* USER CODE END 1 */
  223.  
  224.   /* MCU Configuration----------------------------------------------------------*/
  225.  
  226.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  227.   HAL_Init();
  228.  
  229.   /* Configure the system clock */
  230.   SystemClock_Config();
  231.  
  232.   /* Initialize all configured peripherals */
  233.   MX_GPIO_Init();
  234.   MX_DMA_Init();
  235.   MX_ADC_Init();
  236.   MX_SPI1_Init();
  237.   MX_TIM2_Init();
  238.   MX_TIM6_Init();
  239.   MX_USART1_UART_Init();
  240.   MX_USART2_UART_Init();
  241.  
  242.   /* USER CODE BEGIN 2 */
  243.  
  244.         __HAL_RCC_SPI1_CLK_ENABLE()
  245.         ;   // Temp sensor port
  246.         __HAL_RCC_USART1_CLK_ENABLE()
  247.         ; // PLX comms port
  248.         __HAL_RCC_USART2_CLK_ENABLE()
  249.         ;  // Debug comms port
  250.  
  251.         __HAL_RCC_ADC1_CLK_ENABLE()
  252.         ; // enable the ADC
  253.  
  254.         __HAL_RCC_TIM6_CLK_ENABLE()
  255.         ;
  256.  
  257.         ConfigureDMA();
  258.         //   HAL_ADC_Start_DMA(&g_AdcHandle, g_ADCBuffer, ADC_BUFFER_LENGTH);
  259.  
  260.         /* setup the USART control blocks */
  261.         init_usart_ctl(&uc1, huart1.Instance);
  262.         init_usart_ctl(&uc2, huart2.Instance);
  263.  
  264.         EnableSerialRxInterrupt(&uc1);
  265.         EnableSerialRxInterrupt(&uc2);
  266.  
  267.         HAL_TIM_Base_Start_IT(&htim6);
  268.  
  269.         PutCharSerial(&uc2, 'A');
  270.  
  271.   /* USER CODE END 2 */
  272.  
  273.   /* Infinite loop */
  274.   /* USER CODE BEGIN WHILE */
  275.         while (1) {
  276.   /* USER CODE END WHILE */
  277.  
  278.   /* USER CODE BEGIN 3 */
  279.      // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
  280.                 int c;
  281.                 char send = 0;
  282.  
  283.                 // poll the  input for a stop bit or timeout
  284.                 if(PollSerial(&uc1))
  285.                 {
  286.                   c = GetCharSerial(&uc1);
  287.                   if (c != PLX_Stop)
  288.                   {
  289.                                 PutCharSerial(&uc1,c); // echo all but the stop bit
  290.                   } else { // must be a stop character
  291.                                 send = 1; // start our sending process.
  292.                         }
  293.                 }
  294.  
  295.                 // sort out auto-sending
  296.                 if (TimerFlag)
  297.                 {
  298.                   if (NoSerialIn)
  299.                   {
  300.                         PutCharSerial(&uc1,PLX_Start);
  301.                         send = 1;
  302.                   }
  303.                 }
  304.                 if (send)
  305.                 {
  306.                   send = 0;
  307.  
  308.                  ProcessRPM(0);
  309.                  ProcessCHT(0);
  310.  
  311.                  PutCharSerial(&uc1,PLX_Stop);
  312.                 }
  313.  
  314.         }
  315.   /* USER CODE END 3 */
  316.  
  317. }
  318.  
  319. /** System Clock Configuration
  320. */
  321. void SystemClock_Config(void)
  322. {
  323.  
  324.   RCC_OscInitTypeDef RCC_OscInitStruct;
  325.   RCC_ClkInitTypeDef RCC_ClkInitStruct;
  326.  
  327.   __HAL_RCC_PWR_CLK_ENABLE();
  328.  
  329.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  330.  
  331.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  332.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  333.   RCC_OscInitStruct.HSICalibrationValue = 16;
  334.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  335.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  336.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  337.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  338.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  339.   {
  340.     Error_Handler();
  341.   }
  342.  
  343.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  344.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  345.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  346.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  347.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  348.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  349.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  350.   {
  351.     Error_Handler();
  352.   }
  353.  
  354.   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
  355.  
  356.   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
  357.  
  358.   /* SysTick_IRQn interrupt configuration */
  359.   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
  360. }
  361.  
  362. /* ADC init function */
  363. static void MX_ADC_Init(void)
  364. {
  365.  
  366.   ADC_ChannelConfTypeDef sConfig;
  367.  
  368.     /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  369.     */
  370.   hadc.Instance = ADC1;
  371.   hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  372.   hadc.Init.Resolution = ADC_RESOLUTION_12B;
  373.   hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  374.   hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
  375.   hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  376.   hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
  377.   hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
  378.   hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
  379.   hadc.Init.ContinuousConvMode = DISABLE;
  380.   hadc.Init.NbrOfConversion = 6;
  381.   hadc.Init.DiscontinuousConvMode = DISABLE;
  382.   hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
  383.   hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  384.   hadc.Init.DMAContinuousRequests = DISABLE;
  385.   if (HAL_ADC_Init(&hadc) != HAL_OK)
  386.   {
  387.     Error_Handler();
  388.   }
  389.  
  390.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  391.     */
  392.   sConfig.Channel = ADC_CHANNEL_10;
  393.   sConfig.Rank = 1;
  394.   sConfig.SamplingTime = ADC_SAMPLETIME_4CYCLES;
  395.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  396.   {
  397.     Error_Handler();
  398.   }
  399.  
  400.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  401.     */
  402.   sConfig.Channel = ADC_CHANNEL_11;
  403.   sConfig.Rank = 2;
  404.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  405.   {
  406.     Error_Handler();
  407.   }
  408.  
  409.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  410.     */
  411.   sConfig.Channel = ADC_CHANNEL_12;
  412.   sConfig.Rank = 3;
  413.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  414.   {
  415.     Error_Handler();
  416.   }
  417.  
  418.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  419.     */
  420.   sConfig.Channel = ADC_CHANNEL_13;
  421.   sConfig.Rank = 4;
  422.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  423.   {
  424.     Error_Handler();
  425.   }
  426.  
  427.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  428.     */
  429.   sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  430.   sConfig.Rank = 5;
  431.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  432.   {
  433.     Error_Handler();
  434.   }
  435.  
  436.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  437.     */
  438.   sConfig.Channel = ADC_CHANNEL_VREFINT;
  439.   sConfig.Rank = 6;
  440.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  441.   {
  442.     Error_Handler();
  443.   }
  444.  
  445. }
  446.  
  447. /* SPI1 init function */
  448. static void MX_SPI1_Init(void)
  449. {
  450.  
  451.   hspi1.Instance = SPI1;
  452.   hspi1.Init.Mode = SPI_MODE_MASTER;
  453.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  454.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  455.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  456.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  457.   hspi1.Init.NSS = SPI_NSS_SOFT;
  458.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  459.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  460.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  461.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  462.   hspi1.Init.CRCPolynomial = 10;
  463.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  464.   {
  465.     Error_Handler();
  466.   }
  467.  
  468. }
  469.  
  470. /* TIM2 init function */
  471. static void MX_TIM2_Init(void)
  472. {
  473.  
  474.   TIM_MasterConfigTypeDef sMasterConfig;
  475.   TIM_IC_InitTypeDef sConfigIC;
  476.   TIM_OC_InitTypeDef sConfigOC;
  477.  
  478.   htim2.Instance = TIM2;
  479.   htim2.Init.Prescaler = 320;
  480.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  481.   htim2.Init.Period = 0;
  482.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  483.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  484.   {
  485.     Error_Handler();
  486.   }
  487.  
  488.   if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
  489.   {
  490.     Error_Handler();
  491.   }
  492.  
  493.   if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
  494.   {
  495.     Error_Handler();
  496.   }
  497.  
  498.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  499.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  500.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  501.   {
  502.     Error_Handler();
  503.   }
  504.  
  505.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  506.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  507.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  508.   sConfigIC.ICFilter = 0;
  509.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  510.   {
  511.     Error_Handler();
  512.   }
  513.  
  514.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  515.   {
  516.     Error_Handler();
  517.   }
  518.  
  519.   sConfigOC.OCMode = TIM_OCMODE_TIMING;
  520.   sConfigOC.Pulse = 0;
  521.   sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  522.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  523.   if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  524.   {
  525.     Error_Handler();
  526.   }
  527.  
  528.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  529.   if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
  530.   {
  531.     Error_Handler();
  532.   }
  533.  
  534.   HAL_TIM_MspPostInit(&htim2);
  535.  
  536. }
  537.  
  538. /* TIM6 init function */
  539. static void MX_TIM6_Init(void)
  540. {
  541.  
  542.   TIM_MasterConfigTypeDef sMasterConfig;
  543.  
  544.   htim6.Instance = TIM6;
  545.   htim6.Init.Prescaler = 3200;
  546.   htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  547.   htim6.Init.Period = 1000;
  548.   if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  549.   {
  550.     Error_Handler();
  551.   }
  552.  
  553.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  554.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  555.   if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  556.   {
  557.     Error_Handler();
  558.   }
  559.  
  560. }
  561.  
  562. /* USART1 init function */
  563. static void MX_USART1_UART_Init(void)
  564. {
  565.  
  566.   huart1.Instance = USART1;
  567.   huart1.Init.BaudRate = 19200;
  568.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  569.   huart1.Init.StopBits = UART_STOPBITS_1;
  570.   huart1.Init.Parity = UART_PARITY_NONE;
  571.   huart1.Init.Mode = UART_MODE_TX_RX;
  572.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  573.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  574.   if (HAL_UART_Init(&huart1) != HAL_OK)
  575.   {
  576.     Error_Handler();
  577.   }
  578.  
  579. }
  580.  
  581. /* USART2 init function */
  582. static void MX_USART2_UART_Init(void)
  583. {
  584.  
  585.   huart2.Instance = USART2;
  586.   huart2.Init.BaudRate = 115200;
  587.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  588.   huart2.Init.StopBits = UART_STOPBITS_1;
  589.   huart2.Init.Parity = UART_PARITY_NONE;
  590.   huart2.Init.Mode = UART_MODE_TX_RX;
  591.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  592.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  593.   if (HAL_UART_Init(&huart2) != HAL_OK)
  594.   {
  595.     Error_Handler();
  596.   }
  597.  
  598. }
  599.  
  600. /**
  601.   * Enable DMA controller clock
  602.   */
  603. static void MX_DMA_Init(void)
  604. {
  605.   /* DMA controller clock enable */
  606.   __HAL_RCC_DMA1_CLK_ENABLE();
  607.  
  608.   /* DMA interrupt init */
  609.   /* DMA1_Channel1_IRQn interrupt configuration */
  610.   HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  611.   HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  612.  
  613. }
  614.  
  615. /** Configure pins as
  616.         * Analog
  617.         * Input
  618.         * Output
  619.         * EVENT_OUT
  620.         * EXTI
  621.         * Free pins are configured automatically as Analog (this feature is enabled through
  622.         * the Code Generation settings)
  623. */
  624. static void MX_GPIO_Init(void)
  625. {
  626.  
  627.   GPIO_InitTypeDef GPIO_InitStruct;
  628.  
  629.   /* GPIO Ports Clock Enable */
  630.   __HAL_RCC_GPIOC_CLK_ENABLE();
  631.   __HAL_RCC_GPIOH_CLK_ENABLE();
  632.   __HAL_RCC_GPIOA_CLK_ENABLE();
  633.   __HAL_RCC_GPIOB_CLK_ENABLE();
  634.   __HAL_RCC_GPIOD_CLK_ENABLE();
  635.  
  636.   /*Configure GPIO pins : PC13 PC14 PC15 PC6
  637.                            PC7 PC8 PC9 PC10
  638.                            PC11 PC12 */
  639.   GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
  640.                           |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10
  641.                           |GPIO_PIN_11|GPIO_PIN_12;
  642.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  643.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  644.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  645.  
  646.   /*Configure GPIO pins : PH0 PH1 */
  647.   GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
  648.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  649.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  650.   HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
  651.  
  652.   /*Configure GPIO pins : PA0 PA1 PA8 PA11
  653.                            PA12 */
  654.   GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
  655.                           |GPIO_PIN_12;
  656.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  657.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  658.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  659.  
  660.   /*Configure GPIO pin : LED_Blink_Pin */
  661.   GPIO_InitStruct.Pin = LED_Blink_Pin;
  662.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  663.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  664.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  665.   HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
  666.  
  667.   /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
  668.   GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
  669.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  670.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  671.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  672.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  673.  
  674.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin */
  675.   GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin;
  676.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  677.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  678.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  679.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  680.  
  681.   /*Configure GPIO pins : PB2 PB12 PB13 PB14
  682.                            PB15 PB4 PB5 PB6
  683.                            PB7 PB8 PB9 */
  684.   GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
  685.                           |GPIO_PIN_15|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
  686.                           |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
  687.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  688.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  689.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  690.  
  691.   /*Configure GPIO pin : PD2 */
  692.   GPIO_InitStruct.Pin = GPIO_PIN_2;
  693.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  694.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  695.   HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  696.  
  697.   /*Configure GPIO pin Output Level */
  698.   HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
  699.  
  700.   /*Configure GPIO pin Output Level */
  701.   HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
  702.  
  703.   /*Configure GPIO pin Output Level */
  704.   HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
  705.  
  706.   /*Configure GPIO pin Output Level */
  707.   HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_RESET);
  708.  
  709.   /*Configure GPIO pin Output Level */
  710.   HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
  711.  
  712. }
  713.  
  714. /* USER CODE BEGIN 4 */
  715.  
  716. /* USER CODE END 4 */
  717.  
  718. /**
  719.   * @brief  This function is executed in case of error occurrence.
  720.   * @param  None
  721.   * @retval None
  722.   */
  723. void Error_Handler(void)
  724. {
  725.   /* USER CODE BEGIN Error_Handler */
  726.         /* User can add his own implementation to report the HAL error return state */
  727.         while (1) {
  728.         }
  729.   /* USER CODE END Error_Handler */
  730. }
  731.  
  732. #ifdef USE_FULL_ASSERT
  733.  
  734. /**
  735.    * @brief Reports the name of the source file and the source line number
  736.    * where the assert_param error has occurred.
  737.    * @param file: pointer to the source file name
  738.    * @param line: assert_param error line source number
  739.    * @retval None
  740.    */
  741. void assert_failed(uint8_t* file, uint32_t line)
  742. {
  743.   /* USER CODE BEGIN 6 */
  744.         /* User can add his own implementation to report the file name and line number,
  745.          ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  746.   /* USER CODE END 6 */
  747.  
  748. }
  749.  
  750. #endif
  751.  
  752. /**
  753.   * @}
  754.   */
  755.  
  756. /**
  757.   * @}
  758. */
  759.  
  760. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  761.