/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
*
* COPYRIGHT(c) 2016 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/* USER CODE BEGIN Includes */
#include "ap_math.h"
#include "serial.h"
#include "SSD1306.h"
#include "dials.h"
#include "switches.h"
#include <math.h>
#include "plx.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void
SystemClock_Config (void);
void
Error_Handler (void);
static void
MX_GPIO_Init (void);
static void
MX_ADC1_Init (void);
static void
MX_SPI1_Init (void);
static void
MX_USART2_UART_Init (void);
static void
MX_USART1_UART_Init (void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* dummy function */
void
_init (void)
{
}
/* USER CODE END 0 */
int
main (void)
{
/* USER CODE BEGIN 1 */
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_SPI1_CLK_ENABLE()
;
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX main port
__HAL_RCC_USART2_CLK_ENABLE()
; // debug port
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init ();
/* Configure the system clock */
SystemClock_Config ();
/* Initialize all configured peripherals */
MX_GPIO_Init ();
// MX_ADC1_Init();
MX_SPI1_Init ();
MX_USART2_UART_Init ();
MX_USART1_UART_Init ();
/* USER CODE BEGIN 2 */
/* Need to set AF mode for output pins DURR. */
/* SPI bus AF pin selects */
GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/* USART2 AF pin selects */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/* USART1 AF pin selects */
GPIO_InitStruct.Pin = GPIO_PIN_9;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority (USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ (USART2_IRQn);
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority (USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ (USART1_IRQn);
/* setup the USART control blocks */
init_usart_ctl (&uc1, huart1.Instance);
init_usart_ctl (&uc2, huart2.Instance);
EnableSerialRxInterrupt (&uc1);
EnableSerialRxInterrupt (&uc2);
ap_init (); // set up the approximate math library
int disp;
ssd1306_begin (1, 0);
// static const int xp = 128 - 42;
for (disp = 0; disp < 2; disp++)
{
select_display (disp);
clearDisplay ();
dim (0);
//font_puts(
// "Hello world !!\rThis text is a test of the text rendering library in a 5*7 font");
dial_origin (64, 60);
dial_size (60);
dial_draw_scale (10, 16, 16, 2);
display ();
}
InitSwitches ();
select_display (0);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint32_t Ticks = HAL_GetTick () + 100;
int16_t dial0 = 0;
int16_t dial1 = -1;
int c = 0;
int i;
char buff[10];
// PLX decoder protocol
#define MAXRDG 10
char PLXPacket = 0;
union
{
PLX_SensorInfo Sensor[MAXRDG];
char Bytes[MAXRDG * sizeof(PLX_SensorInfo)];
} Data;
int Max[MAXRDG];
int Min[MAXRDG];
for (i = 0; i < MAXRDG; i++)
{
Max[i] = 0;
Min[i] = 0xFFF; // 12 bit max value
}
int PLXPtr;
int PLXItems;
int OldObservation = -1; // illegal initial value
int OldObservationIndex = -1; // if more than one sensor this will be printed
while (1)
{
// poll switches
HandleSwitches ();
int ItemIndex = dial_pos[0];
uint16_t cc = SerialCharsReceived (&uc1);
for (i = 0; i < cc; i++)
{
char c = GetCharSerial (&uc1);
if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
{
PLXPtr = 0; // reset the pointer
PLXPacket = 1;
continue;
}
if (c == PLX_Stop)
{
// we can now decode the selected parameter
PLXPacket = 0;
PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
// saturate the rotary switch position
if (ItemIndex > PLXItems)
{
dial_pos[0] = PLXItems;
ItemIndex = PLXItems;
}
int DataVal;
// process min/max
for (i = 0; i < PLXItems; i++)
{
DataVal = ConvPLX (Data.Sensor[i].ObsH, Data.Sensor[i].ObsL);
if (DataVal > Max[i])
{
Max[i] = DataVal;
}
if (DataVal < Min[i])
{
Min[i] = DataVal;
}
}
DataVal = ConvPLX (Data.Sensor[ItemIndex].ObsH,
Data.Sensor[ItemIndex].ObsL); // data reading
int Observation = ConvPLX (Data.Sensor[ItemIndex].ObsH,
Data.Sensor[ItemIndex].ObsL);
int ObservationIndex = ConvPLX (0,
Data.Sensor[ItemIndex].ObsIndex);
// now to convert the readings and format strings
// find out limits
char * msg;
int len;
if (Observation < PLX_MAX_OBS)
{
if (Observation != OldObservation
|| ObservationIndex != OldObservationIndex)
{
dial1 = -1;
clearDisplay();
dial_draw_scale (
DisplayInfo[Observation].Low
/ DisplayInfo[Observation].TickScale,
DisplayInfo[Observation].High
/ DisplayInfo[Observation].TickScale,
16, 1);
if (ObservationIndex > 0)
{
len = 5;
buff[6] = ObservationIndex + '1';
}
else
{
len = 6;
}
{
msg = DisplayInfo[Observation].name;
}
for (i = 0; i < len; i++)
{
buff[i] = msg[i];
}
print_large_string (buff, 32, 48, 6); // this prints spaces for \0 at end of string
OldObservation = Observation;
OldObservationIndex = ObservationIndex;
//
}
double max_rdg;
double min_rdg;
double cur_rdg;
max_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
Max[ItemIndex]);
min_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
Min[ItemIndex]);
cur_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
DataVal);
}
}
if (c > PLX_Stop) // illegal char, restart reading
{
PLXPacket = 0;
}
if (PLXPtr < sizeof(Data.Bytes))
{
Data.Bytes[PLXPtr++] = c;
}
}
HAL_Delay (1);
/* now scale and decode the dial position etc .
*
*/
uint32_t CurrTicks = HAL_GetTick ();
if (CurrTicks > Ticks)
{
/* Lookup the dial etc . */
Ticks = CurrTicks + 100;
/* old needle un-draw */
if (dial1 >= 0)
{
dial_draw_needle (dial1);
}
dial0 = c % 100;
dial_draw_needle (dial0);
// print value overlaid by needle
// this is actual reading
print_digits (64 - 16, 30, 4, 3, c);
dial1 = dial0;
c++;
//font_gotoxy(0, 2);
//font_puts("baud\r\n");
//char buff[10];
//itoa(hirda3.Init.BaudRate, buff, 10);
//char l = 6 - strlen(buff);
/* pad with leading spaces */
//while (l > 0) {
// font_putchar(' ');
// l--;
//}
//font_puts(itoa(hirda3.Init.BaudRate, buff, 10));
display ();
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void
SystemClock_Config (void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig (&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler ();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig (&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler ();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig (&PeriphClkInit) != HAL_OK)
{
Error_Handler ();
}
HAL_SYSTICK_Config (HAL_RCC_GetHCLKFreq () / 1000);
HAL_SYSTICK_CLKSourceConfig (SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority (SysTick_IRQn, 0, 0);
}
/* ADC1 init function */
static void
MX_ADC1_Init (void)
{
ADC_ChannelConfTypeDef sConfig;
/**Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init (&hadc1) != HAL_OK)
{
Error_Handler ();
}
/**Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel (&hadc1, &sConfig) != HAL_OK)
{
Error_Handler ();
}
}
/* SPI1 init function */
static void
MX_SPI1_Init (void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init (&hspi1) != HAL_OK)
{
Error_Handler ();
}
}
/* USART1 init function */
static void
MX_USART1_UART_Init (void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart1) != HAL_OK)
{
Error_Handler ();
}
}
/* USART2 init function */
static void
MX_USART2_UART_Init (void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart2) != HAL_OK)
{
Error_Handler ();
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void
MX_GPIO_Init (void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE()
;
__HAL_RCC_GPIOA_CLK_ENABLE()
;
__HAL_RCC_GPIOC_CLK_ENABLE()
;
__HAL_RCC_GPIOB_CLK_ENABLE()
;
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (GPIOC, SPI_RESET_Pin | USART3_INVERT_Pin | USB_PWR_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI1CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin USART3_INVERT_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | USART3_INVERT_Pin
| USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SW1_PUSH_Pin SW1_I_Pin SW1_Q_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = SW1_PUSH_Pin | SW1_I_Pin | SW1_Q_Pin | SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : SW2_I_Pin SW2_Q_Pin */
GPIO_InitStruct.Pin = SW2_I_Pin | SW2_Q_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOC, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void
Error_Handler (void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/