/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "libSerial/serial.h"
#include "libPLX/plx.h"
#include "misc.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim6;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
// freq = 5000/60 * 2 = 166Hz.
// the TIM2 counter counts in 10uS increments,
// TODO this is wrong algo. Accept FIRST pulse, skip shorter pulses
// Accept the first pulse with over 2.5mS (1/400 sec) duration as the closure
#define BREAKER_MIN (RPM_COUNT_RATE/400)
#define RPM_AVERAGE 4
// wait for about 1 second to decide whether or not starter is on
#define STARTER_LIMIT 10
volatile char TimerFlag = 0;
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
volatile char NoSerialIn = 0;
// storage for ADC
uint16_t ADC_Samples[6];
#define Scale 1024.0
const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
// Rev counter processing from original RevCounter Project
uint16_t RPM_Diff = 0;
uint16_t RPM_Count_Latch = 0;
// accumulators
uint16_t RPM_Pulsecount = 0;
unsigned int RPM_FilteredWidth = 0;
// last time we detected end of dwell i.e. ignition pulse
uint16_t last_dwell_end = 0;
uint16_t RPM_Period[RPM_AVERAGE];
unsigned int RPM_Period_Ptr = 0;
unsigned int Coded_RPM = 0;
unsigned int Coded_CHT = 0;
uint32_t Power_CHT_Timer;
uint16_t Starter_Debounce = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM6_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void
plx_sendword (int x)
{
PutCharSerial (&uc1, ((x) >> 6) & 0x3F);
PutCharSerial (&uc1, (x) & 0x3F);
}
void
init_ADC_filter ()
{
int i;
for (i = 0; i < 6; i++)
{
FILT_Samples[i] = 0;
}
}
void
filter_ADC_samples ()
{
int i;
for (i = 0; i < 6; i++)
{
FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
}
}
void
ProcessRPM (int instance)
{
// compute the timer values
// snapshot timers
unsigned long RPM_Pulsewidth;
// current RPM pulse next slot index
unsigned long RPM_Count_Val;
__disable_irq (); // copy the counter value
RPM_Count_Val = RPM_Count;
__enable_irq ();
// do calculations
// if there is only one entry, cannot get difference
if (RPM_Count_Latch != RPM_Count_Val)
{
while (1)
{
unsigned int base_time;
unsigned int new_time;
// if we are at N-1, stop.
unsigned int next_count = (RPM_Count_Latch + 1) % RPM_SAMPLES;
if (next_count == RPM_Count_Val)
{
break; // completed loop
}
char pulse_level = RPM_Level[RPM_Count_Latch];
base_time = RPM_Time[RPM_Count_Latch];
new_time = RPM_Time[next_count];
RPM_Count_Latch = next_count;
RPM_Pulsewidth = new_time - base_time; // not wrapped
// if the pulse was low,
if (pulse_level == 0 && RPM_Pulsewidth > BREAKER_MIN)
{
RPM_Diff = new_time - last_dwell_end;
RPM_Period[RPM_Period_Ptr] = RPM_Diff;
RPM_Period_Ptr = (RPM_Period_Ptr + 1) % RPM_AVERAGE;
if (RPM_Pulsecount < RPM_AVERAGE)
RPM_Pulsecount++; // count one pulse
last_dwell_end = new_time;
}
}
}
if (RPM_Pulsecount == RPM_AVERAGE)
{
// now have time for N pulses in clocks
// need to scale by 19.55: one unit is 19.55 RPM
// 1Hz is 30 RPM
int i;
RPM_FilteredWidth = 0;
for (i = 0; i < RPM_AVERAGE; i++)
RPM_FilteredWidth += RPM_Period[i];
Coded_RPM = (Scale * 30.0 * RPM_AVERAGE * RPM_COUNT_RATE)
/ (19.55 * RPM_FilteredWidth);
#if !defined MY_DEBUG
// reset here unless we want to debug
RPM_Pulsecount = 0;
RPM_FilteredWidth = 0;
#endif
}
// send the current RPM *calculation
plx_sendword (PLX_RPM);
PutCharSerial (&uc1, instance);
plx_sendword (Coded_RPM / Scale);
}
// this uses a MAX6675 which is a simple 16 bit read
// SPI is configured for 8 bits so I can use an OLED display if I need it
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
//
FunctionalState CHT_Enable = ENABLE;
#define CORR 3
uint16_t CHT_Observations[2] =
{ 0, 0 };
// look for the trigger pin being high then low - the points
// are opening, and skip the reading
void
ProcessCHT (int instance)
{
plx_sendword (PLX_X_CHT);
PutCharSerial (&uc1, instance);
plx_sendword (CHT_Observations[instance]);
}
void
EnableCHT (FunctionalState state)
{
GPIO_InitTypeDef GPIO_InitStruct;
CHT_Enable = state;
/* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
if (state == ENABLE)
{
HAL_GPIO_WritePin (ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin (SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin (SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
GPIO_PIN_SET);
/* put the SPI pins back into SPI AF mode */
GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init (SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
}
else
{
/* Power down the SPI interface taking signals all low */
HAL_GPIO_WritePin (ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin (SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin (SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin (SPI1_SCK_GPIO_Port,
SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
GPIO_PIN_RESET);
/* put the SPI pins back into GPIO mode */
GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init (SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
}
}
// 1023 is 20.00 volts.
void
ProcessBatteryVoltage (int instance)
{
float reading = FILT_Samples[instance] * ADC_Scale;
reading = reading * 7.8125; // real voltage
reading = reading * 51.15; // 1023/20
plx_sendword (PLX_Volts);
PutCharSerial (&uc1, instance);
plx_sendword ((uint16_t) reading);
}
/****!
* @brief this reads the reference voltage within the STM32L151
* Powers up reference voltage and temperature sensor, waits 3mS and takes reading
* Requires that the ADC be powered up
*/
uint32_t ADC_VREF_MV = 3300; // 3.300V typical
const uint16_t STM32REF_MV = 1224; // 1.224V typical
void
CalibrateADC (void)
{
uint32_t adc_val = FILT_Samples[5]; // as set up in device config
ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
}
void
ProcessCPUTemperature (int instance)
{
int32_t temp_val;
uint16_t TS_CAL30 = *(uint16_t*) (0x1FF8007AUL); /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
uint16_t TS_CAL110 = *(uint16_t*) (0x1FF8007EUL); /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
/* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
temp_val = FILT_Samples[5];
/* renormalise temperature value to account for different ADC Vref : normalise to that which we would get for a 3000mV reference */
temp_val = temp_val * ADC_VREF_MV / (Scale * 3000UL);
int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
result = result / (TS_CAL110 - TS_CAL30) + 300;
if (result < 0)
{
result = 0;
}
plx_sendword (PLX_FluidTemp);
PutCharSerial (&uc1, instance);
plx_sendword (result / 10);
}
// the MAP sensor is giving us a reading of
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
// I believe the sensor reads 4.5V at 1000kPa and 0.5V at 0kPa
// Calibration is a bit off
// Real Displayed
// 989 968
// 994.1 986
// 992.3 984
void
ProcessMAP (int instance)
{
// Using ADC_Samples[3] as the MAP input
float reading = FILT_Samples[3] * ADC_Scale;
reading = reading * 2.016; // real voltage
// values computed from slope / intercept of map.ods
//reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
// using a pressure gauge.
reading = (reading) * 150 + 326;
plx_sendword (PLX_MAP);
PutCharSerial (&uc1, instance);
plx_sendword ((uint16_t) reading);
}
// the Oil pressi sensor is giving us a reading of
// 4.5 volts for 100 PSI or 2.25 volts at the ADC input (resistive divider by 2.016)
// I believe the sensor reads 4.5V at 100PSI and 0.5V at 0PSI
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
void
ProcessOilPress (int instance)
{
// Using ADC_Samples[2] as the MAP input
float reading = FILT_Samples[2] * ADC_Scale;
reading = reading * 2.00; // real voltage
reading = (reading - 0.5) * 512 / 4; // this is 1023 * 100/200
plx_sendword (PLX_FluidPressure);
PutCharSerial (&uc1, instance);
plx_sendword ((uint16_t) reading);
}
void
ProcessTiming (int instance)
{
plx_sendword (PLX_Timing);
PutCharSerial (&uc1, instance);
plx_sendword (64 - 15); // make it negative
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC_Init();
MX_SPI1_Init();
MX_TIM2_Init();
MX_TIM6_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
HAL_MspInit ();
// Not using HAL USART code
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX comms port
__HAL_RCC_USART2_CLK_ENABLE()
; // Debug comms port
/* setup the USART control blocks */
init_usart_ctl (&uc1, huart1.Instance);
init_usart_ctl (&uc2, huart2.Instance);
EnableSerialRxInterrupt (&uc1);
EnableSerialRxInterrupt (&uc2);
HAL_SPI_MspInit (&hspi1);
HAL_ADC_MspInit (&hadc);
HAL_ADC_Start_DMA (&hadc, ADC_Samples, 6);
HAL_ADC_Start_IT (&hadc);
HAL_TIM_Base_MspInit (&htim6);
HAL_TIM_Base_Start_IT (&htim6);
// initialise all the STMCubeMX stuff
HAL_TIM_Base_MspInit (&htim2);
// Start the counter
HAL_TIM_Base_Start (&htim2);
// Start the input capture and the interrupt
HAL_TIM_IC_Start_IT (&htim2, TIM_CHANNEL_1);
HAL_TIM_Base_MspInit (&htim3);
__HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
uint32_t Ticks = HAL_GetTick () + 100;
int CalCounter = 0;
Power_CHT_Timer = HAL_GetTick () + 1000; /* wait 10 seconds before powering up the CHT sensor */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
if (HAL_GetTick () > Ticks)
{
Ticks += 100;
filter_ADC_samples ();
// delay to calibrate ADC
if (CalCounter < 1000)
{
CalCounter += 100;
}
if (CalCounter == 900)
{
CalibrateADC ();
}
}
/* when the starter motor is on then power down the CHT sensors as they seem to fail */
if (HAL_GPIO_ReadPin (STARTER_ON_GPIO_Port, STARTER_ON_Pin)
== GPIO_PIN_RESET)
{
if (Starter_Debounce < STARTER_LIMIT)
{
Starter_Debounce++;
}
}
else
{
if (Starter_Debounce > 0)
{
Starter_Debounce--;
}
}
if (Starter_Debounce == STARTER_LIMIT)
{
EnableCHT (DISABLE);
Power_CHT_Timer = HAL_GetTick () + 1000;
}
else
/* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
{
if ((Power_CHT_Timer > 0) && (HAL_GetTick () > Power_CHT_Timer))
{
EnableCHT (ENABLE);
Power_CHT_Timer = 0;
}
}
// check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
int c;
char send = 0;
// poll the input for a stop bit or timeout
if (PollSerial (&uc1))
{
resetSerialTimeout ();
c = GetCharSerial (&uc1);
if (c != PLX_Stop)
{
PutCharSerial (&uc1, c); // echo all but the stop bit
}
else
{ // must be a stop character
send = 1; // start our sending process.
}
}
// sort out auto-sending
if (TimerFlag)
{
TimerFlag = 0;
if (NoSerialIn)
{
PutCharSerial (&uc1, PLX_Start);
send = 1;
}
}
if (send)
{
send = 0;
uint16_t val;
val = __HAL_TIM_GET_COMPARE(&htim2, TIM_CHANNEL_1);
PutCharSerial (&uc2, (val & 31) + 32);
// send the observations
ProcessRPM (0);
ProcessCHT (0);
ProcessCHT (1);
ProcessBatteryVoltage (0); // Batt 1
ProcessBatteryVoltage (1); // Batt 2
ProcessCPUTemperature (0); // built in temperature sensor
ProcessMAP (0);
ProcessOilPress (0);
PutCharSerial (&uc1, PLX_Stop);
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC Initialization Function
* @param None
* @retval None
*/
static void MX_ADC_Init(void)
{
/* USER CODE BEGIN ADC_Init 0 */
/* USER CODE END ADC_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC_Init 1 */
/* USER CODE END ADC_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC1;
hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc.Init.Resolution = ADC_RESOLUTION_12B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
hadc.Init.ContinuousConvMode = DISABLE;
hadc.Init.NbrOfConversion = 6;
hadc.Init.DiscontinuousConvMode = DISABLE;
hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc.Init.DMAContinuousRequests = ENABLE;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_12;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_13;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = ADC_REGULAR_RANK_5;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_REGULAR_RANK_6;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC_Init 2 */
/* USER CODE END ADC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 320;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 320;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 100;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 99;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM6 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM6_Init(void)
{
/* USER CODE BEGIN TIM6_Init 0 */
/* USER CODE END TIM6_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM6_Init 1 */
/* USER CODE END TIM6_Init 1 */
htim6.Instance = TIM6;
htim6.Init.Prescaler = 320;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 9999;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM6_Init 2 */
/* USER CODE END TIM6_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : PC13 PC14 PC15 PC6
PC7 PC8 PC9 PC11
PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11
|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PH0 PH1 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PA0 PA1 PA8 PA11
PA12 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : LED_Blink_Pin */
GPIO_InitStruct.Pin = LED_Blink_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI_CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB11 PB12 PB13 PB14
PB15 PB3 PB4 PB5
PB6 PB7 PB8 PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : STARTER_ON_Pin */
GPIO_InitStruct.Pin = STARTER_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PD2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/