/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
*
* COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/* USER CODE BEGIN Includes */
#include "ap_math.h"
#include "serial.h"
#include "SSD1306.h"
#include "Font.h"
#include "dials.h"
#include "switches.h"
#include <math.h>
#include "plx.h"
#include "eeprom.h"
#include "displayinfo.h"
#include "small_printf.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define MAXRDG 32
/* timeout when the ignition is switched off */
#define IGNITION_OFF_TIMEOUT 30000UL
int OldObservation[2] =
{ -1, -1 }; // illegal initial value
int OldObservationIndex[2] =
{ -1, -1 }; // if more than one sensor this will be printed
int16_t dial0[2] =
{ 0, 0 };
int16_t dial1[2] =
{ -1, -1 };
uint16_t dial_timer[2] =
{ 0, 0 };
static const int DialTimeout = 50; // about 20 seconds after twiddle, save the dial position.
/* Virtual address defined by the user: 0xFFFF value is prohibited */
uint16_t VirtAddVarTab[NumbOfVar] =
{ 0x1111, 0x2222 };
union
{
PLX_SensorInfo Sensor[MAXRDG];
char Bytes[MAXRDG * sizeof(PLX_SensorInfo)];
} Data;
int Max[MAXRDG];
int Min[MAXRDG];
int PLXItems;
uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void
SystemClock_Config (void);
void
Error_Handler (void);
static void
MX_GPIO_Init (void);
static void
MX_SPI1_Init (void);
static void
MX_USART2_UART_Init (void);
static void
MX_USART1_UART_Init (void);
static void
MX_USART3_UART_Init (void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* dummy function */
void
_init (void)
{
}
// the dial is the switch number we are using.
// suppress is the ItemIndex we wish to suppress on this display
int
DisplayCurrent (int dial, int suppress)
{
char buff[10];
int i;
int rc;
select_display (dial); // pick the display we are using
int ItemIndex = dial_pos[dial] / 4;
// wrap around count if dial too far to the right
if (ItemIndex >= PLXItems)
{
dial_pos[dial] = 0;
ItemIndex = 0;
}
if (ItemIndex < 0)
{
ItemIndex = PLXItems - 1;
dial_pos[dial] = (PLXItems - 1) * 4;
}
// check for item suppression
if (ItemIndex == suppress)
{
dial1[dial] = -1;
OldObservation[dial] = -1;
OldObservationIndex[dial] = -1;
clearDisplay ();
display ();
return -1; // we suppressed this display
}
// do not try to convert if no items in buffer
if (PLXItems > 0)
{
int DataVal = ConvPLX (Data.Sensor[ItemIndex].ReadingH,
Data.Sensor[ItemIndex].ReadingL); // data reading
int Observation = ConvPLX (Data.Sensor[ItemIndex].AddrH,
Data.Sensor[ItemIndex].AddrL);
int ObservationIndex = ConvPLX (0, Data.Sensor[ItemIndex].Instance);
// now to convert the readings and format strings
// find out limits
char * msg;
int len;
// if the user presses the dial then reset min/max to current value
if (push_pos[dial] == 1)
{
Max[ItemIndex] = DataVal;
Min[ItemIndex] = DataVal; // 12 bit max value
}
if (Observation < PLX_MAX_OBS)
{
if (Observation != OldObservation[dial]
|| ObservationIndex != OldObservationIndex[dial])
{
dial_timer[dial] = DialTimeout;
dial1[dial] = -1;
clearDisplay ();
dial_draw_scale (DisplayInfo[Observation].Low,
DisplayInfo[Observation].High, 12, 1,
DisplayInfo[Observation].TickScale);
msg = DisplayInfo[Observation].name;
len = 7;
int len1 = ObservationIndex > 0 ? len - 1 : len;
for (i = 0; i < len1 && msg[i]; i++)
{
buff[i] = msg[i];
}
if (ObservationIndex > 0 && i < len)
{
buff[i++] = ObservationIndex + '1';
}
print_large_string (buff, 64 - i * 4, 48, i); // this prints spaces for \0 at end of string
// print suffix if present.
font_gotoxy (15, 4);
int i = 0;
while (DisplayInfo[Observation].suffix[i])
{
font_putchar (DisplayInfo[Observation].suffix[i++]);
}
OldObservation[dial] = Observation;
OldObservationIndex[dial] = ObservationIndex;
//
display ();
}
else
{
// check for timer timeout on consistent timer
if (dial_timer[dial])
{
dial_timer[dial]--;
if (dial_timer[dial] == 0)
{
uint16_t curr_val = dial_pos[dial];
rc = EE_ReadVariable (VirtAddVarTab[dial], &curr_val);
if ((rc != 0) || (curr_val != dial_pos[dial]))
{
//__disable_irq();
HAL_FLASH_Unlock ();
rc = EE_WriteVariable (VirtAddVarTab[dial],
dial_pos[dial]);
HAL_FLASH_Lock ();
//__enable_irq();
}
}
}
}
double max_rdg;
double min_rdg;
double cur_rdg;
int int_rdg;
int int_max;
int int_min;
max_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
Max[ItemIndex]);
min_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
Min[ItemIndex]);
cur_rdg = ConveriMFDRaw2Data (Observation,
DisplayInfo[Observation].Units,
DataVal);
int dp_pos; // where to print the decimal place
float scale = 1.0;
switch (DisplayInfo[Observation].DP)
{
case 0:
scale = 1.0;
dp_pos = 100;
break;
case 1:
scale = 10.0;
dp_pos = 1;
break;
case 2:
scale = 100.0;
dp_pos = 2;
break;
}
int_rdg = (int) (cur_rdg * scale);
int_max = (int) (max_rdg * scale);
int_min = (int) (min_rdg * scale);
cur_rdg -= DisplayInfo[Observation].Low;
cur_rdg = 100 * cur_rdg
/ (DisplayInfo[Observation].High - DisplayInfo[Observation].Low);
dial0[dial] = (int) cur_rdg;
/* old needle un-draw */
if (dial1[dial] >= 0)
{
dial_draw_needle (dial1[dial]);
}
dial_draw_needle (dial0[dial]);
// print value overlaid by needle
// this is actual reading
print_digits (30, 30, 5, dp_pos, int_rdg);
font_gotoxy (0, 0);
font_digits (5, dp_pos, int_min);
font_gotoxy (0, 1);
font_puts ("Min");
font_gotoxy (15, 0);
font_digits (5, dp_pos, int_max);
font_gotoxy (18, 1);
font_puts ("Max");
dial1[dial] = dial0[dial];
display ();
}
}
return ItemIndex;
}
/* USER CODE END 0 */
int
main (void)
{
/* USER CODE BEGIN 1 */
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_SPI1_CLK_ENABLE()
;
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX main port
__HAL_RCC_USART2_CLK_ENABLE()
; // debug port
__HAL_RCC_USART3_CLK_ENABLE (); // Bluetooth port
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init ();
/* Configure the system clock */
SystemClock_Config ();
/* Initialize all configured peripherals */
MX_GPIO_Init ();
MX_SPI1_Init ();
MX_USART2_UART_Init ();
MX_USART1_UART_Init ();
MX_USART3_UART_Init ();
/* USER CODE BEGIN 2 */
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority (USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ (USART1_IRQn);
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority (USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ (USART2_IRQn);
/* turn on USART3 IRQ */
HAL_NVIC_SetPriority (USART3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ (USART3_IRQn);
/* setup the USART control blocks */
init_usart_ctl (&uc1, huart1.Instance);
init_usart_ctl (&uc2, huart2.Instance);
init_usart_ctl (&uc3, huart3.Instance);
EnableSerialRxInterrupt (&uc1);
EnableSerialRxInterrupt (&uc2);
EnableSerialRxInterrupt (&uc3);
/* Unlock the Flash to enable the flash control register access *************/
HAL_FLASH_Unlock ();
//__disable_irq();
EE_Init ();
//__enable_irq();
HAL_FLASH_Lock ();
InitSwitches ();
int i;
uint16_t rc;
for (i = 0; i < 2; i++)
{
uint16_t val;
uint16_t rc = EE_ReadVariable (VirtAddVarTab[i], &val);
if (rc == 0)
{
dial_pos[i] = val;
}
else
{
break;
}
}
ap_init (); // set up the approximate math library
int disp;
ssd1306_begin (1, 0);
dial_origin (64, 60);
dial_size (60);
/* reset the display timeout, latch on power from accessories */
Latch_Timer = IGNITION_OFF_TIMEOUT;
HAL_GPIO_WritePin (POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
for (disp = 0; disp < 2; disp++)
{
select_display (disp);
clearDisplay ();
dim (0);
//font_puts(
// "Hello world !!\rThis text is a test of the text rendering library in a 5*7 font");
dial_draw_scale (0, 10, 12, 5, 1);
char buffer[] = "Display ";
buffer[8] = disp + '1';
print_large_string (buffer, 20, 30, 9);
display ();
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint32_t Ticks = HAL_GetTick () + 100;
/* while ignition is on, keep resetting power latch timer */
if (HAL_GPIO_ReadPin (IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
{
Latch_Timer = HAL_GetTick () + IGNITION_OFF_TIMEOUT;
}
else
{
/* if the ignition has been off for a while, then turn off power */
if (HAL_GetTick () > Latch_Timer)
{
HAL_GPIO_WritePin (POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
GPIO_PIN_RESET);
}
}
uint32_t timeout = 0; //
// PLX decoder protocols
char PLXPacket = 0;
for (i = 0; i < MAXRDG; i++)
{
Max[i] = 0;
Min[i] = 0xFFF; // 12 bit max value
}
int PLXPtr = 0;
while (1)
{
// poll switche
HandleSwitches ();
// Handle the bluetooth pairing function by pressing both buttons.
if ((push_pos[0] == 1) && (push_pos[1] == 1))
{
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
}
else
{
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_RESET);
}
uint16_t cc = SerialCharsReceived (&uc1);
int chr;
if (cc == 0)
{
timeout++;
if (timeout % 1000 == 0)
{
PutCharSerial (&uc3, '+');
}
if (timeout > 60000)
{
// do turn off screen
}
}
for (chr = 0; chr < cc; chr++)
{
char c = GetCharSerial (&uc1);
timeout = 0;
if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
{
PLXPtr = 0; // reset the pointer
PLXPacket = 1;
}
else if (c == PLX_Stop)
{
if (PLXPacket)
{
// we can now decode the selected parameter
PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
// saturate the rotary switch position
int DataVal;
// process min/max
for (i = 0; i < PLXItems; i++)
{
// Send item to BT
uint16_t addr = ConvPLX (Data.Sensor[i].AddrH,
Data.Sensor[i].AddrL);
uint8_t inst = Data.Sensor[i].Instance;
uint16_t reading = ConvPLX (Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
char outbuff[100];
int cnt = simple_sprintf (outbuff, "%d,%d,%d\n", addr, inst,
reading);
int i;
for (i = 0; i < cnt; i++)
{
PutCharSerial (&uc3, outbuff[i]);
}
DataVal = ConvPLX (Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
if (DataVal > Max[i])
{
Max[i] = DataVal;
}
if (DataVal < Min[i])
{
Min[i] = DataVal;
}
}
// now to display the information
int suppress = DisplayCurrent (0, -1);
DisplayCurrent (1, suppress);
}
PLXPtr = 0;
PLXPacket = 0;
}
else if (c > PLX_Stop) // illegal char, restart reading
{
PLXPacket = 0;
PLXPtr = 0;
}
else if (PLXPtr < sizeof(Data.Bytes))
{
Data.Bytes[PLXPtr++] = c;
}
}
HAL_Delay (1);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void
SystemClock_Config (void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig (&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler ();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig (&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler ();
}
HAL_SYSTICK_Config (HAL_RCC_GetHCLKFreq () / 1000);
HAL_SYSTICK_CLKSourceConfig (SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority (SysTick_IRQn, 0, 0);
}
/* SPI1 init function */
static void
MX_SPI1_Init (void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init (&hspi1) != HAL_OK)
{
Error_Handler ();
}
}
/* USART1 init function */
static void
MX_USART1_UART_Init (void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart1) != HAL_OK)
{
Error_Handler ();
}
}
/* USART2 init function */
static void
MX_USART2_UART_Init (void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart2) != HAL_OK)
{
Error_Handler ();
}
}
/* USART3 init function */
static void
MX_USART3_UART_Init (void)
{
huart3.Instance = USART3;
huart3.Init.BaudRate = 19200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart3) != HAL_OK)
{
Error_Handler ();
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void
MX_GPIO_Init (void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE()
;
__HAL_RCC_GPIOA_CLK_ENABLE()
;
__HAL_RCC_GPIOC_CLK_ENABLE()
;
__HAL_RCC_GPIOB_CLK_ENABLE()
;
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (GPIOA, SPI1CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin BT_BUTTON_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI1CD_Pin | BT_BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin
| USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SW1_PUSH_Pin SW1_I_Pin SW1_Q_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = SW1_PUSH_Pin | SW1_I_Pin | SW1_Q_Pin | SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : SW2_I_Pin SW2_Q_Pin */
GPIO_InitStruct.Pin = SW2_I_Pin | SW2_Q_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : IGNITION_Pin */
GPIO_InitStruct.Pin = IGNITION_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init (IGNITION_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void
Error_Handler (void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/