Subversion Repositories EngineBay2

Rev

Rev 19 | Rev 21 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /**
  2.   ******************************************************************************
  3.   * File Name          : main.c
  4.   * Description        : Main program body
  5.   ******************************************************************************
  6.   *
  7.   * COPYRIGHT(c) 2017 STMicroelectronics
  8.   *
  9.   * Redistribution and use in source and binary forms, with or without modification,
  10.   * are permitted provided that the following conditions are met:
  11.   *   1. Redistributions of source code must retain the above copyright notice,
  12.   *      this list of conditions and the following disclaimer.
  13.   *   2. Redistributions in binary form must reproduce the above copyright notice,
  14.   *      this list of conditions and the following disclaimer in the documentation
  15.   *      and/or other materials provided with the distribution.
  16.   *   3. Neither the name of STMicroelectronics nor the names of its contributors
  17.   *      may be used to endorse or promote products derived from this software
  18.   *      without specific prior written permission.
  19.   *
  20.   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21.   * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22.   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  23.   * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  24.   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25.   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  26.   * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  27.   * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  28.   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29.   * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30.   *
  31.   ******************************************************************************
  32.   */
  33. /* Includes ------------------------------------------------------------------*/
  34. #include "stm32l1xx_hal.h"
  35.  
  36. /* USER CODE BEGIN Includes */
  37. #include "serial.h"
  38. #include "plx.h"
  39. #include "misc.h"
  40. /* USER CODE END Includes */
  41.  
  42. /* Private variables ---------------------------------------------------------*/
  43. ADC_HandleTypeDef hadc;
  44. DMA_HandleTypeDef hdma_adc;
  45.  
  46. SPI_HandleTypeDef hspi1;
  47.  
  48. TIM_HandleTypeDef htim2;
  49. TIM_HandleTypeDef htim6;
  50.  
  51. UART_HandleTypeDef huart1;
  52. UART_HandleTypeDef huart2;
  53.  
  54. /* USER CODE BEGIN PV */
  55. /* Private variables ---------------------------------------------------------*/
  56.  
  57. // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
  58. // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
  59. // the TIM2 counter counts in 10uS increments,
  60. #define BREAKER_MIN (RPM_COUNT_RATE/300)
  61.  
  62. volatile char TimerFlag = 0;
  63.  
  64. volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
  65. volatile char NoSerialIn = 0;
  66.  
  67. // storage for ADC
  68. uint16_t ADC_Samples[6];
  69.  
  70. #define Scale 1024.0
  71. const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
  72.  
  73. uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
  74. // Rev counter processing from original RevCounter Project
  75. unsigned int RPM_Diff = 0;
  76. unsigned int RPM_Count_Latch = 0;
  77. // accumulators
  78. unsigned int RPM_Pulsecount = 0;
  79. unsigned int RPM_FilteredWidth = 0;
  80.  
  81. unsigned int Coded_RPM = 0;
  82. unsigned int Coded_CHT = 0;
  83.  
  84. uint32_t Power_CHT_Timer;
  85.  
  86. /* USER CODE END PV */
  87.  
  88. /* Private function prototypes -----------------------------------------------*/
  89. void SystemClock_Config(void);
  90. void Error_Handler(void);
  91. static void MX_GPIO_Init(void);
  92. static void MX_DMA_Init(void);
  93. static void MX_ADC_Init(void);
  94. static void MX_SPI1_Init(void);
  95. static void MX_TIM2_Init(void);
  96. static void MX_TIM6_Init(void);
  97. static void MX_USART2_UART_Init(void);
  98. static void MX_USART1_UART_Init(void);
  99.  
  100. /* USER CODE BEGIN PFP */
  101. /* Private function prototypes -----------------------------------------------*/
  102.  
  103. /* USER CODE END PFP */
  104.  
  105. /* USER CODE BEGIN 0 */
  106.  
  107. void plx_sendword(int x)
  108. {
  109.         PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
  110.         PutCharSerial(&uc1, (x) & 0x3F);
  111. }
  112.  
  113. void init_ADC_filter()
  114. {
  115.         int i;
  116.         for (i = 0; i < 6; i++)
  117.         {
  118.                 FILT_Samples[i] = 0;
  119.         }
  120. }
  121.  
  122. void filter_ADC_samples()
  123. {
  124.         int i;
  125.         for (i = 0; i < 6; i++)
  126.         {
  127.                 FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
  128.         }
  129. }
  130.  
  131. void ProcessRPM(int instance)
  132. {
  133. // compute the timer values
  134. // snapshot timers
  135.         unsigned long RPM_Pulsewidth;
  136.         unsigned long RPM_Count_Val;
  137.         __disable_irq(); // copy the counter value
  138.         RPM_Count_Val = RPM_Count;
  139.         __enable_irq();
  140. // do calculations
  141. // if there is only one entry, cannot get difference
  142.         if (RPM_Count_Latch != RPM_Count_Val)
  143.         {
  144.                 while (1)
  145.                 {
  146.                         unsigned int base_time;
  147.                         unsigned int new_time;
  148.                         // if we are at N-1, stop.
  149.                         unsigned int next_count = RPM_Count_Latch + 1;
  150.                         if (next_count == RPM_SAMPLES)
  151.                         {
  152.                                 next_count = 0;
  153.                         }
  154.                         if (next_count == RPM_Count_Val)
  155.                         {
  156.                                 break;
  157.                         }
  158.                         base_time = RPM_Time[RPM_Count_Latch];
  159.                         new_time = RPM_Time[next_count];
  160.                         RPM_Count_Latch = next_count;
  161.                         if (new_time > base_time)
  162.                         {
  163.                                 RPM_Pulsewidth = new_time - base_time; // not wrapped
  164.                         }
  165.                         else
  166.                         {
  167.                                 RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping
  168.                         }
  169.  
  170.                         RPM_Diff += RPM_Pulsewidth;
  171.                         // need to check if this is a long pulse. If it is, keep the answer
  172.                         if (RPM_Pulsewidth > BREAKER_MIN)
  173.                         {
  174.                                 RPM_Pulsecount++; // count one pulse
  175.                                 RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
  176.                                 RPM_Diff = 0; // reset accumulator of all the narrow widths
  177.                         }
  178.                 }
  179.  
  180.         }
  181.  
  182.         if (RPM_Pulsecount > 0)
  183.         {
  184.                 // now have time for N pulses in clocks
  185.                 // need to scale by 19.55: one unit is 19.55 RPM
  186.                 // 1Hz is 60 RPM
  187.                 float new_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
  188.                                 / (RPM_FilteredWidth) + 0.5;
  189.  
  190.                 Coded_RPM += (new_RPM * Scale - Coded_RPM) / 4;
  191.  
  192. #if !defined MY_DEBUG
  193.                 // reset here unless we want to debug
  194.                 RPM_Pulsecount = 0;
  195.                 RPM_FilteredWidth = 0;
  196. #endif
  197.         }
  198.  
  199. // send the current RPM *calculation
  200.         plx_sendword(PLX_RPM);
  201.         PutCharSerial(&uc1, instance);
  202.         plx_sendword(Coded_RPM / Scale);
  203. }
  204.  
  205. // this uses a MAX6675 which is a simple 16 bit read
  206. // SPI is configured for 8 bits so I can use an OLED display if I need it
  207. // must wait > 0.22 seconds between conversion attempts as this is the measurement time
  208. //
  209.  
  210. GPIO_PinState CHT_Enable = GPIO_PIN_SET;
  211.  
  212. uint8_t CHT_Timer[2] =
  213. { 0, 0 }; // two temperature readings
  214. uint8_t CHT_Observations[2] =
  215. { 0, 0 };
  216.  
  217. void ProcessCHT(int instance)
  218. {
  219.         uint8_t buffer[2];
  220.         if (instance > 2)
  221.                 return;
  222.         CHT_Timer[instance]++;
  223.         if ((CHT_Enable == GPIO_PIN_SET) && (CHT_Timer[instance] >= 4)) // every 300 milliseconds
  224.         {
  225.  
  226.                 CHT_Timer[instance] = 0;
  227.  
  228.                 uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin;
  229.  
  230.                 HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET);
  231.  
  232.                 HAL_SPI_Receive(&hspi1, buffer, 2, 2);
  233.  
  234.                 HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET);
  235.  
  236.                 uint16_t obs = (buffer[0] << 8) | buffer[1];
  237.  
  238.                 uint8_t good = (obs & 4) == 0;
  239.                 if (good)
  240.                 {
  241.                         CHT_Observations[instance] = obs >> 5;
  242.                 }
  243.                 else
  244.                 {
  245.                         CHT_Observations[instance] = 1024; // signal fail
  246.                 }
  247.         }
  248.  
  249.         plx_sendword(PLX_X_CHT);
  250.         PutCharSerial(&uc1, instance);
  251.         plx_sendword(CHT_Observations[instance]);
  252.  
  253. }
  254.  
  255. void EnableCHT(GPIO_PinState state)
  256. {
  257.         GPIO_InitTypeDef GPIO_InitStruct;
  258.  
  259.         CHT_Enable = state;
  260.         HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, state);
  261.         /* drive the NSS to high if the interface is enabled */
  262.  
  263.         /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
  264.         if (state == GPIO_PIN_SET)
  265.         {
  266.  
  267.                 HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
  268.                 HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
  269.                                 GPIO_PIN_SET);
  270.  
  271.                 /* put the SPI pins back into SPI AF mode */
  272.                 GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  273.                 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  274.                 GPIO_InitStruct.Pull = GPIO_NOPULL;
  275.                 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  276.                 GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
  277.                 HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  278.  
  279.         }
  280.         else
  281.         {
  282.                 /*  Power down the SPI interface taking signals all low */
  283.                 HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
  284.                                 GPIO_PIN_RESET);
  285.                 HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
  286.                                 GPIO_PIN_RESET);
  287.  
  288.                 HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
  289.                                 SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin, GPIO_PIN_RESET);
  290.  
  291.                 /* put the SPI pins back into GPIO mode */
  292.                 GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  293.                 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  294.                 GPIO_InitStruct.Pull = GPIO_NOPULL;
  295.                 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  296.                 HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  297.  
  298.         }
  299.  
  300. }
  301.  
  302. // 1023 is 20.00 volts.
  303. void ProcessBatteryVoltage(int instance)
  304. {
  305.         float reading = FILT_Samples[instance] * ADC_Scale;
  306.         reading = reading * 7.8125; // real voltage
  307.         reading = reading * 51.15; // 1023/20
  308.  
  309.         plx_sendword(PLX_Volts);
  310.         PutCharSerial(&uc1, instance);
  311.         plx_sendword((uint16_t) reading);
  312.  
  313. }
  314.  
  315. /****!
  316.  * @brief this reads the reference voltage within the STM32L151
  317.  * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
  318.  * Requires that the ADC be powered up
  319.  */
  320.  
  321. uint32_t ADC_VREF_MV = 3300;           // 3.300V typical
  322. const uint16_t STM32REF_MV = 1224;           // 1.224V typical
  323.  
  324. void CalibrateADC(void)
  325. {
  326.         uint32_t adc_val = FILT_Samples[6];       // as set up in device config
  327.         ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
  328. }
  329.  
  330. void ProcessCPUTemperature(int instance)
  331. {
  332.         int32_t temp_val;
  333.         uint16_t TS_CAL30 = *(uint16_t *) 0x1FF8007A; /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
  334.         uint16_t TS_CAL110 = *(uint16_t *) 0x1FF8007E; /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
  335.         /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
  336.  
  337.         temp_val = FILT_Samples[5];
  338.  
  339.         /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
  340.         temp_val = temp_val * ADC_VREF_MV / 3000UL;
  341.  
  342.         int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
  343.         result = result / (TS_CAL110 - TS_CAL30) + 300;
  344.  
  345.         if (result < 0)
  346.         {
  347.                 result = 0;
  348.         }
  349.         plx_sendword(PLX_FluidTemp);
  350.         PutCharSerial(&uc1, instance);
  351.         plx_sendword(result / 10);
  352.  
  353. }
  354.  
  355. // the MAP sensor is giving us a reading of
  356. // 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
  357. // I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
  358.  
  359. void ProcessMAP(int instance)
  360. {
  361. // Using ADC_Samples[3] as the MAP input
  362.         float reading = FILT_Samples[3] * ADC_Scale;
  363.         reading = reading * 2.016;      // real voltage
  364.         reading = (reading) * 1000 / 4.5; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
  365.         plx_sendword(PLX_MAP);
  366.         PutCharSerial(&uc1, instance);
  367.         plx_sendword((uint16_t) reading);
  368.  
  369. }
  370.  
  371. // the Oil pressi sensor is giving us a reading of
  372. // 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
  373. // I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
  374. // an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
  375.  
  376. void ProcessOilPress(int instance)
  377. {
  378. // Using ADC_Samples[2] as the MAP input
  379.         float reading = FILT_Samples[2] * ADC_Scale;
  380.         reading = reading * 2.00; // real voltage
  381.         reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
  382.  
  383.         plx_sendword(PLX_FluidPressure);
  384.         PutCharSerial(&uc1, instance);
  385.         plx_sendword((uint16_t) reading);
  386.  
  387. }
  388.  
  389. void ProcessTiming(int instance)
  390. {
  391.         plx_sendword(PLX_Timing);
  392.         PutCharSerial(&uc1, instance);
  393.         plx_sendword(64 - 15); // make it negative
  394. }
  395.  
  396. /* USER CODE END 0 */
  397.  
  398. int main(void)
  399. {
  400.  
  401.   /* USER CODE BEGIN 1 */
  402.  
  403.   /* USER CODE END 1 */
  404.  
  405.   /* MCU Configuration----------------------------------------------------------*/
  406.  
  407.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  408.   HAL_Init();
  409.  
  410.   /* Configure the system clock */
  411.   SystemClock_Config();
  412.  
  413.   /* Initialize all configured peripherals */
  414.   MX_GPIO_Init();
  415.   MX_DMA_Init();
  416.   MX_ADC_Init();
  417.   MX_SPI1_Init();
  418.   MX_TIM2_Init();
  419.   MX_TIM6_Init();
  420.   MX_USART2_UART_Init();
  421.   MX_USART1_UART_Init();
  422.  
  423.   /* USER CODE BEGIN 2 */
  424.         HAL_MspInit();
  425.  
  426. // Not using HAL USART code
  427.         __HAL_RCC_USART1_CLK_ENABLE()
  428.         ; // PLX comms port
  429.         __HAL_RCC_USART2_CLK_ENABLE()
  430.         ;  // Debug comms port
  431.         /* setup the USART control blocks */
  432.         init_usart_ctl(&uc1, huart1.Instance);
  433.         init_usart_ctl(&uc2, huart2.Instance);
  434.  
  435.         EnableSerialRxInterrupt(&uc1);
  436.         EnableSerialRxInterrupt(&uc2);
  437.  
  438.         HAL_SPI_MspInit(&hspi1);
  439.  
  440.         HAL_ADC_MspInit(&hadc);
  441.  
  442.         HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6);
  443.  
  444.         HAL_ADC_Start_IT(&hadc);
  445.  
  446.         HAL_TIM_Base_MspInit(&htim6);
  447.         HAL_TIM_Base_Start_IT(&htim6);
  448.  
  449. // initialise all the STMCubeMX stuff
  450.         HAL_TIM_Base_MspInit(&htim2);
  451. // Start the counter
  452.         HAL_TIM_Base_Start(&htim2);
  453. // Start the input capture and the interrupt
  454.         HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  455.  
  456.         init_ADC_filter();
  457.  
  458.         uint32_t Ticks = HAL_GetTick() + 100;
  459.         int CalCounter = 0;
  460.  
  461.         Power_CHT_Timer = HAL_GetTick() + 10000; /* wait 10 seconds before powering up the CHT sensor */
  462.  
  463.  
  464.  
  465.  
  466.   /* USER CODE END 2 */
  467.  
  468.   /* Infinite loop */
  469.   /* USER CODE BEGIN WHILE */
  470.         while (1)
  471.         {
  472.   /* USER CODE END WHILE */
  473.  
  474.   /* USER CODE BEGIN 3 */
  475.  
  476.                 if (HAL_GetTick() > Ticks)
  477.                 {
  478.                         Ticks += 100;
  479.                         filter_ADC_samples();
  480.                         // delay to calibrate ADC
  481.                         if (CalCounter < 500)
  482.                         {
  483.                                 CalCounter += 100;
  484.                         }
  485.  
  486.                         if (CalCounter == 400)
  487.                         {
  488.                                 CalibrateADC();
  489.                         }
  490.                 }
  491.                 /* when the starter motor is on then power down the CHT sensors as they seem to fail */
  492.  
  493.                 if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin)
  494.                                 == GPIO_PIN_RESET)
  495.                 {
  496.                         EnableCHT(GPIO_PIN_RESET);
  497.                         Power_CHT_Timer = HAL_GetTick() + 5000;
  498.                 }
  499.                 else
  500.                 /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
  501.                 {
  502.                         if ((Power_CHT_Timer > 0) && (HAL_GetTick() > Power_CHT_Timer))
  503.                         {
  504.                                 EnableCHT(GPIO_PIN_SET);
  505.                                 Power_CHT_Timer = 0;
  506.                         }
  507.                 }
  508.  
  509.                 // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
  510.                 int c;
  511.                 char send = 0;
  512.  
  513.                 // poll the  input for a stop bit or timeout
  514.                 if (PollSerial(&uc1))
  515.                 {
  516.                         c = GetCharSerial(&uc1);
  517.                         if (c != PLX_Stop)
  518.                         {
  519.                                 PutCharSerial(&uc1, c); // echo all but the stop bit
  520.                         }
  521.                         else
  522.                         { // must be a stop character
  523.                                 send = 1; // start our sending process.
  524.                         }
  525.                 }
  526.  
  527.                 // sort out auto-sending
  528.                 if (TimerFlag)
  529.                 {
  530.                         TimerFlag = 0;
  531.                         if (NoSerialIn)
  532.                         {
  533.                                 PutCharSerial(&uc1, PLX_Start);
  534.                                 send = 1;
  535.                         }
  536.                 }
  537.                 if (send)
  538.                 {
  539.                         send = 0;
  540.  
  541.                         uint16_t val;
  542.                         val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1);
  543.                         PutCharSerial(&uc2, (val & 31) + 32);
  544.  
  545.                         // send the observations
  546.                         ProcessRPM(0);
  547.                         ProcessCHT(0);
  548.                         //      ProcessCHT(1);
  549.                         ProcessBatteryVoltage(0); // Batt 1
  550.                         ProcessBatteryVoltage(1); // Batt 2
  551.                         ProcessCPUTemperature(0); //  built in temperature sensor
  552.  
  553.                         ProcessMAP(0);
  554.                         ProcessOilPress(0);
  555.  
  556.                         PutCharSerial(&uc1, PLX_Stop);
  557.                 }
  558.         }
  559.   /* USER CODE END 3 */
  560.  
  561. }
  562.  
  563. /** System Clock Configuration
  564. */
  565. void SystemClock_Config(void)
  566. {
  567.  
  568.   RCC_OscInitTypeDef RCC_OscInitStruct;
  569.   RCC_ClkInitTypeDef RCC_ClkInitStruct;
  570.  
  571.   __HAL_RCC_PWR_CLK_ENABLE();
  572.  
  573.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  574.  
  575.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  576.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  577.   RCC_OscInitStruct.HSICalibrationValue = 16;
  578.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  579.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  580.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  581.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  582.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  583.   {
  584.     Error_Handler();
  585.   }
  586.  
  587.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  588.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  589.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  590.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  591.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  592.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  593.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  594.   {
  595.     Error_Handler();
  596.   }
  597.  
  598.   HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
  599.  
  600.   HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
  601.  
  602.   /* SysTick_IRQn interrupt configuration */
  603.   HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
  604. }
  605.  
  606. /* ADC init function */
  607. static void MX_ADC_Init(void)
  608. {
  609.  
  610.   ADC_ChannelConfTypeDef sConfig;
  611.  
  612.     /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  613.     */
  614.   hadc.Instance = ADC1;
  615.   hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  616.   hadc.Init.Resolution = ADC_RESOLUTION_12B;
  617.   hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  618.   hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
  619.   hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
  620.   hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
  621.   hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
  622.   hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
  623.   hadc.Init.ContinuousConvMode = DISABLE;
  624.   hadc.Init.NbrOfConversion = 6;
  625.   hadc.Init.DiscontinuousConvMode = DISABLE;
  626.   hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
  627.   hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  628.   hadc.Init.DMAContinuousRequests = ENABLE;
  629.   if (HAL_ADC_Init(&hadc) != HAL_OK)
  630.   {
  631.     Error_Handler();
  632.   }
  633.  
  634.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  635.     */
  636.   sConfig.Channel = ADC_CHANNEL_10;
  637.   sConfig.Rank = 1;
  638.   sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
  639.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  640.   {
  641.     Error_Handler();
  642.   }
  643.  
  644.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  645.     */
  646.   sConfig.Channel = ADC_CHANNEL_11;
  647.   sConfig.Rank = 2;
  648.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  649.   {
  650.     Error_Handler();
  651.   }
  652.  
  653.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  654.     */
  655.   sConfig.Channel = ADC_CHANNEL_12;
  656.   sConfig.Rank = 3;
  657.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  658.   {
  659.     Error_Handler();
  660.   }
  661.  
  662.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  663.     */
  664.   sConfig.Channel = ADC_CHANNEL_13;
  665.   sConfig.Rank = 4;
  666.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  667.   {
  668.     Error_Handler();
  669.   }
  670.  
  671.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  672.     */
  673.   sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  674.   sConfig.Rank = 5;
  675.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  676.   {
  677.     Error_Handler();
  678.   }
  679.  
  680.     /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  681.     */
  682.   sConfig.Channel = ADC_CHANNEL_VREFINT;
  683.   sConfig.Rank = 6;
  684.   if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
  685.   {
  686.     Error_Handler();
  687.   }
  688.  
  689. }
  690.  
  691. /* SPI1 init function */
  692. static void MX_SPI1_Init(void)
  693. {
  694.  
  695.   hspi1.Instance = SPI1;
  696.   hspi1.Init.Mode = SPI_MODE_MASTER;
  697.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  698.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  699.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  700.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  701.   hspi1.Init.NSS = SPI_NSS_SOFT;
  702.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  703.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  704.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  705.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  706.   hspi1.Init.CRCPolynomial = 10;
  707.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  708.   {
  709.     Error_Handler();
  710.   }
  711.  
  712. }
  713.  
  714. /* TIM2 init function */
  715. static void MX_TIM2_Init(void)
  716. {
  717.  
  718.   TIM_ClockConfigTypeDef sClockSourceConfig;
  719.   TIM_MasterConfigTypeDef sMasterConfig;
  720.   TIM_IC_InitTypeDef sConfigIC;
  721.  
  722.   htim2.Instance = TIM2;
  723.   htim2.Init.Prescaler = 320;
  724.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  725.   htim2.Init.Period = 65535;
  726.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  727.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  728.   {
  729.     Error_Handler();
  730.   }
  731.  
  732.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  733.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  734.   {
  735.     Error_Handler();
  736.   }
  737.  
  738.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  739.   {
  740.     Error_Handler();
  741.   }
  742.  
  743.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  744.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  745.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  746.   {
  747.     Error_Handler();
  748.   }
  749.  
  750.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  751.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  752.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  753.   sConfigIC.ICFilter = 0;
  754.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  755.   {
  756.     Error_Handler();
  757.   }
  758.  
  759. }
  760.  
  761. /* TIM6 init function */
  762. static void MX_TIM6_Init(void)
  763. {
  764.  
  765.   TIM_MasterConfigTypeDef sMasterConfig;
  766.  
  767.   htim6.Instance = TIM6;
  768.   htim6.Init.Prescaler = 320;
  769.   htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  770.   htim6.Init.Period = 9999;
  771.   if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  772.   {
  773.     Error_Handler();
  774.   }
  775.  
  776.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  777.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  778.   if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  779.   {
  780.     Error_Handler();
  781.   }
  782.  
  783. }
  784.  
  785. /* USART1 init function */
  786. static void MX_USART1_UART_Init(void)
  787. {
  788.  
  789.   huart1.Instance = USART1;
  790.   huart1.Init.BaudRate = 19200;
  791.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  792.   huart1.Init.StopBits = UART_STOPBITS_1;
  793.   huart1.Init.Parity = UART_PARITY_NONE;
  794.   huart1.Init.Mode = UART_MODE_TX_RX;
  795.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  796.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  797.   if (HAL_UART_Init(&huart1) != HAL_OK)
  798.   {
  799.     Error_Handler();
  800.   }
  801.  
  802. }
  803.  
  804. /* USART2 init function */
  805. static void MX_USART2_UART_Init(void)
  806. {
  807.  
  808.   huart2.Instance = USART2;
  809.   huart2.Init.BaudRate = 115200;
  810.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  811.   huart2.Init.StopBits = UART_STOPBITS_1;
  812.   huart2.Init.Parity = UART_PARITY_NONE;
  813.   huart2.Init.Mode = UART_MODE_TX_RX;
  814.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  815.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  816.   if (HAL_UART_Init(&huart2) != HAL_OK)
  817.   {
  818.     Error_Handler();
  819.   }
  820.  
  821. }
  822.  
  823. /**
  824.   * Enable DMA controller clock
  825.   */
  826. static void MX_DMA_Init(void)
  827. {
  828.   /* DMA controller clock enable */
  829.   __HAL_RCC_DMA1_CLK_ENABLE();
  830.  
  831.   /* DMA interrupt init */
  832.   /* DMA1_Channel1_IRQn interrupt configuration */
  833.   HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  834.   HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  835.  
  836. }
  837.  
  838. /** Configure pins as
  839.         * Analog
  840.         * Input
  841.         * Output
  842.         * EVENT_OUT
  843.         * EXTI
  844.         * Free pins are configured automatically as Analog (this feature is enabled through
  845.         * the Code Generation settings)
  846. */
  847. static void MX_GPIO_Init(void)
  848. {
  849.  
  850.   GPIO_InitTypeDef GPIO_InitStruct;
  851.  
  852.   /* GPIO Ports Clock Enable */
  853.   __HAL_RCC_GPIOC_CLK_ENABLE();
  854.   __HAL_RCC_GPIOH_CLK_ENABLE();
  855.   __HAL_RCC_GPIOA_CLK_ENABLE();
  856.   __HAL_RCC_GPIOB_CLK_ENABLE();
  857.   __HAL_RCC_GPIOD_CLK_ENABLE();
  858.  
  859.   /*Configure GPIO pins : PC13 PC14 PC15 PC6
  860.                            PC7 PC8 PC9 PC11
  861.                            PC12 */
  862.   GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
  863.                           |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11
  864.                           |GPIO_PIN_12;
  865.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  866.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  867.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  868.  
  869.   /*Configure GPIO pins : PH0 PH1 */
  870.   GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
  871.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  872.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  873.   HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
  874.  
  875.   /*Configure GPIO pins : PA0 PA1 PA8 PA11
  876.                            PA12 */
  877.   GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
  878.                           |GPIO_PIN_12;
  879.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  880.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  881.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  882.  
  883.   /*Configure GPIO pin : LED_Blink_Pin */
  884.   GPIO_InitStruct.Pin = LED_Blink_Pin;
  885.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  886.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  887.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  888.   HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
  889.  
  890.   /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
  891.   GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
  892.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  893.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  894.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  895.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  896.  
  897.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
  898.   GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
  899.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  900.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  901.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  902.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  903.  
  904.   /*Configure GPIO pins : PB11 PB12 PB13 PB14
  905.                            PB15 PB3 PB4 PB5
  906.                            PB6 PB7 PB8 PB9 */
  907.   GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
  908.                           |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
  909.                           |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
  910.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  911.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  912.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  913.  
  914.   /*Configure GPIO pin : STARTER_ON_Pin */
  915.   GPIO_InitStruct.Pin = STARTER_ON_Pin;
  916.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  917.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  918.   HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
  919.  
  920.   /*Configure GPIO pin : PD2 */
  921.   GPIO_InitStruct.Pin = GPIO_PIN_2;
  922.   GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  923.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  924.   HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  925.  
  926.   /*Configure GPIO pin Output Level */
  927.   HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
  928.  
  929.   /*Configure GPIO pin Output Level */
  930.   HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
  931.  
  932.   /*Configure GPIO pin Output Level */
  933.   HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
  934.  
  935.   /*Configure GPIO pin Output Level */
  936.   HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  937.  
  938.   /*Configure GPIO pin Output Level */
  939.   HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
  940.  
  941. }
  942.  
  943. /* USER CODE BEGIN 4 */
  944.  
  945. /* USER CODE END 4 */
  946.  
  947. /**
  948.   * @brief  This function is executed in case of error occurrence.
  949.   * @param  None
  950.   * @retval None
  951.   */
  952. void Error_Handler(void)
  953. {
  954.   /* USER CODE BEGIN Error_Handler */
  955.         /* User can add his own implementation to report the HAL error return state */
  956.         while (1)
  957.         {
  958.         }
  959.   /* USER CODE END Error_Handler */
  960. }
  961.  
  962. #ifdef USE_FULL_ASSERT
  963.  
  964. /**
  965.    * @brief Reports the name of the source file and the source line number
  966.    * where the assert_param error has occurred.
  967.    * @param file: pointer to the source file name
  968.    * @param line: assert_param error line source number
  969.    * @retval None
  970.    */
  971. void assert_failed(uint8_t* file, uint32_t line)
  972. {
  973.   /* USER CODE BEGIN 6 */
  974.         /* User can add his own implementation to report the file name and line number,
  975.          ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  976.   /* USER CODE END 6 */
  977.  
  978. }
  979.  
  980. #endif
  981.  
  982. /**
  983.   * @}
  984.   */
  985.  
  986. /**
  987.   * @}
  988. */
  989.  
  990. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  991.