/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
*
* COPYRIGHT(c) 2016 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/* USER CODE BEGIN Includes */
#include "ap_math.h"
#include "serial.h"
#include "SSD1306.h"
#include "Font.h"
#include "dials.h"
#include "switches.h"
#include <math.h>
#include "plx.h"
#include "eeprom.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define MAXRDG 32
int OldObservation[2] =
{ -1, -1 }; // illegal initial value
int OldObservationIndex[2] =
{ -1, -1 }; // if more than one sensor this will be printed
int16_t dial0[2] =
{ 0, 0 };
int16_t dial1[2] =
{ -1, -1 };
uint16_t dial_timer[2] =
{ 0, 0 };
static const int DialTimeout = 50; // about 20 seconds after twiddle, save the dial position.
/* Virtual address defined by the user: 0xFFFF value is prohibited */
uint16_t VirtAddVarTab[NumbOfVar] = {0x1111,0x2222 } ;
union
{
PLX_SensorInfo Sensor[MAXRDG];
char Bytes[MAXRDG * sizeof(PLX_SensorInfo)];
} Data;
int Max[MAXRDG];
int Min[MAXRDG];
int PLXItems;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void Error_Handler(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* dummy function */
void _init(void)
{
}
// the dial is the switch number we are using.
// suppress is the ItemIndex we wish to suppress on this display
int DisplayCurrent(int dial,int suppress)
{
char buff[10];
int i;
int rc;
select_display(dial); // pick the display we are using
int ItemIndex = dial_pos[dial]/4;
// wrap around count if dial too far to the right
if (ItemIndex >= PLXItems)
{
dial_pos[dial] = 0;
ItemIndex = 0;
}
if (ItemIndex < 0)
{
ItemIndex = PLXItems-1;
dial_pos[dial] = (PLXItems-1)*4;
}
// check for item suppression
if(ItemIndex == suppress)
{
dial1[dial] = -1;
OldObservation[dial] = -1;
OldObservationIndex[dial] = -1;
clearDisplay();
display();
return -1; // we suppressed this display
}
// do not try to convert if no items in buffer
if (PLXItems > 0)
{
int DataVal = ConvPLX(Data.Sensor[ItemIndex].ReadingH,
Data.Sensor[ItemIndex].ReadingL); // data reading
int Observation = ConvPLX(Data.Sensor[ItemIndex].AddrH,
Data.Sensor[ItemIndex].AddrL);
int ObservationIndex = ConvPLX(0, Data.Sensor[ItemIndex].Instance);
// now to convert the readings and format strings
// find out limits
char * msg;
int len;
// if the user presses the dial then reset min/max to current value
if(push_pos[dial] == 1)
{
Max[ItemIndex] = DataVal;
Min[ItemIndex] = DataVal; // 12 bit max value
}
if (Observation < PLX_MAX_OBS)
{
if (Observation != OldObservation[dial]
|| ObservationIndex != OldObservationIndex[dial])
{
dial_timer[dial] = DialTimeout;
dial1[dial] = -1;
clearDisplay();
dial_draw_scale(
DisplayInfo[Observation].Low,
DisplayInfo[Observation].High,
12, 1,DisplayInfo[Observation].TickScale);
msg = DisplayInfo[Observation].name;
len = 7;
int len1 = ObservationIndex > 0 ? len-1: len;
for (i = 0; i < len1 && msg[i]; i++)
{
buff[i] = msg[i];
}
if (ObservationIndex > 0 && i<len)
{
buff[i++] = ObservationIndex + '1';
}
print_large_string(buff, 64-i*4, 48, i); // this prints spaces for \0 at end of string
OldObservation[dial] = Observation;
OldObservationIndex[dial] = ObservationIndex;
//
display();
}
else
{
// check for timer timeout on consistent timer
if(dial_timer[dial])
{
dial_timer[dial]--;
if(dial_timer[dial]==0 )
{
uint16_t curr_val = dial_pos[dial];
rc = EE_ReadVariable(VirtAddVarTab[dial],&curr_val);
if((rc !=0) || (curr_val != dial_pos[dial]))
{
EE_WriteVariable(VirtAddVarTab[dial],dial_pos[dial]);
}
}
}
}
double max_rdg;
double min_rdg;
double cur_rdg;
int int_rdg;
int int_max;
int int_min;
max_rdg = ConveriMFDRaw2Data(Observation,
DisplayInfo[Observation].Units, Max[ItemIndex]);
min_rdg = ConveriMFDRaw2Data(Observation,
DisplayInfo[Observation].Units, Min[ItemIndex]);
cur_rdg = ConveriMFDRaw2Data(Observation,
DisplayInfo[Observation].Units, DataVal);
int dp_pos; // where to print the decimal place
switch (DisplayInfo[Observation].DP)
{
case 0:
int_rdg = (int) (cur_rdg);
int_max = (int) (max_rdg);
int_min = (int) (min_rdg);
dp_pos = 100;
break;
case 1:
int_rdg = (int) (cur_rdg * 10.0);
int_max = (int) (max_rdg * 10.0);
int_min = (int) (min_rdg * 10.0);
dp_pos = 3;
break;
case 2:
int_rdg = (int) (cur_rdg * 100.0);
int_max = (int) (max_rdg * 100.0);
int_min = (int) (min_rdg * 100.0);
dp_pos = 2;
break;
}
cur_rdg -= DisplayInfo[Observation].Low;
cur_rdg = 100 * cur_rdg
/ (DisplayInfo[Observation].High
- DisplayInfo[Observation].Low);
dial0[dial] = (int) cur_rdg ;
/* old needle un-draw */
if (dial1[dial] >= 0)
{
dial_draw_needle(dial1[dial]);
}
dial_draw_needle(dial0[dial]);
// print value overlaid by needle
// this is actual reading
print_digits(20, 30, 5, dp_pos, int_rdg);
font_gotoxy(0,0);
font_digits(5,dp_pos,int_min);
font_gotoxy(0,1);
font_puts("Min");
font_gotoxy(15,0);
font_digits(5,dp_pos,int_max);
font_gotoxy(18,1);
font_puts("Max");
dial1[dial] = dial0[dial];
display();
}
}
return ItemIndex;
}
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_SPI1_CLK_ENABLE()
;
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX main port
__HAL_RCC_USART2_CLK_ENABLE()
; // debug port
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
/* SPI bus AF pin selects */
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* setup the USART control blocks */
init_usart_ctl(&uc1, huart1.Instance);
init_usart_ctl(&uc2, huart2.Instance);
EnableSerialRxInterrupt(&uc1);
EnableSerialRxInterrupt(&uc2);
/* Unlock the Flash to enable the flash control register access *************/
HAL_FLASH_Unlock();
EE_Init();
int i;
uint16_t rc;
for(i=0;i<2;i++)
{
uint16_t val;
uint16_t rc = EE_ReadVariable(VirtAddVarTab[i], &val);
if (rc == 0)
{
dial_pos[i] = val;
}
else
{
break;
}
}
ap_init(); // set up the approximate math library
int disp;
ssd1306_begin(1, 0);
dial_origin(64, 60);
dial_size(60);
// sort out the switch positions
for (disp = 0; disp < 2; disp++)
{
select_display(disp);
clearDisplay();
dim(0);
//font_puts(
// "Hello world !!\rThis text is a test of the text rendering library in a 5*7 font");
dial_draw_scale(0, 10, 12, 5,1);
char buffer[] = "Display ";
buffer[8] = disp+'1';
print_large_string(buffer, 20,30, 9);
display();
}
InitSwitches();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint32_t Ticks = HAL_GetTick() + 100;
// PLX decoder protocol
char PLXPacket = 0;
for (i = 0; i < MAXRDG; i++)
{
Max[i] = 0;
Min[i] = 0xFFF; // 12 bit max value
}
int PLXPtr = 0;
while (1)
{
// poll switches
HandleSwitches();
uint16_t cc = SerialCharsReceived(&uc1);
int chr;
for (chr = 0; chr < cc; chr++)
{
char c = GetCharSerial(&uc1);
if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
{
PLXPtr = 0; // reset the pointer
PLXPacket = 1;
}
else if (c == PLX_Stop)
{
if (PLXPacket)
{
// we can now decode the selected parameter
PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
// saturate the rotary switch position
int DataVal;
// process min/max
for (i = 0; i < PLXItems; i++)
{
DataVal = ConvPLX(Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
if (DataVal > Max[i])
{
Max[i] = DataVal;
}
if (DataVal < Min[i])
{
Min[i] = DataVal;
}
}
// now to display the information
int suppress = DisplayCurrent(0,-1);
DisplayCurrent(1, suppress);
}
PLXPtr = 0;
PLXPacket = 0;
}
else if (c > PLX_Stop) // illegal char, restart reading
{
PLXPacket = 0;
PLXPtr = 0;
}
else if (PLXPtr < sizeof(Data.Bytes))
{
Data.Bytes[PLXPtr++] = c;
}
}
HAL_Delay(1);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* SPI1 init function */
static void MX_SPI1_Init(void)
{
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
}
/* USART1 init function */
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin|USART3_INVERT_Pin|USB_PWR_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin USART3_INVERT_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NSS2_Pin|USART3_INVERT_Pin|USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SW1_PUSH_Pin SW1_I_Pin SW1_Q_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = SW1_PUSH_Pin|SW1_I_Pin|SW1_Q_Pin|SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : SW2_I_Pin SW2_Q_Pin */
GPIO_InitStruct.Pin = SW2_I_Pin|SW2_Q_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/