Subversion Repositories dashGPS

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /**
  2.   ******************************************************************************
  3.   * @file    stm32f1xx_hal_tim_ex.c
  4.   * @author  MCD Application Team
  5.   * @brief   TIM HAL module driver.
  6.   *          This file provides firmware functions to manage the following
  7.   *          functionalities of the Timer Extended peripheral:
  8.   *           + Time Hall Sensor Interface Initialization
  9.   *           + Time Hall Sensor Interface Start
  10.   *           + Time Complementary signal break and dead time configuration
  11.   *           + Time Master and Slave synchronization configuration
  12.   *           + Timer remapping capabilities configuration
  13.   @verbatim
  14.   ==============================================================================
  15.                       ##### TIMER Extended features #####
  16.   ==============================================================================
  17.   [..]
  18.     The Timer Extended features include:
  19.     (#) Complementary outputs with programmable dead-time for :
  20.         (++) Output Compare
  21.         (++) PWM generation (Edge and Center-aligned Mode)
  22.         (++) One-pulse mode output
  23.     (#) Synchronization circuit to control the timer with external signals and to
  24.         interconnect several timers together.
  25.     (#) Break input to put the timer output signals in reset state or in a known state.
  26.     (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for
  27.         positioning purposes
  28.  
  29.             ##### How to use this driver #####
  30.   ==============================================================================
  31.     [..]
  32.      (#) Initialize the TIM low level resources by implementing the following functions
  33.          depending on the selected feature:
  34.            (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit()
  35.  
  36.      (#) Initialize the TIM low level resources :
  37.         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
  38.         (##) TIM pins configuration
  39.             (+++) Enable the clock for the TIM GPIOs using the following function:
  40.               __HAL_RCC_GPIOx_CLK_ENABLE();
  41.             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
  42.  
  43.      (#) The external Clock can be configured, if needed (the default clock is the
  44.          internal clock from the APBx), using the following function:
  45.          HAL_TIM_ConfigClockSource, the clock configuration should be done before
  46.          any start function.
  47.  
  48.      (#) Configure the TIM in the desired functioning mode using one of the
  49.          initialization function of this driver:
  50.           (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the
  51.                Timer Hall Sensor Interface and the commutation event with the corresponding
  52.                Interrupt and DMA request if needed (Note that One Timer is used to interface
  53.                with the Hall sensor Interface and another Timer should be used to use
  54.                the commutation event).
  55.  
  56.      (#) Activate the TIM peripheral using one of the start functions:
  57.            (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT()
  58.            (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT()
  59.            (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT()
  60.            (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT().
  61.  
  62.   @endverbatim
  63.   ******************************************************************************
  64.   * @attention
  65.   *
  66.   * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
  67.   * All rights reserved.</center></h2>
  68.   *
  69.   * This software component is licensed by ST under BSD 3-Clause license,
  70.   * the "License"; You may not use this file except in compliance with the
  71.   * License. You may obtain a copy of the License at:
  72.   *                        opensource.org/licenses/BSD-3-Clause
  73.   *
  74.   ******************************************************************************
  75.   */
  76.  
  77. /* Includes ------------------------------------------------------------------*/
  78. #include "stm32f1xx_hal.h"
  79.  
  80. /** @addtogroup STM32F1xx_HAL_Driver
  81.   * @{
  82.   */
  83.  
  84. /** @defgroup TIMEx TIMEx
  85.   * @brief TIM Extended HAL module driver
  86.   * @{
  87.   */
  88.  
  89. #ifdef HAL_TIM_MODULE_ENABLED
  90.  
  91. /* Private typedef -----------------------------------------------------------*/
  92. /* Private define ------------------------------------------------------------*/
  93. /* Private macro -------------------------------------------------------------*/
  94. /* Private variables ---------------------------------------------------------*/
  95. /* Private function prototypes -----------------------------------------------*/
  96. static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState);
  97.  
  98. /* Exported functions --------------------------------------------------------*/
  99. /** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions
  100.   * @{
  101.   */
  102.  
  103. /** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions
  104.   * @brief    Timer Hall Sensor functions
  105.   *
  106. @verbatim
  107.   ==============================================================================
  108.                       ##### Timer Hall Sensor functions #####
  109.   ==============================================================================
  110.   [..]
  111.     This section provides functions allowing to:
  112.     (+) Initialize and configure TIM HAL Sensor.
  113.     (+) De-initialize TIM HAL Sensor.
  114.     (+) Start the Hall Sensor Interface.
  115.     (+) Stop the Hall Sensor Interface.
  116.     (+) Start the Hall Sensor Interface and enable interrupts.
  117.     (+) Stop the Hall Sensor Interface and disable interrupts.
  118.     (+) Start the Hall Sensor Interface and enable DMA transfers.
  119.     (+) Stop the Hall Sensor Interface and disable DMA transfers.
  120.  
  121. @endverbatim
  122.   * @{
  123.   */
  124. /**
  125.   * @brief  Initializes the TIM Hall Sensor Interface and initialize the associated handle.
  126.   * @param  htim TIM Hall Sensor Interface handle
  127.   * @param  sConfig TIM Hall Sensor configuration structure
  128.   * @retval HAL status
  129.   */
  130. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig)
  131. {
  132.   TIM_OC_InitTypeDef OC_Config;
  133.  
  134.   /* Check the TIM handle allocation */
  135.   if (htim == NULL)
  136.   {
  137.     return HAL_ERROR;
  138.   }
  139.  
  140.   /* Check the parameters */
  141.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  142.   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
  143.   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
  144.   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
  145.   assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity));
  146.   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
  147.   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
  148.  
  149.   if (htim->State == HAL_TIM_STATE_RESET)
  150.   {
  151.     /* Allocate lock resource and initialize it */
  152.     htim->Lock = HAL_UNLOCKED;
  153.  
  154. #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  155.     /* Reset interrupt callbacks to legacy week callbacks */
  156.     TIM_ResetCallback(htim);
  157.  
  158.     if (htim->HallSensor_MspInitCallback == NULL)
  159.     {
  160.       htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
  161.     }
  162.     /* Init the low level hardware : GPIO, CLOCK, NVIC */
  163.     htim->HallSensor_MspInitCallback(htim);
  164. #else
  165.     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
  166.     HAL_TIMEx_HallSensor_MspInit(htim);
  167. #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  168.   }
  169.  
  170.   /* Set the TIM state */
  171.   htim->State = HAL_TIM_STATE_BUSY;
  172.  
  173.   /* Configure the Time base in the Encoder Mode */
  174.   TIM_Base_SetConfig(htim->Instance, &htim->Init);
  175.  
  176.   /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the  Hall sensor */
  177.   TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter);
  178.  
  179.   /* Reset the IC1PSC Bits */
  180.   htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
  181.   /* Set the IC1PSC value */
  182.   htim->Instance->CCMR1 |= sConfig->IC1Prescaler;
  183.  
  184.   /* Enable the Hall sensor interface (XOR function of the three inputs) */
  185.   htim->Instance->CR2 |= TIM_CR2_TI1S;
  186.  
  187.   /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */
  188.   htim->Instance->SMCR &= ~TIM_SMCR_TS;
  189.   htim->Instance->SMCR |= TIM_TS_TI1F_ED;
  190.  
  191.   /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */
  192.   htim->Instance->SMCR &= ~TIM_SMCR_SMS;
  193.   htim->Instance->SMCR |= TIM_SLAVEMODE_RESET;
  194.  
  195.   /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/
  196.   OC_Config.OCFastMode = TIM_OCFAST_DISABLE;
  197.   OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET;
  198.   OC_Config.OCMode = TIM_OCMODE_PWM2;
  199.   OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  200.   OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  201.   OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH;
  202.   OC_Config.Pulse = sConfig->Commutation_Delay;
  203.  
  204.   TIM_OC2_SetConfig(htim->Instance, &OC_Config);
  205.  
  206.   /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
  207.     register to 101 */
  208.   htim->Instance->CR2 &= ~TIM_CR2_MMS;
  209.   htim->Instance->CR2 |= TIM_TRGO_OC2REF;
  210.  
  211.   /* Initialize the TIM state*/
  212.   htim->State = HAL_TIM_STATE_READY;
  213.  
  214.   return HAL_OK;
  215. }
  216.  
  217. /**
  218.   * @brief  DeInitializes the TIM Hall Sensor interface
  219.   * @param  htim TIM Hall Sensor Interface handle
  220.   * @retval HAL status
  221.   */
  222. HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim)
  223. {
  224.   /* Check the parameters */
  225.   assert_param(IS_TIM_INSTANCE(htim->Instance));
  226.  
  227.   htim->State = HAL_TIM_STATE_BUSY;
  228.  
  229.   /* Disable the TIM Peripheral Clock */
  230.   __HAL_TIM_DISABLE(htim);
  231.  
  232. #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  233.   if (htim->HallSensor_MspDeInitCallback == NULL)
  234.   {
  235.     htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
  236.   }
  237.   /* DeInit the low level hardware */
  238.   htim->HallSensor_MspDeInitCallback(htim);
  239. #else
  240.   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
  241.   HAL_TIMEx_HallSensor_MspDeInit(htim);
  242. #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  243.  
  244.   /* Change TIM state */
  245.   htim->State = HAL_TIM_STATE_RESET;
  246.  
  247.   /* Release Lock */
  248.   __HAL_UNLOCK(htim);
  249.  
  250.   return HAL_OK;
  251. }
  252.  
  253. /**
  254.   * @brief  Initializes the TIM Hall Sensor MSP.
  255.   * @param  htim TIM Hall Sensor Interface handle
  256.   * @retval None
  257.   */
  258. __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim)
  259. {
  260.   /* Prevent unused argument(s) compilation warning */
  261.   UNUSED(htim);
  262.  
  263.   /* NOTE : This function should not be modified, when the callback is needed,
  264.             the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file
  265.    */
  266. }
  267.  
  268. /**
  269.   * @brief  DeInitializes TIM Hall Sensor MSP.
  270.   * @param  htim TIM Hall Sensor Interface handle
  271.   * @retval None
  272.   */
  273. __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim)
  274. {
  275.   /* Prevent unused argument(s) compilation warning */
  276.   UNUSED(htim);
  277.  
  278.   /* NOTE : This function should not be modified, when the callback is needed,
  279.             the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file
  280.    */
  281. }
  282.  
  283. /**
  284.   * @brief  Starts the TIM Hall Sensor Interface.
  285.   * @param  htim TIM Hall Sensor Interface handle
  286.   * @retval HAL status
  287.   */
  288. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim)
  289. {
  290.   uint32_t tmpsmcr;
  291.  
  292.   /* Check the parameters */
  293.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  294.  
  295.   /* Enable the Input Capture channel 1
  296.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  297.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
  298.  
  299.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  300.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  301.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  302.   {
  303.     __HAL_TIM_ENABLE(htim);
  304.   }
  305.  
  306.   /* Return function status */
  307.   return HAL_OK;
  308. }
  309.  
  310. /**
  311.   * @brief  Stops the TIM Hall sensor Interface.
  312.   * @param  htim TIM Hall Sensor Interface handle
  313.   * @retval HAL status
  314.   */
  315. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim)
  316. {
  317.   /* Check the parameters */
  318.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  319.  
  320.   /* Disable the Input Capture channels 1, 2 and 3
  321.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  322.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
  323.  
  324.   /* Disable the Peripheral */
  325.   __HAL_TIM_DISABLE(htim);
  326.  
  327.   /* Return function status */
  328.   return HAL_OK;
  329. }
  330.  
  331. /**
  332.   * @brief  Starts the TIM Hall Sensor Interface in interrupt mode.
  333.   * @param  htim TIM Hall Sensor Interface handle
  334.   * @retval HAL status
  335.   */
  336. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim)
  337. {
  338.   uint32_t tmpsmcr;
  339.  
  340.   /* Check the parameters */
  341.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  342.  
  343.   /* Enable the capture compare Interrupts 1 event */
  344.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
  345.  
  346.   /* Enable the Input Capture channel 1
  347.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  348.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
  349.  
  350.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  351.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  352.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  353.   {
  354.     __HAL_TIM_ENABLE(htim);
  355.   }
  356.  
  357.   /* Return function status */
  358.   return HAL_OK;
  359. }
  360.  
  361. /**
  362.   * @brief  Stops the TIM Hall Sensor Interface in interrupt mode.
  363.   * @param  htim TIM Hall Sensor Interface handle
  364.   * @retval HAL status
  365.   */
  366. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim)
  367. {
  368.   /* Check the parameters */
  369.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  370.  
  371.   /* Disable the Input Capture channel 1
  372.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  373.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
  374.  
  375.   /* Disable the capture compare Interrupts event */
  376.   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
  377.  
  378.   /* Disable the Peripheral */
  379.   __HAL_TIM_DISABLE(htim);
  380.  
  381.   /* Return function status */
  382.   return HAL_OK;
  383. }
  384.  
  385. /**
  386.   * @brief  Starts the TIM Hall Sensor Interface in DMA mode.
  387.   * @param  htim TIM Hall Sensor Interface handle
  388.   * @param  pData The destination Buffer address.
  389.   * @param  Length The length of data to be transferred from TIM peripheral to memory.
  390.   * @retval HAL status
  391.   */
  392. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length)
  393. {
  394.   uint32_t tmpsmcr;
  395.  
  396.   /* Check the parameters */
  397.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  398.  
  399.   if (htim->State == HAL_TIM_STATE_BUSY)
  400.   {
  401.     return HAL_BUSY;
  402.   }
  403.   else if (htim->State == HAL_TIM_STATE_READY)
  404.   {
  405.     if (((uint32_t)pData == 0U) && (Length > 0U))
  406.     {
  407.       return HAL_ERROR;
  408.     }
  409.     else
  410.     {
  411.       htim->State = HAL_TIM_STATE_BUSY;
  412.     }
  413.   }
  414.   else
  415.   {
  416.     /* nothing to do */
  417.   }
  418.   /* Enable the Input Capture channel 1
  419.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  420.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
  421.  
  422.   /* Set the DMA Input Capture 1 Callbacks */
  423.   htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
  424.   htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
  425.   /* Set the DMA error callback */
  426.   htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
  427.  
  428.   /* Enable the DMA channel for Capture 1*/
  429.   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK)
  430.   {
  431.     return HAL_ERROR;
  432.   }
  433.   /* Enable the capture compare 1 Interrupt */
  434.   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
  435.  
  436.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  437.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  438.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  439.   {
  440.     __HAL_TIM_ENABLE(htim);
  441.   }
  442.  
  443.   /* Return function status */
  444.   return HAL_OK;
  445. }
  446.  
  447. /**
  448.   * @brief  Stops the TIM Hall Sensor Interface in DMA mode.
  449.   * @param  htim TIM Hall Sensor Interface handle
  450.   * @retval HAL status
  451.   */
  452. HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim)
  453. {
  454.   /* Check the parameters */
  455.   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance));
  456.  
  457.   /* Disable the Input Capture channel 1
  458.     (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */
  459.   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
  460.  
  461.  
  462.   /* Disable the capture compare Interrupts 1 event */
  463.   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
  464.  
  465.   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
  466.   /* Disable the Peripheral */
  467.   __HAL_TIM_DISABLE(htim);
  468.  
  469.   /* Return function status */
  470.   return HAL_OK;
  471. }
  472.  
  473. /**
  474.   * @}
  475.   */
  476.  
  477. /** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions
  478.   *  @brief   Timer Complementary Output Compare functions
  479.   *
  480. @verbatim
  481.   ==============================================================================
  482.               ##### Timer Complementary Output Compare functions #####
  483.   ==============================================================================
  484.   [..]
  485.     This section provides functions allowing to:
  486.     (+) Start the Complementary Output Compare/PWM.
  487.     (+) Stop the Complementary Output Compare/PWM.
  488.     (+) Start the Complementary Output Compare/PWM and enable interrupts.
  489.     (+) Stop the Complementary Output Compare/PWM and disable interrupts.
  490.     (+) Start the Complementary Output Compare/PWM and enable DMA transfers.
  491.     (+) Stop the Complementary Output Compare/PWM and disable DMA transfers.
  492.  
  493. @endverbatim
  494.   * @{
  495.   */
  496.  
  497. /**
  498.   * @brief  Starts the TIM Output Compare signal generation on the complementary
  499.   *         output.
  500.   * @param  htim TIM Output Compare handle
  501.   * @param  Channel TIM Channel to be enabled
  502.   *          This parameter can be one of the following values:
  503.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  504.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  505.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  506.   * @retval HAL status
  507.   */
  508. HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
  509. {
  510.   uint32_t tmpsmcr;
  511.  
  512.   /* Check the parameters */
  513.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  514.  
  515.   /* Enable the Capture compare channel N */
  516.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  517.  
  518.   /* Enable the Main Output */
  519.   __HAL_TIM_MOE_ENABLE(htim);
  520.  
  521.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  522.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  523.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  524.   {
  525.     __HAL_TIM_ENABLE(htim);
  526.   }
  527.  
  528.   /* Return function status */
  529.   return HAL_OK;
  530. }
  531.  
  532. /**
  533.   * @brief  Stops the TIM Output Compare signal generation on the complementary
  534.   *         output.
  535.   * @param  htim TIM handle
  536.   * @param  Channel TIM Channel to be disabled
  537.   *          This parameter can be one of the following values:
  538.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  539.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  540.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  541.   * @retval HAL status
  542.   */
  543. HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
  544. {
  545.   /* Check the parameters */
  546.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  547.  
  548.   /* Disable the Capture compare channel N */
  549.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  550.  
  551.   /* Disable the Main Output */
  552.   __HAL_TIM_MOE_DISABLE(htim);
  553.  
  554.   /* Disable the Peripheral */
  555.   __HAL_TIM_DISABLE(htim);
  556.  
  557.   /* Return function status */
  558.   return HAL_OK;
  559. }
  560.  
  561. /**
  562.   * @brief  Starts the TIM Output Compare signal generation in interrupt mode
  563.   *         on the complementary output.
  564.   * @param  htim TIM OC handle
  565.   * @param  Channel TIM Channel to be enabled
  566.   *          This parameter can be one of the following values:
  567.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  568.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  569.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  570.   * @retval HAL status
  571.   */
  572. HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
  573. {
  574.   uint32_t tmpsmcr;
  575.  
  576.   /* Check the parameters */
  577.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  578.  
  579.   switch (Channel)
  580.   {
  581.     case TIM_CHANNEL_1:
  582.     {
  583.       /* Enable the TIM Output Compare interrupt */
  584.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
  585.       break;
  586.     }
  587.  
  588.     case TIM_CHANNEL_2:
  589.     {
  590.       /* Enable the TIM Output Compare interrupt */
  591.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
  592.       break;
  593.     }
  594.  
  595.     case TIM_CHANNEL_3:
  596.     {
  597.       /* Enable the TIM Output Compare interrupt */
  598.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
  599.       break;
  600.     }
  601.  
  602.  
  603.     default:
  604.       break;
  605.   }
  606.  
  607.   /* Enable the TIM Break interrupt */
  608.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
  609.  
  610.   /* Enable the Capture compare channel N */
  611.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  612.  
  613.   /* Enable the Main Output */
  614.   __HAL_TIM_MOE_ENABLE(htim);
  615.  
  616.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  617.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  618.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  619.   {
  620.     __HAL_TIM_ENABLE(htim);
  621.   }
  622.  
  623.   /* Return function status */
  624.   return HAL_OK;
  625. }
  626.  
  627. /**
  628.   * @brief  Stops the TIM Output Compare signal generation in interrupt mode
  629.   *         on the complementary output.
  630.   * @param  htim TIM Output Compare handle
  631.   * @param  Channel TIM Channel to be disabled
  632.   *          This parameter can be one of the following values:
  633.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  634.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  635.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  636.   * @retval HAL status
  637.   */
  638. HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
  639. {
  640.   uint32_t tmpccer;
  641.   /* Check the parameters */
  642.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  643.  
  644.   switch (Channel)
  645.   {
  646.     case TIM_CHANNEL_1:
  647.     {
  648.       /* Disable the TIM Output Compare interrupt */
  649.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
  650.       break;
  651.     }
  652.  
  653.     case TIM_CHANNEL_2:
  654.     {
  655.       /* Disable the TIM Output Compare interrupt */
  656.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
  657.       break;
  658.     }
  659.  
  660.     case TIM_CHANNEL_3:
  661.     {
  662.       /* Disable the TIM Output Compare interrupt */
  663.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
  664.       break;
  665.     }
  666.  
  667.     default:
  668.       break;
  669.   }
  670.  
  671.   /* Disable the Capture compare channel N */
  672.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  673.  
  674.   /* Disable the TIM Break interrupt (only if no more channel is active) */
  675.   tmpccer = htim->Instance->CCER;
  676.   if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET)
  677.   {
  678.     __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
  679.   }
  680.  
  681.   /* Disable the Main Output */
  682.   __HAL_TIM_MOE_DISABLE(htim);
  683.  
  684.   /* Disable the Peripheral */
  685.   __HAL_TIM_DISABLE(htim);
  686.  
  687.   /* Return function status */
  688.   return HAL_OK;
  689. }
  690.  
  691. /**
  692.   * @brief  Starts the TIM Output Compare signal generation in DMA mode
  693.   *         on the complementary output.
  694.   * @param  htim TIM Output Compare handle
  695.   * @param  Channel TIM Channel to be enabled
  696.   *          This parameter can be one of the following values:
  697.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  698.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  699.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  700.   * @param  pData The source Buffer address.
  701.   * @param  Length The length of data to be transferred from memory to TIM peripheral
  702.   * @retval HAL status
  703.   */
  704. HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
  705. {
  706.   uint32_t tmpsmcr;
  707.  
  708.   /* Check the parameters */
  709.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  710.  
  711.   if (htim->State == HAL_TIM_STATE_BUSY)
  712.   {
  713.     return HAL_BUSY;
  714.   }
  715.   else if (htim->State == HAL_TIM_STATE_READY)
  716.   {
  717.     if (((uint32_t)pData == 0U) && (Length > 0U))
  718.     {
  719.       return HAL_ERROR;
  720.     }
  721.     else
  722.     {
  723.       htim->State = HAL_TIM_STATE_BUSY;
  724.     }
  725.   }
  726.   else
  727.   {
  728.     /* nothing to do  */
  729.   }
  730.  
  731.   switch (Channel)
  732.   {
  733.     case TIM_CHANNEL_1:
  734.     {
  735.       /* Set the DMA compare callbacks */
  736.       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
  737.       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  738.  
  739.       /* Set the DMA error callback */
  740.       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
  741.  
  742.       /* Enable the DMA channel */
  743.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
  744.       {
  745.         return HAL_ERROR;
  746.       }
  747.       /* Enable the TIM Output Compare DMA request */
  748.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
  749.       break;
  750.     }
  751.  
  752.     case TIM_CHANNEL_2:
  753.     {
  754.       /* Set the DMA compare callbacks */
  755.       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
  756.       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  757.  
  758.       /* Set the DMA error callback */
  759.       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
  760.  
  761.       /* Enable the DMA channel */
  762.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
  763.       {
  764.         return HAL_ERROR;
  765.       }
  766.       /* Enable the TIM Output Compare DMA request */
  767.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
  768.       break;
  769.     }
  770.  
  771.     case TIM_CHANNEL_3:
  772.     {
  773.       /* Set the DMA compare callbacks */
  774.       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
  775.       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  776.  
  777.       /* Set the DMA error callback */
  778.       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
  779.  
  780.       /* Enable the DMA channel */
  781.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
  782.       {
  783.         return HAL_ERROR;
  784.       }
  785.       /* Enable the TIM Output Compare DMA request */
  786.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
  787.       break;
  788.     }
  789.  
  790.     default:
  791.       break;
  792.   }
  793.  
  794.   /* Enable the Capture compare channel N */
  795.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  796.  
  797.   /* Enable the Main Output */
  798.   __HAL_TIM_MOE_ENABLE(htim);
  799.  
  800.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  801.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  802.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  803.   {
  804.     __HAL_TIM_ENABLE(htim);
  805.   }
  806.  
  807.   /* Return function status */
  808.   return HAL_OK;
  809. }
  810.  
  811. /**
  812.   * @brief  Stops the TIM Output Compare signal generation in DMA mode
  813.   *         on the complementary output.
  814.   * @param  htim TIM Output Compare handle
  815.   * @param  Channel TIM Channel to be disabled
  816.   *          This parameter can be one of the following values:
  817.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  818.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  819.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  820.   * @retval HAL status
  821.   */
  822. HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
  823. {
  824.   /* Check the parameters */
  825.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  826.  
  827.   switch (Channel)
  828.   {
  829.     case TIM_CHANNEL_1:
  830.     {
  831.       /* Disable the TIM Output Compare DMA request */
  832.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
  833.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
  834.       break;
  835.     }
  836.  
  837.     case TIM_CHANNEL_2:
  838.     {
  839.       /* Disable the TIM Output Compare DMA request */
  840.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
  841.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
  842.       break;
  843.     }
  844.  
  845.     case TIM_CHANNEL_3:
  846.     {
  847.       /* Disable the TIM Output Compare DMA request */
  848.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
  849.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
  850.       break;
  851.     }
  852.  
  853.     default:
  854.       break;
  855.   }
  856.  
  857.   /* Disable the Capture compare channel N */
  858.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  859.  
  860.   /* Disable the Main Output */
  861.   __HAL_TIM_MOE_DISABLE(htim);
  862.  
  863.   /* Disable the Peripheral */
  864.   __HAL_TIM_DISABLE(htim);
  865.  
  866.   /* Change the htim state */
  867.   htim->State = HAL_TIM_STATE_READY;
  868.  
  869.   /* Return function status */
  870.   return HAL_OK;
  871. }
  872.  
  873. /**
  874.   * @}
  875.   */
  876.  
  877. /** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions
  878.   * @brief    Timer Complementary PWM functions
  879.   *
  880. @verbatim
  881.   ==============================================================================
  882.                  ##### Timer Complementary PWM functions #####
  883.   ==============================================================================
  884.   [..]
  885.     This section provides functions allowing to:
  886.     (+) Start the Complementary PWM.
  887.     (+) Stop the Complementary PWM.
  888.     (+) Start the Complementary PWM and enable interrupts.
  889.     (+) Stop the Complementary PWM and disable interrupts.
  890.     (+) Start the Complementary PWM and enable DMA transfers.
  891.     (+) Stop the Complementary PWM and disable DMA transfers.
  892.     (+) Start the Complementary Input Capture measurement.
  893.     (+) Stop the Complementary Input Capture.
  894.     (+) Start the Complementary Input Capture and enable interrupts.
  895.     (+) Stop the Complementary Input Capture and disable interrupts.
  896.     (+) Start the Complementary Input Capture and enable DMA transfers.
  897.     (+) Stop the Complementary Input Capture and disable DMA transfers.
  898.     (+) Start the Complementary One Pulse generation.
  899.     (+) Stop the Complementary One Pulse.
  900.     (+) Start the Complementary One Pulse and enable interrupts.
  901.     (+) Stop the Complementary One Pulse and disable interrupts.
  902.  
  903. @endverbatim
  904.   * @{
  905.   */
  906.  
  907. /**
  908.   * @brief  Starts the PWM signal generation on the complementary output.
  909.   * @param  htim TIM handle
  910.   * @param  Channel TIM Channel to be enabled
  911.   *          This parameter can be one of the following values:
  912.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  913.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  914.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  915.   * @retval HAL status
  916.   */
  917. HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
  918. {
  919.   uint32_t tmpsmcr;
  920.  
  921.   /* Check the parameters */
  922.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  923.  
  924.   /* Enable the complementary PWM output  */
  925.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  926.  
  927.   /* Enable the Main Output */
  928.   __HAL_TIM_MOE_ENABLE(htim);
  929.  
  930.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  931.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  932.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  933.   {
  934.     __HAL_TIM_ENABLE(htim);
  935.   }
  936.  
  937.   /* Return function status */
  938.   return HAL_OK;
  939. }
  940.  
  941. /**
  942.   * @brief  Stops the PWM signal generation on the complementary output.
  943.   * @param  htim TIM handle
  944.   * @param  Channel TIM Channel to be disabled
  945.   *          This parameter can be one of the following values:
  946.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  947.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  948.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  949.   * @retval HAL status
  950.   */
  951. HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
  952. {
  953.   /* Check the parameters */
  954.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  955.  
  956.   /* Disable the complementary PWM output  */
  957.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  958.  
  959.   /* Disable the Main Output */
  960.   __HAL_TIM_MOE_DISABLE(htim);
  961.  
  962.   /* Disable the Peripheral */
  963.   __HAL_TIM_DISABLE(htim);
  964.  
  965.   /* Return function status */
  966.   return HAL_OK;
  967. }
  968.  
  969. /**
  970.   * @brief  Starts the PWM signal generation in interrupt mode on the
  971.   *         complementary output.
  972.   * @param  htim TIM handle
  973.   * @param  Channel TIM Channel to be disabled
  974.   *          This parameter can be one of the following values:
  975.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  976.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  977.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  978.   * @retval HAL status
  979.   */
  980. HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
  981. {
  982.   uint32_t tmpsmcr;
  983.  
  984.   /* Check the parameters */
  985.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  986.  
  987.   switch (Channel)
  988.   {
  989.     case TIM_CHANNEL_1:
  990.     {
  991.       /* Enable the TIM Capture/Compare 1 interrupt */
  992.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
  993.       break;
  994.     }
  995.  
  996.     case TIM_CHANNEL_2:
  997.     {
  998.       /* Enable the TIM Capture/Compare 2 interrupt */
  999.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
  1000.       break;
  1001.     }
  1002.  
  1003.     case TIM_CHANNEL_3:
  1004.     {
  1005.       /* Enable the TIM Capture/Compare 3 interrupt */
  1006.       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
  1007.       break;
  1008.     }
  1009.  
  1010.     default:
  1011.       break;
  1012.   }
  1013.  
  1014.   /* Enable the TIM Break interrupt */
  1015.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK);
  1016.  
  1017.   /* Enable the complementary PWM output  */
  1018.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  1019.  
  1020.   /* Enable the Main Output */
  1021.   __HAL_TIM_MOE_ENABLE(htim);
  1022.  
  1023.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  1024.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  1025.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  1026.   {
  1027.     __HAL_TIM_ENABLE(htim);
  1028.   }
  1029.  
  1030.   /* Return function status */
  1031.   return HAL_OK;
  1032. }
  1033.  
  1034. /**
  1035.   * @brief  Stops the PWM signal generation in interrupt mode on the
  1036.   *         complementary output.
  1037.   * @param  htim TIM handle
  1038.   * @param  Channel TIM Channel to be disabled
  1039.   *          This parameter can be one of the following values:
  1040.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1041.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1042.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  1043.   * @retval HAL status
  1044.   */
  1045. HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
  1046. {
  1047.   uint32_t tmpccer;
  1048.  
  1049.   /* Check the parameters */
  1050.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  1051.  
  1052.   switch (Channel)
  1053.   {
  1054.     case TIM_CHANNEL_1:
  1055.     {
  1056.       /* Disable the TIM Capture/Compare 1 interrupt */
  1057.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
  1058.       break;
  1059.     }
  1060.  
  1061.     case TIM_CHANNEL_2:
  1062.     {
  1063.       /* Disable the TIM Capture/Compare 2 interrupt */
  1064.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
  1065.       break;
  1066.     }
  1067.  
  1068.     case TIM_CHANNEL_3:
  1069.     {
  1070.       /* Disable the TIM Capture/Compare 3 interrupt */
  1071.       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
  1072.       break;
  1073.     }
  1074.  
  1075.     default:
  1076.       break;
  1077.   }
  1078.  
  1079.   /* Disable the complementary PWM output  */
  1080.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  1081.  
  1082.   /* Disable the TIM Break interrupt (only if no more channel is active) */
  1083.   tmpccer = htim->Instance->CCER;
  1084.   if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET)
  1085.   {
  1086.     __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
  1087.   }
  1088.  
  1089.   /* Disable the Main Output */
  1090.   __HAL_TIM_MOE_DISABLE(htim);
  1091.  
  1092.   /* Disable the Peripheral */
  1093.   __HAL_TIM_DISABLE(htim);
  1094.  
  1095.   /* Return function status */
  1096.   return HAL_OK;
  1097. }
  1098.  
  1099. /**
  1100.   * @brief  Starts the TIM PWM signal generation in DMA mode on the
  1101.   *         complementary output
  1102.   * @param  htim TIM handle
  1103.   * @param  Channel TIM Channel to be enabled
  1104.   *          This parameter can be one of the following values:
  1105.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1106.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1107.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  1108.   * @param  pData The source Buffer address.
  1109.   * @param  Length The length of data to be transferred from memory to TIM peripheral
  1110.   * @retval HAL status
  1111.   */
  1112. HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
  1113. {
  1114.   uint32_t tmpsmcr;
  1115.  
  1116.   /* Check the parameters */
  1117.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  1118.  
  1119.   if (htim->State == HAL_TIM_STATE_BUSY)
  1120.   {
  1121.     return HAL_BUSY;
  1122.   }
  1123.   else if (htim->State == HAL_TIM_STATE_READY)
  1124.   {
  1125.     if (((uint32_t)pData == 0U) && (Length > 0U))
  1126.     {
  1127.       return HAL_ERROR;
  1128.     }
  1129.     else
  1130.     {
  1131.       htim->State = HAL_TIM_STATE_BUSY;
  1132.     }
  1133.   }
  1134.   else
  1135.   {
  1136.     /* nothing to do */
  1137.   }
  1138.   switch (Channel)
  1139.   {
  1140.     case TIM_CHANNEL_1:
  1141.     {
  1142.       /* Set the DMA compare callbacks */
  1143.       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
  1144.       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  1145.  
  1146.       /* Set the DMA error callback */
  1147.       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
  1148.  
  1149.       /* Enable the DMA channel */
  1150.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length) != HAL_OK)
  1151.       {
  1152.         return HAL_ERROR;
  1153.       }
  1154.       /* Enable the TIM Capture/Compare 1 DMA request */
  1155.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
  1156.       break;
  1157.     }
  1158.  
  1159.     case TIM_CHANNEL_2:
  1160.     {
  1161.       /* Set the DMA compare callbacks */
  1162.       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
  1163.       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  1164.  
  1165.       /* Set the DMA error callback */
  1166.       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
  1167.  
  1168.       /* Enable the DMA channel */
  1169.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length) != HAL_OK)
  1170.       {
  1171.         return HAL_ERROR;
  1172.       }
  1173.       /* Enable the TIM Capture/Compare 2 DMA request */
  1174.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
  1175.       break;
  1176.     }
  1177.  
  1178.     case TIM_CHANNEL_3:
  1179.     {
  1180.       /* Set the DMA compare callbacks */
  1181.       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
  1182.       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
  1183.  
  1184.       /* Set the DMA error callback */
  1185.       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
  1186.  
  1187.       /* Enable the DMA channel */
  1188.       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, Length) != HAL_OK)
  1189.       {
  1190.         return HAL_ERROR;
  1191.       }
  1192.       /* Enable the TIM Capture/Compare 3 DMA request */
  1193.       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
  1194.       break;
  1195.     }
  1196.  
  1197.     default:
  1198.       break;
  1199.   }
  1200.  
  1201.   /* Enable the complementary PWM output  */
  1202.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE);
  1203.  
  1204.   /* Enable the Main Output */
  1205.   __HAL_TIM_MOE_ENABLE(htim);
  1206.  
  1207.   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  1208.   tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
  1209.   if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
  1210.   {
  1211.     __HAL_TIM_ENABLE(htim);
  1212.   }
  1213.  
  1214.   /* Return function status */
  1215.   return HAL_OK;
  1216. }
  1217.  
  1218. /**
  1219.   * @brief  Stops the TIM PWM signal generation in DMA mode on the complementary
  1220.   *         output
  1221.   * @param  htim TIM handle
  1222.   * @param  Channel TIM Channel to be disabled
  1223.   *          This parameter can be one of the following values:
  1224.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1225.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1226.   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
  1227.   * @retval HAL status
  1228.   */
  1229. HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
  1230. {
  1231.   /* Check the parameters */
  1232.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel));
  1233.  
  1234.   switch (Channel)
  1235.   {
  1236.     case TIM_CHANNEL_1:
  1237.     {
  1238.       /* Disable the TIM Capture/Compare 1 DMA request */
  1239.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
  1240.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
  1241.       break;
  1242.     }
  1243.  
  1244.     case TIM_CHANNEL_2:
  1245.     {
  1246.       /* Disable the TIM Capture/Compare 2 DMA request */
  1247.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
  1248.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
  1249.       break;
  1250.     }
  1251.  
  1252.     case TIM_CHANNEL_3:
  1253.     {
  1254.       /* Disable the TIM Capture/Compare 3 DMA request */
  1255.       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
  1256.       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
  1257.       break;
  1258.     }
  1259.  
  1260.     default:
  1261.       break;
  1262.   }
  1263.  
  1264.   /* Disable the complementary PWM output */
  1265.   TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE);
  1266.  
  1267.   /* Disable the Main Output */
  1268.   __HAL_TIM_MOE_DISABLE(htim);
  1269.  
  1270.   /* Disable the Peripheral */
  1271.   __HAL_TIM_DISABLE(htim);
  1272.  
  1273.   /* Change the htim state */
  1274.   htim->State = HAL_TIM_STATE_READY;
  1275.  
  1276.   /* Return function status */
  1277.   return HAL_OK;
  1278. }
  1279.  
  1280. /**
  1281.   * @}
  1282.   */
  1283.  
  1284. /** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions
  1285.   * @brief    Timer Complementary One Pulse functions
  1286.   *
  1287. @verbatim
  1288.   ==============================================================================
  1289.                 ##### Timer Complementary One Pulse functions #####
  1290.   ==============================================================================
  1291.   [..]
  1292.     This section provides functions allowing to:
  1293.     (+) Start the Complementary One Pulse generation.
  1294.     (+) Stop the Complementary One Pulse.
  1295.     (+) Start the Complementary One Pulse and enable interrupts.
  1296.     (+) Stop the Complementary One Pulse and disable interrupts.
  1297.  
  1298. @endverbatim
  1299.   * @{
  1300.   */
  1301.  
  1302. /**
  1303.   * @brief  Starts the TIM One Pulse signal generation on the complementary
  1304.   *         output.
  1305.   * @param  htim TIM One Pulse handle
  1306.   * @param  OutputChannel TIM Channel to be enabled
  1307.   *          This parameter can be one of the following values:
  1308.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1309.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1310.   * @retval HAL status
  1311.   */
  1312. HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
  1313. {
  1314.   /* Check the parameters */
  1315.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
  1316.  
  1317.   /* Enable the complementary One Pulse output */
  1318.   TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  1319.  
  1320.   /* Enable the Main Output */
  1321.   __HAL_TIM_MOE_ENABLE(htim);
  1322.  
  1323.   /* Return function status */
  1324.   return HAL_OK;
  1325. }
  1326.  
  1327. /**
  1328.   * @brief  Stops the TIM One Pulse signal generation on the complementary
  1329.   *         output.
  1330.   * @param  htim TIM One Pulse handle
  1331.   * @param  OutputChannel TIM Channel to be disabled
  1332.   *          This parameter can be one of the following values:
  1333.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1334.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1335.   * @retval HAL status
  1336.   */
  1337. HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
  1338. {
  1339.  
  1340.   /* Check the parameters */
  1341.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
  1342.  
  1343.   /* Disable the complementary One Pulse output */
  1344.   TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  1345.  
  1346.   /* Disable the Main Output */
  1347.   __HAL_TIM_MOE_DISABLE(htim);
  1348.  
  1349.   /* Disable the Peripheral */
  1350.   __HAL_TIM_DISABLE(htim);
  1351.  
  1352.   /* Return function status */
  1353.   return HAL_OK;
  1354. }
  1355.  
  1356. /**
  1357.   * @brief  Starts the TIM One Pulse signal generation in interrupt mode on the
  1358.   *         complementary channel.
  1359.   * @param  htim TIM One Pulse handle
  1360.   * @param  OutputChannel TIM Channel to be enabled
  1361.   *          This parameter can be one of the following values:
  1362.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1363.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1364.   * @retval HAL status
  1365.   */
  1366. HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
  1367. {
  1368.   /* Check the parameters */
  1369.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
  1370.  
  1371.   /* Enable the TIM Capture/Compare 1 interrupt */
  1372.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
  1373.  
  1374.   /* Enable the TIM Capture/Compare 2 interrupt */
  1375.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
  1376.  
  1377.   /* Enable the complementary One Pulse output */
  1378.   TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE);
  1379.  
  1380.   /* Enable the Main Output */
  1381.   __HAL_TIM_MOE_ENABLE(htim);
  1382.  
  1383.   /* Return function status */
  1384.   return HAL_OK;
  1385. }
  1386.  
  1387. /**
  1388.   * @brief  Stops the TIM One Pulse signal generation in interrupt mode on the
  1389.   *         complementary channel.
  1390.   * @param  htim TIM One Pulse handle
  1391.   * @param  OutputChannel TIM Channel to be disabled
  1392.   *          This parameter can be one of the following values:
  1393.   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
  1394.   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
  1395.   * @retval HAL status
  1396.   */
  1397. HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
  1398. {
  1399.   /* Check the parameters */
  1400.   assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel));
  1401.  
  1402.   /* Disable the TIM Capture/Compare 1 interrupt */
  1403.   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
  1404.  
  1405.   /* Disable the TIM Capture/Compare 2 interrupt */
  1406.   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
  1407.  
  1408.   /* Disable the complementary One Pulse output */
  1409.   TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE);
  1410.  
  1411.   /* Disable the Main Output */
  1412.   __HAL_TIM_MOE_DISABLE(htim);
  1413.  
  1414.   /* Disable the Peripheral */
  1415.   __HAL_TIM_DISABLE(htim);
  1416.  
  1417.   /* Return function status */
  1418.   return HAL_OK;
  1419. }
  1420.  
  1421. /**
  1422.   * @}
  1423.   */
  1424.  
  1425. /** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions
  1426.   * @brief    Peripheral Control functions
  1427.   *
  1428. @verbatim
  1429.   ==============================================================================
  1430.                     ##### Peripheral Control functions #####
  1431.   ==============================================================================
  1432.   [..]
  1433.     This section provides functions allowing to:
  1434.       (+) Configure the commutation event in case of use of the Hall sensor interface.
  1435.       (+) Configure Output channels for OC and PWM mode.
  1436.  
  1437.       (+) Configure Complementary channels, break features and dead time.
  1438.       (+) Configure Master synchronization.
  1439.       (+) Configure timer remapping capabilities.
  1440.  
  1441. @endverbatim
  1442.   * @{
  1443.   */
  1444.  
  1445. /**
  1446.   * @brief  Configure the TIM commutation event sequence.
  1447.   * @note  This function is mandatory to use the commutation event in order to
  1448.   *        update the configuration at each commutation detection on the TRGI input of the Timer,
  1449.   *        the typical use of this feature is with the use of another Timer(interface Timer)
  1450.   *        configured in Hall sensor interface, this interface Timer will generate the
  1451.   *        commutation at its TRGO output (connected to Timer used in this function) each time
  1452.   *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  1453.   * @param  htim TIM handle
  1454.   * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  1455.   *          This parameter can be one of the following values:
  1456.   *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  1457.   *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  1458.   *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  1459.   *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  1460.   *            @arg TIM_TS_NONE: No trigger is needed
  1461.   * @param  CommutationSource the Commutation Event source
  1462.   *          This parameter can be one of the following values:
  1463.   *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  1464.   *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  1465.   * @retval HAL status
  1466.   */
  1467. HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
  1468.                                               uint32_t  CommutationSource)
  1469. {
  1470.   /* Check the parameters */
  1471.   assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  1472.   assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
  1473.  
  1474.   __HAL_LOCK(htim);
  1475.  
  1476.   if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
  1477.       (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
  1478.   {
  1479.     /* Select the Input trigger */
  1480.     htim->Instance->SMCR &= ~TIM_SMCR_TS;
  1481.     htim->Instance->SMCR |= InputTrigger;
  1482.   }
  1483.  
  1484.   /* Select the Capture Compare preload feature */
  1485.   htim->Instance->CR2 |= TIM_CR2_CCPC;
  1486.   /* Select the Commutation event source */
  1487.   htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  1488.   htim->Instance->CR2 |= CommutationSource;
  1489.  
  1490.   /* Disable Commutation Interrupt */
  1491.   __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
  1492.  
  1493.   /* Disable Commutation DMA request */
  1494.   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
  1495.  
  1496.   __HAL_UNLOCK(htim);
  1497.  
  1498.   return HAL_OK;
  1499. }
  1500.  
  1501. /**
  1502.   * @brief  Configure the TIM commutation event sequence with interrupt.
  1503.   * @note  This function is mandatory to use the commutation event in order to
  1504.   *        update the configuration at each commutation detection on the TRGI input of the Timer,
  1505.   *        the typical use of this feature is with the use of another Timer(interface Timer)
  1506.   *        configured in Hall sensor interface, this interface Timer will generate the
  1507.   *        commutation at its TRGO output (connected to Timer used in this function) each time
  1508.   *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  1509.   * @param  htim TIM handle
  1510.   * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  1511.   *          This parameter can be one of the following values:
  1512.   *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  1513.   *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  1514.   *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  1515.   *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  1516.   *            @arg TIM_TS_NONE: No trigger is needed
  1517.   * @param  CommutationSource the Commutation Event source
  1518.   *          This parameter can be one of the following values:
  1519.   *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  1520.   *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  1521.   * @retval HAL status
  1522.   */
  1523. HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
  1524.                                                  uint32_t  CommutationSource)
  1525. {
  1526.   /* Check the parameters */
  1527.   assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  1528.   assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
  1529.  
  1530.   __HAL_LOCK(htim);
  1531.  
  1532.   if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
  1533.       (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
  1534.   {
  1535.     /* Select the Input trigger */
  1536.     htim->Instance->SMCR &= ~TIM_SMCR_TS;
  1537.     htim->Instance->SMCR |= InputTrigger;
  1538.   }
  1539.  
  1540.   /* Select the Capture Compare preload feature */
  1541.   htim->Instance->CR2 |= TIM_CR2_CCPC;
  1542.   /* Select the Commutation event source */
  1543.   htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  1544.   htim->Instance->CR2 |= CommutationSource;
  1545.  
  1546.   /* Disable Commutation DMA request */
  1547.   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM);
  1548.  
  1549.   /* Enable the Commutation Interrupt */
  1550.   __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM);
  1551.  
  1552.   __HAL_UNLOCK(htim);
  1553.  
  1554.   return HAL_OK;
  1555. }
  1556.  
  1557. /**
  1558.   * @brief  Configure the TIM commutation event sequence with DMA.
  1559.   * @note  This function is mandatory to use the commutation event in order to
  1560.   *        update the configuration at each commutation detection on the TRGI input of the Timer,
  1561.   *        the typical use of this feature is with the use of another Timer(interface Timer)
  1562.   *        configured in Hall sensor interface, this interface Timer will generate the
  1563.   *        commutation at its TRGO output (connected to Timer used in this function) each time
  1564.   *        the TI1 of the Interface Timer detect a commutation at its input TI1.
  1565.   * @note  The user should configure the DMA in his own software, in This function only the COMDE bit is set
  1566.   * @param  htim TIM handle
  1567.   * @param  InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor
  1568.   *          This parameter can be one of the following values:
  1569.   *            @arg TIM_TS_ITR0: Internal trigger 0 selected
  1570.   *            @arg TIM_TS_ITR1: Internal trigger 1 selected
  1571.   *            @arg TIM_TS_ITR2: Internal trigger 2 selected
  1572.   *            @arg TIM_TS_ITR3: Internal trigger 3 selected
  1573.   *            @arg TIM_TS_NONE: No trigger is needed
  1574.   * @param  CommutationSource the Commutation Event source
  1575.   *          This parameter can be one of the following values:
  1576.   *            @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer
  1577.   *            @arg TIM_COMMUTATION_SOFTWARE:  Commutation source is set by software using the COMG bit
  1578.   * @retval HAL status
  1579.   */
  1580. HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t  InputTrigger,
  1581.                                                   uint32_t  CommutationSource)
  1582. {
  1583.   /* Check the parameters */
  1584.   assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance));
  1585.   assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger));
  1586.  
  1587.   __HAL_LOCK(htim);
  1588.  
  1589.   if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) ||
  1590.       (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3))
  1591.   {
  1592.     /* Select the Input trigger */
  1593.     htim->Instance->SMCR &= ~TIM_SMCR_TS;
  1594.     htim->Instance->SMCR |= InputTrigger;
  1595.   }
  1596.  
  1597.   /* Select the Capture Compare preload feature */
  1598.   htim->Instance->CR2 |= TIM_CR2_CCPC;
  1599.   /* Select the Commutation event source */
  1600.   htim->Instance->CR2 &= ~TIM_CR2_CCUS;
  1601.   htim->Instance->CR2 |= CommutationSource;
  1602.  
  1603.   /* Enable the Commutation DMA Request */
  1604.   /* Set the DMA Commutation Callback */
  1605.   htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
  1606.   htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
  1607.   /* Set the DMA error callback */
  1608.   htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError;
  1609.  
  1610.   /* Disable Commutation Interrupt */
  1611.   __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM);
  1612.  
  1613.   /* Enable the Commutation DMA Request */
  1614.   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM);
  1615.  
  1616.   __HAL_UNLOCK(htim);
  1617.  
  1618.   return HAL_OK;
  1619. }
  1620.  
  1621. /**
  1622.   * @brief  Configures the TIM in master mode.
  1623.   * @param  htim TIM handle.
  1624.   * @param  sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that
  1625.   *         contains the selected trigger output (TRGO) and the Master/Slave
  1626.   *         mode.
  1627.   * @retval HAL status
  1628.   */
  1629. HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
  1630.                                                         TIM_MasterConfigTypeDef *sMasterConfig)
  1631. {
  1632.   uint32_t tmpcr2;
  1633.   uint32_t tmpsmcr;
  1634.  
  1635.   /* Check the parameters */
  1636.   assert_param(IS_TIM_SYNCHRO_INSTANCE(htim->Instance));
  1637.   assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger));
  1638.   assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode));
  1639.  
  1640.   /* Check input state */
  1641.   __HAL_LOCK(htim);
  1642.  
  1643.   /* Change the handler state */
  1644.   htim->State = HAL_TIM_STATE_BUSY;
  1645.  
  1646.   /* Get the TIMx CR2 register value */
  1647.   tmpcr2 = htim->Instance->CR2;
  1648.  
  1649.   /* Get the TIMx SMCR register value */
  1650.   tmpsmcr = htim->Instance->SMCR;
  1651.  
  1652.   /* Reset the MMS Bits */
  1653.   tmpcr2 &= ~TIM_CR2_MMS;
  1654.   /* Select the TRGO source */
  1655.   tmpcr2 |=  sMasterConfig->MasterOutputTrigger;
  1656.  
  1657.   /* Reset the MSM Bit */
  1658.   tmpsmcr &= ~TIM_SMCR_MSM;
  1659.   /* Set master mode */
  1660.   tmpsmcr |= sMasterConfig->MasterSlaveMode;
  1661.  
  1662.   /* Update TIMx CR2 */
  1663.   htim->Instance->CR2 = tmpcr2;
  1664.  
  1665.   /* Update TIMx SMCR */
  1666.   htim->Instance->SMCR = tmpsmcr;
  1667.  
  1668.   /* Change the htim state */
  1669.   htim->State = HAL_TIM_STATE_READY;
  1670.  
  1671.   __HAL_UNLOCK(htim);
  1672.  
  1673.   return HAL_OK;
  1674. }
  1675.  
  1676. /**
  1677.   * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
  1678.   *         and the AOE(automatic output enable).
  1679.   * @param  htim TIM handle
  1680.   * @param  sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that
  1681.   *         contains the BDTR Register configuration  information for the TIM peripheral.
  1682.   * @note   Interrupts can be generated when an active level is detected on the
  1683.   *         break input, the break 2 input or the system break input. Break
  1684.   *         interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro.
  1685.   * @retval HAL status
  1686.   */
  1687. HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim,
  1688.                                                 TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig)
  1689. {
  1690.   /* Keep this variable initialized to 0 as it is used to configure BDTR register */
  1691.   uint32_t tmpbdtr = 0U;
  1692.  
  1693.   /* Check the parameters */
  1694.   assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance));
  1695.   assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode));
  1696.   assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode));
  1697.   assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel));
  1698.   assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime));
  1699.   assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState));
  1700.   assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity));
  1701.   assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput));
  1702.  
  1703.   /* Check input state */
  1704.   __HAL_LOCK(htim);
  1705.  
  1706.   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
  1707.      the OSSI State, the dead time value and the Automatic Output Enable Bit */
  1708.  
  1709.   /* Set the BDTR bits */
  1710.   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime);
  1711.   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel);
  1712.   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode);
  1713.   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode);
  1714.   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState);
  1715.   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity);
  1716.   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput);
  1717.  
  1718.  
  1719.   /* Set TIMx_BDTR */
  1720.   htim->Instance->BDTR = tmpbdtr;
  1721.  
  1722.   __HAL_UNLOCK(htim);
  1723.  
  1724.   return HAL_OK;
  1725. }
  1726.  
  1727. /**
  1728.   * @brief  Configures the TIMx Remapping input capabilities.
  1729.   * @param  htim TIM handle.
  1730.   * @param  Remap specifies the TIM remapping source.
  1731.   *
  1732.   * @retval HAL status
  1733.   */
  1734. HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap)
  1735. {
  1736.  
  1737.   return HAL_OK;
  1738. }
  1739.  
  1740. /**
  1741.   * @}
  1742.   */
  1743.  
  1744. /** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions
  1745.   * @brief    Extended Callbacks functions
  1746.   *
  1747. @verbatim
  1748.   ==============================================================================
  1749.                     ##### Extended Callbacks functions #####
  1750.   ==============================================================================
  1751.   [..]
  1752.     This section provides Extended TIM callback functions:
  1753.     (+) Timer Commutation callback
  1754.     (+) Timer Break callback
  1755.  
  1756. @endverbatim
  1757.   * @{
  1758.   */
  1759.  
  1760. /**
  1761.   * @brief  Hall commutation changed callback in non-blocking mode
  1762.   * @param  htim TIM handle
  1763.   * @retval None
  1764.   */
  1765. __weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
  1766. {
  1767.   /* Prevent unused argument(s) compilation warning */
  1768.   UNUSED(htim);
  1769.  
  1770.   /* NOTE : This function should not be modified, when the callback is needed,
  1771.             the HAL_TIMEx_CommutCallback could be implemented in the user file
  1772.    */
  1773. }
  1774. /**
  1775.   * @brief  Hall commutation changed half complete callback in non-blocking mode
  1776.   * @param  htim TIM handle
  1777.   * @retval None
  1778.   */
  1779. __weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
  1780. {
  1781.   /* Prevent unused argument(s) compilation warning */
  1782.   UNUSED(htim);
  1783.  
  1784.   /* NOTE : This function should not be modified, when the callback is needed,
  1785.             the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file
  1786.    */
  1787. }
  1788.  
  1789. /**
  1790.   * @brief  Hall Break detection callback in non-blocking mode
  1791.   * @param  htim TIM handle
  1792.   * @retval None
  1793.   */
  1794. __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
  1795. {
  1796.   /* Prevent unused argument(s) compilation warning */
  1797.   UNUSED(htim);
  1798.  
  1799.   /* NOTE : This function should not be modified, when the callback is needed,
  1800.             the HAL_TIMEx_BreakCallback could be implemented in the user file
  1801.    */
  1802. }
  1803. /**
  1804.   * @}
  1805.   */
  1806.  
  1807. /** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions
  1808.   * @brief    Extended Peripheral State functions
  1809.   *
  1810. @verbatim
  1811.   ==============================================================================
  1812.                 ##### Extended Peripheral State functions #####
  1813.   ==============================================================================
  1814.   [..]
  1815.     This subsection permits to get in run-time the status of the peripheral
  1816.     and the data flow.
  1817.  
  1818. @endverbatim
  1819.   * @{
  1820.   */
  1821.  
  1822. /**
  1823.   * @brief  Return the TIM Hall Sensor interface handle state.
  1824.   * @param  htim TIM Hall Sensor handle
  1825.   * @retval HAL state
  1826.   */
  1827. HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim)
  1828. {
  1829.   return htim->State;
  1830. }
  1831.  
  1832. /**
  1833.   * @}
  1834.   */
  1835.  
  1836. /**
  1837.   * @}
  1838.   */
  1839.  
  1840. /* Private functions ---------------------------------------------------------*/
  1841. /** @defgroup TIMEx_Private_Functions TIMEx Private Functions
  1842.   * @{
  1843.   */
  1844.  
  1845. /**
  1846.   * @brief  TIM DMA Commutation callback.
  1847.   * @param  hdma pointer to DMA handle.
  1848.   * @retval None
  1849.   */
  1850. void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma)
  1851. {
  1852.   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
  1853.  
  1854.   /* Change the htim state */
  1855.   htim->State = HAL_TIM_STATE_READY;
  1856.  
  1857. #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  1858.   htim->CommutationCallback(htim);
  1859. #else
  1860.   HAL_TIMEx_CommutCallback(htim);
  1861. #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  1862. }
  1863.  
  1864. /**
  1865.   * @brief  TIM DMA Commutation half complete callback.
  1866.   * @param  hdma pointer to DMA handle.
  1867.   * @retval None
  1868.   */
  1869. void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma)
  1870. {
  1871.   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
  1872.  
  1873.   /* Change the htim state */
  1874.   htim->State = HAL_TIM_STATE_READY;
  1875.  
  1876. #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
  1877.   htim->CommutationHalfCpltCallback(htim);
  1878. #else
  1879.   HAL_TIMEx_CommutHalfCpltCallback(htim);
  1880. #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  1881. }
  1882.  
  1883.  
  1884. /**
  1885.   * @brief  Enables or disables the TIM Capture Compare Channel xN.
  1886.   * @param  TIMx to select the TIM peripheral
  1887.   * @param  Channel specifies the TIM Channel
  1888.   *          This parameter can be one of the following values:
  1889.   *            @arg TIM_CHANNEL_1: TIM Channel 1
  1890.   *            @arg TIM_CHANNEL_2: TIM Channel 2
  1891.   *            @arg TIM_CHANNEL_3: TIM Channel 3
  1892.   * @param  ChannelNState specifies the TIM Channel CCxNE bit new state.
  1893.   *          This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable.
  1894.   * @retval None
  1895.   */
  1896. static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState)
  1897. {
  1898.   uint32_t tmp;
  1899.  
  1900.   tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
  1901.  
  1902.   /* Reset the CCxNE Bit */
  1903.   TIMx->CCER &=  ~tmp;
  1904.  
  1905.   /* Set or reset the CCxNE Bit */
  1906.   TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
  1907. }
  1908. /**
  1909.   * @}
  1910.   */
  1911.  
  1912. #endif /* HAL_TIM_MODULE_ENABLED */
  1913. /**
  1914.   * @}
  1915.   */
  1916.  
  1917. /**
  1918.   * @}
  1919.   */
  1920.  
  1921. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  1922.