Subversion Repositories FuelGauge

Rev

Rev 2 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /**
  2.   ******************************************************************************
  3.   * @file    stm32f0xx_hal_irda.c
  4.   * @author  MCD Application Team
  5.   * @brief   IRDA HAL module driver.
  6.   *          This file provides firmware functions to manage the following
  7.   *          functionalities of the IrDA (Infrared Data Association) Peripheral
  8.   *          (IRDA)
  9.   *           + Initialization and de-initialization functions
  10.   *           + IO operation functions
  11.   *           + Peripheral State and Errors functions
  12.   *           + Peripheral Control functions
  13.   *
  14.   @verbatim
  15.   ==============================================================================
  16.                         ##### How to use this driver #####
  17.   ==============================================================================
  18.   [..]
  19.     The IRDA HAL driver can be used as follows:
  20.  
  21.     (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda).
  22.     (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API
  23.         in setting the associated USART or UART in IRDA mode:
  24.         (++) Enable the USARTx/UARTx interface clock.
  25.         (++) USARTx/UARTx pins configuration:
  26.             (+++) Enable the clock for the USARTx/UARTx GPIOs.
  27.             (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input).
  28.         (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
  29.              and HAL_IRDA_Receive_IT() APIs):
  30.             (+++) Configure the USARTx/UARTx interrupt priority.
  31.             (+++) Enable the NVIC USARTx/UARTx IRQ handle.
  32.             (+++) The specific IRDA interrupts (Transmission complete interrupt,
  33.                   RXNE interrupt and Error Interrupts) will be managed using the macros
  34.                   __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
  35.  
  36.         (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
  37.              and HAL_IRDA_Receive_DMA() APIs):
  38.             (+++) Declare a DMA handle structure for the Tx/Rx channel.
  39.             (+++) Enable the DMAx interface clock.
  40.             (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
  41.             (+++) Configure the DMA Tx/Rx channel.
  42.             (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
  43.             (+++) Configure the priority and enable the NVIC for the transfer
  44.                   complete interrupt on the DMA Tx/Rx channel.
  45.  
  46.     (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
  47.         the normal or low power mode and the clock prescaler in the hirda handle Init structure.
  48.  
  49.     (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
  50.         (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
  51.              by calling the customized HAL_IRDA_MspInit() API.
  52.  
  53.          -@@- The specific IRDA interrupts (Transmission complete interrupt,
  54.              RXNE interrupt and Error Interrupts) will be managed using the macros
  55.              __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
  56.  
  57.     (#) Three operation modes are available within this driver :
  58.  
  59.      *** Polling mode IO operation ***
  60.      =================================
  61.      [..]
  62.        (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit()
  63.        (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
  64.  
  65.      *** Interrupt mode IO operation ***
  66.      ===================================
  67.      [..]
  68.        (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT()
  69.        (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
  70.             add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
  71.        (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT()
  72.        (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
  73.             add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
  74.        (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
  75.             add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
  76.  
  77.      *** DMA mode IO operation ***
  78.      ==============================
  79.      [..]
  80.        (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA()
  81.        (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can
  82.             add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback()
  83.        (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
  84.             add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
  85.        (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA()
  86.        (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can
  87.             add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback()
  88.        (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
  89.             add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
  90.        (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
  91.             add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
  92.  
  93.      *** IRDA HAL driver macros list ***
  94.      ====================================
  95.      [..]
  96.        Below the list of most used macros in IRDA HAL driver.
  97.  
  98.        (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral
  99.        (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
  100.        (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
  101.        (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
  102.        (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
  103.        (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
  104.        (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled
  105.  
  106.      [..]
  107.        (@) You can refer to the IRDA HAL driver header file for more useful macros
  108.  
  109.     ##### Callback registration #####
  110.     ==================================
  111.  
  112.     [..]
  113.     The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1
  114.     allows the user to configure dynamically the driver callbacks.
  115.  
  116.     [..]
  117.     Use Function HAL_IRDA_RegisterCallback() to register a user callback.
  118.     Function HAL_IRDA_RegisterCallback() allows to register following callbacks:
  119.     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
  120.     (+) TxCpltCallback            : Tx Complete Callback.
  121.     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
  122.     (+) RxCpltCallback            : Rx Complete Callback.
  123.     (+) ErrorCallback             : Error Callback.
  124.     (+) AbortCpltCallback         : Abort Complete Callback.
  125.     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
  126.     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
  127.     (+) MspInitCallback           : IRDA MspInit.
  128.     (+) MspDeInitCallback         : IRDA MspDeInit.
  129.     This function takes as parameters the HAL peripheral handle, the Callback ID
  130.     and a pointer to the user callback function.
  131.  
  132.     [..]
  133.     Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default
  134.     weak (surcharged) function.
  135.     HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
  136.     and the Callback ID.
  137.     This function allows to reset following callbacks:
  138.     (+) TxHalfCpltCallback        : Tx Half Complete Callback.
  139.     (+) TxCpltCallback            : Tx Complete Callback.
  140.     (+) RxHalfCpltCallback        : Rx Half Complete Callback.
  141.     (+) RxCpltCallback            : Rx Complete Callback.
  142.     (+) ErrorCallback             : Error Callback.
  143.     (+) AbortCpltCallback         : Abort Complete Callback.
  144.     (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
  145.     (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
  146.     (+) MspInitCallback           : IRDA MspInit.
  147.     (+) MspDeInitCallback         : IRDA MspDeInit.
  148.  
  149.     [..]
  150.     By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
  151.     all callbacks are set to the corresponding weak (surcharged) functions:
  152.     examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback().
  153.     Exception done for MspInit and MspDeInit functions that are respectively
  154.     reset to the legacy weak (surcharged) functions in the HAL_IRDA_Init()
  155.     and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
  156.     If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit()
  157.     keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
  158.  
  159.     [..]
  160.     Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only.
  161.     Exception done MspInit/MspDeInit that can be registered/unregistered
  162.     in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user)
  163.     MspInit/DeInit callbacks can be used during the Init/DeInit.
  164.     In that case first register the MspInit/MspDeInit user callbacks
  165.     using HAL_IRDA_RegisterCallback() before calling HAL_IRDA_DeInit()
  166.     or HAL_IRDA_Init() function.
  167.  
  168.     [..]
  169.     When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
  170.     not defined, the callback registration feature is not available
  171.     and weak (surcharged) callbacks are used.
  172.  
  173.   @endverbatim
  174.   ******************************************************************************
  175.   * @attention
  176.   *
  177.   * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
  178.   * All rights reserved.</center></h2>
  179.   *
  180.   * This software component is licensed by ST under BSD 3-Clause license,
  181.   * the "License"; You may not use this file except in compliance with the
  182.   * License. You may obtain a copy of the License at:
  183.   *                        opensource.org/licenses/BSD-3-Clause
  184.   *
  185.   ******************************************************************************
  186.   */
  187.  
  188. /* Includes ------------------------------------------------------------------*/
  189. #include "stm32f0xx_hal.h"
  190.  
  191. #if defined(USART_IRDA_SUPPORT)
  192. /** @addtogroup STM32F0xx_HAL_Driver
  193.   * @{
  194.   */
  195.  
  196. /** @defgroup IRDA IRDA
  197.   * @brief HAL IRDA module driver
  198.   * @{
  199.   */
  200.  
  201. #ifdef HAL_IRDA_MODULE_ENABLED
  202.  
  203. /* Private typedef -----------------------------------------------------------*/
  204. /* Private define ------------------------------------------------------------*/
  205. /** @defgroup IRDA_Private_Constants IRDA Private Constants
  206.   * @{
  207.   */
  208. #define IRDA_TEACK_REACK_TIMEOUT            1000U                                   /*!< IRDA TX or RX enable acknowledge time-out value  */
  209.  
  210. #define IRDA_CR1_FIELDS  ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
  211.                                      | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE))  /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */
  212.  
  213. #define USART_BRR_MIN    0x10U        /*!< USART BRR minimum authorized value */
  214.  
  215. #define USART_BRR_MAX    0x0000FFFFU  /*!< USART BRR maximum authorized value */
  216. /**
  217.   * @}
  218.   */
  219.  
  220. /* Private macros ------------------------------------------------------------*/
  221. /** @defgroup IRDA_Private_Macros IRDA Private Macros
  222.   * @{
  223.   */
  224. /** @brief  BRR division operation to set BRR register in 16-bit oversampling mode.
  225.   * @param  __PCLK__ IRDA clock source.
  226.   * @param  __BAUD__ Baud rate set by the user.
  227.   * @retval Division result
  228.   */
  229. #define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__)  (((__PCLK__) + ((__BAUD__)/2U)) / (__BAUD__))
  230. /**
  231.   * @}
  232.   */
  233.  
  234. /* Private variables ---------------------------------------------------------*/
  235. /* Private function prototypes -----------------------------------------------*/
  236. /** @addtogroup IRDA_Private_Functions
  237.   * @{
  238.   */
  239. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  240. void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda);
  241. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  242. static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
  243. static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
  244. static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
  245.                                                      uint32_t Tickstart, uint32_t Timeout);
  246. static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
  247. static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
  248. static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
  249. static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
  250. static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
  251. static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
  252. static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
  253. static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
  254. static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
  255. static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
  256. static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
  257. static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
  258. static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
  259. static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
  260. static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
  261. /**
  262.   * @}
  263.   */
  264.  
  265. /* Exported functions --------------------------------------------------------*/
  266.  
  267. /** @defgroup IRDA_Exported_Functions IRDA Exported Functions
  268.   * @{
  269.   */
  270.  
  271. /** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions
  272.   *  @brief    Initialization and Configuration functions
  273.   *
  274. @verbatim
  275.   ==============================================================================
  276.               ##### Initialization and Configuration functions #####
  277.   ==============================================================================
  278.   [..]
  279.   This subsection provides a set of functions allowing to initialize the USARTx
  280.   in asynchronous IRDA mode.
  281.   (+) For the asynchronous mode only these parameters can be configured:
  282.       (++) Baud Rate
  283.       (++) Word Length
  284.       (++) Parity: If the parity is enabled, then the MSB bit of the data written
  285.            in the data register is transmitted but is changed by the parity bit.
  286.       (++) Power mode
  287.       (++) Prescaler setting
  288.       (++) Receiver/transmitter modes
  289.  
  290.   [..]
  291.   The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures
  292.   (details for the procedures are available in reference manual).
  293.  
  294. @endverbatim
  295.  
  296.   Depending on the frame length defined either by the M bit (8-bits or 9-bits)
  297.   or by the M1 and M0 bits (7-bit, 8-bit or 9-bit), the possible IRDA frame
  298.   formats are listed in the following table.
  299.  
  300.     Table 1. IRDA frame format.
  301.     +-----------------------------------------------------------------------+
  302.     |       M bit       |  PCE bit  |             IRDA frame                |
  303.     |-------------------|-----------|---------------------------------------|
  304.     |         0         |     0     |    | SB |    8-bit data   | STB |     |
  305.     |-------------------|-----------|---------------------------------------|
  306.     |         0         |     1     |    | SB | 7-bit data | PB | STB |     |
  307.     |-------------------|-----------|---------------------------------------|
  308.     |         1         |     0     |    | SB |    9-bit data   | STB |     |
  309.     |-------------------|-----------|---------------------------------------|
  310.     |         1         |     1     |    | SB | 8-bit data | PB | STB |     |
  311.     +-----------------------------------------------------------------------+
  312.     |  M1 bit |  M0 bit |  PCE bit  |             IRDA frame                |
  313.     |---------|---------|-----------|---------------------------------------|
  314.     |    0    |    0    |    0      |    | SB |    8 bit data   | STB |     |
  315.     |---------|---------|-----------|---------------------------------------|
  316.     |    0    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
  317.     |---------|---------|-----------|---------------------------------------|
  318.     |    0    |    1    |    0      |    | SB |    9 bit data   | STB |     |
  319.     |---------|---------|-----------|---------------------------------------|
  320.     |    0    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
  321.     |---------|---------|-----------|---------------------------------------|
  322.     |    1    |    0    |    0      |    | SB |    7 bit data   | STB |     |
  323.     |---------|---------|-----------|---------------------------------------|
  324.     |    1    |    0    |    1      |    | SB | 6 bit data | PB | STB |     |
  325.     +-----------------------------------------------------------------------+
  326.  
  327.   * @{
  328.   */
  329.  
  330. /**
  331.   * @brief Initialize the IRDA mode according to the specified
  332.   *        parameters in the IRDA_InitTypeDef and initialize the associated handle.
  333.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  334.   *               the configuration information for the specified IRDA module.
  335.   * @retval HAL status
  336.   */
  337. HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
  338. {
  339.   /* Check the IRDA handle allocation */
  340.   if (hirda == NULL)
  341.   {
  342.     return HAL_ERROR;
  343.   }
  344.  
  345.   /* Check the USART/UART associated to the IRDA handle */
  346.   assert_param(IS_IRDA_INSTANCE(hirda->Instance));
  347.  
  348.   if (hirda->gState == HAL_IRDA_STATE_RESET)
  349.   {
  350.     /* Allocate lock resource and initialize it */
  351.     hirda->Lock = HAL_UNLOCKED;
  352.  
  353. #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
  354.     IRDA_InitCallbacksToDefault(hirda);
  355.  
  356.     if (hirda->MspInitCallback == NULL)
  357.     {
  358.       hirda->MspInitCallback = HAL_IRDA_MspInit;
  359.     }
  360.  
  361.     /* Init the low level hardware */
  362.     hirda->MspInitCallback(hirda);
  363. #else
  364.     /* Init the low level hardware : GPIO, CLOCK */
  365.     HAL_IRDA_MspInit(hirda);
  366. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  367.   }
  368.  
  369.   hirda->gState = HAL_IRDA_STATE_BUSY;
  370.  
  371.   /* Disable the Peripheral to update the configuration registers */
  372.   __HAL_IRDA_DISABLE(hirda);
  373.  
  374.   /* Set the IRDA Communication parameters */
  375.   if (IRDA_SetConfig(hirda) == HAL_ERROR)
  376.   {
  377.     return HAL_ERROR;
  378.   }
  379.  
  380.   /* In IRDA mode, the following bits must be kept cleared:
  381.   - LINEN, STOP and CLKEN bits in the USART_CR2 register,
  382.   - SCEN and HDSEL bits in the USART_CR3 register.*/
  383.   CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
  384.   CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
  385.  
  386.   /* set the UART/USART in IRDA mode */
  387.   hirda->Instance->CR3 |= USART_CR3_IREN;
  388.  
  389.   /* Enable the Peripheral */
  390.   __HAL_IRDA_ENABLE(hirda);
  391.  
  392.   /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */
  393.   return (IRDA_CheckIdleState(hirda));
  394. }
  395.  
  396. /**
  397.   * @brief DeInitialize the IRDA peripheral.
  398.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  399.   *               the configuration information for the specified IRDA module.
  400.   * @retval HAL status
  401.   */
  402. HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
  403. {
  404.   /* Check the IRDA handle allocation */
  405.   if (hirda == NULL)
  406.   {
  407.     return HAL_ERROR;
  408.   }
  409.  
  410.   /* Check the USART/UART associated to the IRDA handle */
  411.   assert_param(IS_IRDA_INSTANCE(hirda->Instance));
  412.  
  413.   hirda->gState = HAL_IRDA_STATE_BUSY;
  414.  
  415.   /* DeInit the low level hardware */
  416. #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
  417.   if (hirda->MspDeInitCallback == NULL)
  418.   {
  419.     hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
  420.   }
  421.   /* DeInit the low level hardware */
  422.   hirda->MspDeInitCallback(hirda);
  423. #else
  424.   HAL_IRDA_MspDeInit(hirda);
  425. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  426.   /* Disable the Peripheral */
  427.   __HAL_IRDA_DISABLE(hirda);
  428.  
  429.   hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  430.   hirda->gState    = HAL_IRDA_STATE_RESET;
  431.   hirda->RxState   = HAL_IRDA_STATE_RESET;
  432.  
  433.   /* Process Unlock */
  434.   __HAL_UNLOCK(hirda);
  435.  
  436.   return HAL_OK;
  437. }
  438.  
  439. /**
  440.   * @brief Initialize the IRDA MSP.
  441.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  442.   *               the configuration information for the specified IRDA module.
  443.   * @retval None
  444.   */
  445. __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
  446. {
  447.   /* Prevent unused argument(s) compilation warning */
  448.   UNUSED(hirda);
  449.  
  450.   /* NOTE: This function should not be modified, when the callback is needed,
  451.            the HAL_IRDA_MspInit can be implemented in the user file
  452.    */
  453. }
  454.  
  455. /**
  456.   * @brief DeInitialize the IRDA MSP.
  457.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  458.   *               the configuration information for the specified IRDA module.
  459.   * @retval None
  460.   */
  461. __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
  462. {
  463.   /* Prevent unused argument(s) compilation warning */
  464.   UNUSED(hirda);
  465.  
  466.   /* NOTE: This function should not be modified, when the callback is needed,
  467.            the HAL_IRDA_MspDeInit can be implemented in the user file
  468.    */
  469. }
  470.  
  471. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  472. /**
  473.   * @brief  Register a User IRDA Callback
  474.   *         To be used instead of the weak predefined callback
  475.   * @param  hirda irda handle
  476.   * @param  CallbackID ID of the callback to be registered
  477.   *         This parameter can be one of the following values:
  478.   *           @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
  479.   *           @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
  480.   *           @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
  481.   *           @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
  482.   *           @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
  483.   *           @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
  484.   *           @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
  485.   *           @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
  486.   *           @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
  487.   *           @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
  488.   * @param  pCallback pointer to the Callback function
  489.   * @retval HAL status
  490.   */
  491. HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID,
  492.                                             pIRDA_CallbackTypeDef pCallback)
  493. {
  494.   HAL_StatusTypeDef status = HAL_OK;
  495.  
  496.   if (pCallback == NULL)
  497.   {
  498.     /* Update the error code */
  499.     hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  500.  
  501.     return HAL_ERROR;
  502.   }
  503.   /* Process locked */
  504.   __HAL_LOCK(hirda);
  505.  
  506.   if (hirda->gState == HAL_IRDA_STATE_READY)
  507.   {
  508.     switch (CallbackID)
  509.     {
  510.       case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
  511.         hirda->TxHalfCpltCallback = pCallback;
  512.         break;
  513.  
  514.       case HAL_IRDA_TX_COMPLETE_CB_ID :
  515.         hirda->TxCpltCallback = pCallback;
  516.         break;
  517.  
  518.       case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
  519.         hirda->RxHalfCpltCallback = pCallback;
  520.         break;
  521.  
  522.       case HAL_IRDA_RX_COMPLETE_CB_ID :
  523.         hirda->RxCpltCallback = pCallback;
  524.         break;
  525.  
  526.       case HAL_IRDA_ERROR_CB_ID :
  527.         hirda->ErrorCallback = pCallback;
  528.         break;
  529.  
  530.       case HAL_IRDA_ABORT_COMPLETE_CB_ID :
  531.         hirda->AbortCpltCallback = pCallback;
  532.         break;
  533.  
  534.       case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
  535.         hirda->AbortTransmitCpltCallback = pCallback;
  536.         break;
  537.  
  538.       case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
  539.         hirda->AbortReceiveCpltCallback = pCallback;
  540.         break;
  541.  
  542.       case HAL_IRDA_MSPINIT_CB_ID :
  543.         hirda->MspInitCallback = pCallback;
  544.         break;
  545.  
  546.       case HAL_IRDA_MSPDEINIT_CB_ID :
  547.         hirda->MspDeInitCallback = pCallback;
  548.         break;
  549.  
  550.       default :
  551.         /* Update the error code */
  552.         hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  553.  
  554.         /* Return error status */
  555.         status =  HAL_ERROR;
  556.         break;
  557.     }
  558.   }
  559.   else if (hirda->gState == HAL_IRDA_STATE_RESET)
  560.   {
  561.     switch (CallbackID)
  562.     {
  563.       case HAL_IRDA_MSPINIT_CB_ID :
  564.         hirda->MspInitCallback = pCallback;
  565.         break;
  566.  
  567.       case HAL_IRDA_MSPDEINIT_CB_ID :
  568.         hirda->MspDeInitCallback = pCallback;
  569.         break;
  570.  
  571.       default :
  572.         /* Update the error code */
  573.         hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  574.  
  575.         /* Return error status */
  576.         status =  HAL_ERROR;
  577.         break;
  578.     }
  579.   }
  580.   else
  581.   {
  582.     /* Update the error code */
  583.     hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  584.  
  585.     /* Return error status */
  586.     status =  HAL_ERROR;
  587.   }
  588.  
  589.   /* Release Lock */
  590.   __HAL_UNLOCK(hirda);
  591.  
  592.   return status;
  593. }
  594.  
  595. /**
  596.   * @brief  Unregister an IRDA callback
  597.   *         IRDA callback is redirected to the weak predefined callback
  598.   * @param  hirda irda handle
  599.   * @param  CallbackID ID of the callback to be unregistered
  600.   *         This parameter can be one of the following values:
  601.   *           @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
  602.   *           @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
  603.   *           @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
  604.   *           @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
  605.   *           @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
  606.   *           @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
  607.   *           @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
  608.   *           @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
  609.   *           @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
  610.   *           @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
  611.   * @retval HAL status
  612.   */
  613. HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID)
  614. {
  615.   HAL_StatusTypeDef status = HAL_OK;
  616.  
  617.   /* Process locked */
  618.   __HAL_LOCK(hirda);
  619.  
  620.   if (HAL_IRDA_STATE_READY == hirda->gState)
  621.   {
  622.     switch (CallbackID)
  623.     {
  624.       case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
  625.         hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback    */
  626.         break;
  627.  
  628.       case HAL_IRDA_TX_COMPLETE_CB_ID :
  629.         hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback;                       /* Legacy weak TxCpltCallback         */
  630.         break;
  631.  
  632.       case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
  633.         hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback     */
  634.         break;
  635.  
  636.       case HAL_IRDA_RX_COMPLETE_CB_ID :
  637.         hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback;                       /* Legacy weak RxCpltCallback         */
  638.         break;
  639.  
  640.       case HAL_IRDA_ERROR_CB_ID :
  641.         hirda->ErrorCallback = HAL_IRDA_ErrorCallback;                         /* Legacy weak ErrorCallback          */
  642.         break;
  643.  
  644.       case HAL_IRDA_ABORT_COMPLETE_CB_ID :
  645.         hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback      */
  646.         break;
  647.  
  648.       case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
  649.         hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak
  650.                                                                                   AbortTransmitCpltCallback          */
  651.         break;
  652.  
  653.       case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
  654.         hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback;   /* Legacy weak
  655.                                                                                   AbortReceiveCpltCallback           */
  656.         break;
  657.  
  658.       case HAL_IRDA_MSPINIT_CB_ID :
  659.         hirda->MspInitCallback = HAL_IRDA_MspInit;                             /* Legacy weak MspInitCallback        */
  660.         break;
  661.  
  662.       case HAL_IRDA_MSPDEINIT_CB_ID :
  663.         hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;                         /* Legacy weak MspDeInitCallback      */
  664.         break;
  665.  
  666.       default :
  667.         /* Update the error code */
  668.         hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  669.  
  670.         /* Return error status */
  671.         status =  HAL_ERROR;
  672.         break;
  673.     }
  674.   }
  675.   else if (HAL_IRDA_STATE_RESET == hirda->gState)
  676.   {
  677.     switch (CallbackID)
  678.     {
  679.       case HAL_IRDA_MSPINIT_CB_ID :
  680.         hirda->MspInitCallback = HAL_IRDA_MspInit;
  681.         break;
  682.  
  683.       case HAL_IRDA_MSPDEINIT_CB_ID :
  684.         hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
  685.         break;
  686.  
  687.       default :
  688.         /* Update the error code */
  689.         hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  690.  
  691.         /* Return error status */
  692.         status =  HAL_ERROR;
  693.         break;
  694.     }
  695.   }
  696.   else
  697.   {
  698.     /* Update the error code */
  699.     hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
  700.  
  701.     /* Return error status */
  702.     status =  HAL_ERROR;
  703.   }
  704.  
  705.   /* Release Lock */
  706.   __HAL_UNLOCK(hirda);
  707.  
  708.   return status;
  709. }
  710. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  711.  
  712. /**
  713.   * @}
  714.   */
  715.  
  716. /** @defgroup IRDA_Exported_Functions_Group2 IO operation functions
  717.   *  @brief   IRDA Transmit and Receive functions
  718.   *
  719. @verbatim
  720.  ===============================================================================
  721.                          ##### IO operation functions #####
  722.  ===============================================================================
  723.   [..]
  724.     This subsection provides a set of functions allowing to manage the IRDA data transfers.
  725.  
  726.   [..]
  727.     IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
  728.     on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
  729.     is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
  730.     While receiving data, transmission should be avoided as the data to be transmitted
  731.     could be corrupted.
  732.  
  733.   [..]
  734.     (#) There are two modes of transfer:
  735.         (++) Blocking mode: the communication is performed in polling mode.
  736.              The HAL status of all data processing is returned by the same function
  737.              after finishing transfer.
  738.         (++) Non-Blocking mode: the communication is performed using Interrupts
  739.              or DMA, these API's return the HAL status.
  740.              The end of the data processing will be indicated through the
  741.              dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when
  742.              using DMA mode.
  743.              The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks
  744.              will be executed respectively at the end of the Transmit or Receive process
  745.              The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected
  746.  
  747.     (#) Blocking mode APIs are :
  748.         (++) HAL_IRDA_Transmit()
  749.         (++) HAL_IRDA_Receive()
  750.  
  751.     (#) Non Blocking mode APIs with Interrupt are :
  752.         (++) HAL_IRDA_Transmit_IT()
  753.         (++) HAL_IRDA_Receive_IT()
  754.         (++) HAL_IRDA_IRQHandler()
  755.  
  756.     (#) Non Blocking mode functions with DMA are :
  757.         (++) HAL_IRDA_Transmit_DMA()
  758.         (++) HAL_IRDA_Receive_DMA()
  759.         (++) HAL_IRDA_DMAPause()
  760.         (++) HAL_IRDA_DMAResume()
  761.         (++) HAL_IRDA_DMAStop()
  762.  
  763.     (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
  764.         (++) HAL_IRDA_TxHalfCpltCallback()
  765.         (++) HAL_IRDA_TxCpltCallback()
  766.         (++) HAL_IRDA_RxHalfCpltCallback()
  767.         (++) HAL_IRDA_RxCpltCallback()
  768.         (++) HAL_IRDA_ErrorCallback()
  769.  
  770.     (#) Non-Blocking mode transfers could be aborted using Abort API's :
  771.         (++) HAL_IRDA_Abort()
  772.         (++) HAL_IRDA_AbortTransmit()
  773.         (++) HAL_IRDA_AbortReceive()
  774.         (++) HAL_IRDA_Abort_IT()
  775.         (++) HAL_IRDA_AbortTransmit_IT()
  776.         (++) HAL_IRDA_AbortReceive_IT()
  777.  
  778.     (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
  779.         (++) HAL_IRDA_AbortCpltCallback()
  780.         (++) HAL_IRDA_AbortTransmitCpltCallback()
  781.         (++) HAL_IRDA_AbortReceiveCpltCallback()
  782.  
  783.     (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
  784.         Errors are handled as follows :
  785.         (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
  786.              to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
  787.              in Interrupt mode reception .
  788.              Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
  789.              to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed.
  790.              Transfer is kept ongoing on IRDA side.
  791.              If user wants to abort it, Abort services should be called by user.
  792.         (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
  793.              This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
  794.              Error code is set to allow user to identify error type, and
  795.              HAL_IRDA_ErrorCallback() user callback is executed.
  796.  
  797. @endverbatim
  798.   * @{
  799.   */
  800.  
  801. /**
  802.   * @brief Send an amount of data in blocking mode.
  803.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  804.   *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  805.   *        of u16 available through pData.
  806.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  807.   *               the configuration information for the specified IRDA module.
  808.   * @param pData Pointer to data buffer (u8 or u16 data elements).
  809.   * @param Size Amount of data elements (u8 or u16) to be sent.
  810.   * @param Timeout Specify timeout value.
  811.   * @retval HAL status
  812.   */
  813. /**
  814.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  815.   *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  816.   *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
  817.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  818.   */
  819. HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
  820. {
  821.   uint8_t  *pdata8bits;
  822.   uint16_t *pdata16bits;
  823.   uint32_t tickstart;
  824.  
  825.   /* Check that a Tx process is not already ongoing */
  826.   if (hirda->gState == HAL_IRDA_STATE_READY)
  827.   {
  828.     if ((pData == NULL) || (Size == 0U))
  829.     {
  830.       return  HAL_ERROR;
  831.     }
  832.  
  833.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  834.        should be aligned on a u16 frontier, as data to be filled into TDR will be
  835.        handled through a u16 cast. */
  836.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  837.     {
  838.       if ((((uint32_t)pData) & 1U) != 0U)
  839.       {
  840.         return  HAL_ERROR;
  841.       }
  842.     }
  843.  
  844.     /* Process Locked */
  845.     __HAL_LOCK(hirda);
  846.  
  847.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  848.     hirda->gState = HAL_IRDA_STATE_BUSY_TX;
  849.  
  850.     /* Init tickstart for timeout management */
  851.     tickstart = HAL_GetTick();
  852.  
  853.     hirda->TxXferSize = Size;
  854.     hirda->TxXferCount = Size;
  855.  
  856.     /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
  857.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  858.     {
  859.       pdata8bits  = NULL;
  860.       pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
  861.     }
  862.     else
  863.     {
  864.       pdata8bits  = pData;
  865.       pdata16bits = NULL;
  866.     }
  867.  
  868.     while (hirda->TxXferCount > 0U)
  869.     {
  870.       hirda->TxXferCount--;
  871.  
  872.       if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
  873.       {
  874.         return HAL_TIMEOUT;
  875.       }
  876.       if (pdata8bits == NULL)
  877.       {
  878.         hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
  879.         pdata16bits++;
  880.       }
  881.       else
  882.       {
  883.         hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
  884.         pdata8bits++;
  885.       }
  886.     }
  887.  
  888.     if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
  889.     {
  890.       return HAL_TIMEOUT;
  891.     }
  892.  
  893.     /* At end of Tx process, restore hirda->gState to Ready */
  894.     hirda->gState = HAL_IRDA_STATE_READY;
  895.  
  896.     /* Process Unlocked */
  897.     __HAL_UNLOCK(hirda);
  898.  
  899.     return HAL_OK;
  900.   }
  901.   else
  902.   {
  903.     return HAL_BUSY;
  904.   }
  905. }
  906.  
  907. /**
  908.   * @brief Receive an amount of data in blocking mode.
  909.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  910.   *        the received data is handled as a set of u16. In this case, Size must reflect the number
  911.   *        of u16 available through pData.
  912.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  913.   *                the configuration information for the specified IRDA module.
  914.   * @param pData Pointer to data buffer (u8 or u16 data elements).
  915.   * @param Size Amount of data elements (u8 or u16) to be received.
  916.   * @param Timeout Specify timeout value.
  917.   * @retval HAL status
  918.   */
  919. /**
  920.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  921.   *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  922.   *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
  923.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  924.   */
  925. HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
  926. {
  927.   uint8_t  *pdata8bits;
  928.   uint16_t *pdata16bits;
  929.   uint16_t uhMask;
  930.   uint32_t tickstart;
  931.  
  932.   /* Check that a Rx process is not already ongoing */
  933.   if (hirda->RxState == HAL_IRDA_STATE_READY)
  934.   {
  935.     if ((pData == NULL) || (Size == 0U))
  936.     {
  937.       return  HAL_ERROR;
  938.     }
  939.  
  940.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  941.        should be aligned on a u16 frontier, as data to be received from RDR will be
  942.        handled through a u16 cast. */
  943.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  944.     {
  945.       if ((((uint32_t)pData) & 1U) != 0U)
  946.       {
  947.         return  HAL_ERROR;
  948.       }
  949.     }
  950.  
  951.     /* Process Locked */
  952.     __HAL_LOCK(hirda);
  953.  
  954.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  955.     hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
  956.  
  957.     /* Init tickstart for timeout management */
  958.     tickstart = HAL_GetTick();
  959.  
  960.     hirda->RxXferSize = Size;
  961.     hirda->RxXferCount = Size;
  962.  
  963.     /* Computation of the mask to apply to RDR register
  964.        of the UART associated to the IRDA */
  965.     IRDA_MASK_COMPUTATION(hirda);
  966.     uhMask = hirda->Mask;
  967.  
  968.     /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
  969.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  970.     {
  971.       pdata8bits  = NULL;
  972.       pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
  973.     }
  974.     else
  975.     {
  976.       pdata8bits  = pData;
  977.       pdata16bits = NULL;
  978.     }
  979.  
  980.     /* Check data remaining to be received */
  981.     while (hirda->RxXferCount > 0U)
  982.     {
  983.       hirda->RxXferCount--;
  984.  
  985.       if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
  986.       {
  987.         return HAL_TIMEOUT;
  988.       }
  989.       if (pdata8bits == NULL)
  990.       {
  991.         *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask);
  992.         pdata16bits++;
  993.       }
  994.       else
  995.       {
  996.         *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask);
  997.         pdata8bits++;
  998.       }
  999.     }
  1000.  
  1001.     /* At end of Rx process, restore hirda->RxState to Ready */
  1002.     hirda->RxState = HAL_IRDA_STATE_READY;
  1003.  
  1004.     /* Process Unlocked */
  1005.     __HAL_UNLOCK(hirda);
  1006.  
  1007.     return HAL_OK;
  1008.   }
  1009.   else
  1010.   {
  1011.     return HAL_BUSY;
  1012.   }
  1013. }
  1014.  
  1015. /**
  1016.   * @brief Send an amount of data in interrupt mode.
  1017.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1018.   *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  1019.   *        of u16 available through pData.
  1020.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1021.   *                the configuration information for the specified IRDA module.
  1022.   * @param pData Pointer to data buffer (u8 or u16 data elements).
  1023.   * @param Size Amount of data elements (u8 or u16) to be sent.
  1024.   * @retval HAL status
  1025.   */
  1026. /**
  1027.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1028.   *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  1029.   *         (as sent data will be handled using u16 pointer cast). Depending on compilation chain,
  1030.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  1031.   */
  1032. HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
  1033. {
  1034.   /* Check that a Tx process is not already ongoing */
  1035.   if (hirda->gState == HAL_IRDA_STATE_READY)
  1036.   {
  1037.     if ((pData == NULL) || (Size == 0U))
  1038.     {
  1039.       return HAL_ERROR;
  1040.     }
  1041.  
  1042.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  1043.        should be aligned on a u16 frontier, as data to be filled into TDR will be
  1044.        handled through a u16 cast. */
  1045.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  1046.     {
  1047.       if ((((uint32_t)pData) & 1U) != 0U)
  1048.       {
  1049.         return  HAL_ERROR;
  1050.       }
  1051.     }
  1052.  
  1053.     /* Process Locked */
  1054.     __HAL_LOCK(hirda);
  1055.  
  1056.     hirda->pTxBuffPtr = pData;
  1057.     hirda->TxXferSize = Size;
  1058.     hirda->TxXferCount = Size;
  1059.  
  1060.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1061.     hirda->gState = HAL_IRDA_STATE_BUSY_TX;
  1062.  
  1063.     /* Process Unlocked */
  1064.     __HAL_UNLOCK(hirda);
  1065.  
  1066.     /* Enable the IRDA Transmit Data Register Empty Interrupt */
  1067.     SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);
  1068.  
  1069.     return HAL_OK;
  1070.   }
  1071.   else
  1072.   {
  1073.     return HAL_BUSY;
  1074.   }
  1075. }
  1076.  
  1077. /**
  1078.   * @brief Receive an amount of data in interrupt mode.
  1079.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1080.   *        the received data is handled as a set of u16. In this case, Size must reflect the number
  1081.   *        of u16 available through pData.
  1082.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1083.   *                the configuration information for the specified IRDA module.
  1084.   * @param pData Pointer to data buffer (u8 or u16 data elements).
  1085.   * @param Size Amount of data elements (u8 or u16) to be received.
  1086.   * @retval HAL status
  1087.   */
  1088. /**
  1089.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1090.   *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  1091.   *         (as received data will be handled using u16 pointer cast). Depending on compilation chain,
  1092.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  1093.   */
  1094. HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
  1095. {
  1096.   /* Check that a Rx process is not already ongoing */
  1097.   if (hirda->RxState == HAL_IRDA_STATE_READY)
  1098.   {
  1099.     if ((pData == NULL) || (Size == 0U))
  1100.     {
  1101.       return HAL_ERROR;
  1102.     }
  1103.  
  1104.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  1105.        should be aligned on a u16 frontier, as data to be received from RDR will be
  1106.        handled through a u16 cast. */
  1107.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  1108.     {
  1109.       if ((((uint32_t)pData) & 1U) != 0U)
  1110.       {
  1111.         return  HAL_ERROR;
  1112.       }
  1113.     }
  1114.  
  1115.     /* Process Locked */
  1116.     __HAL_LOCK(hirda);
  1117.  
  1118.     hirda->pRxBuffPtr = pData;
  1119.     hirda->RxXferSize = Size;
  1120.     hirda->RxXferCount = Size;
  1121.  
  1122.     /* Computation of the mask to apply to the RDR register
  1123.        of the UART associated to the IRDA */
  1124.     IRDA_MASK_COMPUTATION(hirda);
  1125.  
  1126.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1127.     hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
  1128.  
  1129.     /* Process Unlocked */
  1130.     __HAL_UNLOCK(hirda);
  1131.  
  1132.     /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
  1133.     SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
  1134.  
  1135.     /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
  1136.     SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1137.  
  1138.     return HAL_OK;
  1139.   }
  1140.   else
  1141.   {
  1142.     return HAL_BUSY;
  1143.   }
  1144. }
  1145.  
  1146. /**
  1147.   * @brief Send an amount of data in DMA mode.
  1148.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1149.   *        the sent data is handled as a set of u16. In this case, Size must reflect the number
  1150.   *        of u16 available through pData.
  1151.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1152.   *               the configuration information for the specified IRDA module.
  1153.   * @param pData pointer to data buffer (u8 or u16 data elements).
  1154.   * @param Size Amount of data elements (u8 or u16) to be sent.
  1155.   * @retval HAL status
  1156.   */
  1157. /**
  1158.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1159.   *         address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits)
  1160.   *         (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain,
  1161.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  1162.   */
  1163. HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
  1164. {
  1165.   /* Check that a Tx process is not already ongoing */
  1166.   if (hirda->gState == HAL_IRDA_STATE_READY)
  1167.   {
  1168.     if ((pData == NULL) || (Size == 0U))
  1169.     {
  1170.       return HAL_ERROR;
  1171.     }
  1172.  
  1173.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  1174.        should be aligned on a u16 frontier, as data copy into TDR will be
  1175.        handled by DMA from a u16 frontier. */
  1176.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  1177.     {
  1178.       if ((((uint32_t)pData) & 1U) != 0U)
  1179.       {
  1180.         return  HAL_ERROR;
  1181.       }
  1182.     }
  1183.  
  1184.     /* Process Locked */
  1185.     __HAL_LOCK(hirda);
  1186.  
  1187.     hirda->pTxBuffPtr = pData;
  1188.     hirda->TxXferSize = Size;
  1189.     hirda->TxXferCount = Size;
  1190.  
  1191.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1192.     hirda->gState = HAL_IRDA_STATE_BUSY_TX;
  1193.  
  1194.     /* Set the IRDA DMA transfer complete callback */
  1195.     hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
  1196.  
  1197.     /* Set the IRDA DMA half transfer complete callback */
  1198.     hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;
  1199.  
  1200.     /* Set the DMA error callback */
  1201.     hirda->hdmatx->XferErrorCallback = IRDA_DMAError;
  1202.  
  1203.     /* Set the DMA abort callback */
  1204.     hirda->hdmatx->XferAbortCallback = NULL;
  1205.  
  1206.     /* Enable the IRDA transmit DMA channel */
  1207.     if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK)
  1208.     {
  1209.       /* Clear the TC flag in the ICR register */
  1210.       __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF);
  1211.  
  1212.       /* Process Unlocked */
  1213.       __HAL_UNLOCK(hirda);
  1214.  
  1215.       /* Enable the DMA transfer for transmit request by setting the DMAT bit
  1216.          in the USART CR3 register */
  1217.       SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1218.  
  1219.       return HAL_OK;
  1220.     }
  1221.     else
  1222.     {
  1223.       /* Set error code to DMA */
  1224.       hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1225.  
  1226.       /* Process Unlocked */
  1227.       __HAL_UNLOCK(hirda);
  1228.  
  1229.       /* Restore hirda->gState to ready */
  1230.       hirda->gState = HAL_IRDA_STATE_READY;
  1231.  
  1232.       return HAL_ERROR;
  1233.     }
  1234.   }
  1235.   else
  1236.   {
  1237.     return HAL_BUSY;
  1238.   }
  1239. }
  1240.  
  1241. /**
  1242.   * @brief Receive an amount of data in DMA mode.
  1243.   * @note  When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1244.   *        the received data is handled as a set of u16. In this case, Size must reflect the number
  1245.   *        of u16 available through pData.
  1246.   * @note   When the IRDA parity is enabled (PCE = 1), the received data contains
  1247.   *         the parity bit (MSB position).
  1248.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1249.   *               the configuration information for the specified IRDA module.
  1250.   * @param pData Pointer to data buffer (u8 or u16 data elements).
  1251.   * @param Size Amount of data elements (u8 or u16) to be received.
  1252.   * @retval HAL status
  1253.   */
  1254. /**
  1255.   * @note   When IRDA parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
  1256.   *         address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits)
  1257.   *         (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
  1258.   *         use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData.
  1259.   */
  1260. HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
  1261. {
  1262.   /* Check that a Rx process is not already ongoing */
  1263.   if (hirda->RxState == HAL_IRDA_STATE_READY)
  1264.   {
  1265.     if ((pData == NULL) || (Size == 0U))
  1266.     {
  1267.       return HAL_ERROR;
  1268.     }
  1269.  
  1270.     /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
  1271.        should be aligned on a u16 frontier, as data copy from RDR will be
  1272.        handled by DMA from a u16 frontier. */
  1273.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  1274.     {
  1275.       if ((((uint32_t)pData) & 1U) != 0U)
  1276.       {
  1277.         return  HAL_ERROR;
  1278.       }
  1279.     }
  1280.  
  1281.     /* Process Locked */
  1282.     __HAL_LOCK(hirda);
  1283.  
  1284.     hirda->pRxBuffPtr = pData;
  1285.     hirda->RxXferSize = Size;
  1286.  
  1287.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1288.     hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
  1289.  
  1290.     /* Set the IRDA DMA transfer complete callback */
  1291.     hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
  1292.  
  1293.     /* Set the IRDA DMA half transfer complete callback */
  1294.     hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;
  1295.  
  1296.     /* Set the DMA error callback */
  1297.     hirda->hdmarx->XferErrorCallback = IRDA_DMAError;
  1298.  
  1299.     /* Set the DMA abort callback */
  1300.     hirda->hdmarx->XferAbortCallback = NULL;
  1301.  
  1302.     /* Enable the DMA channel */
  1303.     if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK)
  1304.     {
  1305.       /* Process Unlocked */
  1306.       __HAL_UNLOCK(hirda);
  1307.  
  1308.       /* Enable the UART Parity Error Interrupt */
  1309.       SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
  1310.  
  1311.       /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
  1312.       SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1313.  
  1314.       /* Enable the DMA transfer for the receiver request by setting the DMAR bit
  1315.          in the USART CR3 register */
  1316.       SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1317.  
  1318.       return HAL_OK;
  1319.     }
  1320.     else
  1321.     {
  1322.       /* Set error code to DMA */
  1323.       hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1324.  
  1325.       /* Process Unlocked */
  1326.       __HAL_UNLOCK(hirda);
  1327.  
  1328.       /* Restore hirda->RxState to ready */
  1329.       hirda->RxState = HAL_IRDA_STATE_READY;
  1330.  
  1331.       return HAL_ERROR;
  1332.     }
  1333.   }
  1334.   else
  1335.   {
  1336.     return HAL_BUSY;
  1337.   }
  1338. }
  1339.  
  1340.  
  1341. /**
  1342.   * @brief Pause the DMA Transfer.
  1343.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1344.   *                the configuration information for the specified IRDA module.
  1345.   * @retval HAL status
  1346.   */
  1347. HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
  1348. {
  1349.   /* Process Locked */
  1350.   __HAL_LOCK(hirda);
  1351.  
  1352.   if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  1353.   {
  1354.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1355.     {
  1356.       /* Disable the IRDA DMA Tx request */
  1357.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1358.     }
  1359.   }
  1360.   if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  1361.   {
  1362.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1363.     {
  1364.       /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
  1365.       CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
  1366.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1367.  
  1368.       /* Disable the IRDA DMA Rx request */
  1369.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1370.     }
  1371.   }
  1372.  
  1373.   /* Process Unlocked */
  1374.   __HAL_UNLOCK(hirda);
  1375.  
  1376.   return HAL_OK;
  1377. }
  1378.  
  1379. /**
  1380.   * @brief Resume the DMA Transfer.
  1381.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1382.   *                the configuration information for the specified UART module.
  1383.   * @retval HAL status
  1384.   */
  1385. HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
  1386. {
  1387.   /* Process Locked */
  1388.   __HAL_LOCK(hirda);
  1389.  
  1390.   if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  1391.   {
  1392.     /* Enable the IRDA DMA Tx request */
  1393.     SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1394.   }
  1395.   if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  1396.   {
  1397.     /* Clear the Overrun flag before resuming the Rx transfer*/
  1398.     __HAL_IRDA_CLEAR_OREFLAG(hirda);
  1399.  
  1400.     /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
  1401.     SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
  1402.     SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1403.  
  1404.     /* Enable the IRDA DMA Rx request */
  1405.     SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1406.   }
  1407.  
  1408.   /* Process Unlocked */
  1409.   __HAL_UNLOCK(hirda);
  1410.  
  1411.   return HAL_OK;
  1412. }
  1413.  
  1414. /**
  1415.   * @brief Stop the DMA Transfer.
  1416.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1417.   *                the configuration information for the specified UART module.
  1418.   * @retval HAL status
  1419.   */
  1420. HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
  1421. {
  1422.   /* The Lock is not implemented on this API to allow the user application
  1423.      to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() /
  1424.      HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback:
  1425.      indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
  1426.      interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
  1427.      the stream and the corresponding call back is executed. */
  1428.  
  1429.   /* Stop IRDA DMA Tx request if ongoing */
  1430.   if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  1431.   {
  1432.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1433.     {
  1434.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1435.  
  1436.       /* Abort the IRDA DMA Tx channel */
  1437.       if (hirda->hdmatx != NULL)
  1438.       {
  1439.         if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
  1440.         {
  1441.           if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
  1442.           {
  1443.             /* Set error code to DMA */
  1444.             hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1445.  
  1446.             return HAL_TIMEOUT;
  1447.           }
  1448.         }
  1449.       }
  1450.  
  1451.       IRDA_EndTxTransfer(hirda);
  1452.     }
  1453.   }
  1454.  
  1455.   /* Stop IRDA DMA Rx request if ongoing */
  1456.   if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  1457.   {
  1458.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1459.     {
  1460.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1461.  
  1462.       /* Abort the IRDA DMA Rx channel */
  1463.       if (hirda->hdmarx != NULL)
  1464.       {
  1465.         if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
  1466.         {
  1467.           if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
  1468.           {
  1469.             /* Set error code to DMA */
  1470.             hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1471.  
  1472.             return HAL_TIMEOUT;
  1473.           }
  1474.         }
  1475.       }
  1476.  
  1477.       IRDA_EndRxTransfer(hirda);
  1478.     }
  1479.   }
  1480.  
  1481.   return HAL_OK;
  1482. }
  1483.  
  1484. /**
  1485.   * @brief  Abort ongoing transfers (blocking mode).
  1486.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1487.   *               the configuration information for the specified UART module.
  1488.   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
  1489.   *         This procedure performs following operations :
  1490.   *           - Disable IRDA Interrupts (Tx and Rx)
  1491.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1492.   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  1493.   *           - Set handle State to READY
  1494.   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  1495.   * @retval HAL status
  1496.   */
  1497. HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
  1498. {
  1499.   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  1500.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  1501.   CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1502.  
  1503.   /* Disable the IRDA DMA Tx request if enabled */
  1504.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1505.   {
  1506.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1507.  
  1508.     /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
  1509.     if (hirda->hdmatx != NULL)
  1510.     {
  1511.       /* Set the IRDA DMA Abort callback to Null.
  1512.          No call back execution at end of DMA abort procedure */
  1513.       hirda->hdmatx->XferAbortCallback = NULL;
  1514.  
  1515.       if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
  1516.       {
  1517.         if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
  1518.         {
  1519.           /* Set error code to DMA */
  1520.           hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1521.  
  1522.           return HAL_TIMEOUT;
  1523.         }
  1524.       }
  1525.     }
  1526.   }
  1527.  
  1528.   /* Disable the IRDA DMA Rx request if enabled */
  1529.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1530.   {
  1531.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1532.  
  1533.     /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
  1534.     if (hirda->hdmarx != NULL)
  1535.     {
  1536.       /* Set the IRDA DMA Abort callback to Null.
  1537.          No call back execution at end of DMA abort procedure */
  1538.       hirda->hdmarx->XferAbortCallback = NULL;
  1539.  
  1540.       if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
  1541.       {
  1542.         if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
  1543.         {
  1544.           /* Set error code to DMA */
  1545.           hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1546.  
  1547.           return HAL_TIMEOUT;
  1548.         }
  1549.       }
  1550.     }
  1551.   }
  1552.  
  1553.   /* Reset Tx and Rx transfer counters */
  1554.   hirda->TxXferCount = 0U;
  1555.   hirda->RxXferCount = 0U;
  1556.  
  1557.   /* Clear the Error flags in the ICR register */
  1558.   __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  1559.  
  1560.   /* Restore hirda->gState and hirda->RxState to Ready */
  1561.   hirda->gState  = HAL_IRDA_STATE_READY;
  1562.   hirda->RxState = HAL_IRDA_STATE_READY;
  1563.  
  1564.   /* Reset Handle ErrorCode to No Error */
  1565.   hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1566.  
  1567.   return HAL_OK;
  1568. }
  1569.  
  1570. /**
  1571.   * @brief  Abort ongoing Transmit transfer (blocking mode).
  1572.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1573.   *               the configuration information for the specified UART module.
  1574.   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
  1575.   *         This procedure performs following operations :
  1576.   *           - Disable IRDA Interrupts (Tx)
  1577.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1578.   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  1579.   *           - Set handle State to READY
  1580.   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  1581.   * @retval HAL status
  1582.   */
  1583. HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
  1584. {
  1585.   /* Disable TXEIE and TCIE interrupts */
  1586.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
  1587.  
  1588.   /* Disable the IRDA DMA Tx request if enabled */
  1589.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1590.   {
  1591.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1592.  
  1593.     /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
  1594.     if (hirda->hdmatx != NULL)
  1595.     {
  1596.       /* Set the IRDA DMA Abort callback to Null.
  1597.          No call back execution at end of DMA abort procedure */
  1598.       hirda->hdmatx->XferAbortCallback = NULL;
  1599.  
  1600.       if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
  1601.       {
  1602.         if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
  1603.         {
  1604.           /* Set error code to DMA */
  1605.           hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1606.  
  1607.           return HAL_TIMEOUT;
  1608.         }
  1609.       }
  1610.     }
  1611.   }
  1612.  
  1613.   /* Reset Tx transfer counter */
  1614.   hirda->TxXferCount = 0U;
  1615.  
  1616.   /* Restore hirda->gState to Ready */
  1617.   hirda->gState = HAL_IRDA_STATE_READY;
  1618.  
  1619.   return HAL_OK;
  1620. }
  1621.  
  1622. /**
  1623.   * @brief  Abort ongoing Receive transfer (blocking mode).
  1624.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1625.   *               the configuration information for the specified UART module.
  1626.   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
  1627.   *         This procedure performs following operations :
  1628.   *           - Disable IRDA Interrupts (Rx)
  1629.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1630.   *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  1631.   *           - Set handle State to READY
  1632.   * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  1633.   * @retval HAL status
  1634.   */
  1635. HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
  1636. {
  1637.   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  1638.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  1639.   CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1640.  
  1641.   /* Disable the IRDA DMA Rx request if enabled */
  1642.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1643.   {
  1644.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1645.  
  1646.     /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
  1647.     if (hirda->hdmarx != NULL)
  1648.     {
  1649.       /* Set the IRDA DMA Abort callback to Null.
  1650.          No call back execution at end of DMA abort procedure */
  1651.       hirda->hdmarx->XferAbortCallback = NULL;
  1652.  
  1653.       if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
  1654.       {
  1655.         if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
  1656.         {
  1657.           /* Set error code to DMA */
  1658.           hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
  1659.  
  1660.           return HAL_TIMEOUT;
  1661.         }
  1662.       }
  1663.     }
  1664.   }
  1665.  
  1666.   /* Reset Rx transfer counter */
  1667.   hirda->RxXferCount = 0U;
  1668.  
  1669.   /* Clear the Error flags in the ICR register */
  1670.   __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  1671.  
  1672.   /* Restore hirda->RxState to Ready */
  1673.   hirda->RxState = HAL_IRDA_STATE_READY;
  1674.  
  1675.   return HAL_OK;
  1676. }
  1677.  
  1678. /**
  1679.   * @brief  Abort ongoing transfers (Interrupt mode).
  1680.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1681.   *               the configuration information for the specified UART module.
  1682.   * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
  1683.   *         This procedure performs following operations :
  1684.   *           - Disable IRDA Interrupts (Tx and Rx)
  1685.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1686.   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  1687.   *           - Set handle State to READY
  1688.   *           - At abort completion, call user abort complete callback
  1689.   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  1690.   *         considered as completed only when user abort complete callback is executed (not when exiting function).
  1691.   * @retval HAL status
  1692.   */
  1693. HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
  1694. {
  1695.   uint32_t abortcplt = 1U;
  1696.  
  1697.   /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  1698.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  1699.   CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1700.  
  1701.   /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
  1702.      before any call to DMA Abort functions */
  1703.   /* DMA Tx Handle is valid */
  1704.   if (hirda->hdmatx != NULL)
  1705.   {
  1706.     /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
  1707.        Otherwise, set it to NULL */
  1708.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1709.     {
  1710.       hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
  1711.     }
  1712.     else
  1713.     {
  1714.       hirda->hdmatx->XferAbortCallback = NULL;
  1715.     }
  1716.   }
  1717.   /* DMA Rx Handle is valid */
  1718.   if (hirda->hdmarx != NULL)
  1719.   {
  1720.     /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
  1721.        Otherwise, set it to NULL */
  1722.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1723.     {
  1724.       hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
  1725.     }
  1726.     else
  1727.     {
  1728.       hirda->hdmarx->XferAbortCallback = NULL;
  1729.     }
  1730.   }
  1731.  
  1732.   /* Disable the IRDA DMA Tx request if enabled */
  1733.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1734.   {
  1735.     /* Disable DMA Tx at UART level */
  1736.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1737.  
  1738.     /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
  1739.     if (hirda->hdmatx != NULL)
  1740.     {
  1741.       /* IRDA Tx DMA Abort callback has already been initialised :
  1742.          will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
  1743.  
  1744.       /* Abort DMA TX */
  1745.       if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
  1746.       {
  1747.         hirda->hdmatx->XferAbortCallback = NULL;
  1748.       }
  1749.       else
  1750.       {
  1751.         abortcplt = 0U;
  1752.       }
  1753.     }
  1754.   }
  1755.  
  1756.   /* Disable the IRDA DMA Rx request if enabled */
  1757.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1758.   {
  1759.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1760.  
  1761.     /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
  1762.     if (hirda->hdmarx != NULL)
  1763.     {
  1764.       /* IRDA Rx DMA Abort callback has already been initialised :
  1765.          will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
  1766.  
  1767.       /* Abort DMA RX */
  1768.       if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
  1769.       {
  1770.         hirda->hdmarx->XferAbortCallback = NULL;
  1771.         abortcplt = 1U;
  1772.       }
  1773.       else
  1774.       {
  1775.         abortcplt = 0U;
  1776.       }
  1777.     }
  1778.   }
  1779.  
  1780.   /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
  1781.   if (abortcplt == 1U)
  1782.   {
  1783.     /* Reset Tx and Rx transfer counters */
  1784.     hirda->TxXferCount = 0U;
  1785.     hirda->RxXferCount = 0U;
  1786.  
  1787.     /* Reset errorCode */
  1788.     hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  1789.  
  1790.     /* Clear the Error flags in the ICR register */
  1791.     __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  1792.  
  1793.     /* Restore hirda->gState and hirda->RxState to Ready */
  1794.     hirda->gState  = HAL_IRDA_STATE_READY;
  1795.     hirda->RxState = HAL_IRDA_STATE_READY;
  1796.  
  1797.     /* As no DMA to be aborted, call directly user Abort complete callback */
  1798. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  1799.     /* Call registered Abort complete callback */
  1800.     hirda->AbortCpltCallback(hirda);
  1801. #else
  1802.     /* Call legacy weak Abort complete callback */
  1803.     HAL_IRDA_AbortCpltCallback(hirda);
  1804. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  1805.   }
  1806.  
  1807.   return HAL_OK;
  1808. }
  1809.  
  1810. /**
  1811.   * @brief  Abort ongoing Transmit transfer (Interrupt mode).
  1812.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1813.   *               the configuration information for the specified UART module.
  1814.   * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
  1815.   *         This procedure performs following operations :
  1816.   *           - Disable IRDA Interrupts (Tx)
  1817.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1818.   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  1819.   *           - Set handle State to READY
  1820.   *           - At abort completion, call user abort complete callback
  1821.   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  1822.   *         considered as completed only when user abort complete callback is executed (not when exiting function).
  1823.   * @retval HAL status
  1824.   */
  1825. HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
  1826. {
  1827.   /* Disable TXEIE and TCIE interrupts */
  1828.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
  1829.  
  1830.   /* Disable the IRDA DMA Tx request if enabled */
  1831.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  1832.   {
  1833.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  1834.  
  1835.     /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
  1836.     if (hirda->hdmatx != NULL)
  1837.     {
  1838.       /* Set the IRDA DMA Abort callback :
  1839.          will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
  1840.       hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;
  1841.  
  1842.       /* Abort DMA TX */
  1843.       if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
  1844.       {
  1845.         /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
  1846.         hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
  1847.       }
  1848.     }
  1849.     else
  1850.     {
  1851.       /* Reset Tx transfer counter */
  1852.       hirda->TxXferCount = 0U;
  1853.  
  1854.       /* Restore hirda->gState to Ready */
  1855.       hirda->gState = HAL_IRDA_STATE_READY;
  1856.  
  1857.       /* As no DMA to be aborted, call directly user Abort complete callback */
  1858. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  1859.       /* Call registered Abort Transmit Complete Callback */
  1860.       hirda->AbortTransmitCpltCallback(hirda);
  1861. #else
  1862.       /* Call legacy weak Abort Transmit Complete Callback */
  1863.       HAL_IRDA_AbortTransmitCpltCallback(hirda);
  1864. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  1865.     }
  1866.   }
  1867.   else
  1868.   {
  1869.     /* Reset Tx transfer counter */
  1870.     hirda->TxXferCount = 0U;
  1871.  
  1872.     /* Restore hirda->gState to Ready */
  1873.     hirda->gState = HAL_IRDA_STATE_READY;
  1874.  
  1875.     /* As no DMA to be aborted, call directly user Abort complete callback */
  1876. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  1877.     /* Call registered Abort Transmit Complete Callback */
  1878.     hirda->AbortTransmitCpltCallback(hirda);
  1879. #else
  1880.     /* Call legacy weak Abort Transmit Complete Callback */
  1881.     HAL_IRDA_AbortTransmitCpltCallback(hirda);
  1882. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  1883.   }
  1884.  
  1885.   return HAL_OK;
  1886. }
  1887.  
  1888. /**
  1889.   * @brief  Abort ongoing Receive transfer (Interrupt mode).
  1890.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  1891.   *               the configuration information for the specified UART module.
  1892.   * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
  1893.   *         This procedure performs following operations :
  1894.   *           - Disable IRDA Interrupts (Rx)
  1895.   *           - Disable the DMA transfer in the peripheral register (if enabled)
  1896.   *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  1897.   *           - Set handle State to READY
  1898.   *           - At abort completion, call user abort complete callback
  1899.   * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  1900.   *         considered as completed only when user abort complete callback is executed (not when exiting function).
  1901.   * @retval HAL status
  1902.   */
  1903. HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
  1904. {
  1905.   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  1906.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  1907.   CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  1908.  
  1909.   /* Disable the IRDA DMA Rx request if enabled */
  1910.   if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  1911.   {
  1912.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  1913.  
  1914.     /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
  1915.     if (hirda->hdmarx != NULL)
  1916.     {
  1917.       /* Set the IRDA DMA Abort callback :
  1918.          will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
  1919.       hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;
  1920.  
  1921.       /* Abort DMA RX */
  1922.       if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
  1923.       {
  1924.         /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
  1925.         hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
  1926.       }
  1927.     }
  1928.     else
  1929.     {
  1930.       /* Reset Rx transfer counter */
  1931.       hirda->RxXferCount = 0U;
  1932.  
  1933.       /* Clear the Error flags in the ICR register */
  1934.       __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  1935.  
  1936.       /* Restore hirda->RxState to Ready */
  1937.       hirda->RxState = HAL_IRDA_STATE_READY;
  1938.  
  1939.       /* As no DMA to be aborted, call directly user Abort complete callback */
  1940. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  1941.       /* Call registered Abort Receive Complete Callback */
  1942.       hirda->AbortReceiveCpltCallback(hirda);
  1943. #else
  1944.       /* Call legacy weak Abort Receive Complete Callback */
  1945.       HAL_IRDA_AbortReceiveCpltCallback(hirda);
  1946. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  1947.     }
  1948.   }
  1949.   else
  1950.   {
  1951.     /* Reset Rx transfer counter */
  1952.     hirda->RxXferCount = 0U;
  1953.  
  1954.     /* Clear the Error flags in the ICR register */
  1955.     __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  1956.  
  1957.     /* Restore hirda->RxState to Ready */
  1958.     hirda->RxState = HAL_IRDA_STATE_READY;
  1959.  
  1960.     /* As no DMA to be aborted, call directly user Abort complete callback */
  1961. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  1962.     /* Call registered Abort Receive Complete Callback */
  1963.     hirda->AbortReceiveCpltCallback(hirda);
  1964. #else
  1965.     /* Call legacy weak Abort Receive Complete Callback */
  1966.     HAL_IRDA_AbortReceiveCpltCallback(hirda);
  1967. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  1968.   }
  1969.  
  1970.   return HAL_OK;
  1971. }
  1972.  
  1973. /**
  1974.   * @brief Handle IRDA interrupt request.
  1975.   * @param hirda  Pointer to a IRDA_HandleTypeDef structure that contains
  1976.   *               the configuration information for the specified IRDA module.
  1977.   * @retval None
  1978.   */
  1979. void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
  1980. {
  1981.   uint32_t isrflags   = READ_REG(hirda->Instance->ISR);
  1982.   uint32_t cr1its     = READ_REG(hirda->Instance->CR1);
  1983.   uint32_t cr3its;
  1984.   uint32_t errorflags;
  1985.   uint32_t errorcode;
  1986.  
  1987.   /* If no error occurs */
  1988.   errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE));
  1989.   if (errorflags == 0U)
  1990.   {
  1991.     /* IRDA in mode Receiver ---------------------------------------------------*/
  1992.     if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
  1993.     {
  1994.       IRDA_Receive_IT(hirda);
  1995.       return;
  1996.     }
  1997.   }
  1998.  
  1999.   /* If some errors occur */
  2000.   cr3its = READ_REG(hirda->Instance->CR3);
  2001.   if ((errorflags != 0U)
  2002.       && (((cr3its & USART_CR3_EIE) != 0U)
  2003.           || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U)))
  2004.   {
  2005.     /* IRDA parity error interrupt occurred -------------------------------------*/
  2006.     if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
  2007.     {
  2008.       __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);
  2009.  
  2010.       hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
  2011.     }
  2012.  
  2013.     /* IRDA frame error interrupt occurred --------------------------------------*/
  2014.     if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
  2015.     {
  2016.       __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);
  2017.  
  2018.       hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
  2019.     }
  2020.  
  2021.     /* IRDA noise error interrupt occurred --------------------------------------*/
  2022.     if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
  2023.     {
  2024.       __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);
  2025.  
  2026.       hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
  2027.     }
  2028.  
  2029.     /* IRDA Over-Run interrupt occurred -----------------------------------------*/
  2030.     if (((isrflags & USART_ISR_ORE) != 0U) &&
  2031.         (((cr1its & USART_CR1_RXNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
  2032.     {
  2033.       __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
  2034.  
  2035.       hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
  2036.     }
  2037.  
  2038.     /* Call IRDA Error Call back function if need be --------------------------*/
  2039.     if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
  2040.     {
  2041.       /* IRDA in mode Receiver ---------------------------------------------------*/
  2042.       if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
  2043.       {
  2044.         IRDA_Receive_IT(hirda);
  2045.       }
  2046.  
  2047.       /* If Overrun error occurs, or if any error occurs in DMA mode reception,
  2048.          consider error as blocking */
  2049.       errorcode = hirda->ErrorCode;
  2050.       if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ||
  2051.           ((errorcode & HAL_IRDA_ERROR_ORE) != 0U))
  2052.       {
  2053.         /* Blocking error : transfer is aborted
  2054.            Set the IRDA state ready to be able to start again the process,
  2055.            Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
  2056.         IRDA_EndRxTransfer(hirda);
  2057.  
  2058.         /* Disable the IRDA DMA Rx request if enabled */
  2059.         if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  2060.         {
  2061.           CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  2062.  
  2063.           /* Abort the IRDA DMA Rx channel */
  2064.           if (hirda->hdmarx != NULL)
  2065.           {
  2066.             /* Set the IRDA DMA Abort callback :
  2067.                will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
  2068.             hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;
  2069.  
  2070.             /* Abort DMA RX */
  2071.             if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
  2072.             {
  2073.               /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
  2074.               hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
  2075.             }
  2076.           }
  2077.           else
  2078.           {
  2079. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2080.             /* Call registered user error callback */
  2081.             hirda->ErrorCallback(hirda);
  2082. #else
  2083.             /* Call legacy weak user error callback */
  2084.             HAL_IRDA_ErrorCallback(hirda);
  2085. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2086.           }
  2087.         }
  2088.         else
  2089.         {
  2090. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2091.           /* Call registered user error callback */
  2092.           hirda->ErrorCallback(hirda);
  2093. #else
  2094.           /* Call legacy weak user error callback */
  2095.           HAL_IRDA_ErrorCallback(hirda);
  2096. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2097.         }
  2098.       }
  2099.       else
  2100.       {
  2101.         /* Non Blocking error : transfer could go on.
  2102.            Error is notified to user through user error callback */
  2103. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2104.         /* Call registered user error callback */
  2105.         hirda->ErrorCallback(hirda);
  2106. #else
  2107.         /* Call legacy weak user error callback */
  2108.         HAL_IRDA_ErrorCallback(hirda);
  2109. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2110.         hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  2111.       }
  2112.     }
  2113.     return;
  2114.  
  2115.   } /* End if some error occurs */
  2116.  
  2117.   /* IRDA in mode Transmitter ------------------------------------------------*/
  2118.   if (((isrflags & USART_ISR_TXE) != 0U) && ((cr1its & USART_CR1_TXEIE) != 0U))
  2119.   {
  2120.     IRDA_Transmit_IT(hirda);
  2121.     return;
  2122.   }
  2123.  
  2124.   /* IRDA in mode Transmitter (transmission end) -----------------------------*/
  2125.   if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
  2126.   {
  2127.     IRDA_EndTransmit_IT(hirda);
  2128.     return;
  2129.   }
  2130.  
  2131. }
  2132.  
  2133. /**
  2134.   * @brief  Tx Transfer completed callback.
  2135.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2136.   *               the configuration information for the specified IRDA module.
  2137.   * @retval None
  2138.   */
  2139. __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
  2140. {
  2141.   /* Prevent unused argument(s) compilation warning */
  2142.   UNUSED(hirda);
  2143.  
  2144.   /* NOTE : This function should not be modified, when the callback is needed,
  2145.             the HAL_IRDA_TxCpltCallback can be implemented in the user file.
  2146.    */
  2147. }
  2148.  
  2149. /**
  2150.   * @brief  Tx Half Transfer completed callback.
  2151.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2152.   *               the configuration information for the specified USART module.
  2153.   * @retval None
  2154.   */
  2155. __weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
  2156. {
  2157.   /* Prevent unused argument(s) compilation warning */
  2158.   UNUSED(hirda);
  2159.  
  2160.   /* NOTE : This function should not be modified, when the callback is needed,
  2161.             the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file.
  2162.    */
  2163. }
  2164.  
  2165. /**
  2166.   * @brief  Rx Transfer completed callback.
  2167.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2168.   *               the configuration information for the specified IRDA module.
  2169.   * @retval None
  2170.   */
  2171. __weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
  2172. {
  2173.   /* Prevent unused argument(s) compilation warning */
  2174.   UNUSED(hirda);
  2175.  
  2176.   /* NOTE : This function should not be modified, when the callback is needed,
  2177.             the HAL_IRDA_RxCpltCallback can be implemented in the user file.
  2178.    */
  2179. }
  2180.  
  2181. /**
  2182.   * @brief  Rx Half Transfer complete callback.
  2183.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2184.   *               the configuration information for the specified IRDA module.
  2185.   * @retval None
  2186.   */
  2187. __weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
  2188. {
  2189.   /* Prevent unused argument(s) compilation warning */
  2190.   UNUSED(hirda);
  2191.  
  2192.   /* NOTE : This function should not be modified, when the callback is needed,
  2193.             the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file.
  2194.    */
  2195. }
  2196.  
  2197. /**
  2198.   * @brief  IRDA error callback.
  2199.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2200.   *               the configuration information for the specified IRDA module.
  2201.   * @retval None
  2202.   */
  2203. __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
  2204. {
  2205.   /* Prevent unused argument(s) compilation warning */
  2206.   UNUSED(hirda);
  2207.  
  2208.   /* NOTE : This function should not be modified, when the callback is needed,
  2209.             the HAL_IRDA_ErrorCallback can be implemented in the user file.
  2210.    */
  2211. }
  2212.  
  2213. /**
  2214.   * @brief  IRDA Abort Complete callback.
  2215.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2216.   *               the configuration information for the specified IRDA module.
  2217.   * @retval None
  2218.   */
  2219. __weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
  2220. {
  2221.   /* Prevent unused argument(s) compilation warning */
  2222.   UNUSED(hirda);
  2223.  
  2224.   /* NOTE : This function should not be modified, when the callback is needed,
  2225.             the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
  2226.    */
  2227. }
  2228.  
  2229. /**
  2230.   * @brief  IRDA Abort Complete callback.
  2231.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2232.   *               the configuration information for the specified IRDA module.
  2233.   * @retval None
  2234.   */
  2235. __weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
  2236. {
  2237.   /* Prevent unused argument(s) compilation warning */
  2238.   UNUSED(hirda);
  2239.  
  2240.   /* NOTE : This function should not be modified, when the callback is needed,
  2241.             the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
  2242.    */
  2243. }
  2244.  
  2245. /**
  2246.   * @brief  IRDA Abort Receive Complete callback.
  2247.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2248.   *               the configuration information for the specified IRDA module.
  2249.   * @retval None
  2250.   */
  2251. __weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
  2252. {
  2253.   /* Prevent unused argument(s) compilation warning */
  2254.   UNUSED(hirda);
  2255.  
  2256.   /* NOTE : This function should not be modified, when the callback is needed,
  2257.             the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
  2258.    */
  2259. }
  2260.  
  2261. /**
  2262.   * @}
  2263.   */
  2264.  
  2265. /** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions
  2266.   *  @brief   IRDA State and Errors functions
  2267.   *
  2268. @verbatim
  2269.   ==============================================================================
  2270.             ##### Peripheral State and Error functions #####
  2271.   ==============================================================================
  2272.   [..]
  2273.     This subsection provides a set of functions allowing to return the State of IrDA
  2274.     communication process and also return Peripheral Errors occurred during communication process
  2275.      (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state
  2276.          of the IRDA peripheral handle.
  2277.      (+) HAL_IRDA_GetError() checks in run-time errors that could occur during
  2278.          communication.
  2279.  
  2280. @endverbatim
  2281.   * @{
  2282.   */
  2283.  
  2284. /**
  2285.   * @brief Return the IRDA handle state.
  2286.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2287.   *                the configuration information for the specified IRDA module.
  2288.   * @retval HAL state
  2289.   */
  2290. HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
  2291. {
  2292.   /* Return IRDA handle state */
  2293.   uint32_t temp1;
  2294.   uint32_t temp2;
  2295.   temp1 = (uint32_t)hirda->gState;
  2296.   temp2 = (uint32_t)hirda->RxState;
  2297.  
  2298.   return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
  2299. }
  2300.  
  2301. /**
  2302.   * @brief Return the IRDA handle error code.
  2303.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2304.   *               the configuration information for the specified IRDA module.
  2305.   * @retval IRDA Error Code
  2306.   */
  2307. uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
  2308. {
  2309.   return hirda->ErrorCode;
  2310. }
  2311.  
  2312. /**
  2313.   * @}
  2314.   */
  2315.  
  2316. /**
  2317.   * @}
  2318.   */
  2319.  
  2320. /** @defgroup IRDA_Private_Functions IRDA Private Functions
  2321.   * @{
  2322.   */
  2323.  
  2324. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2325. /**
  2326.   * @brief  Initialize the callbacks to their default values.
  2327.   * @param  hirda IRDA handle.
  2328.   * @retval none
  2329.   */
  2330. void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda)
  2331. {
  2332.   /* Init the IRDA Callback settings */
  2333.   hirda->TxHalfCpltCallback        = HAL_IRDA_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
  2334.   hirda->TxCpltCallback            = HAL_IRDA_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
  2335.   hirda->RxHalfCpltCallback        = HAL_IRDA_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
  2336.   hirda->RxCpltCallback            = HAL_IRDA_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
  2337.   hirda->ErrorCallback             = HAL_IRDA_ErrorCallback;             /* Legacy weak ErrorCallback             */
  2338.   hirda->AbortCpltCallback         = HAL_IRDA_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
  2339.   hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
  2340.   hirda->AbortReceiveCpltCallback  = HAL_IRDA_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */
  2341.  
  2342. }
  2343. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  2344.  
  2345. /**
  2346.   * @brief Configure the IRDA peripheral.
  2347.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2348.   *               the configuration information for the specified IRDA module.
  2349.   * @retval HAL status
  2350.   */
  2351. static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
  2352. {
  2353.   uint32_t tmpreg;
  2354.   IRDA_ClockSourceTypeDef clocksource;
  2355.   HAL_StatusTypeDef ret = HAL_OK;
  2356.   uint32_t pclk;
  2357.  
  2358.   /* Check the communication parameters */
  2359.   assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
  2360.   assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  2361.   assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  2362.   assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
  2363.   assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
  2364.   assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));
  2365.  
  2366.   /*-------------------------- USART CR1 Configuration -----------------------*/
  2367.   /* Configure the IRDA Word Length, Parity and transfer Mode:
  2368.      Set the M bits according to hirda->Init.WordLength value
  2369.      Set PCE and PS bits according to hirda->Init.Parity value
  2370.      Set TE and RE bits according to hirda->Init.Mode value */
  2371.   tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
  2372.  
  2373.   MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
  2374.  
  2375.   /*-------------------------- USART CR3 Configuration -----------------------*/
  2376.   MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
  2377.  
  2378.  
  2379.   /*-------------------------- USART GTPR Configuration ----------------------*/
  2380.   MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler);
  2381.  
  2382.   /*-------------------------- USART BRR Configuration -----------------------*/
  2383.   IRDA_GETCLOCKSOURCE(hirda, clocksource);
  2384.   tmpreg =   0U;
  2385.   switch (clocksource)
  2386.   {
  2387.     case IRDA_CLOCKSOURCE_PCLK1:
  2388.       pclk = HAL_RCC_GetPCLK1Freq();
  2389.       tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
  2390.       break;
  2391.     case IRDA_CLOCKSOURCE_HSI:
  2392.       tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate));
  2393.       break;
  2394.     case IRDA_CLOCKSOURCE_SYSCLK:
  2395.       pclk = HAL_RCC_GetSysClockFreq();
  2396.       tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
  2397.       break;
  2398.     case IRDA_CLOCKSOURCE_LSE:
  2399.       tmpreg = (uint16_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate));
  2400.       break;
  2401.     default:
  2402.       ret = HAL_ERROR;
  2403.       break;
  2404.   }
  2405.  
  2406.   /* USARTDIV must be greater than or equal to 0d16 */
  2407.   if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX))
  2408.   {
  2409.     hirda->Instance->BRR = tmpreg;
  2410.   }
  2411.   else
  2412.   {
  2413.     ret = HAL_ERROR;
  2414.   }
  2415.  
  2416.   return ret;
  2417. }
  2418.  
  2419. /**
  2420.   * @brief Check the IRDA Idle State.
  2421.   * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2422.   *               the configuration information for the specified IRDA module.
  2423.   * @retval HAL status
  2424.   */
  2425. static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
  2426. {
  2427.   uint32_t tickstart;
  2428.  
  2429.   /* Initialize the IRDA ErrorCode */
  2430.   hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  2431.  
  2432.   /* Init tickstart for timeout management */
  2433.   tickstart = HAL_GetTick();
  2434.  
  2435.   /* Check if the Transmitter is enabled */
  2436.   if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
  2437.   {
  2438.     /* Wait until TEACK flag is set */
  2439.     if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
  2440.     {
  2441.       /* Timeout occurred */
  2442.       return HAL_TIMEOUT;
  2443.     }
  2444.   }
  2445.   /* Check if the Receiver is enabled */
  2446.   if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
  2447.   {
  2448.     /* Wait until REACK flag is set */
  2449.     if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
  2450.     {
  2451.       /* Timeout occurred */
  2452.       return HAL_TIMEOUT;
  2453.     }
  2454.   }
  2455.  
  2456.   /* Initialize the IRDA state*/
  2457.   hirda->gState  = HAL_IRDA_STATE_READY;
  2458.   hirda->RxState = HAL_IRDA_STATE_READY;
  2459.  
  2460.   /* Process Unlocked */
  2461.   __HAL_UNLOCK(hirda);
  2462.  
  2463.   return HAL_OK;
  2464. }
  2465.  
  2466. /**
  2467.   * @brief  Handle IRDA Communication Timeout.
  2468.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2469.   *               the configuration information for the specified IRDA module.
  2470.   * @param  Flag Specifies the IRDA flag to check.
  2471.   * @param  Status Flag status (SET or RESET)
  2472.   * @param  Tickstart Tick start value
  2473.   * @param  Timeout Timeout duration
  2474.   * @retval HAL status
  2475.   */
  2476. static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
  2477.                                                      uint32_t Tickstart, uint32_t Timeout)
  2478. {
  2479.   /* Wait until flag is set */
  2480.   while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
  2481.   {
  2482.     /* Check for the Timeout */
  2483.     if (Timeout != HAL_MAX_DELAY)
  2484.     {
  2485.       if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
  2486.       {
  2487.         /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error)
  2488.            interrupts for the interrupt process */
  2489.         CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
  2490.         CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  2491.  
  2492.         hirda->gState  = HAL_IRDA_STATE_READY;
  2493.         hirda->RxState = HAL_IRDA_STATE_READY;
  2494.  
  2495.         /* Process Unlocked */
  2496.         __HAL_UNLOCK(hirda);
  2497.         return HAL_TIMEOUT;
  2498.       }
  2499.     }
  2500.   }
  2501.   return HAL_OK;
  2502. }
  2503.  
  2504.  
  2505. /**
  2506.   * @brief  End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
  2507.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2508.   *               the configuration information for the specified IRDA module.
  2509.   * @retval None
  2510.   */
  2511. static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
  2512. {
  2513.   /* Disable TXEIE and TCIE interrupts */
  2514.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
  2515.  
  2516.   /* At end of Tx process, restore hirda->gState to Ready */
  2517.   hirda->gState = HAL_IRDA_STATE_READY;
  2518. }
  2519.  
  2520.  
  2521. /**
  2522.   * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
  2523.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2524.   *               the configuration information for the specified IRDA module.
  2525.   * @retval None
  2526.   */
  2527. static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
  2528. {
  2529.   /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  2530.   CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  2531.   CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  2532.  
  2533.   /* At end of Rx process, restore hirda->RxState to Ready */
  2534.   hirda->RxState = HAL_IRDA_STATE_READY;
  2535. }
  2536.  
  2537.  
  2538. /**
  2539.   * @brief  DMA IRDA transmit process complete callback.
  2540.   * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  2541.   *              the configuration information for the specified DMA module.
  2542.   * @retval None
  2543.   */
  2544. static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
  2545. {
  2546.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2547.  
  2548.   /* DMA Normal mode */
  2549.   if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
  2550.   {
  2551.     hirda->TxXferCount = 0U;
  2552.  
  2553.     /* Disable the DMA transfer for transmit request by resetting the DMAT bit
  2554.        in the IRDA CR3 register */
  2555.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  2556.  
  2557.     /* Enable the IRDA Transmit Complete Interrupt */
  2558.     SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
  2559.   }
  2560.   /* DMA Circular mode */
  2561.   else
  2562.   {
  2563. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2564.     /* Call registered Tx complete callback */
  2565.     hirda->TxCpltCallback(hirda);
  2566. #else
  2567.     /* Call legacy weak Tx complete callback */
  2568.     HAL_IRDA_TxCpltCallback(hirda);
  2569. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2570.   }
  2571.  
  2572. }
  2573.  
  2574. /**
  2575.   * @brief  DMA IRDA transmit process half complete callback.
  2576.   * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  2577.   *              the configuration information for the specified DMA module.
  2578.   * @retval None
  2579.   */
  2580. static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
  2581. {
  2582.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2583.  
  2584. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2585.   /* Call registered Tx Half complete callback */
  2586.   hirda->TxHalfCpltCallback(hirda);
  2587. #else
  2588.   /* Call legacy weak Tx complete callback */
  2589.   HAL_IRDA_TxHalfCpltCallback(hirda);
  2590. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2591. }
  2592.  
  2593. /**
  2594.   * @brief  DMA IRDA receive process complete callback.
  2595.   * @param  hdma Pointer to a DMA_HandleTypeDef structure that contains
  2596.   *               the configuration information for the specified DMA module.
  2597.   * @retval None
  2598.   */
  2599. static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
  2600. {
  2601.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2602.  
  2603.   /* DMA Normal mode */
  2604.   if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
  2605.   {
  2606.     hirda->RxXferCount = 0U;
  2607.  
  2608.     /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
  2609.     CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
  2610.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  2611.  
  2612.     /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
  2613.        in the IRDA CR3 register */
  2614.     CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  2615.  
  2616.     /* At end of Rx process, restore hirda->RxState to Ready */
  2617.     hirda->RxState = HAL_IRDA_STATE_READY;
  2618.   }
  2619.  
  2620. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2621.   /* Call registered Rx complete callback */
  2622.   hirda->RxCpltCallback(hirda);
  2623. #else
  2624.   /* Call legacy weak Rx complete callback */
  2625.   HAL_IRDA_RxCpltCallback(hirda);
  2626. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  2627. }
  2628.  
  2629. /**
  2630.   * @brief DMA IRDA receive process half complete callback.
  2631.   * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
  2632.   *              the configuration information for the specified DMA module.
  2633.   * @retval None
  2634.   */
  2635. static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
  2636. {
  2637.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2638.  
  2639. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2640.   /*Call registered Rx Half complete callback*/
  2641.   hirda->RxHalfCpltCallback(hirda);
  2642. #else
  2643.   /* Call legacy weak Rx Half complete callback */
  2644.   HAL_IRDA_RxHalfCpltCallback(hirda);
  2645. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2646. }
  2647.  
  2648. /**
  2649.   * @brief DMA IRDA communication error callback.
  2650.   * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
  2651.   *              the configuration information for the specified DMA module.
  2652.   * @retval None
  2653.   */
  2654. static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
  2655. {
  2656.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2657.  
  2658.   /* Stop IRDA DMA Tx request if ongoing */
  2659.   if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  2660.   {
  2661.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  2662.     {
  2663.       hirda->TxXferCount = 0U;
  2664.       IRDA_EndTxTransfer(hirda);
  2665.     }
  2666.   }
  2667.  
  2668.   /* Stop IRDA DMA Rx request if ongoing */
  2669.   if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  2670.   {
  2671.     if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  2672.     {
  2673.       hirda->RxXferCount = 0U;
  2674.       IRDA_EndRxTransfer(hirda);
  2675.     }
  2676.   }
  2677.  
  2678.   hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
  2679. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2680.   /* Call registered user error callback */
  2681.   hirda->ErrorCallback(hirda);
  2682. #else
  2683.   /* Call legacy weak user error callback */
  2684.   HAL_IRDA_ErrorCallback(hirda);
  2685. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2686. }
  2687.  
  2688. /**
  2689.   * @brief  DMA IRDA communication abort callback, when initiated by HAL services on Error
  2690.   *         (To be called at end of DMA Abort procedure following error occurrence).
  2691.   * @param  hdma DMA handle.
  2692.   * @retval None
  2693.   */
  2694. static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
  2695. {
  2696.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2697.   hirda->RxXferCount = 0U;
  2698.   hirda->TxXferCount = 0U;
  2699.  
  2700. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2701.   /* Call registered user error callback */
  2702.   hirda->ErrorCallback(hirda);
  2703. #else
  2704.   /* Call legacy weak user error callback */
  2705.   HAL_IRDA_ErrorCallback(hirda);
  2706. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2707. }
  2708.  
  2709. /**
  2710.   * @brief  DMA IRDA Tx communication abort callback, when initiated by user
  2711.   *         (To be called at end of DMA Tx Abort procedure following user abort request).
  2712.   * @note   When this callback is executed, User Abort complete call back is called only if no
  2713.   *         Abort still ongoing for Rx DMA Handle.
  2714.   * @param  hdma DMA handle.
  2715.   * @retval None
  2716.   */
  2717. static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
  2718. {
  2719.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2720.  
  2721.   hirda->hdmatx->XferAbortCallback = NULL;
  2722.  
  2723.   /* Check if an Abort process is still ongoing */
  2724.   if (hirda->hdmarx != NULL)
  2725.   {
  2726.     if (hirda->hdmarx->XferAbortCallback != NULL)
  2727.     {
  2728.       return;
  2729.     }
  2730.   }
  2731.  
  2732.   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  2733.   hirda->TxXferCount = 0U;
  2734.   hirda->RxXferCount = 0U;
  2735.  
  2736.   /* Reset errorCode */
  2737.   hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  2738.  
  2739.   /* Clear the Error flags in the ICR register */
  2740.   __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  2741.  
  2742.   /* Restore hirda->gState and hirda->RxState to Ready */
  2743.   hirda->gState  = HAL_IRDA_STATE_READY;
  2744.   hirda->RxState = HAL_IRDA_STATE_READY;
  2745.  
  2746.   /* Call user Abort complete callback */
  2747. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2748.   /* Call registered Abort complete callback */
  2749.   hirda->AbortCpltCallback(hirda);
  2750. #else
  2751.   /* Call legacy weak Abort complete callback */
  2752.   HAL_IRDA_AbortCpltCallback(hirda);
  2753. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2754. }
  2755.  
  2756.  
  2757. /**
  2758.   * @brief  DMA IRDA Rx communication abort callback, when initiated by user
  2759.   *         (To be called at end of DMA Rx Abort procedure following user abort request).
  2760.   * @note   When this callback is executed, User Abort complete call back is called only if no
  2761.   *         Abort still ongoing for Tx DMA Handle.
  2762.   * @param  hdma DMA handle.
  2763.   * @retval None
  2764.   */
  2765. static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
  2766. {
  2767.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2768.  
  2769.   hirda->hdmarx->XferAbortCallback = NULL;
  2770.  
  2771.   /* Check if an Abort process is still ongoing */
  2772.   if (hirda->hdmatx != NULL)
  2773.   {
  2774.     if (hirda->hdmatx->XferAbortCallback != NULL)
  2775.     {
  2776.       return;
  2777.     }
  2778.   }
  2779.  
  2780.   /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  2781.   hirda->TxXferCount = 0U;
  2782.   hirda->RxXferCount = 0U;
  2783.  
  2784.   /* Reset errorCode */
  2785.   hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  2786.  
  2787.   /* Clear the Error flags in the ICR register */
  2788.   __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  2789.  
  2790.   /* Restore hirda->gState and hirda->RxState to Ready */
  2791.   hirda->gState  = HAL_IRDA_STATE_READY;
  2792.   hirda->RxState = HAL_IRDA_STATE_READY;
  2793.  
  2794.   /* Call user Abort complete callback */
  2795. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2796.   /* Call registered Abort complete callback */
  2797.   hirda->AbortCpltCallback(hirda);
  2798. #else
  2799.   /* Call legacy weak Abort complete callback */
  2800.   HAL_IRDA_AbortCpltCallback(hirda);
  2801. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2802. }
  2803.  
  2804.  
  2805. /**
  2806.   * @brief  DMA IRDA Tx communication abort callback, when initiated by user by a call to
  2807.   *         HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
  2808.   *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
  2809.   *         and leads to user Tx Abort Complete callback execution).
  2810.   * @param  hdma DMA handle.
  2811.   * @retval None
  2812.   */
  2813. static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
  2814. {
  2815.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
  2816.  
  2817.   hirda->TxXferCount = 0U;
  2818.  
  2819.   /* Restore hirda->gState to Ready */
  2820.   hirda->gState = HAL_IRDA_STATE_READY;
  2821.  
  2822.   /* Call user Abort complete callback */
  2823. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2824.   /* Call registered Abort Transmit Complete Callback */
  2825.   hirda->AbortTransmitCpltCallback(hirda);
  2826. #else
  2827.   /* Call legacy weak Abort Transmit Complete Callback */
  2828.   HAL_IRDA_AbortTransmitCpltCallback(hirda);
  2829. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2830. }
  2831.  
  2832. /**
  2833.   * @brief  DMA IRDA Rx communication abort callback, when initiated by user by a call to
  2834.   *         HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
  2835.   *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
  2836.   *         and leads to user Rx Abort Complete callback execution).
  2837.   * @param  hdma DMA handle.
  2838.   * @retval None
  2839.   */
  2840. static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
  2841. {
  2842.   IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
  2843.  
  2844.   hirda->RxXferCount = 0U;
  2845.  
  2846.   /* Clear the Error flags in the ICR register */
  2847.   __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
  2848.  
  2849.   /* Restore hirda->RxState to Ready */
  2850.   hirda->RxState = HAL_IRDA_STATE_READY;
  2851.  
  2852.   /* Call user Abort complete callback */
  2853. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2854.   /* Call registered Abort Receive Complete Callback */
  2855.   hirda->AbortReceiveCpltCallback(hirda);
  2856. #else
  2857.   /* Call legacy weak Abort Receive Complete Callback */
  2858.   HAL_IRDA_AbortReceiveCpltCallback(hirda);
  2859. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2860. }
  2861.  
  2862. /**
  2863.   * @brief  Send an amount of data in interrupt mode.
  2864.   * @note   Function is called under interruption only, once
  2865.   *         interruptions have been enabled by HAL_IRDA_Transmit_IT().
  2866.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2867.   *               the configuration information for the specified IRDA module.
  2868.   * @retval None
  2869.   */
  2870. static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
  2871. {
  2872.   uint16_t *tmp;
  2873.  
  2874.   /* Check that a Tx process is ongoing */
  2875.   if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  2876.   {
  2877.     if (hirda->TxXferCount == 0U)
  2878.     {
  2879.       /* Disable the IRDA Transmit Data Register Empty Interrupt */
  2880.       CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);
  2881.  
  2882.       /* Enable the IRDA Transmit Complete Interrupt */
  2883.       SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
  2884.     }
  2885.     else
  2886.     {
  2887.       if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  2888.       {
  2889.         tmp = (uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */
  2890.         hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
  2891.         hirda->pTxBuffPtr += 2U;
  2892.       }
  2893.       else
  2894.       {
  2895.         hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU);
  2896.         hirda->pTxBuffPtr++;
  2897.       }
  2898.       hirda->TxXferCount--;
  2899.     }
  2900.   }
  2901. }
  2902.  
  2903. /**
  2904.   * @brief  Wrap up transmission in non-blocking mode.
  2905.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2906.   *               the configuration information for the specified IRDA module.
  2907.   * @retval None
  2908.   */
  2909. static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
  2910. {
  2911.   /* Disable the IRDA Transmit Complete Interrupt */
  2912.   CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
  2913.  
  2914.   /* Tx process is ended, restore hirda->gState to Ready */
  2915.   hirda->gState = HAL_IRDA_STATE_READY;
  2916.  
  2917. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2918.   /* Call registered Tx complete callback */
  2919.   hirda->TxCpltCallback(hirda);
  2920. #else
  2921.   /* Call legacy weak Tx complete callback */
  2922.   HAL_IRDA_TxCpltCallback(hirda);
  2923. #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
  2924. }
  2925.  
  2926. /**
  2927.   * @brief  Receive an amount of data in interrupt mode.
  2928.   * @note   Function is called under interruption only, once
  2929.   *         interruptions have been enabled by HAL_IRDA_Receive_IT()
  2930.   * @param  hirda Pointer to a IRDA_HandleTypeDef structure that contains
  2931.   *               the configuration information for the specified IRDA module.
  2932.   * @retval None
  2933.   */
  2934. static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
  2935. {
  2936.   uint16_t *tmp;
  2937.   uint16_t  uhMask = hirda->Mask;
  2938.   uint16_t  uhdata;
  2939.  
  2940.   /* Check that a Rx process is ongoing */
  2941.   if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  2942.   {
  2943.     uhdata = (uint16_t) READ_REG(hirda->Instance->RDR);
  2944.     if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
  2945.     {
  2946.       tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */
  2947.       *tmp = (uint16_t)(uhdata & uhMask);
  2948.       hirda->pRxBuffPtr  += 2U;
  2949.     }
  2950.     else
  2951.     {
  2952.       *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
  2953.       hirda->pRxBuffPtr++;
  2954.     }
  2955.  
  2956.     hirda->RxXferCount--;
  2957.     if (hirda->RxXferCount == 0U)
  2958.     {
  2959.       /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */
  2960.       CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  2961.  
  2962.       /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
  2963.       CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  2964.  
  2965.       /* Rx process is completed, restore hirda->RxState to Ready */
  2966.       hirda->RxState = HAL_IRDA_STATE_READY;
  2967.  
  2968. #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
  2969.       /* Call registered Rx complete callback */
  2970.       hirda->RxCpltCallback(hirda);
  2971. #else
  2972.       /* Call legacy weak Rx complete callback */
  2973.       HAL_IRDA_RxCpltCallback(hirda);
  2974. #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
  2975.     }
  2976.   }
  2977.   else
  2978.   {
  2979.     /* Clear RXNE interrupt flag */
  2980.     __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
  2981.   }
  2982. }
  2983.  
  2984. /**
  2985.   * @}
  2986.   */
  2987.  
  2988. #endif /* HAL_IRDA_MODULE_ENABLED */
  2989. /**
  2990.   * @}
  2991.   */
  2992.  
  2993. /**
  2994.   * @}
  2995.   */
  2996. #endif /* USART_IRDA_SUPPORT */
  2997.  
  2998. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  2999.