Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
  3. *
  4. *
  5. * Project:       CMSIS NN Library
  6. * Title:         arm_nnexamples_gru.cpp
  7. *
  8. * Description:   Gated Recurrent Unit Example
  9. *
  10. * Target Processor: Cortex-M4/Cortex-M7
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. *   - Redistributions of source code must retain the above copyright
  16. *     notice, this list of conditions and the following disclaimer.
  17. *   - Redistributions in binary form must reproduce the above copyright
  18. *     notice, this list of conditions and the following disclaimer in
  19. *     the documentation and/or other materials provided with the
  20. *     distribution.
  21. *   - Neither the name of Arm LIMITED nor the names of its contributors
  22. *     may be used to endorse or promote products derived from this
  23. *     software without specific prior written permission.
  24. *
  25. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  26. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  27. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  28. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  29. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  30. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  31. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  32. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  33. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  34. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  35. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  36. * POSSIBILITY OF SUCH DAMAGE.
  37. * -------------------------------------------------------------------- */
  38.  
  39. /**
  40.  * @ingroup groupExamples
  41.  */
  42.  
  43. /**
  44.  * @defgroup GRUExample Gated Recurrent Unit Example
  45.  *
  46.  * \par Description:
  47.  * \par
  48.  * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
  49.  * Tanh/Sigmoid activation functions.
  50.  *
  51.  * \par Model definition:
  52.  * \par
  53.  * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
  54.  * state.
  55.  * \par
  56.  * The computation can be summarized as:
  57.  * <pre>z[t] = sigmoid( W_z &sdot; {h[t-1],x[t]} )
  58.  * r[t] = sigmoid( W_r &sdot; {h[t-1],x[t]} )
  59.  * n[t] = tanh( W_n &sdot; [r[t] &times; {h[t-1], x[t]} )
  60.  * h[t] = (1 - z[t]) &times; h[t-1] + z[t] &times; n[t] </pre>
  61.  * \image html GRU.gif "Gate Recurrent Unit Diagram"
  62.  *
  63.  * \par Variables Description:
  64.  * \par
  65.  * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
  66.  * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
  67.  * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
  68.  *
  69.  * \par
  70.  * The buffer is allocated as:
  71.  * \par
  72.  * | reset | input | history | update | hidden_state |
  73.  * \par
  74.  * In this way, the concatination is automatically done since (reset, input) and (input, history)
  75.  * are physically concatinated in memory.
  76.  * \par
  77.  *  The ordering of the weight matrix should be adjusted accordingly.
  78.  *
  79.   *
  80.  *
  81.  * \par CMSIS DSP Software Library Functions Used:
  82.  * \par
  83.  * - arm_fully_connected_mat_q7_vec_q15_opt()
  84.  * - arm_nn_activations_direct_q15()
  85.  * - arm_mult_q15()
  86.  * - arm_offset_q15()
  87.  * - arm_sub_q15()
  88.  * - arm_copy_q15()
  89.  *
  90.  * <b> Refer  </b>
  91.  * \link arm_nnexamples_gru.cpp \endlink
  92.  *
  93.  */
  94.  
  95. #include <stdio.h>
  96. #include <stdlib.h>
  97. #include <math.h>
  98. #include "arm_nnexamples_gru_test_data.h"
  99. #include "arm_math.h"
  100. #include "arm_nnfunctions.h"
  101.  
  102. #ifdef _RTE_
  103. #include "RTE_Components.h"
  104. #ifdef RTE_Compiler_EventRecorder
  105. #include "EventRecorder.h"
  106. #endif
  107. #endif
  108.  
  109. #define DIM_HISTORY 32
  110. #define DIM_INPUT 32
  111. #define DIM_VEC 64
  112.  
  113. #define USE_X4
  114.  
  115. #ifndef USE_X4
  116. static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
  117. static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
  118. static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
  119. #else
  120. static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
  121. static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
  122. static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
  123. #endif
  124.  
  125. static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
  126. static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
  127. static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;
  128.  
  129. static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
  130. static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
  131. static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;
  132.  
  133. q15_t     scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];
  134.  
  135. void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
  136.                  q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
  137.                  q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
  138. {
  139.   q15_t    *reset = scratch_input;
  140.   q15_t    *input = scratch_input + history_size;
  141.   q15_t    *history = scratch_input + history_size + input_size;
  142.   q15_t    *update = scratch_input + 2 * history_size + input_size;
  143.   q15_t    *hidden_state = scratch_input + 3 * history_size + input_size;
  144.  
  145.   // reset gate calculation
  146.   // the range of the output can be adjusted with bias_shift and output_shift
  147. #ifndef USE_X4
  148.   arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
  149.                                      reset, NULL);
  150. #else
  151.   arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
  152.                                          bias_reset, reset, NULL);
  153. #endif
  154.   // sigmoid function, the size of the integer bit-width should be consistent with out_shift
  155.   arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
  156.   arm_mult_q15(history, reset, reset, history_size);
  157.  
  158.   // update gate calculation
  159.   // the range of the output can be adjusted with bias_shift and output_shift
  160. #ifndef USE_X4
  161.   arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
  162.                                      bias_update, update, NULL);
  163. #else
  164.   arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
  165.                                          bias_update, update, NULL);
  166. #endif
  167.  
  168.   // sigmoid function, the size of the integer bit-width should be consistent with out_shift
  169.   arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);
  170.  
  171.   // hidden state calculation
  172. #ifndef USE_X4
  173.   arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
  174.                                      bias_hidden_state, hidden_state, NULL);
  175. #else
  176.   arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
  177.                                          bias_hidden_state, hidden_state, NULL);
  178. #endif
  179.  
  180.   // tanh function, the size of the integer bit-width should be consistent with out_shift
  181.   arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
  182.   arm_mult_q15(update, hidden_state, hidden_state, history_size);
  183.  
  184.   // we calculate z - 1 here
  185.   // so final addition becomes substraction
  186.   arm_offset_q15(update, 0x8000, update, history_size);
  187.   // multiply history
  188.   arm_mult_q15(history, update, update, history_size);
  189.   // calculate history_out
  190.   arm_sub_q15(hidden_state, update, history, history_size);
  191.  
  192.   return;
  193. }
  194.  
  195. int main()
  196. {
  197.   #ifdef RTE_Compiler_EventRecorder
  198.   EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
  199.   #endif
  200.  
  201.   printf("Start GRU execution\n");
  202.   int       input_size = DIM_INPUT;
  203.   int       history_size = DIM_HISTORY;
  204.  
  205.   // copy over the input data
  206.   arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
  207.   arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);
  208.  
  209.   gru_example(scratch_buffer, input_size, history_size,
  210.               update_gate_weights, reset_gate_weights, hidden_state_weights,
  211.               update_gate_bias, reset_gate_bias, hidden_state_bias);
  212.   printf("Complete first iteration on GRU\n");
  213.  
  214.   arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
  215.   gru_example(scratch_buffer, input_size, history_size,
  216.               update_gate_weights, reset_gate_weights, hidden_state_weights,
  217.               update_gate_bias, reset_gate_bias, hidden_state_bias);
  218.   printf("Complete second iteration on GRU\n");
  219.  
  220.   return 0;
  221. }
  222.