Subversion Repositories DashDisplay

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  3. *
  4. * $Date:        19. March 2015
  5. * $Revision:    V.1.4.5
  6. *
  7. * Project:          CMSIS DSP Library
  8. * Title:            arm_rfft_f32.c
  9. *
  10. * Description:  RFFT & RIFFT Floating point process function
  11. *
  12. * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. *   - Redistributions of source code must retain the above copyright
  18. *     notice, this list of conditions and the following disclaimer.
  19. *   - Redistributions in binary form must reproduce the above copyright
  20. *     notice, this list of conditions and the following disclaimer in
  21. *     the documentation and/or other materials provided with the
  22. *     distribution.
  23. *   - Neither the name of ARM LIMITED nor the names of its contributors
  24. *     may be used to endorse or promote products derived from this
  25. *     software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40.  
  41. #include "arm_math.h"
  42.  
  43. void stage_rfft_f32(
  44.   arm_rfft_fast_instance_f32 * S,
  45.   float32_t * p, float32_t * pOut)
  46. {
  47.    uint32_t  k;                                                            /* Loop Counter                     */
  48.    float32_t twR, twI;                                             /* RFFT Twiddle coefficients        */
  49.    float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
  50.    float32_t *pA = p;                                              /* increasing pointer               */
  51.    float32_t *pB = p;                                              /* decreasing pointer               */
  52.    float32_t xAR, xAI, xBR, xBI;                                /* temporary variables              */
  53.    float32_t t1a, t1b;                                   /* temporary variables              */
  54.    float32_t p0, p1, p2, p3;                               /* temporary variables              */
  55.  
  56.  
  57.    k = (S->Sint).fftLen - 1;                                   
  58.  
  59.    /* Pack first and last sample of the frequency domain together */
  60.  
  61.    xBR = pB[0];
  62.    xBI = pB[1];
  63.    xAR = pA[0];
  64.    xAI = pA[1];
  65.  
  66.    twR = *pCoeff++ ;
  67.    twI = *pCoeff++ ;
  68.    
  69.    // U1 = XA(1) + XB(1); % It is real
  70.    t1a = xBR + xAR  ;
  71.    
  72.    // U2 = XB(1) - XA(1); % It is imaginary
  73.    t1b = xBI + xAI  ;
  74.  
  75.    // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
  76.    // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
  77.    *pOut++ = 0.5f * ( t1a + t1b );
  78.    *pOut++ = 0.5f * ( t1a - t1b );
  79.  
  80.    // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
  81.    pB  = p + 2*k;
  82.    pA += 2;
  83.  
  84.    do
  85.    {
  86.       /*
  87.          function X = my_split_rfft(X, ifftFlag)
  88.          % X is a series of real numbers
  89.          L  = length(X);
  90.          XC = X(1:2:end) +i*X(2:2:end);
  91.          XA = fft(XC);
  92.          XB = conj(XA([1 end:-1:2]));
  93.          TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
  94.          for l = 2:L/2
  95.             XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
  96.          end
  97.          XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
  98.          X = XA;
  99.       */
  100.  
  101.       xBI = pB[1];
  102.       xBR = pB[0];
  103.       xAR = pA[0];
  104.       xAI = pA[1];
  105.  
  106.       twR = *pCoeff++;
  107.       twI = *pCoeff++;
  108.  
  109.       t1a = xBR - xAR ;
  110.       t1b = xBI + xAI ;
  111.  
  112.       // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
  113.       // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
  114.       p0 = twR * t1a;
  115.       p1 = twI * t1a;
  116.       p2 = twR * t1b;
  117.       p3 = twI * t1b;
  118.  
  119.       *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
  120.       *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
  121.  
  122.       pA += 2;
  123.       pB -= 2;
  124.       k--;
  125.    } while(k > 0u);
  126. }
  127.  
  128. /* Prepares data for inverse cfft */
  129. void merge_rfft_f32(
  130. arm_rfft_fast_instance_f32 * S,
  131. float32_t * p, float32_t * pOut)
  132. {
  133.    uint32_t  k;                                                         /* Loop Counter                     */
  134.    float32_t twR, twI;                                          /* RFFT Twiddle coefficients        */
  135.    float32_t *pCoeff = S->pTwiddleRFFT;         /* Points to RFFT Twiddle factors   */
  136.    float32_t *pA = p;                                           /* increasing pointer               */
  137.    float32_t *pB = p;                                           /* decreasing pointer               */
  138.    float32_t xAR, xAI, xBR, xBI;                        /* temporary variables              */
  139.    float32_t t1a, t1b, r, s, t, u;                      /* temporary variables              */
  140.  
  141.    k = (S->Sint).fftLen - 1;                                   
  142.  
  143.    xAR = pA[0];
  144.    xAI = pA[1];
  145.  
  146.    pCoeff += 2 ;
  147.  
  148.    *pOut++ = 0.5f * ( xAR + xAI );
  149.    *pOut++ = 0.5f * ( xAR - xAI );
  150.  
  151.    pB  =  p + 2*k ;
  152.    pA +=  2        ;
  153.  
  154.    while(k > 0u)
  155.    {
  156.       /* G is half of the frequency complex spectrum */
  157.       //for k = 2:N
  158.       //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
  159.       xBI =   pB[1]    ;
  160.       xBR =   pB[0]    ;
  161.       xAR =  pA[0];
  162.       xAI =  pA[1];
  163.  
  164.       twR = *pCoeff++;
  165.       twI = *pCoeff++;
  166.  
  167.       t1a = xAR - xBR ;
  168.       t1b = xAI + xBI ;
  169.  
  170.       r = twR * t1a;
  171.       s = twI * t1b;
  172.       t = twI * t1a;
  173.       u = twR * t1b;
  174.  
  175.       // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
  176.       // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
  177.       *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
  178.       *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
  179.  
  180.       pA += 2;
  181.       pB -= 2;
  182.       k--;
  183.    }
  184.  
  185. }
  186.  
  187. /**
  188. * @ingroup groupTransforms
  189. */
  190.  
  191. /**
  192.  * @defgroup Fast Real FFT Functions
  193.  *
  194.  * \par
  195.  * The CMSIS DSP library includes specialized algorithms for computing the
  196.  * FFT of real data sequences.  The FFT is defined over complex data but
  197.  * in many applications the input is real.  Real FFT algorithms take advantage
  198.  * of the symmetry properties of the FFT and have a speed advantage over complex
  199.  * algorithms of the same length.
  200.  * \par
  201.  * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
  202.  * \par
  203.  * The real length N forward FFT of a sequence is computed using the steps shown below.
  204.  * \par
  205.  * \image html RFFT.gif "Real Fast Fourier Transform"
  206.  * \par
  207.  * The real sequence is initially treated as if it were complex to perform a CFFT.
  208.  * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
  209.  * in complex format. Except the first complex number that contains the two real numbers
  210.  * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
  211.  * contains two real values packed.
  212.  * \par
  213.  * The input for the inverse RFFT should keep the same format as the output of the
  214.  * forward RFFT. A first processing stage pre-process the data to later perform an
  215.  * inverse CFFT.
  216.  * \par    
  217.  * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"    
  218.  * \par    
  219.  * The algorithms for floating-point, Q15, and Q31 data are slightly different
  220.  * and we describe each algorithm in turn.
  221.  * \par Floating-point
  222.  * The main functions are <code>arm_rfft_fast_f32()</code>
  223.  * and <code>arm_rfft_fast_init_f32()</code>.  The older functions
  224.  * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been
  225.  * deprecated but are still documented.
  226.  * \par
  227.  * The FFT of a real N-point sequence has even symmetry in the frequency
  228.  * domain.  The second half of the data equals the conjugate of the first half
  229.  * flipped in frequency:
  230.  * <pre>
  231.  *X[0] - real data
  232.  *X[1] - complex data
  233.  *X[2] - complex data
  234.  *...
  235.  *X[fftLen/2-1] - complex data
  236.  *X[fftLen/2] - real data
  237.  *X[fftLen/2+1] - conjugate of X[fftLen/2-1]
  238.  *X[fftLen/2+2] - conjugate of X[fftLen/2-2]
  239.  *...
  240.  *X[fftLen-1] - conjugate of X[1]
  241.  * </pre>
  242.  * Looking at the data, we see that we can uniquely represent the FFT using only
  243.  * <pre>
  244.  *N/2+1 samples:
  245.  *X[0] - real data
  246.  *X[1] - complex data
  247.  *X[2] - complex data
  248.  *...
  249.  *X[fftLen/2-1] - complex data
  250.  *X[fftLen/2] - real data
  251.  * </pre>
  252.  * Looking more closely we see that the first and last samples are real valued.
  253.  * They can be packed together and we can thus represent the FFT of an N-point
  254.  * real sequence by N/2 complex values:
  255.  * <pre>
  256.  *X[0],X[N/2] - packed real data: X[0] + jX[N/2]
  257.  *X[1] - complex data
  258.  *X[2] - complex data
  259.  *...
  260.  *X[fftLen/2-1] - complex data
  261.  * </pre>
  262.  * The real FFT functions pack the frequency domain data in this fashion.  The
  263.  * forward transform outputs the data in this form and the inverse transform
  264.  * expects input data in this form.  The function always performs the needed
  265.  * bitreversal so that the input and output data is always in normal order.  The
  266.  * functions support lengths of [32, 64, 128, ..., 4096] samples.
  267.  * \par
  268.  * The forward and inverse real FFT functions apply the standard FFT scaling; no
  269.  * scaling on the forward transform and 1/fftLen scaling on the inverse
  270.  * transform.
  271.  * \par Q15 and Q31
  272.  * The real algorithms are defined in a similar manner and utilize N/2 complex
  273.  * transforms behind the scenes.  
  274.  * \par
  275.  * The complex transforms used internally include scaling to prevent fixed-point
  276.  * overflows.  The overall scaling equals 1/(fftLen/2).
  277.  * \par
  278.  * A separate instance structure must be defined for each transform used but
  279.  * twiddle factor and bit reversal tables can be reused.
  280.  * \par
  281.  * There is also an associated initialization function for each data type.
  282.  * The initialization function performs the following operations:
  283.  * - Sets the values of the internal structure fields.  
  284.  * - Initializes twiddle factor table and bit reversal table pointers.
  285.  * - Initializes the internal complex FFT data structure.
  286.  * \par  
  287.  * Use of the initialization function is optional.  
  288.  * However, if the initialization function is used, then the instance structure
  289.  * cannot be placed into a const data section. To place an instance structure
  290.  * into a const data section, the instance structure should be manually
  291.  * initialized as follows:
  292.  * <pre>
  293.  *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
  294.  *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
  295.  * </pre>
  296.  * where <code>fftLenReal</code> is the length of the real transform;
  297.  * <code>fftLenBy2</code> length of  the internal complex transform.
  298.  * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
  299.  * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
  300.  * output (=1).
  301.  * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
  302.  * The value is based on the FFT length;
  303.  * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
  304.  * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;    
  305.  * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
  306.  * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding    
  307.  * static initialization of the complex FFT instance structure.    
  308.  */
  309.  
  310. /**
  311. * @addtogroup RealFFT
  312. * @{
  313. */
  314.  
  315. /**
  316. * @brief Processing function for the floating-point real FFT.
  317. * @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
  318. * @param[in]  *p              points to the input buffer.
  319. * @param[in]  *pOut           points to the output buffer.
  320. * @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
  321. * @return none.
  322. */
  323.  
  324. void arm_rfft_fast_f32(
  325. arm_rfft_fast_instance_f32 * S,
  326. float32_t * p, float32_t * pOut,
  327. uint8_t ifftFlag)
  328. {
  329.    arm_cfft_instance_f32 * Sint = &(S->Sint);
  330.    Sint->fftLen = S->fftLenRFFT / 2;
  331.  
  332.    /* Calculation of Real FFT */
  333.    if(ifftFlag)
  334.    {
  335.       /*  Real FFT compression */
  336.       merge_rfft_f32(S, p, pOut);
  337.  
  338.       /* Complex radix-4 IFFT process */
  339.       arm_cfft_f32( Sint, pOut, ifftFlag, 1);
  340.    }
  341.    else
  342.    {
  343.       /* Calculation of RFFT of input */
  344.       arm_cfft_f32( Sint, p, ifftFlag, 1);
  345.    
  346.       /*  Real FFT extraction */
  347.       stage_rfft_f32(S, p, pOut);
  348.    }
  349. }
  350.  
  351. /**    
  352. * @} end of RealFFT group    
  353. */
  354.