Subversion Repositories DashDisplay

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------    
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
  3. *    
  4. * $Date:        19. March 2015
  5. * $Revision:    V.1.4.5
  6. *    
  7. * Project:          CMSIS DSP Library    
  8. * Title:            arm_mat_mult_fast_q31.c    
  9. *    
  10. * Description:   Q31 matrix multiplication (fast variant).    
  11. *    
  12. * Target Processor: Cortex-M4/Cortex-M3
  13. *  
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. *   - Redistributions of source code must retain the above copyright
  18. *     notice, this list of conditions and the following disclaimer.
  19. *   - Redistributions in binary form must reproduce the above copyright
  20. *     notice, this list of conditions and the following disclaimer in
  21. *     the documentation and/or other materials provided with the
  22. *     distribution.
  23. *   - Neither the name of ARM LIMITED nor the names of its contributors
  24. *     may be used to endorse or promote products derived from this
  25. *     software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.  
  39. * -------------------------------------------------------------------- */
  40.  
  41. #include "arm_math.h"
  42.  
  43. /**    
  44.  * @ingroup groupMatrix    
  45.  */
  46.  
  47. /**    
  48.  * @addtogroup MatrixMult    
  49.  * @{    
  50.  */
  51.  
  52. /**    
  53.  * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4    
  54.  * @param[in]       *pSrcA points to the first input matrix structure    
  55.  * @param[in]       *pSrcB points to the second input matrix structure    
  56.  * @param[out]      *pDst points to output matrix structure    
  57.  * @return              The function returns either    
  58.  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
  59.  *    
  60.  * @details    
  61.  * <b>Scaling and Overflow Behavior:</b>    
  62.  *    
  63.  * \par    
  64.  * The difference between the function arm_mat_mult_q31() and this fast variant is that    
  65.  * the fast variant use a 32-bit rather than a 64-bit accumulator.    
  66.  * The result of each 1.31 x 1.31 multiplication is truncated to    
  67.  * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30    
  68.  * format. Finally, the accumulator is saturated and converted to a 1.31 result.    
  69.  *    
  70.  * \par    
  71.  * The fast version has the same overflow behavior as the standard version but provides    
  72.  * less precision since it discards the low 32 bits of each multiplication result.    
  73.  * In order to avoid overflows completely the input signals must be scaled down.    
  74.  * Scale down one of the input matrices by log2(numColsA) bits to    
  75.  * avoid overflows, as a total of numColsA additions are computed internally for each    
  76.  * output element.    
  77.  *    
  78.  * \par    
  79.  * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function    
  80.  * which uses 64-bit accumulation to provide higher precision.    
  81.  */
  82.  
  83. arm_status arm_mat_mult_fast_q31(
  84.   const arm_matrix_instance_q31 * pSrcA,
  85.   const arm_matrix_instance_q31 * pSrcB,
  86.   arm_matrix_instance_q31 * pDst)
  87. {
  88.   q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
  89.   q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
  90.   q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
  91. //  q31_t *pSrcB = pSrcB->pData;                    /* input data matrix pointer B */    
  92.   q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
  93.   q31_t *px;                                     /* Temporary output data matrix pointer */
  94.   q31_t sum;                                     /* Accumulator */
  95.   uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  96.   uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  97.   uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  98.   uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
  99.   arm_status status;                             /* status of matrix multiplication */
  100.   q31_t inA1, inA2, inA3, inA4, inB1, inB2, inB3, inB4;
  101.  
  102. #ifdef ARM_MATH_MATRIX_CHECK
  103.  
  104.  
  105.   /* Check for matrix mismatch condition */
  106.   if((pSrcA->numCols != pSrcB->numRows) ||
  107.      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  108.   {
  109.     /* Set status as ARM_MATH_SIZE_MISMATCH */
  110.     status = ARM_MATH_SIZE_MISMATCH;
  111.   }
  112.   else
  113. #endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  114.  
  115.   {
  116.     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
  117.     /* row loop */
  118.     do
  119.     {
  120.       /* Output pointer is set to starting address of the row being processed */
  121.       px = pOut + i;
  122.  
  123.       /* For every row wise process, the column loop counter is to be initiated */
  124.       col = numColsB;
  125.  
  126.       /* For every row wise process, the pIn2 pointer is set    
  127.        ** to the starting address of the pSrcB data */
  128.       pIn2 = pSrcB->pData;
  129.  
  130.       j = 0u;
  131.  
  132.       /* column loop */
  133.       do
  134.       {
  135.         /* Set the variable sum, that acts as accumulator, to zero */
  136.         sum = 0;
  137.  
  138.         /* Initiate the pointer pIn1 to point to the starting address of pInA */
  139.         pIn1 = pInA;
  140.  
  141.         /* Apply loop unrolling and compute 4 MACs simultaneously. */
  142.         colCnt = numColsA >> 2;
  143.  
  144.  
  145.         /* matrix multiplication */
  146.         while(colCnt > 0u)
  147.         {
  148.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  149.           /* Perform the multiply-accumulates */
  150.           inB1 = *pIn2;
  151.           pIn2 += numColsB;
  152.  
  153.           inA1 = pIn1[0];
  154.           inA2 = pIn1[1];
  155.  
  156.           inB2 = *pIn2;
  157.           pIn2 += numColsB;
  158.  
  159.           inB3 = *pIn2;
  160.           pIn2 += numColsB;
  161.  
  162.           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA1 * inB1)) >> 32);
  163.           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA2 * inB2)) >> 32);
  164.  
  165.           inA3 = pIn1[2];
  166.           inA4 = pIn1[3];
  167.  
  168.           inB4 = *pIn2;
  169.           pIn2 += numColsB;
  170.  
  171.           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA3 * inB3)) >> 32);
  172.           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA4 * inB4)) >> 32);
  173.  
  174.           pIn1 += 4u;
  175.  
  176.           /* Decrement the loop counter */
  177.           colCnt--;
  178.         }
  179.  
  180.         /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
  181.          ** No loop unrolling is used. */
  182.         colCnt = numColsA % 0x4u;
  183.  
  184.         while(colCnt > 0u)
  185.         {
  186.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  187.           /* Perform the multiply-accumulates */
  188.           sum = (q31_t) ((((q63_t) sum << 32) +
  189.                           ((q63_t) * pIn1++ * (*pIn2))) >> 32);
  190.           pIn2 += numColsB;
  191.  
  192.           /* Decrement the loop counter */
  193.           colCnt--;
  194.         }
  195.  
  196.         /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
  197.         *px++ = sum << 1;
  198.  
  199.         /* Update the pointer pIn2 to point to the  starting address of the next column */
  200.         j++;
  201.         pIn2 = pSrcB->pData + j;
  202.  
  203.         /* Decrement the column loop counter */
  204.         col--;
  205.  
  206.       } while(col > 0u);
  207.  
  208.       /* Update the pointer pInA to point to the  starting address of the next row */
  209.       i = i + numColsB;
  210.       pInA = pInA + numColsA;
  211.  
  212.       /* Decrement the row loop counter */
  213.       row--;
  214.  
  215.     } while(row > 0u);
  216.  
  217.     /* set status as ARM_MATH_SUCCESS */
  218.     status = ARM_MATH_SUCCESS;
  219.   }
  220.   /* Return to application */
  221.   return (status);
  222. }
  223.  
  224. /**    
  225.  * @} end of MatrixMult group    
  226.  */
  227.