Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2.  * Project:      CMSIS DSP Library
  3.  * Title:        arm_rfft_q31.c
  4.  * Description:  FFT & RIFFT Q31 process function
  5.  *
  6.  * $Date:        27. January 2017
  7.  * $Revision:    V.1.5.1
  8.  *
  9.  * Target Processor: Cortex-M cores
  10.  * -------------------------------------------------------------------- */
  11. /*
  12.  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
  13.  *
  14.  * SPDX-License-Identifier: Apache-2.0
  15.  *
  16.  * Licensed under the Apache License, Version 2.0 (the License); you may
  17.  * not use this file except in compliance with the License.
  18.  * You may obtain a copy of the License at
  19.  *
  20.  * www.apache.org/licenses/LICENSE-2.0
  21.  *
  22.  * Unless required by applicable law or agreed to in writing, software
  23.  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24.  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25.  * See the License for the specific language governing permissions and
  26.  * limitations under the License.
  27.  */
  28.  
  29. #include "arm_math.h"
  30.  
  31. /* ----------------------------------------------------------------------
  32.  * Internal functions prototypes
  33.  * -------------------------------------------------------------------- */
  34.  
  35. void arm_split_rfft_q31(
  36.     q31_t * pSrc,
  37.     uint32_t fftLen,
  38.     q31_t * pATable,
  39.     q31_t * pBTable,
  40.     q31_t * pDst,
  41.     uint32_t modifier);
  42.  
  43. void arm_split_rifft_q31(
  44.     q31_t * pSrc,
  45.     uint32_t fftLen,
  46.     q31_t * pATable,
  47.     q31_t * pBTable,
  48.     q31_t * pDst,
  49.     uint32_t modifier);
  50.  
  51. /**
  52. * @addtogroup RealFFT
  53. * @{
  54. */
  55.  
  56. /**
  57. * @brief Processing function for the Q31 RFFT/RIFFT.
  58. * @param[in]  *S    points to an instance of the Q31 RFFT/RIFFT structure.
  59. * @param[in]  *pSrc points to the input buffer.
  60. * @param[out] *pDst points to the output buffer.
  61. * @return none.
  62. *
  63. * \par Input an output formats:
  64. * \par
  65. * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
  66. * Hence the output format is different for different RFFT sizes.
  67. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
  68. * \par
  69. * \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT"
  70. *
  71. * \par
  72. * \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT"
  73. */
  74. void arm_rfft_q31(
  75.     const arm_rfft_instance_q31 * S,
  76.     q31_t * pSrc,
  77.     q31_t * pDst)
  78. {
  79.     const arm_cfft_instance_q31 *S_CFFT = S->pCfft;
  80.     uint32_t i;
  81.     uint32_t L2 = S->fftLenReal >> 1;
  82.  
  83.     /* Calculation of RIFFT of input */
  84.     if (S->ifftFlagR == 1U)
  85.     {
  86.         /*  Real IFFT core process */
  87.         arm_split_rifft_q31(pSrc, L2, S->pTwiddleAReal,
  88.                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  89.  
  90.         /* Complex IFFT process */
  91.         arm_cfft_q31(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
  92.  
  93.         for(i=0;i<S->fftLenReal;i++)
  94.         {
  95.             pDst[i] = pDst[i] << 1;
  96.         }
  97.     }
  98.     else
  99.     {
  100.         /* Calculation of RFFT of input */
  101.  
  102.         /* Complex FFT process */
  103.         arm_cfft_q31(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
  104.  
  105.         /*  Real FFT core process */
  106.         arm_split_rfft_q31(pSrc, L2, S->pTwiddleAReal,
  107.                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  108.     }
  109. }
  110.  
  111. /**
  112. * @} end of RealFFT group
  113. */
  114.  
  115. /**
  116. * @brief  Core Real FFT process
  117. * @param[in]   *pSrc                            points to the input buffer.
  118. * @param[in]   fftLen                       length of FFT.
  119. * @param[in]   *pATable                         points to the twiddle Coef A buffer.
  120. * @param[in]   *pBTable                         points to the twiddle Coef B buffer.
  121. * @param[out]  *pDst                            points to the output buffer.
  122. * @param[in]   modifier                 twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
  123. * @return none.
  124. */
  125. void arm_split_rfft_q31(
  126.     q31_t * pSrc,
  127.     uint32_t fftLen,
  128.     q31_t * pATable,
  129.     q31_t * pBTable,
  130.     q31_t * pDst,
  131.     uint32_t modifier)
  132. {
  133.     uint32_t i;                                    /* Loop Counter */
  134.     q31_t outR, outI;                              /* Temporary variables for output */
  135.     q31_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
  136.     q31_t CoefA1, CoefA2, CoefB1;                  /* Temporary variables for twiddle coefficients */
  137.     q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4U * fftLen) - 1U];
  138.     q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2U * fftLen) - 1U];
  139.  
  140.     /* Init coefficient pointers */
  141.     pCoefA = &pATable[modifier * 2U];
  142.     pCoefB = &pBTable[modifier * 2U];
  143.  
  144.     i = fftLen - 1U;
  145.  
  146.     while (i > 0U)
  147.     {
  148.         /*
  149.         outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
  150.         + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
  151.         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  152.         */
  153.  
  154.         /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
  155.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  156.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
  157.  
  158.         CoefA1 = *pCoefA++;
  159.         CoefA2 = *pCoefA;
  160.  
  161.         /* outR = (pSrc[2 * i] * pATable[2 * i] */
  162.         mult_32x32_keep32_R(outR, *pIn1, CoefA1);
  163.  
  164.         /* outI = pIn[2 * i] * pATable[2 * i + 1] */
  165.         mult_32x32_keep32_R(outI, *pIn1++, CoefA2);
  166.  
  167.         /* - pSrc[2 * i + 1] * pATable[2 * i + 1] */
  168.         multSub_32x32_keep32_R(outR, *pIn1, CoefA2);
  169.  
  170.         /* (pIn[2 * i + 1] * pATable[2 * i] */
  171.         multAcc_32x32_keep32_R(outI, *pIn1++, CoefA1);
  172.  
  173.         /* pSrc[2 * n - 2 * i] * pBTable[2 * i]  */
  174.         multSub_32x32_keep32_R(outR, *pIn2, CoefA2);
  175.         CoefB1 = *pCoefB;
  176.  
  177.         /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
  178.         multSub_32x32_keep32_R(outI, *pIn2--, CoefB1);
  179.  
  180.         /* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
  181.         multAcc_32x32_keep32_R(outR, *pIn2, CoefB1);
  182.  
  183.         /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  184.         multSub_32x32_keep32_R(outI, *pIn2--, CoefA2);
  185.  
  186.         /* write output */
  187.         *pOut1++ = outR;
  188.         *pOut1++ = outI;
  189.  
  190.         /* write complex conjugate output */
  191.         *pOut2-- = -outI;
  192.         *pOut2-- = outR;
  193.  
  194.         /* update coefficient pointer */
  195.         pCoefB = pCoefB + (modifier * 2U);
  196.         pCoefA = pCoefA + ((modifier * 2U) - 1U);
  197.  
  198.         i--;
  199.     }
  200.     pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
  201.     pDst[(2U * fftLen) + 1U] = 0;
  202.  
  203.     pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
  204.     pDst[1] = 0;
  205. }
  206.  
  207. /**
  208. * @brief  Core Real IFFT process
  209. * @param[in]   *pSrc                            points to the input buffer.
  210. * @param[in]   fftLen                       length of FFT.
  211. * @param[in]   *pATable                         points to the twiddle Coef A buffer.
  212. * @param[in]   *pBTable                         points to the twiddle Coef B buffer.
  213. * @param[out]  *pDst                            points to the output buffer.
  214. * @param[in]   modifier                 twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
  215. * @return none.
  216. */
  217. void arm_split_rifft_q31(
  218.     q31_t * pSrc,
  219.     uint32_t fftLen,
  220.     q31_t * pATable,
  221.     q31_t * pBTable,
  222.     q31_t * pDst,
  223.     uint32_t modifier)
  224. {
  225.     q31_t outR, outI;                              /* Temporary variables for output */
  226.     q31_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
  227.     q31_t CoefA1, CoefA2, CoefB1;                  /* Temporary variables for twiddle coefficients */
  228.     q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2U * fftLen) + 1U];
  229.  
  230.     pCoefA = &pATable[0];
  231.     pCoefB = &pBTable[0];
  232.  
  233.     while (fftLen > 0U)
  234.     {
  235.         /*
  236.         outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
  237.         pIn[2 * n - 2 * i] * pBTable[2 * i] -
  238.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  239.  
  240.         outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
  241.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  242.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  243.         */
  244.         CoefA1 = *pCoefA++;
  245.         CoefA2 = *pCoefA;
  246.  
  247.         /* outR = (pIn[2 * i] * pATable[2 * i] */
  248.         mult_32x32_keep32_R(outR, *pIn1, CoefA1);
  249.  
  250.         /* - pIn[2 * i] * pATable[2 * i + 1] */
  251.         mult_32x32_keep32_R(outI, *pIn1++, -CoefA2);
  252.  
  253.         /* pIn[2 * i + 1] * pATable[2 * i + 1] */
  254.         multAcc_32x32_keep32_R(outR, *pIn1, CoefA2);
  255.  
  256.         /* pIn[2 * i + 1] * pATable[2 * i] */
  257.         multAcc_32x32_keep32_R(outI, *pIn1++, CoefA1);
  258.  
  259.         /* pIn[2 * n - 2 * i] * pBTable[2 * i] */
  260.         multAcc_32x32_keep32_R(outR, *pIn2, CoefA2);
  261.         CoefB1 = *pCoefB;
  262.  
  263.         /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */
  264.         multSub_32x32_keep32_R(outI, *pIn2--, CoefB1);
  265.  
  266.         /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */
  267.         multAcc_32x32_keep32_R(outR, *pIn2, CoefB1);
  268.  
  269.         /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  270.         multAcc_32x32_keep32_R(outI, *pIn2--, CoefA2);
  271.  
  272.         /* write output */
  273.         *pDst++ = outR;
  274.         *pDst++ = outI;
  275.  
  276.         /* update coefficient pointer */
  277.         pCoefB = pCoefB + (modifier * 2U);
  278.         pCoefA = pCoefA + ((modifier * 2U) - 1U);
  279.  
  280.         /* Decrement loop count */
  281.         fftLen--;
  282.     }
  283. }
  284.