Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2.  * Project:      CMSIS DSP Library
  3.  * Title:        arm_rfft_q15.c
  4.  * Description:  RFFT & RIFFT Q15 process function
  5.  *
  6.  * $Date:        27. January 2017
  7.  * $Revision:    V.1.5.1
  8.  *
  9.  * Target Processor: Cortex-M cores
  10.  * -------------------------------------------------------------------- */
  11. /*
  12.  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
  13.  *
  14.  * SPDX-License-Identifier: Apache-2.0
  15.  *
  16.  * Licensed under the Apache License, Version 2.0 (the License); you may
  17.  * not use this file except in compliance with the License.
  18.  * You may obtain a copy of the License at
  19.  *
  20.  * www.apache.org/licenses/LICENSE-2.0
  21.  *
  22.  * Unless required by applicable law or agreed to in writing, software
  23.  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24.  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25.  * See the License for the specific language governing permissions and
  26.  * limitations under the License.
  27.  */
  28.  
  29. #include "arm_math.h"
  30.  
  31. /* ----------------------------------------------------------------------
  32.  * Internal functions prototypes
  33.  * -------------------------------------------------------------------- */
  34.  
  35. void arm_split_rfft_q15(
  36.     q15_t * pSrc,
  37.     uint32_t fftLen,
  38.     q15_t * pATable,
  39.     q15_t * pBTable,
  40.     q15_t * pDst,
  41.     uint32_t modifier);
  42.  
  43. void arm_split_rifft_q15(
  44.     q15_t * pSrc,
  45.     uint32_t fftLen,
  46.     q15_t * pATable,
  47.     q15_t * pBTable,
  48.     q15_t * pDst,
  49.     uint32_t modifier);
  50.  
  51. /**
  52. * @addtogroup RealFFT
  53. * @{
  54. */
  55.  
  56. /**
  57. * @brief Processing function for the Q15 RFFT/RIFFT.
  58. * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.
  59. * @param[in]  *pSrc points to the input buffer.
  60. * @param[out] *pDst points to the output buffer.
  61. * @return none.
  62. *
  63. * \par Input an output formats:
  64. * \par
  65. * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
  66. * Hence the output format is different for different RFFT sizes.
  67. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
  68. * \par
  69. * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
  70. * \par
  71. * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
  72. */
  73.  
  74. void arm_rfft_q15(
  75.     const arm_rfft_instance_q15 * S,
  76.     q15_t * pSrc,
  77.     q15_t * pDst)
  78. {
  79.     const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
  80.     uint32_t i;
  81.     uint32_t L2 = S->fftLenReal >> 1;
  82.  
  83.     /* Calculation of RIFFT of input */
  84.     if (S->ifftFlagR == 1U)
  85.     {
  86.         /*  Real IFFT core process */
  87.         arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
  88.                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  89.  
  90.         /* Complex IFFT process */
  91.         arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
  92.  
  93.         for(i=0;i<S->fftLenReal;i++)
  94.         {
  95.             pDst[i] = pDst[i] << 1;
  96.         }
  97.     }
  98.     else
  99.     {
  100.         /* Calculation of RFFT of input */
  101.  
  102.         /* Complex FFT process */
  103.         arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
  104.  
  105.         /*  Real FFT core process */
  106.         arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
  107.                             S->pTwiddleBReal, pDst, S->twidCoefRModifier);
  108.     }
  109. }
  110.  
  111. /**
  112. * @} end of RealFFT group
  113. */
  114.  
  115. /**
  116. * @brief  Core Real FFT process
  117. * @param  *pSrc                                 points to the input buffer.
  118. * @param  fftLen                                length of FFT.
  119. * @param  *pATable                      points to the A twiddle Coef buffer.
  120. * @param  *pBTable                      points to the B twiddle Coef buffer.
  121. * @param  *pDst                                 points to the output buffer.
  122. * @param  modifier              twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
  123. * @return none.
  124. * The function implements a Real FFT
  125. */
  126.  
  127. void arm_split_rfft_q15(
  128.     q15_t * pSrc,
  129.     uint32_t fftLen,
  130.     q15_t * pATable,
  131.     q15_t * pBTable,
  132.     q15_t * pDst,
  133.     uint32_t modifier)
  134. {
  135.     uint32_t i;                                    /* Loop Counter */
  136.     q31_t outR, outI;                              /* Temporary variables for output */
  137.     q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
  138.     q15_t *pSrc1, *pSrc2;
  139. #if defined (ARM_MATH_DSP)
  140.     q15_t *pD1, *pD2;
  141. #endif
  142.  
  143.     //  pSrc[2U * fftLen] = pSrc[0];
  144.     //  pSrc[(2U * fftLen) + 1U] = pSrc[1];
  145.  
  146.     pCoefA = &pATable[modifier * 2U];
  147.     pCoefB = &pBTable[modifier * 2U];
  148.  
  149.     pSrc1 = &pSrc[2];
  150.     pSrc2 = &pSrc[(2U * fftLen) - 2U];
  151.  
  152. #if defined (ARM_MATH_DSP)
  153.  
  154.     /* Run the below code for Cortex-M4 and Cortex-M3 */
  155.     i = 1U;
  156.     pD1 = pDst + 2;
  157.     pD2 = pDst + (4U * fftLen) - 2;
  158.  
  159.     for(i = fftLen - 1; i > 0; i--)
  160.     {
  161.         /*
  162.         outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
  163.         + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
  164.         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  165.         */
  166.  
  167.         /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
  168.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  169.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
  170.  
  171.  
  172. #ifndef ARM_MATH_BIG_ENDIAN
  173.  
  174.         /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
  175.         outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
  176.  
  177. #else
  178.  
  179.         /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
  180.         outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
  181.  
  182. #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
  183.  
  184.         /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
  185.         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
  186.         outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
  187.  
  188.         /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  189.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  190.  
  191. #ifndef ARM_MATH_BIG_ENDIAN
  192.  
  193.         outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
  194.  
  195. #else
  196.  
  197.         outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
  198.  
  199. #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
  200.  
  201.         /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
  202.         outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
  203.  
  204.         /* write output */
  205.         *pD1++ = (q15_t) outR;
  206.         *pD1++ = outI >> 16U;
  207.  
  208.         /* write complex conjugate output */
  209.         pD2[0] = (q15_t) outR;
  210.         pD2[1] = -(outI >> 16U);
  211.         pD2 -= 2;
  212.  
  213.         /* update coefficient pointer */
  214.         pCoefB = pCoefB + (2U * modifier);
  215.         pCoefA = pCoefA + (2U * modifier);
  216.     }
  217.  
  218.     pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
  219.     pDst[(2U * fftLen) + 1U] = 0;
  220.  
  221.     pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
  222.     pDst[1] = 0;
  223.  
  224. #else
  225.  
  226.     /* Run the below code for Cortex-M0 */
  227.     i = 1U;
  228.  
  229.     while (i < fftLen)
  230.     {
  231.         /*
  232.         outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
  233.         + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
  234.         pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  235.         */
  236.  
  237.         outR = *pSrc1 * *pCoefA;
  238.         outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
  239.         outR = outR + (*pSrc2 * *pCoefB);
  240.         outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
  241.  
  242.  
  243.         /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
  244.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  245.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  246.         */
  247.  
  248.         outI = *pSrc2 * *(pCoefB + 1);
  249.         outI = outI - (*(pSrc2 + 1) * *pCoefB);
  250.         outI = outI + (*(pSrc1 + 1) * *pCoefA);
  251.         outI = outI + (*pSrc1 * *(pCoefA + 1));
  252.  
  253.         /* update input pointers */
  254.         pSrc1 += 2U;
  255.         pSrc2 -= 2U;
  256.  
  257.         /* write output */
  258.         pDst[2U * i] = (q15_t) outR;
  259.         pDst[(2U * i) + 1U] = outI >> 16U;
  260.  
  261.         /* write complex conjugate output */
  262.         pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
  263.         pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
  264.  
  265.         /* update coefficient pointer */
  266.         pCoefB = pCoefB + (2U * modifier);
  267.         pCoefA = pCoefA + (2U * modifier);
  268.  
  269.         i++;
  270.     }
  271.  
  272.     pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
  273.     pDst[(2U * fftLen) + 1U] = 0;
  274.  
  275.     pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
  276.     pDst[1] = 0;
  277.  
  278. #endif /* #if defined (ARM_MATH_DSP) */
  279. }
  280.  
  281.  
  282. /**
  283. * @brief  Core Real IFFT process
  284. * @param[in]   *pSrc                            points to the input buffer.
  285. * @param[in]   fftLen               length of FFT.
  286. * @param[in]   *pATable                         points to the twiddle Coef A buffer.
  287. * @param[in]   *pBTable                         points to the twiddle Coef B buffer.
  288. * @param[out]  *pDst                            points to the output buffer.
  289. * @param[in]   modifier                 twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
  290. * @return none.
  291. * The function implements a Real IFFT
  292. */
  293. void arm_split_rifft_q15(
  294.     q15_t * pSrc,
  295.     uint32_t fftLen,
  296.     q15_t * pATable,
  297.     q15_t * pBTable,
  298.     q15_t * pDst,
  299.     uint32_t modifier)
  300. {
  301.     uint32_t i;                                    /* Loop Counter */
  302.     q31_t outR, outI;                              /* Temporary variables for output */
  303.     q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
  304.     q15_t *pSrc1, *pSrc2;
  305.     q15_t *pDst1 = &pDst[0];
  306.  
  307.     pCoefA = &pATable[0];
  308.     pCoefB = &pBTable[0];
  309.  
  310.     pSrc1 = &pSrc[0];
  311.     pSrc2 = &pSrc[2U * fftLen];
  312.  
  313. #if defined (ARM_MATH_DSP)
  314.  
  315.     /* Run the below code for Cortex-M4 and Cortex-M3 */
  316.     i = fftLen;
  317.  
  318.     while (i > 0U)
  319.     {
  320.         /*
  321.         outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
  322.         pIn[2 * n - 2 * i] * pBTable[2 * i] -
  323.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  324.  
  325.         outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
  326.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  327.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  328.         */
  329.  
  330.  
  331. #ifndef ARM_MATH_BIG_ENDIAN
  332.  
  333.         /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
  334.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
  335.         outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
  336.  
  337. #else
  338.  
  339.         /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
  340.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
  341.         outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
  342.  
  343. #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
  344.  
  345.         /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
  346.         pIn[2 * n - 2 * i] * pBTable[2 * i] */
  347.         outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
  348.  
  349.         /*
  350.         -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
  351.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
  352.         outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
  353.  
  354.         /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
  355.  
  356. #ifndef ARM_MATH_BIG_ENDIAN
  357.  
  358.         outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
  359.  
  360. #else
  361.  
  362.         outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
  363.  
  364. #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
  365.         /* write output */
  366.  
  367. #ifndef ARM_MATH_BIG_ENDIAN
  368.  
  369.         *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
  370.  
  371. #else
  372.  
  373.         *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
  374.  
  375. #endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
  376.  
  377.         /* update coefficient pointer */
  378.         pCoefB = pCoefB + (2U * modifier);
  379.         pCoefA = pCoefA + (2U * modifier);
  380.  
  381.         i--;
  382.     }
  383. #else
  384.     /* Run the below code for Cortex-M0 */
  385.     i = fftLen;
  386.  
  387.     while (i > 0U)
  388.     {
  389.         /*
  390.         outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
  391.         pIn[2 * n - 2 * i] * pBTable[2 * i] -
  392.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
  393.         */
  394.  
  395.         outR = *pSrc2 * *pCoefB;
  396.         outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
  397.         outR = outR + (*pSrc1 * *pCoefA);
  398.         outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
  399.  
  400.         /*
  401.         outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
  402.         pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
  403.         pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
  404.         */
  405.  
  406.         outI = *(pSrc1 + 1) * *pCoefA;
  407.         outI = outI - (*pSrc1 * *(pCoefA + 1));
  408.         outI = outI - (*pSrc2 * *(pCoefB + 1));
  409.         outI = outI - (*(pSrc2 + 1) * *(pCoefB));
  410.  
  411.         /* update input pointers */
  412.         pSrc1 += 2U;
  413.         pSrc2 -= 2U;
  414.  
  415.         /* write output */
  416.         *pDst1++ = (q15_t) outR;
  417.         *pDst1++ = (q15_t) (outI >> 16);
  418.  
  419.         /* update coefficient pointer */
  420.         pCoefB = pCoefB + (2U * modifier);
  421.         pCoefA = pCoefA + (2U * modifier);
  422.  
  423.         i--;
  424.     }
  425. #endif /* #if defined (ARM_MATH_DSP) */
  426. }
  427.