Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2.  * Project:      CMSIS DSP Library
  3.  * Title:        arm_rfft_f32.c
  4.  * Description:  RFFT & RIFFT Floating point process function
  5.  *
  6.  * $Date:        27. January 2017
  7.  * $Revision:    V.1.5.1
  8.  *
  9.  * Target Processor: Cortex-M cores
  10.  * -------------------------------------------------------------------- */
  11. /*
  12.  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
  13.  *
  14.  * SPDX-License-Identifier: Apache-2.0
  15.  *
  16.  * Licensed under the Apache License, Version 2.0 (the License); you may
  17.  * not use this file except in compliance with the License.
  18.  * You may obtain a copy of the License at
  19.  *
  20.  * www.apache.org/licenses/LICENSE-2.0
  21.  *
  22.  * Unless required by applicable law or agreed to in writing, software
  23.  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24.  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25.  * See the License for the specific language governing permissions and
  26.  * limitations under the License.
  27.  */
  28.  
  29. #include "arm_math.h"
  30.  
  31. void stage_rfft_f32(
  32.   arm_rfft_fast_instance_f32 * S,
  33.   float32_t * p, float32_t * pOut)
  34. {
  35.    uint32_t  k;                                                            /* Loop Counter                     */
  36.    float32_t twR, twI;                                             /* RFFT Twiddle coefficients        */
  37.    float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
  38.    float32_t *pA = p;                                              /* increasing pointer               */
  39.    float32_t *pB = p;                                              /* decreasing pointer               */
  40.    float32_t xAR, xAI, xBR, xBI;                                /* temporary variables              */
  41.    float32_t t1a, t1b;                                   /* temporary variables              */
  42.    float32_t p0, p1, p2, p3;                               /* temporary variables              */
  43.  
  44.  
  45.    k = (S->Sint).fftLen - 1;
  46.  
  47.    /* Pack first and last sample of the frequency domain together */
  48.  
  49.    xBR = pB[0];
  50.    xBI = pB[1];
  51.    xAR = pA[0];
  52.    xAI = pA[1];
  53.  
  54.    twR = *pCoeff++ ;
  55.    twI = *pCoeff++ ;
  56.  
  57.    // U1 = XA(1) + XB(1); % It is real
  58.    t1a = xBR + xAR  ;
  59.  
  60.    // U2 = XB(1) - XA(1); % It is imaginary
  61.    t1b = xBI + xAI  ;
  62.  
  63.    // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
  64.    // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
  65.    *pOut++ = 0.5f * ( t1a + t1b );
  66.    *pOut++ = 0.5f * ( t1a - t1b );
  67.  
  68.    // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
  69.    pB  = p + 2*k;
  70.    pA += 2;
  71.  
  72.    do
  73.    {
  74.       /*
  75.          function X = my_split_rfft(X, ifftFlag)
  76.          % X is a series of real numbers
  77.          L  = length(X);
  78.          XC = X(1:2:end) +i*X(2:2:end);
  79.          XA = fft(XC);
  80.          XB = conj(XA([1 end:-1:2]));
  81.          TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
  82.          for l = 2:L/2
  83.             XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
  84.          end
  85.          XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
  86.          X = XA;
  87.       */
  88.  
  89.       xBI = pB[1];
  90.       xBR = pB[0];
  91.       xAR = pA[0];
  92.       xAI = pA[1];
  93.  
  94.       twR = *pCoeff++;
  95.       twI = *pCoeff++;
  96.  
  97.       t1a = xBR - xAR ;
  98.       t1b = xBI + xAI ;
  99.  
  100.       // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
  101.       // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
  102.       p0 = twR * t1a;
  103.       p1 = twI * t1a;
  104.       p2 = twR * t1b;
  105.       p3 = twI * t1b;
  106.  
  107.       *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
  108.       *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
  109.  
  110.       pA += 2;
  111.       pB -= 2;
  112.       k--;
  113.    } while (k > 0U);
  114. }
  115.  
  116. /* Prepares data for inverse cfft */
  117. void merge_rfft_f32(
  118. arm_rfft_fast_instance_f32 * S,
  119. float32_t * p, float32_t * pOut)
  120. {
  121.    uint32_t  k;                                                         /* Loop Counter                     */
  122.    float32_t twR, twI;                                          /* RFFT Twiddle coefficients        */
  123.    float32_t *pCoeff = S->pTwiddleRFFT;         /* Points to RFFT Twiddle factors   */
  124.    float32_t *pA = p;                                           /* increasing pointer               */
  125.    float32_t *pB = p;                                           /* decreasing pointer               */
  126.    float32_t xAR, xAI, xBR, xBI;                        /* temporary variables              */
  127.    float32_t t1a, t1b, r, s, t, u;                      /* temporary variables              */
  128.  
  129.    k = (S->Sint).fftLen - 1;
  130.  
  131.    xAR = pA[0];
  132.    xAI = pA[1];
  133.  
  134.    pCoeff += 2 ;
  135.  
  136.    *pOut++ = 0.5f * ( xAR + xAI );
  137.    *pOut++ = 0.5f * ( xAR - xAI );
  138.  
  139.    pB  =  p + 2*k ;
  140.    pA +=  2        ;
  141.  
  142.    while (k > 0U)
  143.    {
  144.       /* G is half of the frequency complex spectrum */
  145.       //for k = 2:N
  146.       //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
  147.       xBI =   pB[1]    ;
  148.       xBR =   pB[0]    ;
  149.       xAR =  pA[0];
  150.       xAI =  pA[1];
  151.  
  152.       twR = *pCoeff++;
  153.       twI = *pCoeff++;
  154.  
  155.       t1a = xAR - xBR ;
  156.       t1b = xAI + xBI ;
  157.  
  158.       r = twR * t1a;
  159.       s = twI * t1b;
  160.       t = twI * t1a;
  161.       u = twR * t1b;
  162.  
  163.       // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
  164.       // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
  165.       *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
  166.       *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
  167.  
  168.       pA += 2;
  169.       pB -= 2;
  170.       k--;
  171.    }
  172.  
  173. }
  174.  
  175. /**
  176. * @ingroup groupTransforms
  177. */
  178.  
  179. /**
  180.  * @defgroup RealFFT Real FFT Functions
  181.  *
  182.  * \par
  183.  * The CMSIS DSP library includes specialized algorithms for computing the
  184.  * FFT of real data sequences.  The FFT is defined over complex data but
  185.  * in many applications the input is real.  Real FFT algorithms take advantage
  186.  * of the symmetry properties of the FFT and have a speed advantage over complex
  187.  * algorithms of the same length.
  188.  * \par
  189.  * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
  190.  * \par
  191.  * The real length N forward FFT of a sequence is computed using the steps shown below.
  192.  * \par
  193.  * \image html RFFT.gif "Real Fast Fourier Transform"
  194.  * \par
  195.  * The real sequence is initially treated as if it were complex to perform a CFFT.
  196.  * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
  197.  * in complex format. Except the first complex number that contains the two real numbers
  198.  * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
  199.  * contains two real values packed.
  200.  * \par
  201.  * The input for the inverse RFFT should keep the same format as the output of the
  202.  * forward RFFT. A first processing stage pre-process the data to later perform an
  203.  * inverse CFFT.
  204.  * \par
  205.  * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
  206.  * \par
  207.  * The algorithms for floating-point, Q15, and Q31 data are slightly different
  208.  * and we describe each algorithm in turn.
  209.  * \par Floating-point
  210.  * The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32().
  211.  * The older functions arm_rfft_f32() and arm_rfft_init_f32() have been
  212.  * deprecated but are still documented.
  213.  * \par
  214.  * The FFT of a real N-point sequence has even symmetry in the frequency
  215.  * domain. The second half of the data equals the conjugate of the first
  216.  * half flipped in frequency. Looking at the data, we see that we can
  217.  * uniquely represent the FFT using only N/2 complex numbers. These are
  218.  * packed into the output array in alternating real and imaginary
  219.  * components:
  220.  * \par
  221.  * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ...
  222.  * real[(N/2)-1], imag[(N/2)-1 }
  223.  * \par
  224.  * It happens that the first complex number (real[0], imag[0]) is actually
  225.  * all real. real[0] represents the DC offset, and imag[0] should be 0.
  226.  * (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is
  227.  * the first harmonic and so on.
  228.  * \par
  229.  * The real FFT functions pack the frequency domain data in this fashion.
  230.  * The forward transform outputs the data in this form and the inverse
  231.  * transform expects input data in this form. The function always performs
  232.  * the needed bitreversal so that the input and output data is always in
  233.  * normal order. The functions support lengths of [32, 64, 128, ..., 4096]
  234.  * samples.
  235.  * \par Q15 and Q31
  236.  * The real algorithms are defined in a similar manner and utilize N/2 complex
  237.  * transforms behind the scenes.
  238.  * \par
  239.  * The complex transforms used internally include scaling to prevent fixed-point
  240.  * overflows.  The overall scaling equals 1/(fftLen/2).
  241.  * \par
  242.  * A separate instance structure must be defined for each transform used but
  243.  * twiddle factor and bit reversal tables can be reused.
  244.  * \par
  245.  * There is also an associated initialization function for each data type.
  246.  * The initialization function performs the following operations:
  247.  * - Sets the values of the internal structure fields.
  248.  * - Initializes twiddle factor table and bit reversal table pointers.
  249.  * - Initializes the internal complex FFT data structure.
  250.  * \par
  251.  * Use of the initialization function is optional.
  252.  * However, if the initialization function is used, then the instance structure
  253.  * cannot be placed into a const data section. To place an instance structure
  254.  * into a const data section, the instance structure should be manually
  255.  * initialized as follows:
  256.  * <pre>
  257.  *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
  258.  *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
  259.  * </pre>
  260.  * where <code>fftLenReal</code> is the length of the real transform;
  261.  * <code>fftLenBy2</code> length of  the internal complex transform.
  262.  * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
  263.  * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
  264.  * output (=1).
  265.  * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
  266.  * The value is based on the FFT length;
  267.  * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
  268.  * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
  269.  * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
  270.  * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding
  271.  * static initialization of the complex FFT instance structure.
  272.  */
  273.  
  274. /**
  275. * @addtogroup RealFFT
  276. * @{
  277. */
  278.  
  279. /**
  280. * @brief Processing function for the floating-point real FFT.
  281. * @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
  282. * @param[in]  *p              points to the input buffer.
  283. * @param[in]  *pOut           points to the output buffer.
  284. * @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
  285. * @return none.
  286. */
  287.  
  288. void arm_rfft_fast_f32(
  289. arm_rfft_fast_instance_f32 * S,
  290. float32_t * p, float32_t * pOut,
  291. uint8_t ifftFlag)
  292. {
  293.    arm_cfft_instance_f32 * Sint = &(S->Sint);
  294.    Sint->fftLen = S->fftLenRFFT / 2;
  295.  
  296.    /* Calculation of Real FFT */
  297.    if (ifftFlag)
  298.    {
  299.       /*  Real FFT compression */
  300.       merge_rfft_f32(S, p, pOut);
  301.  
  302.       /* Complex radix-4 IFFT process */
  303.       arm_cfft_f32( Sint, pOut, ifftFlag, 1);
  304.    }
  305.    else
  306.    {
  307.       /* Calculation of RFFT of input */
  308.       arm_cfft_f32( Sint, p, ifftFlag, 1);
  309.  
  310.       /*  Real FFT extraction */
  311.       stage_rfft_f32(S, p, pOut);
  312.    }
  313. }
  314.  
  315. /**
  316. * @} end of RealFFT group
  317. */
  318.