Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2.  * Project:      CMSIS DSP Library
  3.  * Title:        arm_mat_mult_fast_q31.c
  4.  * Description:  Q31 matrix multiplication (fast variant)
  5.  *
  6.  * $Date:        27. January 2017
  7.  * $Revision:    V.1.5.1
  8.  *
  9.  * Target Processor: Cortex-M cores
  10.  * -------------------------------------------------------------------- */
  11. /*
  12.  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
  13.  *
  14.  * SPDX-License-Identifier: Apache-2.0
  15.  *
  16.  * Licensed under the Apache License, Version 2.0 (the License); you may
  17.  * not use this file except in compliance with the License.
  18.  * You may obtain a copy of the License at
  19.  *
  20.  * www.apache.org/licenses/LICENSE-2.0
  21.  *
  22.  * Unless required by applicable law or agreed to in writing, software
  23.  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24.  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25.  * See the License for the specific language governing permissions and
  26.  * limitations under the License.
  27.  */
  28.  
  29. #include "arm_math.h"
  30.  
  31. /**
  32.  * @ingroup groupMatrix
  33.  */
  34.  
  35. /**
  36.  * @addtogroup MatrixMult
  37.  * @{
  38.  */
  39.  
  40. /**
  41.  * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
  42.  * @param[in]       *pSrcA points to the first input matrix structure
  43.  * @param[in]       *pSrcB points to the second input matrix structure
  44.  * @param[out]      *pDst points to output matrix structure
  45.  * @return          The function returns either
  46.  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  47.  *
  48.  * @details
  49.  * <b>Scaling and Overflow Behavior:</b>
  50.  *
  51.  * \par
  52.  * The difference between the function arm_mat_mult_q31() and this fast variant is that
  53.  * the fast variant use a 32-bit rather than a 64-bit accumulator.
  54.  * The result of each 1.31 x 1.31 multiplication is truncated to
  55.  * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
  56.  * format. Finally, the accumulator is saturated and converted to a 1.31 result.
  57.  *
  58.  * \par
  59.  * The fast version has the same overflow behavior as the standard version but provides
  60.  * less precision since it discards the low 32 bits of each multiplication result.
  61.  * In order to avoid overflows completely the input signals must be scaled down.
  62.  * Scale down one of the input matrices by log2(numColsA) bits to
  63.  * avoid overflows, as a total of numColsA additions are computed internally for each
  64.  * output element.
  65.  *
  66.  * \par
  67.  * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
  68.  * which uses 64-bit accumulation to provide higher precision.
  69.  */
  70.  
  71. arm_status arm_mat_mult_fast_q31(
  72.   const arm_matrix_instance_q31 * pSrcA,
  73.   const arm_matrix_instance_q31 * pSrcB,
  74.   arm_matrix_instance_q31 * pDst)
  75. {
  76.   q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
  77.   q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
  78.   q31_t *px;                                     /* Temporary output data matrix pointer */
  79.   q31_t sum;                                     /* Accumulator */
  80.   uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  81.   uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  82.   uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  83.   uint32_t col, i = 0U, j, row = numRowsA, colCnt;  /* loop counters */
  84.   arm_status status;                             /* status of matrix multiplication */
  85.   q31_t inA1, inB1;
  86.  
  87. #if defined (ARM_MATH_DSP)
  88.  
  89.   q31_t sum2, sum3, sum4;
  90.   q31_t inA2, inB2;
  91.   q31_t *pInA2;
  92.   q31_t *px2;
  93.  
  94. #endif
  95.  
  96. #ifdef ARM_MATH_MATRIX_CHECK
  97.  
  98.   /* Check for matrix mismatch condition */
  99.   if ((pSrcA->numCols != pSrcB->numRows) ||
  100.      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  101.   {
  102.     /* Set status as ARM_MATH_SIZE_MISMATCH */
  103.     status = ARM_MATH_SIZE_MISMATCH;
  104.   }
  105.   else
  106. #endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  107.  
  108.   {
  109.  
  110.     px = pDst->pData;
  111.  
  112. #if defined (ARM_MATH_DSP)
  113.     row = row >> 1;
  114.     px2 = px + numColsB;
  115. #endif
  116.  
  117.     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
  118.     /* row loop */
  119.     while (row > 0U)
  120.     {
  121.  
  122.       /* For every row wise process, the column loop counter is to be initiated */
  123.       col = numColsB;
  124.  
  125.       /* For every row wise process, the pIn2 pointer is set
  126.        ** to the starting address of the pSrcB data */
  127.       pInB = pSrcB->pData;
  128.  
  129.       j = 0U;
  130.  
  131. #if defined (ARM_MATH_DSP)
  132.       col = col >> 1;
  133. #endif
  134.  
  135.       /* column loop */
  136.       while (col > 0U)
  137.       {
  138.         /* Set the variable sum, that acts as accumulator, to zero */
  139.         sum = 0;
  140.  
  141.         /* Initiate data pointers */
  142.         pInA = pSrcA->pData + i;
  143.         pInB  = pSrcB->pData + j;
  144.  
  145. #if defined (ARM_MATH_DSP)
  146.         sum2 = 0;
  147.         sum3 = 0;
  148.         sum4 = 0;
  149.         pInA2 = pInA + numColsA;
  150.         colCnt = numColsA;
  151. #else
  152.         colCnt = numColsA >> 2;
  153. #endif
  154.  
  155.         /* matrix multiplication */
  156.         while (colCnt > 0U)
  157.         {
  158.  
  159. #if defined (ARM_MATH_DSP)
  160.           inA1 = *pInA++;
  161.           inB1 = pInB[0];
  162.           inA2 = *pInA2++;
  163.           inB2 = pInB[1];
  164.           pInB += numColsB;
  165.  
  166.           sum  = __SMMLA(inA1, inB1, sum);
  167.           sum2 = __SMMLA(inA1, inB2, sum2);
  168.           sum3 = __SMMLA(inA2, inB1, sum3);
  169.           sum4 = __SMMLA(inA2, inB2, sum4);
  170. #else
  171.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  172.           /* Perform the multiply-accumulates */
  173.           inB1 = *pInB;
  174.           pInB += numColsB;
  175.           inA1 = pInA[0];
  176.           sum = __SMMLA(inA1, inB1, sum);
  177.  
  178.           inB1 = *pInB;
  179.           pInB += numColsB;
  180.           inA1 = pInA[1];
  181.           sum = __SMMLA(inA1, inB1, sum);
  182.  
  183.           inB1 = *pInB;
  184.           pInB += numColsB;
  185.           inA1 = pInA[2];
  186.           sum = __SMMLA(inA1, inB1, sum);
  187.  
  188.           inB1 = *pInB;
  189.           pInB += numColsB;
  190.           inA1 = pInA[3];
  191.           sum = __SMMLA(inA1, inB1, sum);
  192.  
  193.           pInA += 4U;
  194. #endif
  195.  
  196.           /* Decrement the loop counter */
  197.           colCnt--;
  198.         }
  199.  
  200. #ifdef ARM_MATH_CM0_FAMILY
  201.         /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */
  202.         colCnt = numColsA % 0x4U;
  203.         while (colCnt > 0U)
  204.         {
  205.           sum = __SMMLA(*pInA++, *pInB, sum);
  206.           pInB += numColsB;
  207.           colCnt--;
  208.         }
  209.         j++;
  210. #endif
  211.  
  212.         /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
  213.         *px++  = sum << 1;
  214.  
  215. #if defined (ARM_MATH_DSP)
  216.         *px++  = sum2 << 1;
  217.         *px2++ = sum3 << 1;
  218.         *px2++ = sum4 << 1;
  219.         j += 2;
  220. #endif
  221.  
  222.         /* Decrement the column loop counter */
  223.         col--;
  224.  
  225.       }
  226.  
  227.       i = i + numColsA;
  228.  
  229. #if defined (ARM_MATH_DSP)
  230.       i = i + numColsA;
  231.       px = px2 + (numColsB & 1U);
  232.       px2 = px + numColsB;
  233. #endif
  234.  
  235.       /* Decrement the row loop counter */
  236.       row--;
  237.  
  238.     }
  239.  
  240.     /* Compute any remaining odd row/column below */
  241.  
  242. #if defined (ARM_MATH_DSP)
  243.  
  244.     /* Compute remaining output column */
  245.     if (numColsB & 1U) {
  246.  
  247.       /* Avoid redundant computation of last element */
  248.       row = numRowsA & (~0x1);
  249.  
  250.       /* Point to remaining unfilled column in output matrix */
  251.       px = pDst->pData+numColsB-1;
  252.       pInA = pSrcA->pData;
  253.  
  254.       /* row loop */
  255.       while (row > 0)
  256.       {
  257.  
  258.         /* point to last column in matrix B */
  259.         pInB  = pSrcB->pData + numColsB-1;
  260.  
  261.         /* Set the variable sum, that acts as accumulator, to zero */
  262.         sum  = 0;
  263.  
  264.         /* Compute 4 columns at once */
  265.         colCnt = numColsA >> 2;
  266.  
  267.         /* matrix multiplication */
  268.         while (colCnt > 0U)
  269.         {
  270.           inA1 = *pInA++;
  271.           inA2 = *pInA++;
  272.           inB1 = *pInB;
  273.           pInB += numColsB;
  274.           inB2 = *pInB;
  275.           pInB += numColsB;
  276.           sum = __SMMLA(inA1, inB1, sum);
  277.           sum = __SMMLA(inA2, inB2, sum);
  278.  
  279.           inA1 = *pInA++;
  280.           inA2 = *pInA++;
  281.           inB1 = *pInB;
  282.           pInB += numColsB;
  283.           inB2 = *pInB;
  284.           pInB += numColsB;
  285.           sum = __SMMLA(inA1, inB1, sum);
  286.           sum = __SMMLA(inA2, inB2, sum);
  287.  
  288.           /* Decrement the loop counter */
  289.           colCnt--;
  290.         }
  291.  
  292.         colCnt = numColsA & 3U;
  293.         while (colCnt > 0U) {
  294.           sum = __SMMLA(*pInA++, *pInB, sum);
  295.           pInB += numColsB;
  296.           colCnt--;
  297.         }
  298.  
  299.         /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
  300.         *px = sum << 1;
  301.         px += numColsB;
  302.  
  303.         /* Decrement the row loop counter */
  304.         row--;
  305.       }
  306.     }
  307.  
  308.     /* Compute remaining output row */
  309.     if (numRowsA & 1U) {
  310.  
  311.       /* point to last row in output matrix */
  312.       px = pDst->pData+(numColsB)*(numRowsA-1);
  313.  
  314.       col = numColsB;
  315.       i = 0U;
  316.  
  317.       /* col loop */
  318.       while (col > 0)
  319.       {
  320.  
  321.         /* point to last row in matrix A */
  322.         pInA = pSrcA->pData + (numRowsA-1)*numColsA;
  323.         pInB  = pSrcB->pData + i;
  324.  
  325.         /* Set the variable sum, that acts as accumulator, to zero */
  326.         sum  = 0;
  327.  
  328.         /* Compute 4 columns at once */
  329.         colCnt = numColsA >> 2;
  330.  
  331.         /* matrix multiplication */
  332.         while (colCnt > 0U)
  333.         {
  334.           inA1 = *pInA++;
  335.           inA2 = *pInA++;
  336.           inB1 = *pInB;
  337.           pInB += numColsB;
  338.           inB2 = *pInB;
  339.           pInB += numColsB;
  340.           sum = __SMMLA(inA1, inB1, sum);
  341.           sum = __SMMLA(inA2, inB2, sum);
  342.  
  343.           inA1 = *pInA++;
  344.           inA2 = *pInA++;
  345.           inB1 = *pInB;
  346.           pInB += numColsB;
  347.           inB2 = *pInB;
  348.           pInB += numColsB;
  349.           sum = __SMMLA(inA1, inB1, sum);
  350.           sum = __SMMLA(inA2, inB2, sum);
  351.  
  352.           /* Decrement the loop counter */
  353.           colCnt--;
  354.         }
  355.  
  356.         colCnt = numColsA & 3U;
  357.         while (colCnt > 0U) {
  358.           sum = __SMMLA(*pInA++, *pInB, sum);
  359.           pInB += numColsB;
  360.           colCnt--;
  361.         }
  362.  
  363.         /* Saturate and store the result in the destination buffer */
  364.         *px++ = sum << 1;
  365.         i++;
  366.  
  367.         /* Decrement the col loop counter */
  368.         col--;
  369.       }
  370.     }
  371.  
  372. #endif /* #if defined (ARM_MATH_DSP) */
  373.  
  374.     /* set status as ARM_MATH_SUCCESS */
  375.     status = ARM_MATH_SUCCESS;
  376.   }
  377.  
  378.   /* Return to application */
  379.   return (status);
  380. }
  381.  
  382. /**
  383.  * @} end of MatrixMult group
  384.  */
  385.