Subversion Repositories AFRtranscoder

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2012 ARM Limited. All rights reserved.
  3. *
  4. * $Date:         17. January 2013
  5. * $Revision:     V1.4.0
  6. *
  7. * Project:       CMSIS DSP Library
  8. * Title:         arm_convolution_example_f32.c
  9. *
  10. * Description:   Example code demonstrating Convolution of two input signals using fft.
  11. *
  12. * Target Processor: Cortex-M4/Cortex-M3
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. *   - Redistributions of source code must retain the above copyright
  18. *     notice, this list of conditions and the following disclaimer.
  19. *   - Redistributions in binary form must reproduce the above copyright
  20. *     notice, this list of conditions and the following disclaimer in
  21. *     the documentation and/or other materials provided with the
  22. *     distribution.
  23. *   - Neither the name of ARM LIMITED nor the names of its contributors
  24. *     may be used to endorse or promote products derived from this
  25. *     software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40.  
  41. /**
  42.  * @ingroup groupExamples
  43.  */
  44.  
  45. /**
  46.  * @defgroup ConvolutionExample Convolution Example
  47.  *
  48.  * \par Description:
  49.  * \par
  50.  * Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex
  51.  * Multiplication, and Support Functions.
  52.  *
  53.  * \par Algorithm:
  54.  * \par
  55.  * The convolution theorem states that convolution in the time domain corresponds to
  56.  * multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of
  57.  * two signals is equal to the product of their individual Fourier transforms.
  58.  * The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT).
  59.  * \par
  60.  * Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively,
  61.  * are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code>
  62.  * and is a power of 4 as FFT implementation is radix-4.
  63.  * The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input
  64.  * signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of
  65.  * the multiplied result.
  66.  * \par
  67.  * This is denoted by the following equations:
  68.  * <pre> A[k] = FFT(a[n],N)
  69.  * B[k] = FFT(b[n],N)
  70.  * conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre>
  71.  * where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code>
  72.  * and <code>b[n]</code> respectively.
  73.  * The length of the convolved signal is <code>(n1+n2-1)</code>.
  74.  *
  75.  * \par Block Diagram:
  76.  * \par
  77.  * \image html Convolution.gif
  78.  *
  79.  * \par Variables Description:
  80.  * \par
  81.  * \li \c testInputA_f32 points to the first input sequence
  82.  * \li \c srcALen length of the first input sequence
  83.  * \li \c testInputB_f32 points to the second input sequence
  84.  * \li \c srcBLen length of the second input sequence
  85.  * \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code>
  86.  * \li \c AxB points to the output array where the product of individual FFTs of inputs is stored.
  87.  *
  88.  * \par CMSIS DSP Software Library Functions Used:
  89.  * \par
  90.  * - arm_fill_f32()
  91.  * - arm_copy_f32()
  92.  * - arm_cfft_radix4_init_f32()
  93.  * - arm_cfft_radix4_f32()
  94.  * - arm_cmplx_mult_cmplx_f32()
  95.  *
  96.  * <b> Refer  </b>
  97.  * \link arm_convolution_example_f32.c \endlink
  98.  *
  99.  */
  100.  
  101.  
  102. /** \example arm_convolution_example_f32.c
  103.   */
  104.  
  105. #include "arm_math.h"
  106. #include "math_helper.h"
  107.  
  108. /* ----------------------------------------------------------------------
  109. * Defines each of the tests performed
  110. * ------------------------------------------------------------------- */
  111. #define MAX_BLOCKSIZE   128
  112. #define DELTA           (0.000001f)
  113. #define SNR_THRESHOLD   90
  114.  
  115. /* ----------------------------------------------------------------------
  116. * Declare I/O buffers
  117. * ------------------------------------------------------------------- */
  118. float32_t Ak[MAX_BLOCKSIZE];        /* Input A */
  119. float32_t Bk[MAX_BLOCKSIZE];        /* Input B */
  120. float32_t AxB[MAX_BLOCKSIZE * 2];   /* Output */
  121.  
  122. /* ----------------------------------------------------------------------
  123. * Test input data for Floating point Convolution example for 32-blockSize
  124. * Generated by the MATLAB randn() function
  125. * ------------------------------------------------------------------- */
  126. float32_t testInputA_f32[64] =
  127. {
  128.   -0.808920,   1.357369,   1.180861,  -0.504544,   1.762637,  -0.703285,
  129.    1.696966,   0.620571,  -0.151093,  -0.100235,  -0.872382,  -0.403579,
  130.   -0.860749,  -0.382648,  -1.052338,   0.128113,  -0.646269,   1.093377,
  131.   -2.209198,   0.471706,   0.408901,   1.266242,   0.598252,   1.176827,
  132.   -0.203421,   0.213596,  -0.851964,  -0.466958,   0.021841,  -0.698938,
  133.   -0.604107,   0.461778,  -0.318219,   0.942520,   0.577585,   0.417619,
  134.    0.614665,   0.563679,  -1.295073,  -0.764437,   0.952194,  -0.859222,
  135.   -0.618554,  -2.268542,  -1.210592,   1.655853,  -2.627219,  -0.994249,
  136.   -1.374704,   0.343799,   0.025619,   1.227481,  -0.708031,   0.069355,
  137.   -1.845228,  -1.570886,   1.010668,  -1.802084,   1.630088,   1.286090,
  138.   -0.161050,  -0.940794,   0.367961,   0.291907
  139.  
  140. };
  141.  
  142. float32_t testInputB_f32[64] =
  143. {
  144.    0.933724,   0.046881,   1.316470,   0.438345,   0.332682,   2.094885,
  145.    0.512081,   0.035546,   0.050894,  -2.320371,   0.168711,  -1.830493,
  146.   -0.444834,  -1.003242,  -0.531494,  -1.365600,  -0.155420,  -0.757692,
  147.   -0.431880,  -0.380021,   0.096243,  -0.695835,   0.558850,  -1.648962,
  148.    0.020369,  -0.363630,   0.887146,   0.845503,  -0.252864,  -0.330397,
  149.    1.269131,  -1.109295,  -1.027876,   0.135940,   0.116721,  -0.293399,
  150.   -1.349799,   0.166078,  -0.802201,   0.369367,  -0.964568,  -2.266011,
  151.    0.465178,   0.651222,  -0.325426,   0.320245,  -0.784178,  -0.579456,
  152.    0.093374,   0.604778,  -0.048225,   0.376297,  -0.394412,   0.578182,
  153.   -1.218141,  -1.387326,   0.692462,  -0.631297,   0.153137,  -0.638952,
  154.   0.635474,   -0.970468,   1.334057,  -0.111370
  155. };
  156.  
  157. const float testRefOutput_f32[127] =
  158. {
  159.    -0.818943,    1.229484,  -0.533664,    1.016604,   0.341875,  -1.963656,
  160.     5.171476,    3.478033,   7.616361,    6.648384,   0.479069,   1.792012,
  161.    -1.295591,   -7.447818,   0.315830,  -10.657445,  -2.483469,  -6.524236,
  162.    -7.380591,   -3.739005,  -8.388957,    0.184147,  -1.554888,   3.786508,
  163.    -1.684421,    5.400610,  -1.578126,    7.403361,   8.315999,   2.080267,
  164.    11.077776,    2.749673,   7.138962,    2.748762,   0.660363,   0.981552,
  165.     1.442275,    0.552721,  -2.576892,    4.703989,   0.989156,   8.759344,
  166.    -0.564825,   -3.994680,   0.954710,   -5.014144,   6.592329,   1.599488,
  167.   -13.979146,   -0.391891,  -4.453369,   -2.311242,  -2.948764,   1.761415,
  168.    -0.138322,   10.433007,  -2.309103,    4.297153,   8.535523,   3.209462,
  169.     8.695819,    5.569919,   2.514304,    5.582029,   2.060199,   0.642280,
  170.     7.024616,    1.686615,  -6.481756,    1.343084,  -3.526451,   1.099073,
  171.    -2.965764,   -0.173723,  -4.111484,    6.528384,  -6.965658,   1.726291,
  172.     1.535172,   11.023435,   2.338401,   -4.690188,   1.298210,   3.943885,
  173.     8.407885,    5.168365,   0.684131,    1.559181,   1.859998,   2.852417,
  174.     8.574070,   -6.369078,   6.023458,   11.837963,  -6.027632,   4.469678,
  175.    -6.799093,   -2.674048,   6.250367,   -6.809971,  -3.459360,   9.112410,
  176.    -2.711621,   -1.336678,   1.564249,   -1.564297,  -1.296760,   8.904013,
  177.    -3.230109,    6.878013,  -7.819823,    3.369909,  -1.657410,  -2.007358,
  178.    -4.112825,    1.370685,  -3.420525,   -6.276605,   3.244873,  -3.352638,
  179.     1.545372,    0.902211,   0.197489,   -1.408732,   0.523390,   0.348440, 0
  180. };
  181.  
  182.  
  183. /* ----------------------------------------------------------------------
  184. * Declare Global variables
  185. * ------------------------------------------------------------------- */
  186. uint32_t srcALen = 64;   /* Length of Input A */
  187. uint32_t srcBLen = 64;   /* Length of Input B */
  188. uint32_t outLen;         /* Length of convolution output */
  189. float32_t snr;           /* output SNR */
  190.  
  191. int32_t main(void)
  192. {
  193.   arm_status status;                           /* Status of the example */
  194.   arm_cfft_radix4_instance_f32 cfft_instance;  /* CFFT Structure instance */
  195.  
  196.   /* CFFT Structure instance pointer */
  197.   arm_cfft_radix4_instance_f32 *cfft_instance_ptr =
  198.       (arm_cfft_radix4_instance_f32*) &cfft_instance;
  199.  
  200.   /* output length of convolution */
  201.   outLen = srcALen + srcBLen - 1;
  202.  
  203.   /* Initialise the fft input buffers with all zeros */
  204.   arm_fill_f32(0.0,  Ak, MAX_BLOCKSIZE);
  205.   arm_fill_f32(0.0,  Bk, MAX_BLOCKSIZE);
  206.  
  207.   /* Copy the input values to the fft input buffers */
  208.   arm_copy_f32(testInputA_f32,  Ak, MAX_BLOCKSIZE/2);
  209.   arm_copy_f32(testInputB_f32,  Bk, MAX_BLOCKSIZE/2);
  210.  
  211.   /* Initialize the CFFT function to compute 64 point fft */
  212.   status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1);
  213.  
  214.   /* Transform input a[n] from time domain to frequency domain A[k] */
  215.   arm_cfft_radix4_f32(cfft_instance_ptr, Ak);
  216.   /* Transform input b[n] from time domain to frequency domain B[k] */
  217.   arm_cfft_radix4_f32(cfft_instance_ptr, Bk);
  218.  
  219.   /* Complex Multiplication of the two input buffers in frequency domain */
  220.   arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2);
  221.  
  222.   /* Initialize the CIFFT function to compute 64 point ifft */
  223.   status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1);
  224.  
  225.   /* Transform the multiplication output from frequency domain to time domain,
  226.      that gives the convolved output  */
  227.   arm_cfft_radix4_f32(cfft_instance_ptr, AxB);
  228.  
  229.   /* SNR Calculation */
  230.   snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1);
  231.  
  232.   /* Compare the SNR with threshold to test whether the
  233.      computed output is matched with the reference output values. */
  234.   if ( snr > SNR_THRESHOLD)
  235.   {
  236.     status = ARM_MATH_SUCCESS;
  237.   }
  238.  
  239.   if ( status != ARM_MATH_SUCCESS)
  240.   {
  241.     while (1);
  242.   }
  243.  
  244.   while (1);                             /* main function does not return */
  245. }
  246.  
  247.  /** \endlink */
  248.