/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "libSerial/serial.h"
#include "libBMP280/bmp280.h"
#include "display.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;
IWDG_HandleTypeDef hiwdg;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
typedef struct
{
uint8_t dev_addr;
} interface_t;
static int8_t
user_i2c_write(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data,
uint32_t len)
{
HAL_StatusTypeDef st = HAL_I2C_Mem_Write(&hi2c2, i2c_addr << 1, reg_addr, 1,
reg_data, len, 1000);
return st != HAL_OK ? BMP280_E_COMM_FAIL : BMP280_OK;
}
static int8_t
user_i2c_read(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data,
uint32_t len)
{
HAL_StatusTypeDef st = HAL_I2C_Mem_Read(&hi2c2, i2c_addr << 1, reg_addr, 1,
reg_data, len, 1000);
return st != HAL_OK ? BMP280_E_COMM_FAIL : BMP280_OK;
}
// the second I2C bus is I2C1, this is used for the external I2C thermometer to avoid problems with noise pickup .
static int8_t
user_i2c2_write(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data,
uint32_t len)
{
HAL_StatusTypeDef st = HAL_I2C_Mem_Write(&hi2c1, i2c_addr << 1, reg_addr, 1,
reg_data, len, 1000);
return st != HAL_OK ? BMP280_E_COMM_FAIL : BMP280_OK;
}
static int8_t
user_i2c2_read(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data,
uint32_t len)
{
HAL_StatusTypeDef st = HAL_I2C_Mem_Read(&hi2c1, i2c_addr << 1, reg_addr, 1,
reg_data, len, 1000);
return st != HAL_OK ? BMP280_E_COMM_FAIL : BMP280_OK;
}
static void
user_delay_ms(uint32_t ms, void *handle)
{
HAL_Delay(ms);
}
struct bmp280_dev bmp =
{
.intf = BMP280_I2C_INTF,
.read = user_i2c_read,
.write = user_i2c_write,
.delay_ms = user_delay_ms,
/* Update interface pointer with the structure that contains both device address and file descriptor */
.dev_id = BMP280_I2C_ADDR_PRIM};
struct bmp280_dev bmp2 =
{
.intf = BMP280_I2C_INTF,
.read = user_i2c2_read,
.write = user_i2c2_write,
.delay_ms = user_delay_ms,
/* Update interface pointer with the structure that contains both device address and file descriptor */
.dev_id = BMP280_I2C_ADDR_SEC};
int8_t rslt;
struct bmp280_config conf;
struct bmp280_config conf2;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM4_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_I2C2_Init(void);
static void MX_RTC_Init(void);
static void MX_IWDG_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint32_t const TICKS_LOOP = 50; // 50mS per loop.
// initialise the BMP
uint8_t init_bmp(struct bmp280_config *conf, struct bmp280_dev *bmp)
{
rslt = bmp280_init(bmp);
if (rslt != BMP280_OK)
return rslt;
rslt = bmp280_get_config(conf, bmp);
if (rslt != BMP280_OK)
return rslt;
/* configuring the temperature oversampling, filter coefficient and output data rate */
/* Overwrite the desired settings */
conf->filter = BMP280_FILTER_COEFF_2;
/* Temperature oversampling set at 4x */
conf->os_temp = BMP280_OS_4X;
/* Pressure over sampling none (disabling pressure measurement) */
conf->os_pres = BMP280_OS_4X;
/* Setting the output data rate as 2HZ(500ms) */
conf->odr = BMP280_ODR_500_MS;
rslt = bmp280_set_config(conf, bmp);
if (rslt != BMP280_OK)
return rslt;
/* Always set the power mode after setting the configuration */
rslt = bmp280_set_power_mode(BMP280_NORMAL_MODE, bmp);
if (rslt != BMP280_OK)
return rslt;
}
///////////////////////////////////////
// code dealing with I2C1
static void reset_I2C1(void)
{
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
__HAL_AFIO_REMAP_I2C1_DISABLE();
int i;
// clock 18 times
for (i = 0; i < 18; ++i)
{
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_SET);
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_SET);
}
__HAL_AFIO_REMAP_I2C1_ENABLE();
}
// the bus power also takes down the pullup power
static void power_I2C1(uint8_t power)
{
if (power)
{
HAL_GPIO_WritePin(I2C1_BusPower_GPIO_Port, I2C1_BusPower_Pin, GPIO_PIN_SET);
}
else
{
HAL_GPIO_WritePin(I2C1_BusPower_GPIO_Port, I2C1_BusPower_Pin, GPIO_PIN_RESET);
}
}
typedef enum
{
BMP_NORMAL, // normal operations
BMP_RESET_ACTIVE, // powering down
BMP_PAUSE // pause after powerup
} bmp2state_t;
bmp2state_t bmp2state;
unsigned bmp2nextTime;
unsigned bmp2offset;
void initBmp2(void)
{
power_I2C1(1);
init_bmp(&conf2, &bmp2);
bmp2state = BMP_NORMAL;
bmp2nextTime = 0;
bmp2offset = 0;
}
void resetBmp2(void)
{
reset_I2C1(); // physically reset the hardware
power_I2C1(0); // power down the bus and devices
bmp2nextTime = HAL_GetTick(); // 600 milliseconds hold the bus reset for
bmp2offset = 600;
bmp2state = BMP_RESET_ACTIVE;
}
uint8_t pollBmp2State(void)
{
if (bmp2state == BMP_NORMAL)
return 1;
if (HAL_GetTick() - bmp2offset < bmp2nextTime)
return 0; // currently timer running
switch (bmp2state)
{
// at the end of the period, take action
case BMP_RESET_ACTIVE:
power_I2C1(1);
bmp2nextTime = HAL_GetTick();
bmp2offset = 200; // power up and wait for 200 milliseconds
bmp2state = BMP_PAUSE;
break;
case BMP_PAUSE:
init_bmp(&conf2, &bmp2);
bmp2state = BMP_NORMAL;
return 1; // now in normal operation
// can not get here in normal operation
case BMP_NORMAL:
return 1;
}
return 0;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_TIM4_Init();
MX_USART1_UART_Init();
MX_TIM3_Init();
MX_I2C2_Init();
MX_RTC_Init();
MX_USB_DEVICE_Init();
MX_IWDG_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(USB_PULLUP_GPIO_Port, USB_PULLUP_Pin, GPIO_PIN_RESET);
HAL_Delay(1000);
HAL_GPIO_WritePin(USB_PULLUP_GPIO_Port, USB_PULLUP_Pin, GPIO_PIN_SET);
/* setup the USART control blocks */
#if defined SERIAL_UART1
init_usart_ctl(&uc1, &huart1);
EnableSerialRxInterrupt(&uc1);
#endif
init_bmp(&conf, &bmp);
initBmp2();
cc_init();
uint32_t timeNext = HAL_GetTick() + TICKS_LOOP;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
uint32_t timeNow = HAL_GetTick();
if (timeNow < timeNext)
HAL_Delay(timeNext - timeNow);
timeNext += TICKS_LOOP;
cc_run(&bmp, &bmp2);
// refresh watchdog timer
HAL_IWDG_Refresh(&hiwdg);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_USB;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief I2C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C2_Init(void)
{
/* USER CODE BEGIN I2C2_Init 0 */
/* USER CODE END I2C2_Init 0 */
/* USER CODE BEGIN I2C2_Init 1 */
/* USER CODE END I2C2_Init 1 */
hi2c2.Instance = I2C2;
hi2c2.Init.ClockSpeed = 100000;
hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C2_Init 2 */
/* USER CODE END I2C2_Init 2 */
}
/**
* @brief IWDG Initialization Function
* @param None
* @retval None
*/
static void MX_IWDG_Init(void)
{
/* USER CODE BEGIN IWDG_Init 0 */
/* USER CODE END IWDG_Init 0 */
/* USER CODE BEGIN IWDG_Init 1 */
/* USER CODE END IWDG_Init 1 */
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_16;
hiwdg.Init.Reload = 4095;
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN IWDG_Init 2 */
/* USER CODE END IWDG_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef DateToUpdate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
hrtc.Init.OutPut = RTC_OUTPUTSOURCE_ALARM;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
DateToUpdate.WeekDay = RTC_WEEKDAY_MONDAY;
DateToUpdate.Month = RTC_MONTH_JANUARY;
DateToUpdate.Date = 0x1;
DateToUpdate.Year = 0x0;
if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 719;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 10000;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_ENABLE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 9999;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 15;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(Green_LED_GPIO_Port, Green_LED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin | SPI_RESET_Pin | SPI_NSS1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(I2C1_BusPower_GPIO_Port, I2C1_BusPower_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(USB_PULLUP_GPIO_Port, USB_PULLUP_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : Green_LED_Pin */
GPIO_InitStruct.Pin = Green_LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(Green_LED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_CD_Pin SPI_RESET_Pin SPI_NSS1_Pin */
GPIO_InitStruct.Pin = SPI_CD_Pin | SPI_RESET_Pin | SPI_NSS1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : I2C1_BusPower_Pin */
GPIO_InitStruct.Pin = I2C1_BusPower_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(I2C1_BusPower_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : USB_PULLUP_Pin */
GPIO_InitStruct.Pin = USB_PULLUP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(USB_PULLUP_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : encoder_push_Pin */
GPIO_InitStruct.Pin = encoder_push_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(encoder_push_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/