/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stm32f0xx_hal_adc_ex.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
// turn on the watchdog timer
#define WATCHDOG
/// \brief Enumeration of heater states
typedef enum
{
HEAT_OFF, // heater is off
HEAT_PENDING, // heater request is pending
HEAT_ON, // heater is switched on
HEAT_ON_LOW_VOLT // heater timer running, voltage is low
} heaterControl;
/// \brief state for heater channel
#pragma pack(push, 1)
typedef struct
{
heaterControl control; ///< control state
uint16_t LEDintensity; ///< current LED intensity
uint16_t LEDtarget; ///< current LED target intensity
uint32_t heatTimer; /// < tick time counter for heater channel
uint8_t buttonCount; /// < debounce counter
uint16_t checkSum; /// < checksum used in post-reset validation
} heaterStatus;
#pragma pack(pop)
/// \brief enumeration of LED intensities for each case
typedef enum
{
INTENSITY_OFF = 1, // dim glow
INTENSITY_STBY_DIM = 8, // flashing waiting for batttery voltage - dim
INTENSITY_STBY_BRIGHT = 32, // flashing waiting for battery voltage -bright
INTENSITY_ON_LOW = 64, // night time intensity - dash lighting on
INTENSITY_ON = 256 // daytime intensity - dash lighting off
} ledIntensities;
/// \brief Enumeration of active ADC channels
typedef enum
{
IGNITION_VOLT_CHAN = 0,
DASHBOARD_VOLT_CHAN,
TEMPERATURE_CHAN,
VREF_CHAN
} adcChannels;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/// \brief LED intensities :
/// multiply by INTENSITY_STEP / (INTENSITY_STEP-1) to fade up intensity
/// multiply by (INTENSITY_STEP-1) / INTENSITY_STEP to fade down intensity
#define INTENSITY_STEP 12
/// \brief ADC filtering parameters
#define ADC_TMPGRP_BUF_DEPTH 4
#define ADC_TEMPGRP_NUM_CHANNELS 4
/// \brief ADC scaling for power supply measurement
/// Resistor ladder is 47k top 10k bottom :ratio expressed as 1000 times value
#define IGN_ADC_SCALE 5556 // should be 5700 , but resistor ratio is 5.749 not
// Battery voltage * 1000
// alternator charging
#define HEATER_ON_VOLTAGE 13500
// battery OK under load
#define HEATER_OFF_VOLTAGE 11500
// if the dashboard/backlight power is over 5 volts, consider dimming LEDS
#define DASH_ON_VOLTAGE 5000
// temperature which is regarded as cold
#define COLD_TEMPERATURE 3
// Default timer run time in milli seconds
#define WARM_TIMER_RUN_TICKS 240000L
#define COLD_TIMER_RUN_TICKS 600000L
/*
* Register addresses were taken from DM00088500 (STM32F030 datasheet)
* For non-STM32F030 microcontrollers register addresses
* might need to be modified according to the respective datasheet.
*/
// Temperature sensor raw value at 30 degrees C, VDDA=3.3V
#define TEMP30_CAL_ADDR ((uint16_t *)((uint32_t)0x1FFFF7B8))
// Internal voltage reference raw value at 30 degrees C, VDDA=3.3V
#define VREFINT_CAL_ADDR ((uint16_t *)((uint32_t)0x1FFFF7BA))
// internal temperature sensor : 1000 times ADC slope per degree C
#define AVG_SLOPE (5336L)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc;
DMA_HandleTypeDef hdma_adc;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;
WWDG_HandleTypeDef hwwdg;
/* USER CODE BEGIN PV */
// storage for heater status
heaterStatus const ResetHeater = {HEAT_OFF, 0, 0, 0, 0, 0};
heaterStatus HeaterLeft = ResetHeater;
heaterStatus HeaterRight = ResetHeater;
#define BACKUP_COPIES 2
heaterStatus __attribute__((section(".persistent"))) BackupLeft[BACKUP_COPIES];
heaterStatus __attribute__((section(".persistent"))) BackupRight[BACKUP_COPIES];
// storage for ADC DMA'd samples
uint16_t ADC_Samples[ADC_TMPGRP_BUF_DEPTH * ADC_TEMPGRP_NUM_CHANNELS];
// see https://techoverflow.net/2015/01/13/reading-stm32f0-internal-temperature-and-voltage-using-chibios/
typedef struct
{
int32_t temperature;
int32_t vdda;
int32_t batteryVoltage;
int32_t dashVoltage;
} analogReadings;
analogReadings vals = {0, 0, 0, 0};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM14_Init(void);
static void MX_WWDG_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void setLEDLeft(uint16_t brightness)
{
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_4, brightness);
}
void setLEDRight(uint16_t brightness)
{
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, brightness);
}
void setLEDEval(uint16_t brightness)
{
__HAL_TIM_SET_COMPARE(&htim14, TIM_CHANNEL_1, brightness);
}
void setRelayLeft(heaterControl control)
{
HAL_GPIO_WritePin(RelayLeft_GPIO_Port, RelayLeft_Pin, control == HEAT_ON ? GPIO_PIN_SET : GPIO_PIN_RESET);
}
void setRelayRight(heaterControl control)
{
HAL_GPIO_WritePin(RelayRight_GPIO_Port, RelayRight_Pin, control == HEAT_ON ? GPIO_PIN_SET : GPIO_PIN_RESET);
}
// return 1 when button pressed (using NC button)
uint8_t getButtonLeft()
{
return HAL_GPIO_ReadPin(PushLeft_GPIO_Port, PushLeft_Pin) == GPIO_PIN_SET;
}
// return 1 when button pressed (using NC button)
uint8_t getButtonRight()
{
return HAL_GPIO_ReadPin(PushRight_GPIO_Port, PushRight_Pin) == GPIO_PIN_SET;
}
void readTemperatureVDDA(void)
{
// NOTE: Computation is performed in 32 bits, but result is converted to 16 bits later.s
/**
* Compute average of temperature sensor raw output
* and vrefint raw output
*/
int32_t tempAvg = 0;
int32_t vrefintAvg = 0;
int32_t batteryAvg = 0;
int32_t dashAvg = 0;
// Samples are alternating: ignition, temp, vrefint, ignition, temp, vrefint, ...
for (int i = 0; i < (ADC_TMPGRP_BUF_DEPTH * ADC_TEMPGRP_NUM_CHANNELS); i += ADC_TEMPGRP_NUM_CHANNELS)
{
batteryAvg += ADC_Samples[i + IGNITION_VOLT_CHAN];
tempAvg += ADC_Samples[i + TEMPERATURE_CHAN];
vrefintAvg += ADC_Samples[i + VREF_CHAN];
dashAvg += ADC_Samples[i + DASHBOARD_VOLT_CHAN];
}
tempAvg /= ADC_TMPGRP_BUF_DEPTH;
vrefintAvg /= ADC_TMPGRP_BUF_DEPTH;
batteryAvg /= ADC_TMPGRP_BUF_DEPTH;
dashAvg /= ADC_TMPGRP_BUF_DEPTH;
/**
* Compute temperature in celsius
*
* Note that we need to normalize the value first by applying
* the (actual VDDA / VDDARef) ratio.
*
* Note: VDDA_Actual = 3.3V * VREFINT_CAL / vrefintAvg
* Therefore, the ratio mentioned above is equal to
* q = VREFINT_CAL / vrefintAvg
*/
int32_t temperature = ((int32_t)*TEMP30_CAL_ADDR - tempAvg) * 1000;
temperature = temperature / AVG_SLOPE;
temperature = temperature + 30L;
vals.temperature = temperature;
vals.vdda = (3300 * (*VREFINT_CAL_ADDR)) / vrefintAvg;
vals.batteryVoltage = (IGN_ADC_SCALE * batteryAvg) / 4096 * vals.vdda / 1000; //* 3300 * (*VREFINT_CAL_ADDR)) / batteryAvg);
vals.dashVoltage = (IGN_ADC_SCALE * dashAvg) / 4096 * vals.vdda / 1000;
}
uint16_t getBatteryVoltage()
{
return vals.batteryVoltage;
}
int8_t getTemperature()
{
return vals.temperature;
}
uint16_t getDashVoltage()
{
return vals.dashVoltage;
}
uint16_t checkSum(heaterStatus *status)
{
uint16_t sum = 0xFFFF;
uint8_t *ptr = (uint8_t *)(status);
for (uint8_t *p = ptr; p < ptr + sizeof(heaterStatus) - sizeof(uint16_t); p++)
{
sum *= 41;
sum += *p;
}
return sum;
}
/// @brief Periodic status save into RAM.
/// @param status status to save
/// @param saveStatus address of array to save status in
/// @param iter iteration of saving
/// @return new iteratiom
uint8_t saveStatus(heaterStatus *status, heaterStatus *saveStatus, uint8_t iter)
{
status->checkSum = checkSum(status);
if (iter >= BACKUP_COPIES)
iter = 0;
saveStatus[iter] = *status;
iter++;
return iter;
}
/// @brief Recover status from RAM after reset/crash
/// @param saveStatus pointer to array of saved status
/// @return pointer to valid saved or reset status
heaterStatus const *recoverStatus(heaterStatus *saveStatus)
{
for (int i = 0; i < BACKUP_COPIES; i++)
{
if (saveStatus[i].checkSum == checkSum(saveStatus + i))
return saveStatus + i;
};
// default return a reset state
return &ResetHeater;
}
void process(heaterStatus *status, uint8_t button, uint16_t intensity, int8_t temperature, uint16_t battery, uint16_t dashboard)
{
// deal with button debounce
uint8_t buttonPressed = 0;
uint8_t longButtonPressed = 0;
if (button && status->buttonCount < 100)
{
status->buttonCount++;
if (status->buttonCount == 10)
buttonPressed = 1;
if (status->buttonCount == 100)
longButtonPressed = 1;
}
if (!button)
status->buttonCount = 0;
// deal with LED brightness control
if (status->LEDintensity < status->LEDtarget)
{
// do an exponential fade up
uint16_t tmp = status->LEDintensity;
tmp *= INTENSITY_STEP;
tmp /= INTENSITY_STEP - 1;
// if nothing happened increment
status->LEDintensity = tmp == status->LEDintensity ? tmp + 1 : tmp;
// handle overshoot
if (status->LEDintensity > status->LEDtarget)
status->LEDintensity = status->LEDtarget;
}
if (status->LEDintensity > status->LEDtarget)
{
// do an exponential fade down
uint16_t tmp = status->LEDintensity;
tmp *= INTENSITY_STEP - 1;
tmp /= INTENSITY_STEP;
// if nothing happened, decrement
status->LEDintensity = tmp == status->LEDintensity ? tmp - 1 : tmp;
// handle undershoot
if (status->LEDintensity < status->LEDtarget)
status->LEDintensity = status->LEDtarget;
}
// deal with state machine
switch (status->control)
{
case HEAT_OFF: // heater is off
status->LEDtarget = INTENSITY_OFF;
if (buttonPressed)
status->control = HEAT_PENDING;
break;
case HEAT_PENDING: // heater request is pending
status->LEDtarget = intensity;
if (buttonPressed)
{
status->control = HEAT_OFF;
break;
}
if (battery > HEATER_ON_VOLTAGE)
{
// start the timer
status->heatTimer = HAL_GetTick();
status->control = HEAT_ON;
break;
}
break;
case HEAT_ON: // heater is switched on
case HEAT_ON_LOW_VOLT:
// specific conditions
if (status->control == HEAT_ON)
{
if (battery < HEATER_OFF_VOLTAGE)
status->control = HEAT_ON_LOW_VOLT;
status->LEDtarget = (dashboard > DASH_ON_VOLTAGE) ? INTENSITY_ON : INTENSITY_ON_LOW;
}
if (status->control == HEAT_ON_LOW_VOLT)
{
if (battery > HEATER_ON_VOLTAGE)
status->control = HEAT_ON;
status->LEDtarget = intensity;
}
// common code
// press and hold to turn off
if (longButtonPressed)
{
status->control = HEAT_OFF;
break;
}
// press button to extend time
if (buttonPressed)
{
// restart the timer
status->heatTimer = HAL_GetTick();
break;
}
// respond to temperature input
uint32_t timeLimit = (temperature < COLD_TEMPERATURE) ? COLD_TIMER_RUN_TICKS : WARM_TIMER_RUN_TICKS;
if ((HAL_GetTick() - status->heatTimer) > timeLimit)
{
status->control = HEAT_OFF;
break;
}
break;
// check timer value here
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint8_t saveChannel = 0;
HeaterLeft = *recoverStatus(BackupLeft);
HeaterRight = *recoverStatus(BackupRight);
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC_Init();
MX_TIM3_Init();
MX_TIM14_Init();
#if defined WATCHDOG
MX_WWDG_Init();
#endif
/* USER CODE BEGIN 2 */
HAL_ADC_MspInit(&hadc);
HAL_ADC_Start_DMA(&hadc, (uint32_t *)ADC_Samples, ADC_TMPGRP_BUF_DEPTH * ADC_TEMPGRP_NUM_CHANNELS);
HAL_ADC_Start(&hadc);
// turn on temperature sensor and VREF
ADC->CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN;
// initialise all the STMCubeMX stuff
HAL_TIM_Base_MspInit(&htim3);
HAL_TIM_Base_MspInit(&htim14);
// Start the counter
HAL_TIM_Base_Start(&htim3);
HAL_TIM_Base_Start(&htim14);
HAL_TIM_OC_Start(&htim3, TIM_CHANNEL_2);
HAL_TIM_OC_Start(&htim3, TIM_CHANNEL_4);
HAL_TIM_OC_Start(&htim14, TIM_CHANNEL_1);
int cnt = 0;
uint16_t intensity = 0;
HeaterLeft.LEDtarget = INTENSITY_OFF;
HeaterRight.LEDtarget = INTENSITY_OFF;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
readTemperatureVDDA();
int8_t temperature = getTemperature();
uint16_t batteryVoltage = getBatteryVoltage();
uint16_t dashVoltage = getDashVoltage();
setLEDLeft(HeaterLeft.LEDintensity);
setLEDRight(HeaterRight.LEDintensity);
setLEDEval(HeaterLeft.LEDintensity);
setRelayLeft(HeaterLeft.control);
setRelayRight(HeaterRight.control);
cnt = cnt + 1;
// generate different intensity targets for LED pulsation effect
if ((cnt % 128) == 64)
{
intensity = INTENSITY_STBY_DIM;
}
if ((cnt % 128) == 0)
{
intensity = INTENSITY_STBY_BRIGHT;
}
process(&HeaterLeft, getButtonLeft(), intensity, temperature, batteryVoltage, dashVoltage);
process(&HeaterRight, getButtonRight(), intensity, temperature, batteryVoltage, dashVoltage);
/* note the WWDG configuration also needs to be updated if this delay is changed */
HAL_Delay(10);
#if defined WATCHDOG
HAL_WWDG_Refresh(&hwwdg);
#endif
saveStatus(&HeaterLeft, BackupLeft, saveChannel);
saveChannel = saveStatus(&HeaterRight, BackupRight, saveChannel);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC Initialization Function
* @param None
* @retval None
*/
static void MX_ADC_Init(void)
{
/* USER CODE BEGIN ADC_Init 0 */
/* USER CODE END ADC_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC_Init 1 */
/* USER CODE END ADC_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc.Instance = ADC1;
hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc.Init.Resolution = ADC_RESOLUTION_12B;
hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD;
hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc.Init.LowPowerAutoWait = DISABLE;
hadc.Init.LowPowerAutoPowerOff = DISABLE;
hadc.Init.ContinuousConvMode = DISABLE;
hadc.Init.DiscontinuousConvMode = DISABLE;
hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc.Init.DMAContinuousRequests = ENABLE;
hadc.Init.Overrun = ADC_OVR_DATA_PRESERVED;
if (HAL_ADC_Init(&hadc) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel to be converted.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel to be converted.
*/
sConfig.Channel = ADC_CHANNEL_1;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel to be converted.
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel to be converted.
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC_Init 2 */
/* USER CODE END ADC_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 79;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 255;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 1;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sConfigOC.Pulse = 64;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief TIM14 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 79;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 255;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM2;
sConfigOC.Pulse = 128;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
HAL_TIM_MspPostInit(&htim14);
}
/**
* @brief WWDG Initialization Function
* @param None
* @retval None
*/
static void MX_WWDG_Init(void)
{
/* USER CODE BEGIN WWDG_Init 0 */
/* USER CODE END WWDG_Init 0 */
/* USER CODE BEGIN WWDG_Init 1 */
/* USER CODE END WWDG_Init 1 */
hwwdg.Instance = WWDG;
hwwdg.Init.Prescaler = WWDG_PRESCALER_1;
hwwdg.Init.Window = 83;
hwwdg.Init.Counter = 93;
hwwdg.Init.EWIMode = WWDG_EWI_DISABLE;
if (HAL_WWDG_Init(&hwwdg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN WWDG_Init 2 */
/* USER CODE END WWDG_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, RelayRight_Pin | RelayLeft_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PA2 PA3 PushLeft_Pin */
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_3 | PushLeft_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : RelayRight_Pin RelayLeft_Pin */
GPIO_InitStruct.Pin = RelayRight_Pin | RelayLeft_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PushRight_Pin */
GPIO_InitStruct.Pin = PushRight_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(PushRight_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */