Subversion Repositories EDIS_Ignition

Rev

Rev 19 | Rev 21 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "libIgnTiming/rpm.h"
  33. #include "saveTiming.h"
  34. #include "libPLX/commsLib.h"
  35. /* USER CODE END Includes */
  36.  
  37. /* Private typedef -----------------------------------------------------------*/
  38. /* USER CODE BEGIN PTD */
  39.  
  40. /* USER CODE END PTD */
  41.  
  42. /* Private define ------------------------------------------------------------*/
  43. /* USER CODE BEGIN PD */
  44. /* USER CODE END PD */
  45.  
  46. /* Private macro -------------------------------------------------------------*/
  47. /* USER CODE BEGIN PM */
  48.  
  49. /* USER CODE END PM */
  50.  
  51. /* Private variables ---------------------------------------------------------*/
  52. CAN_HandleTypeDef hcan;
  53.  
  54. I2C_HandleTypeDef hi2c1;
  55.  
  56. IWDG_HandleTypeDef hiwdg;
  57.  
  58. SPI_HandleTypeDef hspi1;
  59.  
  60. TIM_HandleTypeDef htim1;
  61. TIM_HandleTypeDef htim2;
  62. TIM_HandleTypeDef htim3;
  63.  
  64. UART_HandleTypeDef huart2;
  65.  
  66. /* USER CODE BEGIN PV */
  67. int const T100MS = 100;
  68.  
  69. int const DISPLAY_REINITIALISE = 60 * 1000;
  70. /// @brief compensated pressure in mb * 100
  71. uint32_t compensatedManifoldPressure = 0;
  72. /// @brief compensated atmospheric pressure
  73. uint32_t compensatedAtmosphericPressure = 0;
  74. /// @brief compensated temperature
  75. int32_t compensatedTemperature = -10000;
  76.  
  77. int32_t timing = 0;
  78.  
  79. // 6 degrees error in timing wheel this time ..
  80. int const TIMING_OFFSET = -6 * TIMING_SCALE;
  81.  
  82. // Switch over to double sparking
  83. int const DOUBLE_SPARK_RPM = 1200;
  84. // default atmospheric pressure
  85. uint32_t const DEFAULT_ATMOSPHERIC_PRESSURE = 1014 * 100;
  86.  
  87. uint32_t const DEFAULT_ATMOSPHERIC_TEMPERATURE = 25 * 100;
  88.  
  89. // Serial buffers
  90. #define TX_BUFFER_SIZE 128
  91. #define RX_BUFFER_SIZE 128
  92. unsigned volatile char tx_buffer[TX_BUFFER_SIZE];
  93. unsigned volatile char rx_buffer[RX_BUFFER_SIZE];
  94.  
  95. /* USER CODE END PV */
  96.  
  97. /* Private function prototypes -----------------------------------------------*/
  98. void SystemClock_Config(void);
  99. static void MX_GPIO_Init(void);
  100. static void MX_CAN_Init(void);
  101. static void MX_I2C1_Init(void);
  102. static void MX_TIM1_Init(void);
  103. static void MX_TIM2_Init(void);
  104. static void MX_SPI1_Init(void);
  105. static void MX_USART2_UART_Init(void);
  106. static void MX_TIM3_Init(void);
  107. static void MX_IWDG_Init(void);
  108. /* USER CODE BEGIN PFP */
  109.  
  110. void libPLXcallbackRecievedData(PLX_SensorInfo *info)
  111. {
  112.   (void)info;
  113. }
  114.  
  115. void libPLXcallbackSendUserData()
  116. {
  117.   // send MAP
  118.   PLX_SensorInfo info;
  119.   ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
  120.   ConvToPLXAddr(PLX_MAP, &info);
  121.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(compensatedManifoldPressure) / 100.0), &info);
  122.   sendInfo(&uc2, &info);
  123.  
  124.   ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
  125.   ConvToPLXAddr(PLX_Timing, &info);
  126.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  127.   sendInfo(&uc2, &info);
  128. }
  129.  
  130. void triggerSAW()
  131. {
  132.   // trigger SAW timer, timer 1##pragma endregion
  133.  
  134.   __HAL_TIM_ENABLE(&htim1);
  135. }
  136.  
  137. /* USER CODE END PFP */
  138.  
  139. /* Private user code ---------------------------------------------------------*/
  140. /* USER CODE BEGIN 0 */
  141. void watchdogWrite()
  142. {
  143.   HAL_IWDG_Refresh(&hiwdg);
  144. }
  145.  
  146. /* USER CODE END 0 */
  147.  
  148. /**
  149.  * @brief  The application entry point.
  150.  * @retval int
  151.  */
  152. int main(void)
  153. {
  154.   /* USER CODE BEGIN 1 */
  155.  
  156.   /* USER CODE END 1 */
  157.  
  158.   /* MCU Configuration--------------------------------------------------------*/
  159.  
  160.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  161.   HAL_Init();
  162.  
  163.   /* USER CODE BEGIN Init */
  164.  
  165.   /* USER CODE END Init */
  166.  
  167.   /* Configure the system clock */
  168.   SystemClock_Config();
  169.  
  170.   /* USER CODE BEGIN SysInit */
  171.  
  172.   /* USER CODE END SysInit */
  173.  
  174.   /* Initialize all configured peripherals */
  175.   MX_GPIO_Init();
  176.   MX_CAN_Init();
  177.   MX_I2C1_Init();
  178.   MX_TIM1_Init();
  179.   MX_TIM2_Init();
  180.   MX_SPI1_Init();
  181.   MX_USART2_UART_Init();
  182.   MX_TIM3_Init();
  183.   MX_IWDG_Init();
  184.   /* USER CODE BEGIN 2 */
  185.  
  186.   init_usart_ctl(&uc2, &huart2, tx_buffer,
  187.                  rx_buffer,
  188.                  TX_BUFFER_SIZE,
  189.                  RX_BUFFER_SIZE);
  190.  
  191.   cc_init();
  192.  
  193.   HAL_TIM_Base_MspInit(&htim1);
  194.  
  195.   HAL_TIM_Base_Start(&htim1);
  196.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  197.  
  198.   // initialise all the STMCubeMX stuff
  199.   HAL_TIM_Base_MspInit(&htim2);
  200.   // Start the counter
  201.   HAL_TIM_Base_Start(&htim2);
  202.   // Start the input capture and the rising edge interrupt
  203.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  204.   // Start the input capture and the falling edge interrupt
  205.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  206.  
  207.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  208.  
  209.   // HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  210.   MX_I2C1_Init();
  211.   init_bmp(&hi2c1, &bmp);
  212.   init_bmp(&hi2c1, &bmpAtm);
  213.  
  214.   uint32_t lastTick = HAL_GetTick();
  215.  
  216.   uint32_t displayOff = lastTick + 10000;
  217.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  218.  
  219.   uint8_t intensity = 2;
  220.  
  221.   ResetRxBuffer(&uc2);
  222.  
  223.   resetPLX();
  224.  
  225.   // HAL_IWDG_Init(&hiwdg);
  226.   /* USER CODE END 2 */
  227.  
  228.   /* Infinite loop */
  229.   /* USER CODE BEGIN WHILE */
  230.   while (1)
  231.   {
  232.  
  233.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  234.  
  235.     if (button)
  236.     {
  237.       intensity = 2;
  238.       displayOff = lastTick + 30000;
  239.     }
  240.  
  241.     switch (intensity)
  242.     {
  243.     case 2:
  244.       if (HAL_GetTick() > displayOff)
  245.       {
  246.         intensity = 1;
  247.         displayOff = lastTick + 60000;
  248.       }
  249.  
  250.       break;
  251.     case 1:
  252.       if (HAL_GetTick() > displayOff)
  253.       {
  254.         intensity = 1; // was 0
  255.       }
  256.     default:
  257.       break;
  258.     }
  259.     // periodically write to the display and clear it
  260.     if (HAL_GetTick() > displayReinitialise)
  261.     {
  262.       displayReinitialise += DISPLAY_REINITIALISE;
  263.       cc_display(0, intensity, 1);
  264.     }
  265.     else
  266.       cc_display(0, intensity, 0);
  267.  
  268.     if (HAL_GetTick() - lastTick > T100MS)
  269.     {
  270.       lastTick = HAL_GetTick();
  271.       /* Reading the raw data from sensor */
  272.       struct bmp280_uncomp_data ucomp_data;
  273.  
  274.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  275.  
  276.       uint8_t manifoldStatus = 1;
  277.       uint8_t temperatureStatus = 1;
  278.       uint8_t atmosphericStatus = 1;
  279.  
  280.       if (rslt == BMP280_OK)
  281.       {
  282.         manifoldStatus = bmp280_get_comp_pres_32bit(&compensatedManifoldPressure, ucomp_data.uncomp_press, &bmp);
  283.  
  284.         temperatureStatus = bmp280_get_comp_temp_32bit(&compensatedTemperature, ucomp_data.uncomp_temp, &bmp);
  285.  
  286. #if defined TEST_CODE
  287.         compensatedManifoldPressure = 100000;
  288.         compensatedTemperature = 4000;
  289. #endif
  290.       }
  291.       // get atmospheric data
  292.       if (rslt == BMP280_OK)
  293.       {
  294.         rslt = bmp280_get_uncomp_data(&ucomp_data, &bmpAtm);
  295.         // now to read the environmental pressure
  296.         if (rslt == BMP280_OK)
  297.           atmosphericStatus = bmp280_get_comp_pres_32bit(&compensatedAtmosphericPressure, ucomp_data.uncomp_press, &bmpAtm);
  298.       }
  299.       if (manifoldStatus != BMP280_OK)
  300.         compensatedManifoldPressure = DEFAULT_ATMOSPHERIC_PRESSURE;
  301.       if (temperatureStatus != BMP280_OK)
  302.         compensatedTemperature = DEFAULT_ATMOSPHERIC_TEMPERATURE;
  303.       if (atmosphericStatus != BMP280_OK)
  304.         compensatedAtmosphericPressure = DEFAULT_ATMOSPHERIC_PRESSURE;
  305.  
  306.       uint32_t vacuum = compensatedAtmosphericPressure - compensatedManifoldPressure;
  307.       // if the BMP280 pressure is good, then allow it through, otherwise drop to
  308.       // centrifugal advance only.
  309.       // feed difference and add default pressure
  310.       cc_feed_env(vacuum + DEFAULT_ATMOSPHERIC_PRESSURE, compensatedTemperature);
  311.  
  312.       // compute RPM value, feed to display
  313. #if defined TEST_CODE
  314.       int rpm = 1000;
  315. #else
  316.       int rpm = CalculateRPM();
  317. #endif
  318.       if (rpm > 0)
  319.       {
  320.         cc_feed_rpm(rpm);
  321.         // compute timing value, feed to display
  322.         timing = mapTiming(rpm, 1000 - vacuum / 100);
  323.         cc_feed_timing(timing);
  324.         // enable double spark below 1200 rpm
  325.         int microsecs = mapTimingToMicroseconds(timing + TIMING_OFFSET, rpm > DOUBLE_SPARK_RPM);
  326.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  327.       }
  328.     }
  329.  
  330.     // Handle PLX
  331.     libPLXpollData(&uc2);
  332.  
  333.     /* USER CODE END WHILE */
  334.  
  335.     /* USER CODE BEGIN 3 */
  336.     watchdogWrite();
  337.  
  338.     HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
  339.  
  340.     // todo occasionally     saveTimingInfoToNvram();
  341.   }
  342.   /* USER CODE END 3 */
  343. }
  344.  
  345. /**
  346.  * @brief System Clock Configuration
  347.  * @retval None
  348.  */
  349. void SystemClock_Config(void)
  350. {
  351.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  352.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  353.  
  354.   /** Initializes the RCC Oscillators according to the specified parameters
  355.    * in the RCC_OscInitTypeDef structure.
  356.    */
  357.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  358.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  359.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  360.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  361.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  362.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  363.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  364.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  365.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  366.   {
  367.     Error_Handler();
  368.   }
  369.  
  370.   /** Initializes the CPU, AHB and APB buses clocks
  371.    */
  372.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  373.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  374.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  375.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  376.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  377.  
  378.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  379.   {
  380.     Error_Handler();
  381.   }
  382. }
  383.  
  384. /**
  385.  * @brief CAN Initialization Function
  386.  * @param None
  387.  * @retval None
  388.  */
  389. static void MX_CAN_Init(void)
  390. {
  391.  
  392.   /* USER CODE BEGIN CAN_Init 0 */
  393.  
  394.   /* USER CODE END CAN_Init 0 */
  395.  
  396.   /* USER CODE BEGIN CAN_Init 1 */
  397.  
  398.   /* USER CODE END CAN_Init 1 */
  399.   hcan.Instance = CAN1;
  400.   hcan.Init.Prescaler = 18;
  401.   hcan.Init.Mode = CAN_MODE_NORMAL;
  402.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  403.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  404.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  405.   hcan.Init.TimeTriggeredMode = DISABLE;
  406.   hcan.Init.AutoBusOff = DISABLE;
  407.   hcan.Init.AutoWakeUp = DISABLE;
  408.   hcan.Init.AutoRetransmission = DISABLE;
  409.   hcan.Init.ReceiveFifoLocked = DISABLE;
  410.   hcan.Init.TransmitFifoPriority = DISABLE;
  411.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  412.   {
  413.     Error_Handler();
  414.   }
  415.   /* USER CODE BEGIN CAN_Init 2 */
  416.  
  417.   /* USER CODE END CAN_Init 2 */
  418. }
  419.  
  420. /**
  421.  * @brief I2C1 Initialization Function
  422.  * @param None
  423.  * @retval None
  424.  */
  425. static void MX_I2C1_Init(void)
  426. {
  427.  
  428.   /* USER CODE BEGIN I2C1_Init 0 */
  429.  
  430.   /* USER CODE END I2C1_Init 0 */
  431.  
  432.   /* USER CODE BEGIN I2C1_Init 1 */
  433.  
  434.   /* USER CODE END I2C1_Init 1 */
  435.   hi2c1.Instance = I2C1;
  436.   hi2c1.Init.ClockSpeed = 100000;
  437.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  438.   hi2c1.Init.OwnAddress1 = 0;
  439.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  440.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  441.   hi2c1.Init.OwnAddress2 = 0;
  442.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  443.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  444.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  445.   {
  446.     Error_Handler();
  447.   }
  448.   /* USER CODE BEGIN I2C1_Init 2 */
  449.  
  450.   /* USER CODE END I2C1_Init 2 */
  451. }
  452.  
  453. /**
  454.  * @brief IWDG Initialization Function
  455.  * @param None
  456.  * @retval None
  457.  */
  458. static void MX_IWDG_Init(void)
  459. {
  460.  
  461.   /* USER CODE BEGIN IWDG_Init 0 */
  462.  
  463.   /* USER CODE END IWDG_Init 0 */
  464.  
  465.   /* USER CODE BEGIN IWDG_Init 1 */
  466.  
  467.   /* USER CODE END IWDG_Init 1 */
  468.   hiwdg.Instance = IWDG;
  469.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  470.   hiwdg.Init.Reload = 1000;
  471.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  472.   {
  473.     Error_Handler();
  474.   }
  475.   /* USER CODE BEGIN IWDG_Init 2 */
  476.  
  477.   /* USER CODE END IWDG_Init 2 */
  478. }
  479.  
  480. /**
  481.  * @brief SPI1 Initialization Function
  482.  * @param None
  483.  * @retval None
  484.  */
  485. static void MX_SPI1_Init(void)
  486. {
  487.  
  488.   /* USER CODE BEGIN SPI1_Init 0 */
  489.  
  490.   /* USER CODE END SPI1_Init 0 */
  491.  
  492.   /* USER CODE BEGIN SPI1_Init 1 */
  493.  
  494.   /* USER CODE END SPI1_Init 1 */
  495.   /* SPI1 parameter configuration*/
  496.   hspi1.Instance = SPI1;
  497.   hspi1.Init.Mode = SPI_MODE_MASTER;
  498.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  499.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  500.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  501.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  502.   hspi1.Init.NSS = SPI_NSS_SOFT;
  503.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  504.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  505.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  506.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  507.   hspi1.Init.CRCPolynomial = 10;
  508.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  509.   {
  510.     Error_Handler();
  511.   }
  512.   /* USER CODE BEGIN SPI1_Init 2 */
  513.  
  514.   /* USER CODE END SPI1_Init 2 */
  515. }
  516.  
  517. /**
  518.  * @brief TIM1 Initialization Function
  519.  * @param None
  520.  * @retval None
  521.  */
  522. static void MX_TIM1_Init(void)
  523. {
  524.  
  525.   /* USER CODE BEGIN TIM1_Init 0 */
  526.  
  527.   /* USER CODE END TIM1_Init 0 */
  528.  
  529.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  530.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  531.   TIM_OC_InitTypeDef sConfigOC = {0};
  532.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  533.  
  534.   /* USER CODE BEGIN TIM1_Init 1 */
  535.  
  536.   /* USER CODE END TIM1_Init 1 */
  537.   htim1.Instance = TIM1;
  538.   htim1.Init.Prescaler = 71;
  539.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  540.   htim1.Init.Period = 65535;
  541.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  542.   htim1.Init.RepetitionCounter = 0;
  543.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  544.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  545.   {
  546.     Error_Handler();
  547.   }
  548.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  549.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  550.   {
  551.     Error_Handler();
  552.   }
  553.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  554.   {
  555.     Error_Handler();
  556.   }
  557.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  558.   {
  559.     Error_Handler();
  560.   }
  561.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  562.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  563.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  564.   {
  565.     Error_Handler();
  566.   }
  567.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  568.   sConfigOC.Pulse = SAW_DELAY;
  569.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  570.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  571.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  572.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  573.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  574.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  575.   {
  576.     Error_Handler();
  577.   }
  578.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  579.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  580.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  581.   sBreakDeadTimeConfig.DeadTime = 0;
  582.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  583.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  584.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  585.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  586.   {
  587.     Error_Handler();
  588.   }
  589.   /* USER CODE BEGIN TIM1_Init 2 */
  590.  
  591.   /* USER CODE END TIM1_Init 2 */
  592.   HAL_TIM_MspPostInit(&htim1);
  593. }
  594.  
  595. /**
  596.  * @brief TIM2 Initialization Function
  597.  * @param None
  598.  * @retval None
  599.  */
  600. static void MX_TIM2_Init(void)
  601. {
  602.  
  603.   /* USER CODE BEGIN TIM2_Init 0 */
  604.  
  605.   /* USER CODE END TIM2_Init 0 */
  606.  
  607.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  608.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  609.   TIM_IC_InitTypeDef sConfigIC = {0};
  610.  
  611.   /* USER CODE BEGIN TIM2_Init 1 */
  612.  
  613.   /* USER CODE END TIM2_Init 1 */
  614.   htim2.Instance = TIM2;
  615.   htim2.Init.Prescaler = 719;
  616.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  617.   htim2.Init.Period = 65535;
  618.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  619.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  620.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  621.   {
  622.     Error_Handler();
  623.   }
  624.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  625.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  626.   {
  627.     Error_Handler();
  628.   }
  629.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  630.   {
  631.     Error_Handler();
  632.   }
  633.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  634.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  635.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  636.   {
  637.     Error_Handler();
  638.   }
  639.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  640.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  641.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  642.   sConfigIC.ICFilter = 0;
  643.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  644.   {
  645.     Error_Handler();
  646.   }
  647.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  648.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  649.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  650.   {
  651.     Error_Handler();
  652.   }
  653.   /* USER CODE BEGIN TIM2_Init 2 */
  654.  
  655.   /* USER CODE END TIM2_Init 2 */
  656. }
  657.  
  658. /**
  659.  * @brief TIM3 Initialization Function
  660.  * @param None
  661.  * @retval None
  662.  */
  663. static void MX_TIM3_Init(void)
  664. {
  665.  
  666.   /* USER CODE BEGIN TIM3_Init 0 */
  667.  
  668.   /* USER CODE END TIM3_Init 0 */
  669.  
  670.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  671.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  672.  
  673.   /* USER CODE BEGIN TIM3_Init 1 */
  674.  
  675.   /* USER CODE END TIM3_Init 1 */
  676.   htim3.Instance = TIM3;
  677.   htim3.Init.Prescaler = 719;
  678.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  679.   htim3.Init.Period = 10000;
  680.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  681.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  682.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  683.   {
  684.     Error_Handler();
  685.   }
  686.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  687.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  688.   {
  689.     Error_Handler();
  690.   }
  691.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  692.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  693.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  694.   {
  695.     Error_Handler();
  696.   }
  697.   /* USER CODE BEGIN TIM3_Init 2 */
  698.  
  699.   /* USER CODE END TIM3_Init 2 */
  700. }
  701.  
  702. /**
  703.  * @brief USART2 Initialization Function
  704.  * @param None
  705.  * @retval None
  706.  */
  707. static void MX_USART2_UART_Init(void)
  708. {
  709.  
  710.   /* USER CODE BEGIN USART2_Init 0 */
  711.  
  712.   /* USER CODE END USART2_Init 0 */
  713.  
  714.   /* USER CODE BEGIN USART2_Init 1 */
  715.  
  716.   /* USER CODE END USART2_Init 1 */
  717.   huart2.Instance = USART2;
  718.   huart2.Init.BaudRate = 19200;
  719.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  720.   huart2.Init.StopBits = UART_STOPBITS_1;
  721.   huart2.Init.Parity = UART_PARITY_NONE;
  722.   huart2.Init.Mode = UART_MODE_TX_RX;
  723.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  724.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  725.   if (HAL_UART_Init(&huart2) != HAL_OK)
  726.   {
  727.     Error_Handler();
  728.   }
  729.   /* USER CODE BEGIN USART2_Init 2 */
  730.  
  731.   /* USER CODE END USART2_Init 2 */
  732. }
  733.  
  734. /**
  735.  * @brief GPIO Initialization Function
  736.  * @param None
  737.  * @retval None
  738.  */
  739. static void MX_GPIO_Init(void)
  740. {
  741.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  742.   /* USER CODE BEGIN MX_GPIO_Init_1 */
  743.   /* USER CODE END MX_GPIO_Init_1 */
  744.  
  745.   /* GPIO Ports Clock Enable */
  746.   __HAL_RCC_GPIOC_CLK_ENABLE();
  747.   __HAL_RCC_GPIOD_CLK_ENABLE();
  748.   __HAL_RCC_GPIOA_CLK_ENABLE();
  749.   __HAL_RCC_GPIOB_CLK_ENABLE();
  750.  
  751.   /*Configure GPIO pin Output Level */
  752.   HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
  753.  
  754.   /*Configure GPIO pin Output Level */
  755.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  756.  
  757.   /*Configure GPIO pin Output Level */
  758.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  759.  
  760.   /*Configure GPIO pin : LED_Pin */
  761.   GPIO_InitStruct.Pin = LED_Pin;
  762.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  763.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  764.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  765.   HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
  766.  
  767.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  768.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  769.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  770.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  771.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  772.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  773.  
  774.   /*Configure GPIO pin : SPI1_CD_Pin */
  775.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  776.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  777.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  778.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  779.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  780.  
  781.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  782.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  783.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  784.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  785.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  786.  
  787.   /*Configure GPIO pin : dualSpark_Pin */
  788.   GPIO_InitStruct.Pin = dualSpark_Pin;
  789.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  790.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  791.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  792.  
  793.   /* USER CODE BEGIN MX_GPIO_Init_2 */
  794.   /* USER CODE END MX_GPIO_Init_2 */
  795. }
  796.  
  797. /* USER CODE BEGIN 4 */
  798.  
  799. /* USER CODE END 4 */
  800.  
  801. /**
  802.  * @brief  This function is executed in case of error occurrence.
  803.  * @retval None
  804.  */
  805. void Error_Handler(void)
  806. {
  807.   /* USER CODE BEGIN Error_Handler_Debug */
  808.   /* User can add his own implementation to report the HAL error return state */
  809.   __disable_irq();
  810.   while (1)
  811.   {
  812.   }
  813.   /* USER CODE END Error_Handler_Debug */
  814. }
  815.  
  816. #ifdef USE_FULL_ASSERT
  817. /**
  818.  * @brief  Reports the name of the source file and the source line number
  819.  *         where the assert_param error has occurred.
  820.  * @param  file: pointer to the source file name
  821.  * @param  line: assert_param error line source number
  822.  * @retval None
  823.  */
  824. void assert_failed(uint8_t *file, uint32_t line)
  825. {
  826.   /* USER CODE BEGIN 6 */
  827.   /* User can add his own implementation to report the file name and line number,
  828.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  829.   /* USER CODE END 6 */
  830. }
  831. #endif /* USE_FULL_ASSERT */
  832.