Subversion Repositories EDIS_Ignition

Rev

Rev 18 | Rev 20 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "libIgnTiming/rpm.h"
  33. #include "saveTiming.h"
  34. #include "libPLX/commsLib.h"
  35. /* USER CODE END Includes */
  36.  
  37. /* Private typedef -----------------------------------------------------------*/
  38. /* USER CODE BEGIN PTD */
  39.  
  40. /* USER CODE END PTD */
  41.  
  42. /* Private define ------------------------------------------------------------*/
  43. /* USER CODE BEGIN PD */
  44. /* USER CODE END PD */
  45.  
  46. /* Private macro -------------------------------------------------------------*/
  47. /* USER CODE BEGIN PM */
  48.  
  49. /* USER CODE END PM */
  50.  
  51. /* Private variables ---------------------------------------------------------*/
  52. CAN_HandleTypeDef hcan;
  53.  
  54. I2C_HandleTypeDef hi2c1;
  55.  
  56. IWDG_HandleTypeDef hiwdg;
  57.  
  58. SPI_HandleTypeDef hspi1;
  59.  
  60. TIM_HandleTypeDef htim1;
  61. TIM_HandleTypeDef htim2;
  62. TIM_HandleTypeDef htim3;
  63.  
  64. UART_HandleTypeDef huart2;
  65.  
  66. /* USER CODE BEGIN PV */
  67. int const T100MS = 100;
  68.  
  69. int const DISPLAY_REINITIALISE = 60 * 1000;
  70. // compensated pressure in mb * 100
  71. uint32_t comp_pres = 0;
  72. // compensated temperature
  73. int32_t comp_temp = -10000;
  74.  
  75. int32_t timing = 0;
  76.  
  77. // 6 degrees error in timing wheel this time ..
  78. int const TIMING_OFFSET = -6 * TIMING_SCALE;
  79.  
  80. // Switch over to double sparking
  81. int const DOUBLE_SPARK_RPM = 1200;
  82. // default atmospheric pressure
  83. uint32_t const DEFAULT_ATMOSPHERIC_PRESSURE = 1014 * 100;
  84.  
  85. uint32_t const DEFAULT_ATMOSPHERIC_TEMPERATURE = 25 * 100;
  86.  
  87. // Serial buffers
  88. #define TX_BUFFER_SIZE 128  
  89. #define RX_BUFFER_SIZE 128
  90. unsigned volatile char tx_buffer[TX_BUFFER_SIZE];
  91. unsigned volatile char rx_buffer[RX_BUFFER_SIZE];
  92.  
  93. /* USER CODE END PV */
  94.  
  95. /* Private function prototypes -----------------------------------------------*/
  96. void SystemClock_Config(void);
  97. static void MX_GPIO_Init(void);
  98. static void MX_CAN_Init(void);
  99. static void MX_I2C1_Init(void);
  100. static void MX_TIM1_Init(void);
  101. static void MX_TIM2_Init(void);
  102. static void MX_SPI1_Init(void);
  103. static void MX_USART2_UART_Init(void);
  104. static void MX_TIM3_Init(void);
  105. static void MX_IWDG_Init(void);
  106. /* USER CODE BEGIN PFP */
  107.  
  108. void libPLXcallbackRecievedData(PLX_SensorInfo * info)
  109. { (void)info; }
  110.  
  111. void libPLXcallbackSendUserData()
  112. {
  113.   // send MAP
  114.   PLX_SensorInfo info;
  115.   ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
  116.   ConvToPLXAddr(PLX_MAP, &info);
  117.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(comp_pres) / 100.0), &info);
  118.   sendInfo(&uc2, &info);
  119.  
  120.   ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
  121.   ConvToPLXAddr(PLX_Timing, &info);
  122.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  123.   sendInfo(&uc2, &info);
  124. }
  125.  
  126. void triggerSAW()
  127. {
  128.   // trigger SAW timer, timer 1##pragma endregion
  129.  
  130.   __HAL_TIM_ENABLE(&htim1);
  131. }
  132.  
  133. /* USER CODE END PFP */
  134.  
  135. /* Private user code ---------------------------------------------------------*/
  136. /* USER CODE BEGIN 0 */
  137. void watchdogWrite()
  138. {
  139.   HAL_IWDG_Refresh(&hiwdg);
  140. }
  141.  
  142. /* USER CODE END 0 */
  143.  
  144. /**
  145.  * @brief  The application entry point.
  146.  * @retval int
  147.  */
  148. int main(void)
  149. {
  150.   /* USER CODE BEGIN 1 */
  151.  
  152.   /* USER CODE END 1 */
  153.  
  154.   /* MCU Configuration--------------------------------------------------------*/
  155.  
  156.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  157.   HAL_Init();
  158.  
  159.   /* USER CODE BEGIN Init */
  160.  
  161.   /* USER CODE END Init */
  162.  
  163.   /* Configure the system clock */
  164.   SystemClock_Config();
  165.  
  166.   /* USER CODE BEGIN SysInit */
  167.  
  168.   /* USER CODE END SysInit */
  169.  
  170.   /* Initialize all configured peripherals */
  171.   MX_GPIO_Init();
  172.   MX_CAN_Init();
  173.   MX_I2C1_Init();
  174.   MX_TIM1_Init();
  175.   MX_TIM2_Init();
  176.   MX_SPI1_Init();
  177.   MX_USART2_UART_Init();
  178.   MX_TIM3_Init();
  179.   MX_IWDG_Init();
  180.   /* USER CODE BEGIN 2 */
  181.  
  182.   init_usart_ctl(&uc2, &huart2, tx_buffer,
  183.                  rx_buffer,
  184.                  TX_BUFFER_SIZE,
  185.                  RX_BUFFER_SIZE);
  186.  
  187.   cc_init();
  188.  
  189.   HAL_TIM_Base_MspInit(&htim1);
  190.  
  191.   HAL_TIM_Base_Start(&htim1);
  192.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  193.  
  194.   // initialise all the STMCubeMX stuff
  195.   HAL_TIM_Base_MspInit(&htim2);
  196.   // Start the counter
  197.   HAL_TIM_Base_Start(&htim2);
  198.   // Start the input capture and the rising edge interrupt
  199.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  200.   // Start the input capture and the falling edge interrupt
  201.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  202.  
  203.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  204.  
  205.  // HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  206.   MX_I2C1_Init();
  207.   init_bmp(&hi2c1);
  208.   uint32_t lastTick = HAL_GetTick();
  209.  
  210.   uint32_t displayOff = lastTick + 10000;
  211.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  212.  
  213.   uint8_t intensity = 2;
  214.  
  215.   ResetRxBuffer(&uc2);
  216.  
  217.   resetPLX();
  218.  
  219.   // HAL_IWDG_Init(&hiwdg);
  220.   /* USER CODE END 2 */
  221.  
  222.   /* Infinite loop */
  223.   /* USER CODE BEGIN WHILE */
  224.   while (1)
  225.   {
  226.  
  227.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  228.  
  229.     if (button)
  230.     {
  231.       intensity = 2;
  232.       displayOff = lastTick + 30000;
  233.     }
  234.  
  235.     switch (intensity)
  236.     {
  237.     case 2:
  238.       if (HAL_GetTick() > displayOff)
  239.       {
  240.         intensity = 1;
  241.         displayOff = lastTick + 60000;
  242.       }
  243.  
  244.       break;
  245.     case 1:
  246.       if (HAL_GetTick() > displayOff)
  247.       {
  248.         intensity = 1; // was 0
  249.       }
  250.     default:
  251.       break;
  252.     }
  253.     // periodically write to the display and clear it
  254.     if (HAL_GetTick() > displayReinitialise)
  255.     {
  256.       displayReinitialise += DISPLAY_REINITIALISE;
  257.       cc_display(0, intensity, 1);
  258.     }
  259.     else
  260.       cc_display(0, intensity, 0);
  261.  
  262.     if (HAL_GetTick() - lastTick > T100MS)
  263.     {
  264.       lastTick = HAL_GetTick();
  265.       /* Reading the raw data from sensor */
  266.       struct bmp280_uncomp_data ucomp_data;
  267.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  268.  
  269.       uint8_t rslt2 = 1;
  270.       uint8_t rslt3 = 1;
  271.  
  272.       if (rslt == 0)
  273.       {
  274.         rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  275.  
  276.         rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  277.  
  278. #if defined TEST_CODE
  279.         comp_pres = 100000;
  280.         comp_temp = 4000;
  281. #endif
  282.       }
  283.       // if the BMP280 pressure is good, then allow it through, otherwise drop to
  284.       // centrifugal advance only.
  285.       if (rslt == BMP280_OK && rslt2 == BMP280_OK && rslt3 == BMP280_OK)
  286.         cc_feed_env(comp_pres, comp_temp);
  287.       else
  288.         cc_feed_env(DEFAULT_ATMOSPHERIC_PRESSURE, DEFAULT_ATMOSPHERIC_TEMPERATURE);
  289.  
  290.         // compute RPM value, feed to display
  291. #if defined TEST_CODE
  292.       int rpm = 1000;
  293. #else
  294.       int rpm = CalculateRPM();
  295. #endif
  296.       if (rpm > 0)
  297.       {
  298.         cc_feed_rpm(rpm);
  299.         // compute timing value, feed to display
  300.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  301.         cc_feed_timing(timing);
  302.         // enable double spark below 1200 rpm
  303.         int microsecs = mapTimingToMicroseconds(timing + TIMING_OFFSET, rpm > DOUBLE_SPARK_RPM);
  304.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  305.       }
  306.     }
  307.  
  308.     // Handle PLX
  309.     libPLXpollData(&uc2);
  310.  
  311.     /* USER CODE END WHILE */
  312.  
  313.     /* USER CODE BEGIN 3 */
  314.     watchdogWrite();
  315.  
  316.     HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
  317.  
  318.     // todo occasionally     saveTimingInfoToNvram();
  319.   }
  320.   /* USER CODE END 3 */
  321. }
  322.  
  323. /**
  324.  * @brief System Clock Configuration
  325.  * @retval None
  326.  */
  327. void SystemClock_Config(void)
  328. {
  329.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  330.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  331.  
  332.   /** Initializes the RCC Oscillators according to the specified parameters
  333.    * in the RCC_OscInitTypeDef structure.
  334.    */
  335.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  336.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  337.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  338.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  339.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  340.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  341.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  342.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  343.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  344.   {
  345.     Error_Handler();
  346.   }
  347.  
  348.   /** Initializes the CPU, AHB and APB buses clocks
  349.    */
  350.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  351.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  352.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  353.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  354.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  355.  
  356.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  357.   {
  358.     Error_Handler();
  359.   }
  360. }
  361.  
  362. /**
  363.  * @brief CAN Initialization Function
  364.  * @param None
  365.  * @retval None
  366.  */
  367. static void MX_CAN_Init(void)
  368. {
  369.  
  370.   /* USER CODE BEGIN CAN_Init 0 */
  371.  
  372.   /* USER CODE END CAN_Init 0 */
  373.  
  374.   /* USER CODE BEGIN CAN_Init 1 */
  375.  
  376.   /* USER CODE END CAN_Init 1 */
  377.   hcan.Instance = CAN1;
  378.   hcan.Init.Prescaler = 18;
  379.   hcan.Init.Mode = CAN_MODE_NORMAL;
  380.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  381.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  382.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  383.   hcan.Init.TimeTriggeredMode = DISABLE;
  384.   hcan.Init.AutoBusOff = DISABLE;
  385.   hcan.Init.AutoWakeUp = DISABLE;
  386.   hcan.Init.AutoRetransmission = DISABLE;
  387.   hcan.Init.ReceiveFifoLocked = DISABLE;
  388.   hcan.Init.TransmitFifoPriority = DISABLE;
  389.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  390.   {
  391.     Error_Handler();
  392.   }
  393.   /* USER CODE BEGIN CAN_Init 2 */
  394.  
  395.   /* USER CODE END CAN_Init 2 */
  396. }
  397.  
  398. /**
  399.  * @brief I2C1 Initialization Function
  400.  * @param None
  401.  * @retval None
  402.  */
  403. static void MX_I2C1_Init(void)
  404. {
  405.  
  406.   /* USER CODE BEGIN I2C1_Init 0 */
  407.  
  408.   /* USER CODE END I2C1_Init 0 */
  409.  
  410.   /* USER CODE BEGIN I2C1_Init 1 */
  411.  
  412.   /* USER CODE END I2C1_Init 1 */
  413.   hi2c1.Instance = I2C1;
  414.   hi2c1.Init.ClockSpeed = 100000;
  415.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  416.   hi2c1.Init.OwnAddress1 = 0;
  417.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  418.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  419.   hi2c1.Init.OwnAddress2 = 0;
  420.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  421.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  422.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  423.   {
  424.     Error_Handler();
  425.   }
  426.   /* USER CODE BEGIN I2C1_Init 2 */
  427.  
  428.   /* USER CODE END I2C1_Init 2 */
  429. }
  430.  
  431. /**
  432.  * @brief IWDG Initialization Function
  433.  * @param None
  434.  * @retval None
  435.  */
  436. static void MX_IWDG_Init(void)
  437. {
  438.  
  439.   /* USER CODE BEGIN IWDG_Init 0 */
  440.  
  441.   /* USER CODE END IWDG_Init 0 */
  442.  
  443.   /* USER CODE BEGIN IWDG_Init 1 */
  444.  
  445.   /* USER CODE END IWDG_Init 1 */
  446.   hiwdg.Instance = IWDG;
  447.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  448.   hiwdg.Init.Reload = 1000;
  449.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  450.   {
  451.     Error_Handler();
  452.   }
  453.   /* USER CODE BEGIN IWDG_Init 2 */
  454.  
  455.   /* USER CODE END IWDG_Init 2 */
  456. }
  457.  
  458. /**
  459.  * @brief SPI1 Initialization Function
  460.  * @param None
  461.  * @retval None
  462.  */
  463. static void MX_SPI1_Init(void)
  464. {
  465.  
  466.   /* USER CODE BEGIN SPI1_Init 0 */
  467.  
  468.   /* USER CODE END SPI1_Init 0 */
  469.  
  470.   /* USER CODE BEGIN SPI1_Init 1 */
  471.  
  472.   /* USER CODE END SPI1_Init 1 */
  473.   /* SPI1 parameter configuration*/
  474.   hspi1.Instance = SPI1;
  475.   hspi1.Init.Mode = SPI_MODE_MASTER;
  476.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  477.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  478.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  479.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  480.   hspi1.Init.NSS = SPI_NSS_SOFT;
  481.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  482.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  483.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  484.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  485.   hspi1.Init.CRCPolynomial = 10;
  486.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  487.   {
  488.     Error_Handler();
  489.   }
  490.   /* USER CODE BEGIN SPI1_Init 2 */
  491.  
  492.   /* USER CODE END SPI1_Init 2 */
  493. }
  494.  
  495. /**
  496.  * @brief TIM1 Initialization Function
  497.  * @param None
  498.  * @retval None
  499.  */
  500. static void MX_TIM1_Init(void)
  501. {
  502.  
  503.   /* USER CODE BEGIN TIM1_Init 0 */
  504.  
  505.   /* USER CODE END TIM1_Init 0 */
  506.  
  507.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  508.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  509.   TIM_OC_InitTypeDef sConfigOC = {0};
  510.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  511.  
  512.   /* USER CODE BEGIN TIM1_Init 1 */
  513.  
  514.   /* USER CODE END TIM1_Init 1 */
  515.   htim1.Instance = TIM1;
  516.   htim1.Init.Prescaler = 71;
  517.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  518.   htim1.Init.Period = 65535;
  519.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  520.   htim1.Init.RepetitionCounter = 0;
  521.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  522.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  523.   {
  524.     Error_Handler();
  525.   }
  526.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  527.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  528.   {
  529.     Error_Handler();
  530.   }
  531.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  532.   {
  533.     Error_Handler();
  534.   }
  535.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  536.   {
  537.     Error_Handler();
  538.   }
  539.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  540.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  541.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  542.   {
  543.     Error_Handler();
  544.   }
  545.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  546.   sConfigOC.Pulse = SAW_DELAY;
  547.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  548.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  549.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  550.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  551.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  552.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  553.   {
  554.     Error_Handler();
  555.   }
  556.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  557.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  558.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  559.   sBreakDeadTimeConfig.DeadTime = 0;
  560.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  561.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  562.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  563.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  564.   {
  565.     Error_Handler();
  566.   }
  567.   /* USER CODE BEGIN TIM1_Init 2 */
  568.  
  569.   /* USER CODE END TIM1_Init 2 */
  570.   HAL_TIM_MspPostInit(&htim1);
  571. }
  572.  
  573. /**
  574.  * @brief TIM2 Initialization Function
  575.  * @param None
  576.  * @retval None
  577.  */
  578. static void MX_TIM2_Init(void)
  579. {
  580.  
  581.   /* USER CODE BEGIN TIM2_Init 0 */
  582.  
  583.   /* USER CODE END TIM2_Init 0 */
  584.  
  585.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  586.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  587.   TIM_IC_InitTypeDef sConfigIC = {0};
  588.  
  589.   /* USER CODE BEGIN TIM2_Init 1 */
  590.  
  591.   /* USER CODE END TIM2_Init 1 */
  592.   htim2.Instance = TIM2;
  593.   htim2.Init.Prescaler = 719;
  594.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  595.   htim2.Init.Period = 65535;
  596.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  597.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  598.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  599.   {
  600.     Error_Handler();
  601.   }
  602.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  603.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  604.   {
  605.     Error_Handler();
  606.   }
  607.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  608.   {
  609.     Error_Handler();
  610.   }
  611.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  612.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  613.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  614.   {
  615.     Error_Handler();
  616.   }
  617.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  618.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  619.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  620.   sConfigIC.ICFilter = 0;
  621.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  622.   {
  623.     Error_Handler();
  624.   }
  625.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  626.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  627.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  628.   {
  629.     Error_Handler();
  630.   }
  631.   /* USER CODE BEGIN TIM2_Init 2 */
  632.  
  633.   /* USER CODE END TIM2_Init 2 */
  634. }
  635.  
  636. /**
  637.  * @brief TIM3 Initialization Function
  638.  * @param None
  639.  * @retval None
  640.  */
  641. static void MX_TIM3_Init(void)
  642. {
  643.  
  644.   /* USER CODE BEGIN TIM3_Init 0 */
  645.  
  646.   /* USER CODE END TIM3_Init 0 */
  647.  
  648.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  649.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  650.  
  651.   /* USER CODE BEGIN TIM3_Init 1 */
  652.  
  653.   /* USER CODE END TIM3_Init 1 */
  654.   htim3.Instance = TIM3;
  655.   htim3.Init.Prescaler = 719;
  656.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  657.   htim3.Init.Period = 10000;
  658.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  659.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  660.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  661.   {
  662.     Error_Handler();
  663.   }
  664.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  665.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  666.   {
  667.     Error_Handler();
  668.   }
  669.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  670.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  671.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  672.   {
  673.     Error_Handler();
  674.   }
  675.   /* USER CODE BEGIN TIM3_Init 2 */
  676.  
  677.   /* USER CODE END TIM3_Init 2 */
  678. }
  679.  
  680. /**
  681.  * @brief USART2 Initialization Function
  682.  * @param None
  683.  * @retval None
  684.  */
  685. static void MX_USART2_UART_Init(void)
  686. {
  687.  
  688.   /* USER CODE BEGIN USART2_Init 0 */
  689.  
  690.   /* USER CODE END USART2_Init 0 */
  691.  
  692.   /* USER CODE BEGIN USART2_Init 1 */
  693.  
  694.   /* USER CODE END USART2_Init 1 */
  695.   huart2.Instance = USART2;
  696.   huart2.Init.BaudRate = 19200;
  697.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  698.   huart2.Init.StopBits = UART_STOPBITS_1;
  699.   huart2.Init.Parity = UART_PARITY_NONE;
  700.   huart2.Init.Mode = UART_MODE_TX_RX;
  701.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  702.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  703.   if (HAL_UART_Init(&huart2) != HAL_OK)
  704.   {
  705.     Error_Handler();
  706.   }
  707.   /* USER CODE BEGIN USART2_Init 2 */
  708.  
  709.   /* USER CODE END USART2_Init 2 */
  710. }
  711.  
  712. /**
  713.  * @brief GPIO Initialization Function
  714.  * @param None
  715.  * @retval None
  716.  */
  717. static void MX_GPIO_Init(void)
  718. {
  719.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  720.   /* USER CODE BEGIN MX_GPIO_Init_1 */
  721.   /* USER CODE END MX_GPIO_Init_1 */
  722.  
  723.   /* GPIO Ports Clock Enable */
  724.   __HAL_RCC_GPIOC_CLK_ENABLE();
  725.   __HAL_RCC_GPIOD_CLK_ENABLE();
  726.   __HAL_RCC_GPIOA_CLK_ENABLE();
  727.   __HAL_RCC_GPIOB_CLK_ENABLE();
  728.  
  729.   /*Configure GPIO pin Output Level */
  730.   HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
  731.  
  732.   /*Configure GPIO pin Output Level */
  733.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  734.  
  735.   /*Configure GPIO pin Output Level */
  736.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  737.  
  738.   /*Configure GPIO pin : LED_Pin */
  739.   GPIO_InitStruct.Pin = LED_Pin;
  740.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  741.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  742.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  743.   HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
  744.  
  745.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  746.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  747.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  748.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  749.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  750.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  751.  
  752.   /*Configure GPIO pin : SPI1_CD_Pin */
  753.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  754.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  755.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  756.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  757.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  758.  
  759.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  760.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  761.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  762.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  763.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  764.  
  765.   /*Configure GPIO pin : dualSpark_Pin */
  766.   GPIO_InitStruct.Pin = dualSpark_Pin;
  767.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  768.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  769.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  770.  
  771.   /* USER CODE BEGIN MX_GPIO_Init_2 */
  772.   /* USER CODE END MX_GPIO_Init_2 */
  773. }
  774.  
  775. /* USER CODE BEGIN 4 */
  776.  
  777. /* USER CODE END 4 */
  778.  
  779. /**
  780.  * @brief  This function is executed in case of error occurrence.
  781.  * @retval None
  782.  */
  783. void Error_Handler(void)
  784. {
  785.   /* USER CODE BEGIN Error_Handler_Debug */
  786.   /* User can add his own implementation to report the HAL error return state */
  787.   __disable_irq();
  788.   while (1)
  789.   {
  790.   }
  791.   /* USER CODE END Error_Handler_Debug */
  792. }
  793.  
  794. #ifdef USE_FULL_ASSERT
  795. /**
  796.  * @brief  Reports the name of the source file and the source line number
  797.  *         where the assert_param error has occurred.
  798.  * @param  file: pointer to the source file name
  799.  * @param  line: assert_param error line source number
  800.  * @retval None
  801.  */
  802. void assert_failed(uint8_t *file, uint32_t line)
  803. {
  804.   /* USER CODE BEGIN 6 */
  805.   /* User can add his own implementation to report the file name and line number,
  806.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  807.   /* USER CODE END 6 */
  808. }
  809. #endif /* USE_FULL_ASSERT */
  810.