Subversion Repositories EDIS_Ignition

Rev

Rev 13 | Rev 15 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "saveTiming.h"
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. CAN_HandleTypeDef hcan;
  51.  
  52. I2C_HandleTypeDef hi2c1;
  53.  
  54. IWDG_HandleTypeDef hiwdg;
  55.  
  56. SPI_HandleTypeDef hspi1;
  57.  
  58. TIM_HandleTypeDef htim1;
  59. TIM_HandleTypeDef htim2;
  60. TIM_HandleTypeDef htim3;
  61.  
  62. UART_HandleTypeDef huart2;
  63.  
  64. /* USER CODE BEGIN PV */
  65. int const T100MS = 100;
  66. // index for all observations
  67. char obsIndex[PLX_MAX_OBS];
  68.  
  69. int const DISPLAY_REINITIALISE = 60 * 1000;
  70. // compensated pressure in mb * 100
  71. uint32_t comp_pres = 0;
  72. // compensated temperature
  73. int32_t comp_temp = -10000;
  74.  
  75. int32_t timing = 0;
  76. /* USER CODE END PV */
  77.  
  78. /* Private function prototypes -----------------------------------------------*/
  79. void SystemClock_Config(void);
  80. static void MX_GPIO_Init(void);
  81. static void MX_CAN_Init(void);
  82. static void MX_I2C1_Init(void);
  83. static void MX_TIM1_Init(void);
  84. static void MX_TIM2_Init(void);
  85. static void MX_SPI1_Init(void);
  86. static void MX_USART2_UART_Init(void);
  87. static void MX_TIM3_Init(void);
  88. static void MX_IWDG_Init(void);
  89. /* USER CODE BEGIN PFP */
  90.  
  91. // send a PLX_SensorInfo structure to the usart.
  92. void sendInfo(usart_ctl *uc, PLX_SensorInfo *info)
  93. {
  94.   for (int i = 0; i < sizeof(PLX_SensorInfo); ++i)
  95.     PutCharSerial(uc, info->bytes[i]);
  96. }
  97.  
  98. void processObservations()
  99. {
  100.   // send MAP
  101.   PLX_SensorInfo info;
  102.   ConvToPLXInstance(obsIndex[PLX_MAP]++, &info);
  103.   ConvToPLXAddr(PLX_MAP, &info);
  104.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(comp_pres) / 100.0), &info);
  105.   sendInfo(&uc2, &info);
  106.  
  107.   ConvToPLXInstance(obsIndex[PLX_Timing]++, &info);
  108.   ConvToPLXAddr(PLX_Timing, &info);
  109.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  110.   sendInfo(&uc2, &info);
  111. }
  112.  
  113. void triggerSAW()
  114. {
  115.   // trigger SAW timer, timer 1##pragma endregion
  116.  
  117.   __HAL_TIM_ENABLE(&htim1);
  118. }
  119.  
  120. /* USER CODE END PFP */
  121.  
  122. /* Private user code ---------------------------------------------------------*/
  123. /* USER CODE BEGIN 0 */
  124. void watchdogWrite()
  125. {
  126.   HAL_IWDG_Refresh(&hiwdg);
  127. }
  128.  
  129. /* USER CODE END 0 */
  130.  
  131. /**
  132.  * @brief  The application entry point.
  133.  * @retval int
  134.  */
  135. int main(void)
  136. {
  137.   /* USER CODE BEGIN 1 */
  138.  
  139.   /* USER CODE END 1 */
  140.  
  141.   /* MCU Configuration--------------------------------------------------------*/
  142.  
  143.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  144.   HAL_Init();
  145.  
  146.   /* USER CODE BEGIN Init */
  147.  
  148.   /* USER CODE END Init */
  149.  
  150.   /* Configure the system clock */
  151.   SystemClock_Config();
  152.  
  153.   /* USER CODE BEGIN SysInit */
  154.  
  155.   /* USER CODE END SysInit */
  156.  
  157.   /* Initialize all configured peripherals */
  158.   MX_GPIO_Init();
  159.   MX_CAN_Init();
  160.   MX_I2C1_Init();
  161.   MX_TIM1_Init();
  162.   MX_TIM2_Init();
  163.   MX_SPI1_Init();
  164.   MX_USART2_UART_Init();
  165.   MX_TIM3_Init();
  166.   MX_IWDG_Init();
  167.   /* USER CODE BEGIN 2 */
  168.  
  169.   init_usart_ctl(&uc2, &huart2);
  170.  
  171.   cc_init();
  172.  
  173.   HAL_TIM_Base_MspInit(&htim1);
  174.  
  175.   HAL_TIM_Base_Start(&htim1);
  176.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  177.  
  178.   // initialise all the STMCubeMX stuff
  179.   HAL_TIM_Base_MspInit(&htim2);
  180.   // Start the counter
  181.   HAL_TIM_Base_Start(&htim2);
  182.   // Start the input capture and the rising edge interrupt
  183.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  184.   // Start the input capture and the falling edge interrupt
  185.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  186.  
  187.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  188.  
  189.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  190.   MX_I2C1_Init();
  191.   init_bmp(&hi2c1);
  192.   uint32_t lastTick = HAL_GetTick();
  193.  
  194.   uint32_t displayOff = lastTick + 10000;
  195.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  196.  
  197.   uint8_t intensity = 2;
  198.   uint32_t timeout = 0;
  199.   uint8_t send = 0; // enable sending our PLX data when non zero
  200.   ResetRxBuffer(&uc2);
  201.  
  202.   // used to store data
  203.   PLX_SensorInfo info;
  204.   // counter of information
  205.   int infoCount = -1;
  206.   memset(obsIndex, 0, PLX_MAX_OBS); // zero incoming obsevation index
  207.  
  208.   // dont do this   loadTimingInfoFromNvram();
  209.  
  210.   // HAL_IWDG_Init(&hiwdg);
  211.   /* USER CODE END 2 */
  212.  
  213.   /* Infinite loop */
  214.   /* USER CODE BEGIN WHILE */
  215.   while (1)
  216.   {
  217.  
  218.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  219.  
  220.     if (button)
  221.     {
  222.       intensity = 2;
  223.       displayOff = lastTick + 30000;
  224.     }
  225.  
  226.     switch (intensity)
  227.     {
  228.     case 2:
  229.       if (HAL_GetTick() > displayOff)
  230.       {
  231.         intensity = 1;
  232.         displayOff = lastTick + 60000;
  233.       }
  234.  
  235.       break;
  236.     case 1:
  237.       if (HAL_GetTick() > displayOff)
  238.       {
  239.         intensity = 1; // was 0
  240.       }
  241.     default:
  242.       break;
  243.     }
  244.     // periodically write to the display and clear it
  245.     if (HAL_GetTick() > displayReinitialise)
  246.     {
  247.       displayReinitialise += DISPLAY_REINITIALISE;
  248.       cc_display(0, intensity, 1);
  249.     }
  250.     else
  251.       cc_display(0, intensity, 0);
  252.  
  253.     if (HAL_GetTick() - lastTick > T100MS)
  254.     {
  255.       lastTick = HAL_GetTick();
  256.       /* Reading the raw data from sensor */
  257.       struct bmp280_uncomp_data ucomp_data;
  258.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  259.  
  260.       if (rslt == 0)
  261.       {
  262.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  263.  
  264.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  265.  
  266. #if defined TEST_CODE
  267.         comp_pres = 100000;
  268.         comp_temp = 4000;
  269. #endif
  270.         if (rslt2 == 0 && rslt3 == 0)
  271.           cc_feed_env(comp_pres, comp_temp);
  272.       }
  273.  
  274.       // compute RPM value, feed to display
  275. #if defined TEST_CODE
  276.       int rpm = 1000;
  277. #else
  278.       int rpm = CalculateRPM();
  279. #endif
  280.       if (rpm > 0)
  281.       {
  282.         cc_feed_rpm(rpm);
  283.         // compute timing value, feed to display
  284.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  285.         cc_feed_timing(timing);
  286.         int microsecs = mapTimingToMicroseconds(timing, 0);
  287.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  288.       }
  289.     }
  290.     // Handle PLX
  291.     // poll the  input for a stop bit or timeout
  292.     if (PollSerial(&uc2))
  293.     {
  294.       HAL_IWDG_Refresh(&hiwdg);
  295.       timeout = HAL_GetTick() + T100MS * 2;
  296.       char c = GetCharSerial(&uc2);
  297.  
  298.       if (c != PLX_Stop)
  299.       {
  300.         PutCharSerial(&uc2, c); // echo all but the stop bit
  301.       }
  302.       else
  303.       {           // must be a stop character
  304.         send = 1; // start our sending process
  305.       }
  306.       // look up the i
  307.       if (c == PLX_Start)
  308.       {
  309.         infoCount = 0;
  310.       }
  311.       else
  312.       {
  313.         info.bytes[infoCount++] = c;
  314.         // process the sensor info field : discover maximum observation index
  315.         if (infoCount == sizeof(PLX_SensorInfo))
  316.         {
  317.           infoCount = 0;
  318.           int addr = ConvPLXAddr(&info);
  319.           if (addr < PLX_MAX_OBS && (obsIndex[addr] <= info.Instance))
  320.             obsIndex[addr] = info.Instance + 1;
  321.         }
  322.       }
  323.  
  324.       if (c == PLX_Stop)
  325.         infoCount = -1;
  326.     }
  327.  
  328.     // sort out auto-sending
  329.     if (HAL_GetTick() > timeout)
  330.     {
  331.       PutCharSerial(&uc2, PLX_Start);
  332.       timeout = HAL_GetTick() + T100MS;
  333.       send = 1;
  334.     }
  335.  
  336.     if (send)
  337.     {
  338.       send = 0;
  339.  
  340.       // send the observations
  341.       processObservations();
  342.       memset(obsIndex, 0, PLX_MAX_OBS); // zero incoming obsevation index
  343.       //
  344.       PutCharSerial(&uc2, PLX_Stop);
  345.     }
  346.  
  347.     /* USER CODE END WHILE */
  348.  
  349.     /* USER CODE BEGIN 3 */
  350.     watchdogWrite();
  351.  
  352.     // todo occasionally     saveTimingInfoToNvram();
  353.   }
  354.   /* USER CODE END 3 */
  355. }
  356.  
  357. /**
  358.  * @brief System Clock Configuration
  359.  * @retval None
  360.  */
  361. void SystemClock_Config(void)
  362. {
  363.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  364.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  365.  
  366.   /** Initializes the RCC Oscillators according to the specified parameters
  367.    * in the RCC_OscInitTypeDef structure.
  368.    */
  369.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  370.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  371.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  372.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  373.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  374.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  375.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  376.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  377.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  378.   {
  379.     Error_Handler();
  380.   }
  381.  
  382.   /** Initializes the CPU, AHB and APB buses clocks
  383.    */
  384.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  385.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  386.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  387.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  388.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  389.  
  390.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  391.   {
  392.     Error_Handler();
  393.   }
  394. }
  395.  
  396. /**
  397.  * @brief CAN Initialization Function
  398.  * @param None
  399.  * @retval None
  400.  */
  401. static void MX_CAN_Init(void)
  402. {
  403.  
  404.   /* USER CODE BEGIN CAN_Init 0 */
  405.  
  406.   /* USER CODE END CAN_Init 0 */
  407.  
  408.   /* USER CODE BEGIN CAN_Init 1 */
  409.  
  410.   /* USER CODE END CAN_Init 1 */
  411.   hcan.Instance = CAN1;
  412.   hcan.Init.Prescaler = 18;
  413.   hcan.Init.Mode = CAN_MODE_NORMAL;
  414.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  415.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  416.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  417.   hcan.Init.TimeTriggeredMode = DISABLE;
  418.   hcan.Init.AutoBusOff = DISABLE;
  419.   hcan.Init.AutoWakeUp = DISABLE;
  420.   hcan.Init.AutoRetransmission = DISABLE;
  421.   hcan.Init.ReceiveFifoLocked = DISABLE;
  422.   hcan.Init.TransmitFifoPriority = DISABLE;
  423.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  424.   {
  425.     Error_Handler();
  426.   }
  427.   /* USER CODE BEGIN CAN_Init 2 */
  428.  
  429.   /* USER CODE END CAN_Init 2 */
  430. }
  431.  
  432. /**
  433.  * @brief I2C1 Initialization Function
  434.  * @param None
  435.  * @retval None
  436.  */
  437. static void MX_I2C1_Init(void)
  438. {
  439.  
  440.   /* USER CODE BEGIN I2C1_Init 0 */
  441.  
  442.   /* USER CODE END I2C1_Init 0 */
  443.  
  444.   /* USER CODE BEGIN I2C1_Init 1 */
  445.  
  446.   /* USER CODE END I2C1_Init 1 */
  447.   hi2c1.Instance = I2C1;
  448.   hi2c1.Init.ClockSpeed = 100000;
  449.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  450.   hi2c1.Init.OwnAddress1 = 0;
  451.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  452.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  453.   hi2c1.Init.OwnAddress2 = 0;
  454.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  455.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  456.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  457.   {
  458.     Error_Handler();
  459.   }
  460.   /* USER CODE BEGIN I2C1_Init 2 */
  461.  
  462.   /* USER CODE END I2C1_Init 2 */
  463. }
  464.  
  465. /**
  466.  * @brief IWDG Initialization Function
  467.  * @param None
  468.  * @retval None
  469.  */
  470. static void MX_IWDG_Init(void)
  471. {
  472.  
  473.   /* USER CODE BEGIN IWDG_Init 0 */
  474.  
  475.   /* USER CODE END IWDG_Init 0 */
  476.  
  477.   /* USER CODE BEGIN IWDG_Init 1 */
  478.  
  479.   /* USER CODE END IWDG_Init 1 */
  480.   hiwdg.Instance = IWDG;
  481.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  482.   hiwdg.Init.Reload = 1000;
  483.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  484.   {
  485.     Error_Handler();
  486.   }
  487.   /* USER CODE BEGIN IWDG_Init 2 */
  488.  
  489.   /* USER CODE END IWDG_Init 2 */
  490. }
  491.  
  492. /**
  493.  * @brief SPI1 Initialization Function
  494.  * @param None
  495.  * @retval None
  496.  */
  497. static void MX_SPI1_Init(void)
  498. {
  499.  
  500.   /* USER CODE BEGIN SPI1_Init 0 */
  501.  
  502.   /* USER CODE END SPI1_Init 0 */
  503.  
  504.   /* USER CODE BEGIN SPI1_Init 1 */
  505.  
  506.   /* USER CODE END SPI1_Init 1 */
  507.   /* SPI1 parameter configuration*/
  508.   hspi1.Instance = SPI1;
  509.   hspi1.Init.Mode = SPI_MODE_MASTER;
  510.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  511.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  512.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  513.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  514.   hspi1.Init.NSS = SPI_NSS_SOFT;
  515.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  516.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  517.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  518.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  519.   hspi1.Init.CRCPolynomial = 10;
  520.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  521.   {
  522.     Error_Handler();
  523.   }
  524.   /* USER CODE BEGIN SPI1_Init 2 */
  525.  
  526.   /* USER CODE END SPI1_Init 2 */
  527. }
  528.  
  529. /**
  530.  * @brief TIM1 Initialization Function
  531.  * @param None
  532.  * @retval None
  533.  */
  534. static void MX_TIM1_Init(void)
  535. {
  536.  
  537.   /* USER CODE BEGIN TIM1_Init 0 */
  538.  
  539.   /* USER CODE END TIM1_Init 0 */
  540.  
  541.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  542.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  543.   TIM_OC_InitTypeDef sConfigOC = {0};
  544.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  545.  
  546.   /* USER CODE BEGIN TIM1_Init 1 */
  547.  
  548.   /* USER CODE END TIM1_Init 1 */
  549.   htim1.Instance = TIM1;
  550.   htim1.Init.Prescaler = 71;
  551.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  552.   htim1.Init.Period = 65535;
  553.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  554.   htim1.Init.RepetitionCounter = 0;
  555.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  556.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  557.   {
  558.     Error_Handler();
  559.   }
  560.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  561.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  562.   {
  563.     Error_Handler();
  564.   }
  565.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  566.   {
  567.     Error_Handler();
  568.   }
  569.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  570.   {
  571.     Error_Handler();
  572.   }
  573.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  574.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  575.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  576.   {
  577.     Error_Handler();
  578.   }
  579.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  580.   sConfigOC.Pulse = SAW_DELAY;
  581.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  582.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  583.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  584.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  585.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  586.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  587.   {
  588.     Error_Handler();
  589.   }
  590.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  591.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  592.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  593.   sBreakDeadTimeConfig.DeadTime = 0;
  594.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  595.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  596.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  597.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  598.   {
  599.     Error_Handler();
  600.   }
  601.   /* USER CODE BEGIN TIM1_Init 2 */
  602.  
  603.   /* USER CODE END TIM1_Init 2 */
  604.   HAL_TIM_MspPostInit(&htim1);
  605. }
  606.  
  607. /**
  608.  * @brief TIM2 Initialization Function
  609.  * @param None
  610.  * @retval None
  611.  */
  612. static void MX_TIM2_Init(void)
  613. {
  614.  
  615.   /* USER CODE BEGIN TIM2_Init 0 */
  616.  
  617.   /* USER CODE END TIM2_Init 0 */
  618.  
  619.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  620.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  621.   TIM_IC_InitTypeDef sConfigIC = {0};
  622.  
  623.   /* USER CODE BEGIN TIM2_Init 1 */
  624.  
  625.   /* USER CODE END TIM2_Init 1 */
  626.   htim2.Instance = TIM2;
  627.   htim2.Init.Prescaler = 719;
  628.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  629.   htim2.Init.Period = 65535;
  630.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  631.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  632.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  633.   {
  634.     Error_Handler();
  635.   }
  636.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  637.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  638.   {
  639.     Error_Handler();
  640.   }
  641.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  642.   {
  643.     Error_Handler();
  644.   }
  645.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  646.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  647.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  648.   {
  649.     Error_Handler();
  650.   }
  651.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  652.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  653.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  654.   sConfigIC.ICFilter = 0;
  655.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  656.   {
  657.     Error_Handler();
  658.   }
  659.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  660.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  661.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  662.   {
  663.     Error_Handler();
  664.   }
  665.   /* USER CODE BEGIN TIM2_Init 2 */
  666.  
  667.   /* USER CODE END TIM2_Init 2 */
  668. }
  669.  
  670. /**
  671.  * @brief TIM3 Initialization Function
  672.  * @param None
  673.  * @retval None
  674.  */
  675. static void MX_TIM3_Init(void)
  676. {
  677.  
  678.   /* USER CODE BEGIN TIM3_Init 0 */
  679.  
  680.   /* USER CODE END TIM3_Init 0 */
  681.  
  682.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  683.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  684.  
  685.   /* USER CODE BEGIN TIM3_Init 1 */
  686.  
  687.   /* USER CODE END TIM3_Init 1 */
  688.   htim3.Instance = TIM3;
  689.   htim3.Init.Prescaler = 719;
  690.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  691.   htim3.Init.Period = 10000;
  692.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  693.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  694.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  695.   {
  696.     Error_Handler();
  697.   }
  698.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  699.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  700.   {
  701.     Error_Handler();
  702.   }
  703.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  704.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  705.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  706.   {
  707.     Error_Handler();
  708.   }
  709.   /* USER CODE BEGIN TIM3_Init 2 */
  710.  
  711.   /* USER CODE END TIM3_Init 2 */
  712. }
  713.  
  714. /**
  715.  * @brief USART2 Initialization Function
  716.  * @param None
  717.  * @retval None
  718.  */
  719. static void MX_USART2_UART_Init(void)
  720. {
  721.  
  722.   /* USER CODE BEGIN USART2_Init 0 */
  723.  
  724.   /* USER CODE END USART2_Init 0 */
  725.  
  726.   /* USER CODE BEGIN USART2_Init 1 */
  727.  
  728.   /* USER CODE END USART2_Init 1 */
  729.   huart2.Instance = USART2;
  730.   huart2.Init.BaudRate = 19200;
  731.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  732.   huart2.Init.StopBits = UART_STOPBITS_1;
  733.   huart2.Init.Parity = UART_PARITY_NONE;
  734.   huart2.Init.Mode = UART_MODE_TX_RX;
  735.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  736.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  737.   if (HAL_UART_Init(&huart2) != HAL_OK)
  738.   {
  739.     Error_Handler();
  740.   }
  741.   /* USER CODE BEGIN USART2_Init 2 */
  742.  
  743.   /* USER CODE END USART2_Init 2 */
  744. }
  745.  
  746. /**
  747.  * @brief GPIO Initialization Function
  748.  * @param None
  749.  * @retval None
  750.  */
  751. static void MX_GPIO_Init(void)
  752. {
  753.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  754.  
  755.   /* GPIO Ports Clock Enable */
  756.   __HAL_RCC_GPIOD_CLK_ENABLE();
  757.   __HAL_RCC_GPIOA_CLK_ENABLE();
  758.   __HAL_RCC_GPIOB_CLK_ENABLE();
  759.  
  760.   /*Configure GPIO pin Output Level */
  761.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  762.  
  763.   /*Configure GPIO pin Output Level */
  764.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  765.  
  766.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  767.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  768.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  769.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  770.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  771.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  772.  
  773.   /*Configure GPIO pin : SPI1_CD_Pin */
  774.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  775.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  776.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  777.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  778.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  779.  
  780.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  781.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  782.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  783.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  784.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  785.  
  786.   /*Configure GPIO pin : dualSpark_Pin */
  787.   GPIO_InitStruct.Pin = dualSpark_Pin;
  788.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  789.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  790.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  791. }
  792.  
  793. /* USER CODE BEGIN 4 */
  794.  
  795. /* USER CODE END 4 */
  796.  
  797. /**
  798.  * @brief  This function is executed in case of error occurrence.
  799.  * @retval None
  800.  */
  801. void Error_Handler(void)
  802. {
  803.   /* USER CODE BEGIN Error_Handler_Debug */
  804.   /* User can add his own implementation to report the HAL error return state */
  805.   __disable_irq();
  806.   while (1)
  807.   {
  808.   }
  809.   /* USER CODE END Error_Handler_Debug */
  810. }
  811.  
  812. #ifdef USE_FULL_ASSERT
  813. /**
  814.  * @brief  Reports the name of the source file and the source line number
  815.  *         where the assert_param error has occurred.
  816.  * @param  file: pointer to the source file name
  817.  * @param  line: assert_param error line source number
  818.  * @retval None
  819.  */
  820. void assert_failed(uint8_t *file, uint32_t line)
  821. {
  822.   /* USER CODE BEGIN 6 */
  823.   /* User can add his own implementation to report the file name and line number,
  824.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  825.   /* USER CODE END 6 */
  826. }
  827. #endif /* USE_FULL_ASSERT */
  828.