Subversion Repositories EDIS_Ignition

Rev

Rev 5 | Rev 10 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "display.h"
  25. #include "bmp280driver.h"
  26. #include "libMisc/fixI2C.h"
  27. #include "libPlx/plx.h"
  28. #include "libSerial/serial.h"
  29. #include "libIgnTiming/timing.h"
  30. #include "libIgnTiming/edis.h"
  31. /* USER CODE END Includes */
  32.  
  33. /* Private typedef -----------------------------------------------------------*/
  34. /* USER CODE BEGIN PTD */
  35.  
  36. /* USER CODE END PTD */
  37.  
  38. /* Private define ------------------------------------------------------------*/
  39. /* USER CODE BEGIN PD */
  40. /* USER CODE END PD */
  41.  
  42. /* Private macro -------------------------------------------------------------*/
  43. /* USER CODE BEGIN PM */
  44.  
  45. /* USER CODE END PM */
  46.  
  47. /* Private variables ---------------------------------------------------------*/
  48. CAN_HandleTypeDef hcan;
  49.  
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. IWDG_HandleTypeDef hiwdg;
  53.  
  54. SPI_HandleTypeDef hspi1;
  55.  
  56. TIM_HandleTypeDef htim1;
  57. TIM_HandleTypeDef htim2;
  58. TIM_HandleTypeDef htim3;
  59.  
  60. UART_HandleTypeDef huart2;
  61.  
  62. /* USER CODE BEGIN PV */
  63. int const T100MS = 100;
  64. // index for our MAP value (there is maybe another in the system)
  65. char ourMAPindex = 0;
  66.  
  67. // compensated pressure in mb * 100
  68. uint32_t comp_pres = 0;
  69. // compensated temperature
  70. int32_t comp_temp = -10000;
  71.  
  72. int32_t timing = 0;
  73. /* USER CODE END PV */
  74.  
  75. /* Private function prototypes -----------------------------------------------*/
  76. void SystemClock_Config(void);
  77. static void MX_GPIO_Init(void);
  78. static void MX_CAN_Init(void);
  79. static void MX_I2C1_Init(void);
  80. static void MX_TIM1_Init(void);
  81. static void MX_TIM2_Init(void);
  82. static void MX_SPI1_Init(void);
  83. static void MX_USART2_UART_Init(void);
  84. static void MX_TIM3_Init(void);
  85. static void MX_IWDG_Init(void);
  86. /* USER CODE BEGIN PFP */
  87.  
  88. // send a PLX_SensorInfo structure to the usart.
  89. void sendInfo(usart_ctl *uc, PLX_SensorInfo *info)
  90. {
  91.   for (int i = 0; i < sizeof(PLX_SensorInfo); ++i)
  92.     PutCharSerial(uc, info->bytes[i]);
  93. }
  94.  
  95. void processObservations()
  96. {
  97.   // send MAP
  98.   PLX_SensorInfo info;
  99.   ConvToPLXInstance(ourMAPindex, &info);
  100.   ConvToPLXAddr(PLX_MAP, &info);
  101.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, comp_pres / 1000.0), &info);
  102.   sendInfo(&uc2, &info);
  103.  
  104.   ConvToPLXInstance(0, &info);
  105.   ConvToPLXAddr(PLX_Timing, &info);
  106.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, timing / TIMING_SCALE), &info);
  107.   sendInfo(&uc2, &info );
  108. }
  109.  
  110. void triggerSAW()
  111. {
  112.   // trigger SAW timer, timer 1##pragma endregion
  113.  
  114.   __HAL_TIM_ENABLE(&htim1);
  115. }
  116.  
  117. /* USER CODE END PFP */
  118.  
  119. /* Private user code ---------------------------------------------------------*/
  120. /* USER CODE BEGIN 0 */
  121.  
  122. /* USER CODE END 0 */
  123.  
  124. /**
  125.  * @brief  The application entry point.
  126.  * @retval int
  127.  */
  128. int main(void)
  129. {
  130.   /* USER CODE BEGIN 1 */
  131.  
  132.   /* USER CODE END 1 */
  133.  
  134.   /* MCU Configuration--------------------------------------------------------*/
  135.  
  136.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  137.   HAL_Init();
  138.  
  139.   /* USER CODE BEGIN Init */
  140.  
  141.   /* USER CODE END Init */
  142.  
  143.   /* Configure the system clock */
  144.   SystemClock_Config();
  145.  
  146.   /* USER CODE BEGIN SysInit */
  147.  
  148.   /* USER CODE END SysInit */
  149.  
  150.   /* Initialize all configured peripherals */
  151.   MX_GPIO_Init();
  152.   MX_CAN_Init();
  153.   MX_I2C1_Init();
  154.   MX_TIM1_Init();
  155.   MX_TIM2_Init();
  156.   MX_SPI1_Init();
  157.   MX_USART2_UART_Init();
  158.   MX_TIM3_Init();
  159.   MX_IWDG_Init();
  160.   /* USER CODE BEGIN 2 */
  161.  
  162.   init_usart_ctl(&uc2, &huart2);
  163.  
  164.   cc_init();
  165.  
  166.   HAL_TIM_Base_MspInit(&htim1);
  167.  
  168.   HAL_TIM_Base_Start(&htim1);
  169.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  170.  
  171.   // initialise all the STMCubeMX stuff
  172.   HAL_TIM_Base_MspInit(&htim2);
  173.   // Start the counter
  174.   HAL_TIM_Base_Start(&htim2);
  175.   // Start the input capture and the rising edge interrupt
  176.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  177.   // Start the input capture and the falling edge interrupt
  178.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  179.  
  180.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  181.  
  182.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  183.   MX_I2C1_Init();
  184.   init_bmp(&hi2c1);
  185.   uint32_t lastTick = HAL_GetTick();
  186.  
  187.   uint32_t displayOff = lastTick + 10000;
  188.   uint8_t intensity = 2;
  189.   uint32_t timeout = 0;
  190.   uint8_t send = 0; // enable sending our PLX data when non zero
  191.   ResetRxBuffer(&uc2);
  192.  
  193.   // used to store data
  194.   PLX_SensorInfo info;
  195.   int infoCount = -1;
  196.  
  197.   // HAL_IWDG_Init(&hiwdg);
  198.   /* USER CODE END 2 */
  199.  
  200.   /* Infinite loop */
  201.   /* USER CODE BEGIN WHILE */
  202.   while (1)
  203.   {
  204.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  205.  
  206.     if (button)
  207.     {
  208.       intensity = 2;
  209.       displayOff = lastTick + 10000;
  210.     }
  211.  
  212.     switch (intensity)
  213.     {
  214.     case 2:
  215.       if (HAL_GetTick() > displayOff)
  216.       {
  217.         intensity = 1;
  218.         displayOff = lastTick + 60000;
  219.       }
  220.  
  221.       break;
  222.     case 1:
  223.       if (HAL_GetTick() > displayOff)
  224.       {
  225.         intensity = 1; // was 0
  226.       }
  227.     default:
  228.       break;
  229.     }
  230.     cc_display(0, intensity);
  231.  
  232.     if (HAL_GetTick() - lastTick > T100MS)
  233.     {
  234.       lastTick = HAL_GetTick();
  235.       /* Reading the raw data from sensor */
  236.       struct bmp280_uncomp_data ucomp_data;
  237.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  238.  
  239.       if (rslt == 0)
  240.       {
  241.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  242.  
  243.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  244.         if (rslt2 == 0 && rslt3 == 0)
  245.           cc_feed_env(comp_pres, comp_temp);
  246.       }
  247.  
  248.       // compute RPM value, feed to display
  249.  
  250.       int rpm = CalculateRPM();
  251.       if (rpm > 0)
  252.       {
  253.         cc_feed_rpm(rpm);
  254.         // compute timing value, feed to display
  255.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  256.         cc_feed_timing(timing);
  257.         int microsecs = mapTimingToMicroseconds(timing, 0);
  258.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  259.       }
  260.     }
  261.     // Handle PLX
  262.     // poll the  input for a stop bit or timeout
  263.     if (PollSerial(&uc2))
  264.     {
  265.       HAL_IWDG_Refresh(&hiwdg);
  266.       timeout = HAL_GetTick() + T100MS * 2;
  267.       char c = GetCharSerial(&uc2);
  268.  
  269.       if (c != PLX_Stop)
  270.       {
  271.         PutCharSerial(&uc2, c); // echo all but the stop bit
  272.       }
  273.       else
  274.       {           // must be a stop character
  275.         send = 1; // start our sending process.
  276.       }
  277.       // look up the i
  278.       if (c == PLX_Start)
  279.       {
  280.         ourMAPindex = 0;
  281.         infoCount = 0;
  282.       }
  283.       else
  284.       {
  285.         info.bytes[infoCount++] = c;
  286.         // process the sensor info field
  287.         if (infoCount == sizeof(PLX_SensorInfo))
  288.         {
  289.           infoCount = 0;
  290.           int addr = ConvPLXAddr(&info);
  291.           if (addr == PLX_MAP)
  292.             ourMAPindex = info.Instance + 1;
  293.         }
  294.       }
  295.  
  296.       if (c == PLX_Stop)
  297.         infoCount = -1;
  298.     }
  299.  
  300.     // sort out auto-sending
  301.     if (HAL_GetTick() > timeout)
  302.     {
  303.       PutCharSerial(&uc2, PLX_Start);
  304.       timeout = HAL_GetTick() + T100MS;
  305.       send = 1;
  306.     }
  307.  
  308.     if (send)
  309.     {
  310.       send = 0;
  311.  
  312.       // send the observations
  313.       processObservations();
  314.       //
  315.       PutCharSerial(&uc2, PLX_Stop);
  316.     }
  317.  
  318.     /* USER CODE END WHILE */
  319.  
  320.     /* USER CODE BEGIN 3 */
  321.     HAL_IWDG_Refresh(&hiwdg);
  322.   }
  323.   /* USER CODE END 3 */
  324. }
  325.  
  326. /**
  327.  * @brief System Clock Configuration
  328.  * @retval None
  329.  */
  330. void SystemClock_Config(void)
  331. {
  332.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  333.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  334.  
  335.   /** Initializes the RCC Oscillators according to the specified parameters
  336.    * in the RCC_OscInitTypeDef structure.
  337.    */
  338.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  339.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  340.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  341.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  342.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  343.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  344.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  345.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  346.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  347.   {
  348.     Error_Handler();
  349.   }
  350.  
  351.   /** Initializes the CPU, AHB and APB buses clocks
  352.    */
  353.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  354.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  355.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  356.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  357.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  358.  
  359.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  360.   {
  361.     Error_Handler();
  362.   }
  363. }
  364.  
  365. /**
  366.  * @brief CAN Initialization Function
  367.  * @param None
  368.  * @retval None
  369.  */
  370. static void MX_CAN_Init(void)
  371. {
  372.  
  373.   /* USER CODE BEGIN CAN_Init 0 */
  374.  
  375.   /* USER CODE END CAN_Init 0 */
  376.  
  377.   /* USER CODE BEGIN CAN_Init 1 */
  378.  
  379.   /* USER CODE END CAN_Init 1 */
  380.   hcan.Instance = CAN1;
  381.   hcan.Init.Prescaler = 18;
  382.   hcan.Init.Mode = CAN_MODE_NORMAL;
  383.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  384.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  385.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  386.   hcan.Init.TimeTriggeredMode = DISABLE;
  387.   hcan.Init.AutoBusOff = DISABLE;
  388.   hcan.Init.AutoWakeUp = DISABLE;
  389.   hcan.Init.AutoRetransmission = DISABLE;
  390.   hcan.Init.ReceiveFifoLocked = DISABLE;
  391.   hcan.Init.TransmitFifoPriority = DISABLE;
  392.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  393.   {
  394.     Error_Handler();
  395.   }
  396.   /* USER CODE BEGIN CAN_Init 2 */
  397.  
  398.   /* USER CODE END CAN_Init 2 */
  399. }
  400.  
  401. /**
  402.  * @brief I2C1 Initialization Function
  403.  * @param None
  404.  * @retval None
  405.  */
  406. static void MX_I2C1_Init(void)
  407. {
  408.  
  409.   /* USER CODE BEGIN I2C1_Init 0 */
  410.  
  411.   /* USER CODE END I2C1_Init 0 */
  412.  
  413.   /* USER CODE BEGIN I2C1_Init 1 */
  414.  
  415.   /* USER CODE END I2C1_Init 1 */
  416.   hi2c1.Instance = I2C1;
  417.   hi2c1.Init.ClockSpeed = 100000;
  418.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  419.   hi2c1.Init.OwnAddress1 = 0;
  420.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  421.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  422.   hi2c1.Init.OwnAddress2 = 0;
  423.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  424.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  425.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  426.   {
  427.     Error_Handler();
  428.   }
  429.   /* USER CODE BEGIN I2C1_Init 2 */
  430.  
  431.   /* USER CODE END I2C1_Init 2 */
  432. }
  433.  
  434. /**
  435.  * @brief IWDG Initialization Function
  436.  * @param None
  437.  * @retval None
  438.  */
  439. static void MX_IWDG_Init(void)
  440. {
  441.  
  442.   /* USER CODE BEGIN IWDG_Init 0 */
  443.  
  444.   /* USER CODE END IWDG_Init 0 */
  445.  
  446.   /* USER CODE BEGIN IWDG_Init 1 */
  447.  
  448.   /* USER CODE END IWDG_Init 1 */
  449.   hiwdg.Instance = IWDG;
  450.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  451.   hiwdg.Init.Reload = 1000;
  452.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  453.   {
  454.     Error_Handler();
  455.   }
  456.   /* USER CODE BEGIN IWDG_Init 2 */
  457.  
  458.   /* USER CODE END IWDG_Init 2 */
  459. }
  460.  
  461. /**
  462.  * @brief SPI1 Initialization Function
  463.  * @param None
  464.  * @retval None
  465.  */
  466. static void MX_SPI1_Init(void)
  467. {
  468.  
  469.   /* USER CODE BEGIN SPI1_Init 0 */
  470.  
  471.   /* USER CODE END SPI1_Init 0 */
  472.  
  473.   /* USER CODE BEGIN SPI1_Init 1 */
  474.  
  475.   /* USER CODE END SPI1_Init 1 */
  476.   /* SPI1 parameter configuration*/
  477.   hspi1.Instance = SPI1;
  478.   hspi1.Init.Mode = SPI_MODE_MASTER;
  479.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  480.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  481.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  482.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  483.   hspi1.Init.NSS = SPI_NSS_SOFT;
  484.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  485.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  486.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  487.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  488.   hspi1.Init.CRCPolynomial = 10;
  489.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  490.   {
  491.     Error_Handler();
  492.   }
  493.   /* USER CODE BEGIN SPI1_Init 2 */
  494.  
  495.   /* USER CODE END SPI1_Init 2 */
  496. }
  497.  
  498. /**
  499.  * @brief TIM1 Initialization Function
  500.  * @param None
  501.  * @retval None
  502.  */
  503. static void MX_TIM1_Init(void)
  504. {
  505.  
  506.   /* USER CODE BEGIN TIM1_Init 0 */
  507.  
  508.   /* USER CODE END TIM1_Init 0 */
  509.  
  510.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  511.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  512.   TIM_OC_InitTypeDef sConfigOC = {0};
  513.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  514.  
  515.   /* USER CODE BEGIN TIM1_Init 1 */
  516.  
  517.   /* USER CODE END TIM1_Init 1 */
  518.   htim1.Instance = TIM1;
  519.   htim1.Init.Prescaler = 71;
  520.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  521.   htim1.Init.Period = 65535;
  522.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  523.   htim1.Init.RepetitionCounter = 0;
  524.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  525.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  526.   {
  527.     Error_Handler();
  528.   }
  529.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  530.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  531.   {
  532.     Error_Handler();
  533.   }
  534.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  535.   {
  536.     Error_Handler();
  537.   }
  538.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  539.   {
  540.     Error_Handler();
  541.   }
  542.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  543.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  544.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  545.   {
  546.     Error_Handler();
  547.   }
  548.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  549.   sConfigOC.Pulse = SAW_DELAY;
  550.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  551.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  552.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  553.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  554.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  555.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  556.   {
  557.     Error_Handler();
  558.   }
  559.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  560.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  561.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  562.   sBreakDeadTimeConfig.DeadTime = 0;
  563.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  564.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  565.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  566.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  567.   {
  568.     Error_Handler();
  569.   }
  570.   /* USER CODE BEGIN TIM1_Init 2 */
  571.  
  572.   /* USER CODE END TIM1_Init 2 */
  573.   HAL_TIM_MspPostInit(&htim1);
  574. }
  575.  
  576. /**
  577.  * @brief TIM2 Initialization Function
  578.  * @param None
  579.  * @retval None
  580.  */
  581. static void MX_TIM2_Init(void)
  582. {
  583.  
  584.   /* USER CODE BEGIN TIM2_Init 0 */
  585.  
  586.   /* USER CODE END TIM2_Init 0 */
  587.  
  588.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  589.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  590.   TIM_IC_InitTypeDef sConfigIC = {0};
  591.  
  592.   /* USER CODE BEGIN TIM2_Init 1 */
  593.  
  594.   /* USER CODE END TIM2_Init 1 */
  595.   htim2.Instance = TIM2;
  596.   htim2.Init.Prescaler = 719;
  597.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  598.   htim2.Init.Period = 65535;
  599.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  600.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  601.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  602.   {
  603.     Error_Handler();
  604.   }
  605.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  606.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  607.   {
  608.     Error_Handler();
  609.   }
  610.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  611.   {
  612.     Error_Handler();
  613.   }
  614.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  615.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  616.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  617.   {
  618.     Error_Handler();
  619.   }
  620.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  621.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  622.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  623.   sConfigIC.ICFilter = 0;
  624.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  625.   {
  626.     Error_Handler();
  627.   }
  628.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  629.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  630.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  631.   {
  632.     Error_Handler();
  633.   }
  634.   /* USER CODE BEGIN TIM2_Init 2 */
  635.  
  636.   /* USER CODE END TIM2_Init 2 */
  637. }
  638.  
  639. /**
  640.  * @brief TIM3 Initialization Function
  641.  * @param None
  642.  * @retval None
  643.  */
  644. static void MX_TIM3_Init(void)
  645. {
  646.  
  647.   /* USER CODE BEGIN TIM3_Init 0 */
  648.  
  649.   /* USER CODE END TIM3_Init 0 */
  650.  
  651.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  652.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  653.  
  654.   /* USER CODE BEGIN TIM3_Init 1 */
  655.  
  656.   /* USER CODE END TIM3_Init 1 */
  657.   htim3.Instance = TIM3;
  658.   htim3.Init.Prescaler = 719;
  659.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  660.   htim3.Init.Period = 10000;
  661.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  662.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  663.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  664.   {
  665.     Error_Handler();
  666.   }
  667.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  668.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  669.   {
  670.     Error_Handler();
  671.   }
  672.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  673.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  674.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  675.   {
  676.     Error_Handler();
  677.   }
  678.   /* USER CODE BEGIN TIM3_Init 2 */
  679.  
  680.   /* USER CODE END TIM3_Init 2 */
  681. }
  682.  
  683. /**
  684.  * @brief USART2 Initialization Function
  685.  * @param None
  686.  * @retval None
  687.  */
  688. static void MX_USART2_UART_Init(void)
  689. {
  690.  
  691.   /* USER CODE BEGIN USART2_Init 0 */
  692.  
  693.   /* USER CODE END USART2_Init 0 */
  694.  
  695.   /* USER CODE BEGIN USART2_Init 1 */
  696.  
  697.   /* USER CODE END USART2_Init 1 */
  698.   huart2.Instance = USART2;
  699.   huart2.Init.BaudRate = 19200;
  700.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  701.   huart2.Init.StopBits = UART_STOPBITS_1;
  702.   huart2.Init.Parity = UART_PARITY_NONE;
  703.   huart2.Init.Mode = UART_MODE_TX_RX;
  704.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  705.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  706.   if (HAL_UART_Init(&huart2) != HAL_OK)
  707.   {
  708.     Error_Handler();
  709.   }
  710.   /* USER CODE BEGIN USART2_Init 2 */
  711.  
  712.   /* USER CODE END USART2_Init 2 */
  713. }
  714.  
  715. /**
  716.  * @brief GPIO Initialization Function
  717.  * @param None
  718.  * @retval None
  719.  */
  720. static void MX_GPIO_Init(void)
  721. {
  722.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  723.  
  724.   /* GPIO Ports Clock Enable */
  725.   __HAL_RCC_GPIOD_CLK_ENABLE();
  726.   __HAL_RCC_GPIOA_CLK_ENABLE();
  727.   __HAL_RCC_GPIOB_CLK_ENABLE();
  728.  
  729.   /*Configure GPIO pin Output Level */
  730.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  731.  
  732.   /*Configure GPIO pin Output Level */
  733.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  734.  
  735.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  736.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  737.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  738.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  739.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  740.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  741.  
  742.   /*Configure GPIO pin : SPI1_CD_Pin */
  743.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  744.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  745.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  746.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  747.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  748.  
  749.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  750.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  751.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  752.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  753.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  754.  
  755.   /*Configure GPIO pin : dualSpark_Pin */
  756.   GPIO_InitStruct.Pin = dualSpark_Pin;
  757.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  758.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  759.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  760. }
  761.  
  762. /* USER CODE BEGIN 4 */
  763.  
  764. /* USER CODE END 4 */
  765.  
  766. /**
  767.  * @brief  This function is executed in case of error occurrence.
  768.  * @retval None
  769.  */
  770. void Error_Handler(void)
  771. {
  772.   /* USER CODE BEGIN Error_Handler_Debug */
  773.   /* User can add his own implementation to report the HAL error return state */
  774.   __disable_irq();
  775.   while (1)
  776.   {
  777.   }
  778.   /* USER CODE END Error_Handler_Debug */
  779. }
  780.  
  781. #ifdef USE_FULL_ASSERT
  782. /**
  783.  * @brief  Reports the name of the source file and the source line number
  784.  *         where the assert_param error has occurred.
  785.  * @param  file: pointer to the source file name
  786.  * @param  line: assert_param error line source number
  787.  * @retval None
  788.  */
  789. void assert_failed(uint8_t *file, uint32_t line)
  790. {
  791.   /* USER CODE BEGIN 6 */
  792.   /* User can add his own implementation to report the file name and line number,
  793.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  794.   /* USER CODE END 6 */
  795. }
  796. #endif /* USE_FULL_ASSERT */
  797.