Subversion Repositories EDIS_Ignition

Rev

Rev 4 | Rev 9 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "display.h"
  25. #include "bmp280driver.h"
  26. #include "libMisc/fixI2C.h"
  27. #include "libPlx/plx.h"
  28. #include "libSerial/serial.h"
  29. #include "libIgnTiming/timing.h"
  30. #include "libIgnTiming/edis.h"
  31. /* USER CODE END Includes */
  32.  
  33. /* Private typedef -----------------------------------------------------------*/
  34. /* USER CODE BEGIN PTD */
  35.  
  36. /* USER CODE END PTD */
  37.  
  38. /* Private define ------------------------------------------------------------*/
  39. /* USER CODE BEGIN PD */
  40. /* USER CODE END PD */
  41.  
  42. /* Private macro -------------------------------------------------------------*/
  43. /* USER CODE BEGIN PM */
  44.  
  45. /* USER CODE END PM */
  46.  
  47. /* Private variables ---------------------------------------------------------*/
  48. CAN_HandleTypeDef hcan;
  49.  
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. IWDG_HandleTypeDef hiwdg;
  53.  
  54. SPI_HandleTypeDef hspi1;
  55.  
  56. TIM_HandleTypeDef htim1;
  57. TIM_HandleTypeDef htim2;
  58. TIM_HandleTypeDef htim3;
  59.  
  60. UART_HandleTypeDef huart2;
  61.  
  62. /* USER CODE BEGIN PV */
  63. int const T100MS = 100;
  64. // index for our MAP value (there is maybe another in the system)
  65. char ourMAPindex = 0;
  66.  
  67. // compensated pressure in mb * 100
  68. uint32_t comp_pres = 0;
  69. // compensated temperature
  70. int32_t comp_temp = -10000;
  71.  
  72. int32_t timing = 0;
  73. /* USER CODE END PV */
  74.  
  75. /* Private function prototypes -----------------------------------------------*/
  76. void SystemClock_Config(void);
  77. static void MX_GPIO_Init(void);
  78. static void MX_CAN_Init(void);
  79. static void MX_I2C1_Init(void);
  80. static void MX_TIM1_Init(void);
  81. static void MX_TIM2_Init(void);
  82. static void MX_SPI1_Init(void);
  83. static void MX_USART2_UART_Init(void);
  84. static void MX_TIM3_Init(void);
  85. static void MX_IWDG_Init(void);
  86. /* USER CODE BEGIN PFP */
  87.  
  88. void processObservations()
  89. {
  90.   // send MAP
  91.   PLX_SensorInfo info;
  92.   ConvToPLXInstance(ourMAPindex, &info);
  93.   ConvToPLXAddr(PLX_MAP, &info);
  94.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, comp_pres / 1000.0), &info);
  95.   int i;
  96.   for (i = 0; i < sizeof(PLX_SensorInfo); ++i)
  97.     PutCharSerial(&uc2, info.bytes[i]);
  98.  
  99.   ConvToPLXInstance(0, &info);
  100.   ConvToPLXAddr(PLX_Timing, &info);
  101.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, timing / TIMING_SCALE), &info);
  102.   for (i = 0; i < sizeof(PLX_SensorInfo); ++i)
  103.     PutCharSerial(&uc2, info.bytes[i]);
  104. }
  105.  
  106. void triggerSAW()
  107. {
  108.   // trigger SAW timer, timer 1##pragma endregion
  109.  
  110.   __HAL_TIM_ENABLE(&htim1);
  111. }
  112.  
  113. /* USER CODE END PFP */
  114.  
  115. /* Private user code ---------------------------------------------------------*/
  116. /* USER CODE BEGIN 0 */
  117.  
  118. /* USER CODE END 0 */
  119.  
  120. /**
  121.  * @brief  The application entry point.
  122.  * @retval int
  123.  */
  124. int main(void)
  125. {
  126.   /* USER CODE BEGIN 1 */
  127.  
  128.   /* USER CODE END 1 */
  129.  
  130.   /* MCU Configuration--------------------------------------------------------*/
  131.  
  132.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  133.   HAL_Init();
  134.  
  135.   /* USER CODE BEGIN Init */
  136.  
  137.   /* USER CODE END Init */
  138.  
  139.   /* Configure the system clock */
  140.   SystemClock_Config();
  141.  
  142.   /* USER CODE BEGIN SysInit */
  143.  
  144.   /* USER CODE END SysInit */
  145.  
  146.   /* Initialize all configured peripherals */
  147.   MX_GPIO_Init();
  148.   MX_CAN_Init();
  149.   MX_I2C1_Init();
  150.   MX_TIM1_Init();
  151.   MX_TIM2_Init();
  152.   MX_SPI1_Init();
  153.   MX_USART2_UART_Init();
  154.   MX_TIM3_Init();
  155.   MX_IWDG_Init();
  156.   /* USER CODE BEGIN 2 */
  157.  
  158.   init_usart_ctl(&uc2, &huart2);
  159.  
  160.   cc_init();
  161.  
  162.   HAL_TIM_Base_MspInit(&htim1);
  163.  
  164.   HAL_TIM_Base_Start(&htim1);
  165.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  166.  
  167.   // initialise all the STMCubeMX stuff
  168.   HAL_TIM_Base_MspInit(&htim2);
  169.   // Start the counter
  170.   HAL_TIM_Base_Start(&htim2);
  171.   // Start the input capture and the rising edge interrupt
  172.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  173.   // Start the input capture and the falling edge interrupt
  174.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  175.  
  176.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  177.  
  178.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  179.   MX_I2C1_Init();
  180.   init_bmp(&hi2c1);
  181.   uint32_t lastTick = HAL_GetTick();
  182.  
  183.   uint32_t displayOff = lastTick + 10000;
  184.   uint8_t intensity = 2;
  185.   uint32_t timeout = 0;
  186.   uint8_t send = 0; // enable sending our PLX data when non zero
  187.   ResetRxBuffer(&uc2);
  188.  
  189.   // used to store data
  190.   PLX_SensorInfo info;
  191.   int infoCount = -1;
  192.  
  193.   // HAL_IWDG_Init(&hiwdg);
  194.   /* USER CODE END 2 */
  195.  
  196.   /* Infinite loop */
  197.   /* USER CODE BEGIN WHILE */
  198.   while (1)
  199.   {
  200.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  201.  
  202.     if (button)
  203.     {
  204.       intensity = 2;
  205.       displayOff = lastTick + 10000;
  206.     }
  207.  
  208.     switch (intensity)
  209.     {
  210.     case 2:
  211.       if (HAL_GetTick() > displayOff)
  212.       {
  213.         intensity = 1;
  214.         displayOff = lastTick + 60000;
  215.       }
  216.  
  217.       break;
  218.     case 1:
  219.       if (HAL_GetTick() > displayOff)
  220.       {
  221.         intensity = 1; // was 0
  222.       }
  223.     default:
  224.       break;
  225.     }
  226.     cc_display(0, intensity);
  227.  
  228.     if (HAL_GetTick() - lastTick > T100MS)
  229.     {
  230.       lastTick = HAL_GetTick();
  231.       /* Reading the raw data from sensor */
  232.       struct bmp280_uncomp_data ucomp_data;
  233.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  234.  
  235.       if (rslt == 0)
  236.       {
  237.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  238.  
  239.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  240.         if (rslt2 == 0 && rslt3 == 0)
  241.           cc_feed_env(comp_pres, comp_temp);
  242.       }
  243.  
  244.       // compute RPM value, feed to display
  245.  
  246.       int rpm = CalculateRPM();
  247.       if (rpm > 0)
  248.       {
  249.         cc_feed_rpm(rpm);
  250.         // compute timing value, feed to display
  251.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  252.         cc_feed_timing(timing);
  253.         int microsecs = mapTimingToMicroseconds(timing, 0);
  254.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  255.       }
  256.     }
  257.     // Handle PLX
  258.     // poll the  input for a stop bit or timeout
  259.     if (PollSerial(&uc2))
  260.     {
  261.       HAL_IWDG_Refresh(&hiwdg);
  262.       timeout = HAL_GetTick() + T100MS * 2;
  263.       char c = GetCharSerial(&uc2);
  264.  
  265.       if (c != PLX_Stop)
  266.       {
  267.         PutCharSerial(&uc2, c); // echo all but the stop bit
  268.       }
  269.       else
  270.       {           // must be a stop character
  271.         send = 1; // start our sending process.
  272.       }
  273.       // look up the i
  274.       if (c == PLX_Start)
  275.       {
  276.         ourMAPindex = 0;
  277.         infoCount = 0;
  278.       }
  279.       else
  280.       {
  281.         info.bytes[infoCount++] = c;
  282.         // process the sensor info field
  283.         if (infoCount == sizeof(PLX_SensorInfo))
  284.         {
  285.           infoCount = 0;
  286.           int addr = ConvPLXAddr(&info);
  287.           if (addr == PLX_MAP)
  288.             ourMAPindex = info.Instance + 1;
  289.         }
  290.       }
  291.  
  292.       if (c == PLX_Stop)
  293.         infoCount = -1;
  294.     }
  295.  
  296.     // sort out auto-sending
  297.     if (HAL_GetTick() > timeout)
  298.     {
  299.       PutCharSerial(&uc2, PLX_Start);
  300.       timeout = HAL_GetTick() + T100MS;
  301.       send = 1;
  302.     }
  303.  
  304.     if (send)
  305.     {
  306.       send = 0;
  307.  
  308.       // send the observations
  309.       processObservations();
  310.       //
  311.       PutCharSerial(&uc2, PLX_Stop);
  312.     }
  313.  
  314.     /* USER CODE END WHILE */
  315.  
  316.     /* USER CODE BEGIN 3 */
  317.     HAL_IWDG_Refresh(&hiwdg);
  318.   }
  319.   /* USER CODE END 3 */
  320. }
  321.  
  322. /**
  323.  * @brief System Clock Configuration
  324.  * @retval None
  325.  */
  326. void SystemClock_Config(void)
  327. {
  328.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  329.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  330.  
  331.   /** Initializes the RCC Oscillators according to the specified parameters
  332.    * in the RCC_OscInitTypeDef structure.
  333.    */
  334.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  335.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  336.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  337.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  338.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  339.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  340.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  341.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  342.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  343.   {
  344.     Error_Handler();
  345.   }
  346.  
  347.   /** Initializes the CPU, AHB and APB buses clocks
  348.    */
  349.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  350.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  351.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  352.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  353.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  354.  
  355.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  356.   {
  357.     Error_Handler();
  358.   }
  359. }
  360.  
  361. /**
  362.  * @brief CAN Initialization Function
  363.  * @param None
  364.  * @retval None
  365.  */
  366. static void MX_CAN_Init(void)
  367. {
  368.  
  369.   /* USER CODE BEGIN CAN_Init 0 */
  370.  
  371.   /* USER CODE END CAN_Init 0 */
  372.  
  373.   /* USER CODE BEGIN CAN_Init 1 */
  374.  
  375.   /* USER CODE END CAN_Init 1 */
  376.   hcan.Instance = CAN1;
  377.   hcan.Init.Prescaler = 18;
  378.   hcan.Init.Mode = CAN_MODE_NORMAL;
  379.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  380.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  381.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  382.   hcan.Init.TimeTriggeredMode = DISABLE;
  383.   hcan.Init.AutoBusOff = DISABLE;
  384.   hcan.Init.AutoWakeUp = DISABLE;
  385.   hcan.Init.AutoRetransmission = DISABLE;
  386.   hcan.Init.ReceiveFifoLocked = DISABLE;
  387.   hcan.Init.TransmitFifoPriority = DISABLE;
  388.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  389.   {
  390.     Error_Handler();
  391.   }
  392.   /* USER CODE BEGIN CAN_Init 2 */
  393.  
  394.   /* USER CODE END CAN_Init 2 */
  395. }
  396.  
  397. /**
  398.  * @brief I2C1 Initialization Function
  399.  * @param None
  400.  * @retval None
  401.  */
  402. static void MX_I2C1_Init(void)
  403. {
  404.  
  405.   /* USER CODE BEGIN I2C1_Init 0 */
  406.  
  407.   /* USER CODE END I2C1_Init 0 */
  408.  
  409.   /* USER CODE BEGIN I2C1_Init 1 */
  410.  
  411.   /* USER CODE END I2C1_Init 1 */
  412.   hi2c1.Instance = I2C1;
  413.   hi2c1.Init.ClockSpeed = 100000;
  414.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  415.   hi2c1.Init.OwnAddress1 = 0;
  416.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  417.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  418.   hi2c1.Init.OwnAddress2 = 0;
  419.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  420.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  421.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  422.   {
  423.     Error_Handler();
  424.   }
  425.   /* USER CODE BEGIN I2C1_Init 2 */
  426.  
  427.   /* USER CODE END I2C1_Init 2 */
  428. }
  429.  
  430. /**
  431.  * @brief IWDG Initialization Function
  432.  * @param None
  433.  * @retval None
  434.  */
  435. static void MX_IWDG_Init(void)
  436. {
  437.  
  438.   /* USER CODE BEGIN IWDG_Init 0 */
  439.  
  440.   /* USER CODE END IWDG_Init 0 */
  441.  
  442.   /* USER CODE BEGIN IWDG_Init 1 */
  443.  
  444.   /* USER CODE END IWDG_Init 1 */
  445.   hiwdg.Instance = IWDG;
  446.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  447.   hiwdg.Init.Reload = 1000;
  448.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  449.   {
  450.     Error_Handler();
  451.   }
  452.   /* USER CODE BEGIN IWDG_Init 2 */
  453.  
  454.   /* USER CODE END IWDG_Init 2 */
  455. }
  456.  
  457. /**
  458.  * @brief SPI1 Initialization Function
  459.  * @param None
  460.  * @retval None
  461.  */
  462. static void MX_SPI1_Init(void)
  463. {
  464.  
  465.   /* USER CODE BEGIN SPI1_Init 0 */
  466.  
  467.   /* USER CODE END SPI1_Init 0 */
  468.  
  469.   /* USER CODE BEGIN SPI1_Init 1 */
  470.  
  471.   /* USER CODE END SPI1_Init 1 */
  472.   /* SPI1 parameter configuration*/
  473.   hspi1.Instance = SPI1;
  474.   hspi1.Init.Mode = SPI_MODE_MASTER;
  475.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  476.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  477.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  478.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  479.   hspi1.Init.NSS = SPI_NSS_SOFT;
  480.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  481.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  482.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  483.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  484.   hspi1.Init.CRCPolynomial = 10;
  485.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  486.   {
  487.     Error_Handler();
  488.   }
  489.   /* USER CODE BEGIN SPI1_Init 2 */
  490.  
  491.   /* USER CODE END SPI1_Init 2 */
  492. }
  493.  
  494. /**
  495.  * @brief TIM1 Initialization Function
  496.  * @param None
  497.  * @retval None
  498.  */
  499. static void MX_TIM1_Init(void)
  500. {
  501.  
  502.   /* USER CODE BEGIN TIM1_Init 0 */
  503.  
  504.   /* USER CODE END TIM1_Init 0 */
  505.  
  506.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  507.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  508.   TIM_OC_InitTypeDef sConfigOC = {0};
  509.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  510.  
  511.   /* USER CODE BEGIN TIM1_Init 1 */
  512.  
  513.   /* USER CODE END TIM1_Init 1 */
  514.   htim1.Instance = TIM1;
  515.   htim1.Init.Prescaler = 71;
  516.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  517.   htim1.Init.Period = 65535;
  518.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  519.   htim1.Init.RepetitionCounter = 0;
  520.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  521.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  522.   {
  523.     Error_Handler();
  524.   }
  525.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  526.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  527.   {
  528.     Error_Handler();
  529.   }
  530.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  531.   {
  532.     Error_Handler();
  533.   }
  534.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  535.   {
  536.     Error_Handler();
  537.   }
  538.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  539.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  540.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  541.   {
  542.     Error_Handler();
  543.   }
  544.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  545.   sConfigOC.Pulse = SAW_DELAY;
  546.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  547.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  548.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  549.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  550.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  551.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  552.   {
  553.     Error_Handler();
  554.   }
  555.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  556.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  557.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  558.   sBreakDeadTimeConfig.DeadTime = 0;
  559.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  560.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  561.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  562.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  563.   {
  564.     Error_Handler();
  565.   }
  566.   /* USER CODE BEGIN TIM1_Init 2 */
  567.  
  568.   /* USER CODE END TIM1_Init 2 */
  569.   HAL_TIM_MspPostInit(&htim1);
  570. }
  571.  
  572. /**
  573.  * @brief TIM2 Initialization Function
  574.  * @param None
  575.  * @retval None
  576.  */
  577. static void MX_TIM2_Init(void)
  578. {
  579.  
  580.   /* USER CODE BEGIN TIM2_Init 0 */
  581.  
  582.   /* USER CODE END TIM2_Init 0 */
  583.  
  584.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  585.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  586.   TIM_IC_InitTypeDef sConfigIC = {0};
  587.  
  588.   /* USER CODE BEGIN TIM2_Init 1 */
  589.  
  590.   /* USER CODE END TIM2_Init 1 */
  591.   htim2.Instance = TIM2;
  592.   htim2.Init.Prescaler = 719;
  593.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  594.   htim2.Init.Period = 65535;
  595.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  596.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  597.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  598.   {
  599.     Error_Handler();
  600.   }
  601.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  602.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  603.   {
  604.     Error_Handler();
  605.   }
  606.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  607.   {
  608.     Error_Handler();
  609.   }
  610.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  611.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  612.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  613.   {
  614.     Error_Handler();
  615.   }
  616.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  617.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  618.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  619.   sConfigIC.ICFilter = 0;
  620.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  621.   {
  622.     Error_Handler();
  623.   }
  624.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  625.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  626.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  627.   {
  628.     Error_Handler();
  629.   }
  630.   /* USER CODE BEGIN TIM2_Init 2 */
  631.  
  632.   /* USER CODE END TIM2_Init 2 */
  633. }
  634.  
  635. /**
  636.  * @brief TIM3 Initialization Function
  637.  * @param None
  638.  * @retval None
  639.  */
  640. static void MX_TIM3_Init(void)
  641. {
  642.  
  643.   /* USER CODE BEGIN TIM3_Init 0 */
  644.  
  645.   /* USER CODE END TIM3_Init 0 */
  646.  
  647.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  648.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  649.  
  650.   /* USER CODE BEGIN TIM3_Init 1 */
  651.  
  652.   /* USER CODE END TIM3_Init 1 */
  653.   htim3.Instance = TIM3;
  654.   htim3.Init.Prescaler = 719;
  655.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  656.   htim3.Init.Period = 10000;
  657.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  658.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  659.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  660.   {
  661.     Error_Handler();
  662.   }
  663.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  664.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  665.   {
  666.     Error_Handler();
  667.   }
  668.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  669.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  670.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  671.   {
  672.     Error_Handler();
  673.   }
  674.   /* USER CODE BEGIN TIM3_Init 2 */
  675.  
  676.   /* USER CODE END TIM3_Init 2 */
  677. }
  678.  
  679. /**
  680.  * @brief USART2 Initialization Function
  681.  * @param None
  682.  * @retval None
  683.  */
  684. static void MX_USART2_UART_Init(void)
  685. {
  686.  
  687.   /* USER CODE BEGIN USART2_Init 0 */
  688.  
  689.   /* USER CODE END USART2_Init 0 */
  690.  
  691.   /* USER CODE BEGIN USART2_Init 1 */
  692.  
  693.   /* USER CODE END USART2_Init 1 */
  694.   huart2.Instance = USART2;
  695.   huart2.Init.BaudRate = 19200;
  696.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  697.   huart2.Init.StopBits = UART_STOPBITS_1;
  698.   huart2.Init.Parity = UART_PARITY_NONE;
  699.   huart2.Init.Mode = UART_MODE_TX_RX;
  700.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  701.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  702.   if (HAL_UART_Init(&huart2) != HAL_OK)
  703.   {
  704.     Error_Handler();
  705.   }
  706.   /* USER CODE BEGIN USART2_Init 2 */
  707.  
  708.   /* USER CODE END USART2_Init 2 */
  709. }
  710.  
  711. /**
  712.  * @brief GPIO Initialization Function
  713.  * @param None
  714.  * @retval None
  715.  */
  716. static void MX_GPIO_Init(void)
  717. {
  718.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  719.  
  720.   /* GPIO Ports Clock Enable */
  721.   __HAL_RCC_GPIOD_CLK_ENABLE();
  722.   __HAL_RCC_GPIOA_CLK_ENABLE();
  723.   __HAL_RCC_GPIOB_CLK_ENABLE();
  724.  
  725.   /*Configure GPIO pin Output Level */
  726.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  727.  
  728.   /*Configure GPIO pin Output Level */
  729.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  730.  
  731.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  732.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  733.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  734.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  735.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  736.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  737.  
  738.   /*Configure GPIO pin : SPI1_CD_Pin */
  739.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  740.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  741.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  742.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  743.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  744.  
  745.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  746.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  747.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  748.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  749.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  750.  
  751.   /*Configure GPIO pin : dualSpark_Pin */
  752.   GPIO_InitStruct.Pin = dualSpark_Pin;
  753.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  754.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  755.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  756. }
  757.  
  758. /* USER CODE BEGIN 4 */
  759.  
  760. /* USER CODE END 4 */
  761.  
  762. /**
  763.  * @brief  This function is executed in case of error occurrence.
  764.  * @retval None
  765.  */
  766. void Error_Handler(void)
  767. {
  768.   /* USER CODE BEGIN Error_Handler_Debug */
  769.   /* User can add his own implementation to report the HAL error return state */
  770.   __disable_irq();
  771.   while (1)
  772.   {
  773.   }
  774.   /* USER CODE END Error_Handler_Debug */
  775. }
  776.  
  777. #ifdef USE_FULL_ASSERT
  778. /**
  779.  * @brief  Reports the name of the source file and the source line number
  780.  *         where the assert_param error has occurred.
  781.  * @param  file: pointer to the source file name
  782.  * @param  line: assert_param error line source number
  783.  * @retval None
  784.  */
  785. void assert_failed(uint8_t *file, uint32_t line)
  786. {
  787.   /* USER CODE BEGIN 6 */
  788.   /* User can add his own implementation to report the file name and line number,
  789.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  790.   /* USER CODE END 6 */
  791. }
  792. #endif /* USE_FULL_ASSERT */
  793.