Subversion Repositories EDIS_Ignition

Rev

Rev 3 | Rev 5 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "display.h"
  25. #include "bmp280driver.h"
  26. #include "libMisc/fixI2C.h"
  27. #include "libPlx/plx.h"
  28. #include "libSerial/serial.h"
  29. #include "libIgnTiming/timing.h"
  30. #include "libIgnTiming/edis.h"
  31. /* USER CODE END Includes */
  32.  
  33. /* Private typedef -----------------------------------------------------------*/
  34. /* USER CODE BEGIN PTD */
  35.  
  36. /* USER CODE END PTD */
  37.  
  38. /* Private define ------------------------------------------------------------*/
  39. /* USER CODE BEGIN PD */
  40. /* USER CODE END PD */
  41.  
  42. /* Private macro -------------------------------------------------------------*/
  43. /* USER CODE BEGIN PM */
  44.  
  45. /* USER CODE END PM */
  46.  
  47. /* Private variables ---------------------------------------------------------*/
  48. CAN_HandleTypeDef hcan;
  49.  
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. IWDG_HandleTypeDef hiwdg;
  53.  
  54. SPI_HandleTypeDef hspi1;
  55.  
  56. TIM_HandleTypeDef htim1;
  57. TIM_HandleTypeDef htim2;
  58. TIM_HandleTypeDef htim3;
  59.  
  60. UART_HandleTypeDef huart2;
  61.  
  62. /* USER CODE BEGIN PV */
  63. int const T100MS = 100;
  64. // index for our MAP value (there is maybe another in the system)
  65. char ourMAPindex = 0;
  66.  
  67. // compensated pressure in mb * 100
  68. uint32_t comp_pres = 0;
  69. // compensated temperature
  70. int32_t comp_temp = -10000;
  71. /* USER CODE END PV */
  72.  
  73. /* Private function prototypes -----------------------------------------------*/
  74. void SystemClock_Config(void);
  75. static void MX_GPIO_Init(void);
  76. static void MX_CAN_Init(void);
  77. static void MX_I2C1_Init(void);
  78. static void MX_TIM1_Init(void);
  79. static void MX_TIM2_Init(void);
  80. static void MX_SPI1_Init(void);
  81. static void MX_USART2_UART_Init(void);
  82. static void MX_TIM3_Init(void);
  83. static void MX_IWDG_Init(void);
  84. /* USER CODE BEGIN PFP */
  85.  
  86. void processObservations()
  87. {
  88.   // send MAP
  89.   PLX_SensorInfo info;
  90.   ConvToPLXInstance(ourMAPindex, &info);
  91.   ConvToPLXAddr(PLX_MAP, &info);
  92.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, comp_pres / 1000.0), &info);
  93.   int i;
  94.   for (i = 0; i < sizeof(PLX_SensorInfo); ++i)
  95.     PutCharSerial(&uc2, info.bytes[i]);
  96. }
  97.  
  98. void triggerSAW()
  99. {
  100.   // trigger SAW timer, timer 1
  101.   __HAL_TIM_ENABLE(&htim1);
  102. }
  103.  
  104. /* USER CODE END PFP */
  105.  
  106. /* Private user code ---------------------------------------------------------*/
  107. /* USER CODE BEGIN 0 */
  108.  
  109. /* USER CODE END 0 */
  110.  
  111. /**
  112.  * @brief  The application entry point.
  113.  * @retval int
  114.  */
  115. int main(void)
  116. {
  117.   /* USER CODE BEGIN 1 */
  118.  
  119.   /* USER CODE END 1 */
  120.  
  121.   /* MCU Configuration--------------------------------------------------------*/
  122.  
  123.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  124.   HAL_Init();
  125.  
  126.   /* USER CODE BEGIN Init */
  127.  
  128.   /* USER CODE END Init */
  129.  
  130.   /* Configure the system clock */
  131.   SystemClock_Config();
  132.  
  133.   /* USER CODE BEGIN SysInit */
  134.  
  135.   /* USER CODE END SysInit */
  136.  
  137.   /* Initialize all configured peripherals */
  138.   MX_GPIO_Init();
  139.   MX_CAN_Init();
  140.   MX_I2C1_Init();
  141.   MX_TIM1_Init();
  142.   MX_TIM2_Init();
  143.   MX_SPI1_Init();
  144.   MX_USART2_UART_Init();
  145.   MX_TIM3_Init();
  146.   MX_IWDG_Init();
  147.   /* USER CODE BEGIN 2 */
  148.   cc_init();
  149.  
  150.   HAL_TIM_Base_Start(&htim1);
  151.  
  152.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  153.  
  154.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  155.   MX_I2C1_Init();
  156.   init_bmp(&hi2c1);
  157.   uint32_t lastTick = HAL_GetTick();
  158.  
  159.   uint32_t displayOff = lastTick + 10000;
  160.   uint8_t intensity = 2;
  161.   uint32_t timeout = 0;
  162.   uint8_t send = 0; // enable sending our PLX data when non zero
  163.   ResetRxBuffer(&uc2);
  164.  
  165.   // used to store data
  166.   PLX_SensorInfo info;
  167.   int infoCount = -1;
  168.  
  169.   HAL_IWDG_Init(&hiwdg);
  170.   /* USER CODE END 2 */
  171.  
  172.   /* Infinite loop */
  173.   /* USER CODE BEGIN WHILE */
  174.   while (1)
  175.   {
  176.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  177.  
  178.     if (button)
  179.     {
  180.       intensity = 2;
  181.       displayOff = lastTick + 10000;
  182.     }
  183.  
  184.     switch (intensity)
  185.     {
  186.     case 2:
  187.       if (HAL_GetTick() > displayOff)
  188.       {
  189.         intensity = 1;
  190.         displayOff = lastTick + 60000;
  191.       }
  192.  
  193.       break;
  194.     case 1:
  195.       if (HAL_GetTick() > displayOff)
  196.       {
  197.         intensity = 0;
  198.       }
  199.     default:
  200.       break;
  201.     }
  202.     cc_display(0, intensity);
  203.  
  204.     if (HAL_GetTick() - lastTick > 200)
  205.     {
  206.       lastTick = HAL_GetTick();
  207.       /* Reading the raw data from sensor */
  208.       struct bmp280_uncomp_data ucomp_data;
  209.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  210.  
  211.       uint32_t comp_pres = 0;
  212.       int32_t comp_temp = -10000;
  213.       if (rslt == 0)
  214.       {
  215.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  216.  
  217.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  218.         if (rslt2 == 0 && rslt3 == 0)
  219.           cc_feed_env(comp_pres, comp_temp);
  220.       }
  221.     }
  222.  
  223.     // compute RPM value, feed to display
  224.  
  225.     int rpm = CalculateRPM();
  226.     if (rpm > 0)
  227.     {
  228.       cc_feed_rpm(rpm);
  229.       // compute timing value, feed to display
  230.       int timing = mapTiming(rpm, 1000 - comp_pres / 100);
  231.       cc_feed_timing(timing);
  232.       int microsecs = mapTimingToMicroseconds(timing, 0);
  233.       __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  234.     }
  235.     // Handle PLX
  236.     // poll the  input for a stop bit or timeout
  237.     if (PollSerial(&uc2))
  238.     {
  239.       timeout = HAL_GetTick() + T100MS * 2;
  240.       char c = GetCharSerial(&uc2);
  241.       if (c != PLX_Stop)
  242.       {
  243.         PutCharSerial(&uc2, c); // echo all but the stop bit
  244.       }
  245.       else
  246.       {           // must be a stop character
  247.         send = 1; // start our sending process.
  248.       }
  249.       // look up the i
  250.       if (c == PLX_Start)
  251.       {
  252.         ourMAPindex = 0;
  253.         infoCount = 0;
  254.       }
  255.       else
  256.       {
  257.         info.bytes[infoCount++] = c;
  258.         // process the sensor info field
  259.         if (infoCount == sizeof(PLX_SensorInfo))
  260.         {
  261.           infoCount = 0;
  262.           int addr = ConvPLXAddr(&info);
  263.           if (addr == PLX_MAP)
  264.             ourMAPindex = info.Instance + 1;
  265.         }
  266.       }
  267.  
  268.       if (c == PLX_Stop)
  269.         infoCount = -1;
  270.     }
  271.  
  272.     // sort out auto-sending
  273.     if (HAL_GetTick() > timeout)
  274.     {
  275.       timeout = HAL_GetTick() + T100MS;
  276.       send = 1;
  277.     }
  278.  
  279.     if (send)
  280.     {
  281.       send = 0;
  282.  
  283.       // send the observations
  284.       processObservations();
  285.       //
  286.       PutCharSerial(&uc2, PLX_Stop);
  287.     }
  288.  
  289.     /* USER CODE END WHILE */
  290.  
  291.     /* USER CODE BEGIN 3 */
  292.     HAL_IWDG_Refresh(&hiwdg);
  293.   }
  294.   /* USER CODE END 3 */
  295. }
  296.  
  297. /**
  298.  * @brief System Clock Configuration
  299.  * @retval None
  300.  */
  301. void SystemClock_Config(void)
  302. {
  303.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  304.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  305.  
  306.   /** Initializes the RCC Oscillators according to the specified parameters
  307.    * in the RCC_OscInitTypeDef structure.
  308.    */
  309.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  310.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  311.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  312.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  313.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  314.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  315.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  316.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  317.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  318.   {
  319.     Error_Handler();
  320.   }
  321.  
  322.   /** Initializes the CPU, AHB and APB buses clocks
  323.    */
  324.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  325.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  326.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  327.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  328.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  329.  
  330.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  331.   {
  332.     Error_Handler();
  333.   }
  334. }
  335.  
  336. /**
  337.  * @brief CAN Initialization Function
  338.  * @param None
  339.  * @retval None
  340.  */
  341. static void MX_CAN_Init(void)
  342. {
  343.  
  344.   /* USER CODE BEGIN CAN_Init 0 */
  345.  
  346.   /* USER CODE END CAN_Init 0 */
  347.  
  348.   /* USER CODE BEGIN CAN_Init 1 */
  349.  
  350.   /* USER CODE END CAN_Init 1 */
  351.   hcan.Instance = CAN1;
  352.   hcan.Init.Prescaler = 18;
  353.   hcan.Init.Mode = CAN_MODE_NORMAL;
  354.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  355.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  356.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  357.   hcan.Init.TimeTriggeredMode = DISABLE;
  358.   hcan.Init.AutoBusOff = DISABLE;
  359.   hcan.Init.AutoWakeUp = DISABLE;
  360.   hcan.Init.AutoRetransmission = DISABLE;
  361.   hcan.Init.ReceiveFifoLocked = DISABLE;
  362.   hcan.Init.TransmitFifoPriority = DISABLE;
  363.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  364.   {
  365.     Error_Handler();
  366.   }
  367.   /* USER CODE BEGIN CAN_Init 2 */
  368.  
  369.   /* USER CODE END CAN_Init 2 */
  370. }
  371.  
  372. /**
  373.  * @brief I2C1 Initialization Function
  374.  * @param None
  375.  * @retval None
  376.  */
  377. static void MX_I2C1_Init(void)
  378. {
  379.  
  380.   /* USER CODE BEGIN I2C1_Init 0 */
  381.  
  382.   /* USER CODE END I2C1_Init 0 */
  383.  
  384.   /* USER CODE BEGIN I2C1_Init 1 */
  385.  
  386.   /* USER CODE END I2C1_Init 1 */
  387.   hi2c1.Instance = I2C1;
  388.   hi2c1.Init.ClockSpeed = 100000;
  389.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  390.   hi2c1.Init.OwnAddress1 = 0;
  391.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  392.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  393.   hi2c1.Init.OwnAddress2 = 0;
  394.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  395.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  396.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  397.   {
  398.     Error_Handler();
  399.   }
  400.   /* USER CODE BEGIN I2C1_Init 2 */
  401.  
  402.   /* USER CODE END I2C1_Init 2 */
  403. }
  404.  
  405. /**
  406.  * @brief IWDG Initialization Function
  407.  * @param None
  408.  * @retval None
  409.  */
  410. static void MX_IWDG_Init(void)
  411. {
  412.  
  413.   /* USER CODE BEGIN IWDG_Init 0 */
  414.  
  415.   /* USER CODE END IWDG_Init 0 */
  416.  
  417.   /* USER CODE BEGIN IWDG_Init 1 */
  418.  
  419.   /* USER CODE END IWDG_Init 1 */
  420.   hiwdg.Instance = IWDG;
  421.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  422.   hiwdg.Init.Reload = 819;
  423.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  424.   {
  425.     Error_Handler();
  426.   }
  427.   /* USER CODE BEGIN IWDG_Init 2 */
  428.  
  429.   /* USER CODE END IWDG_Init 2 */
  430. }
  431.  
  432. /**
  433.  * @brief SPI1 Initialization Function
  434.  * @param None
  435.  * @retval None
  436.  */
  437. static void MX_SPI1_Init(void)
  438. {
  439.  
  440.   /* USER CODE BEGIN SPI1_Init 0 */
  441.  
  442.   /* USER CODE END SPI1_Init 0 */
  443.  
  444.   /* USER CODE BEGIN SPI1_Init 1 */
  445.  
  446.   /* USER CODE END SPI1_Init 1 */
  447.   /* SPI1 parameter configuration*/
  448.   hspi1.Instance = SPI1;
  449.   hspi1.Init.Mode = SPI_MODE_MASTER;
  450.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  451.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  452.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  453.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  454.   hspi1.Init.NSS = SPI_NSS_SOFT;
  455.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  456.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  457.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  458.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  459.   hspi1.Init.CRCPolynomial = 10;
  460.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  461.   {
  462.     Error_Handler();
  463.   }
  464.   /* USER CODE BEGIN SPI1_Init 2 */
  465.  
  466.   /* USER CODE END SPI1_Init 2 */
  467. }
  468.  
  469. /**
  470.  * @brief TIM1 Initialization Function
  471.  * @param None
  472.  * @retval None
  473.  */
  474. static void MX_TIM1_Init(void)
  475. {
  476.  
  477.   /* USER CODE BEGIN TIM1_Init 0 */
  478.  
  479.   /* USER CODE END TIM1_Init 0 */
  480.  
  481.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  482.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  483.   TIM_OC_InitTypeDef sConfigOC = {0};
  484.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  485.  
  486.   /* USER CODE BEGIN TIM1_Init 1 */
  487.  
  488.   /* USER CODE END TIM1_Init 1 */
  489.   htim1.Instance = TIM1;
  490.   htim1.Init.Prescaler = 71;
  491.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  492.   htim1.Init.Period = 65535;
  493.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  494.   htim1.Init.RepetitionCounter = 0;
  495.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  496.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  497.   {
  498.     Error_Handler();
  499.   }
  500.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  501.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  502.   {
  503.     Error_Handler();
  504.   }
  505.   if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
  506.   {
  507.     Error_Handler();
  508.   }
  509.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  510.   {
  511.     Error_Handler();
  512.   }
  513.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  514.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  515.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  516.   {
  517.     Error_Handler();
  518.   }
  519.   sConfigOC.OCMode = TIM_OCMODE_ACTIVE;
  520.   sConfigOC.Pulse = SAW_DELAY;
  521.   sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  522.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  523.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  524.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  525.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  526.   if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  527.   {
  528.     Error_Handler();
  529.   }
  530.   __HAL_TIM_ENABLE_OCxPRELOAD(&htim1, TIM_CHANNEL_1);
  531.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  532.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  533.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  534.   sBreakDeadTimeConfig.DeadTime = 0;
  535.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  536.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  537.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  538.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  539.   {
  540.     Error_Handler();
  541.   }
  542.   /* USER CODE BEGIN TIM1_Init 2 */
  543.  
  544.   /* USER CODE END TIM1_Init 2 */
  545.   HAL_TIM_MspPostInit(&htim1);
  546. }
  547.  
  548. /**
  549.  * @brief TIM2 Initialization Function
  550.  * @param None
  551.  * @retval None
  552.  */
  553. static void MX_TIM2_Init(void)
  554. {
  555.  
  556.   /* USER CODE BEGIN TIM2_Init 0 */
  557.  
  558.   /* USER CODE END TIM2_Init 0 */
  559.  
  560.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  561.   TIM_SlaveConfigTypeDef sSlaveConfig = {0};
  562.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  563.  
  564.   /* USER CODE BEGIN TIM2_Init 1 */
  565.  
  566.   /* USER CODE END TIM2_Init 1 */
  567.   htim2.Instance = TIM2;
  568.   htim2.Init.Prescaler = 71;
  569.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  570.   htim2.Init.Period = 9;
  571.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  572.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  573.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  574.   {
  575.     Error_Handler();
  576.   }
  577.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  578.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  579.   {
  580.     Error_Handler();
  581.   }
  582.   if (HAL_TIM_OnePulse_Init(&htim2, TIM_OPMODE_SINGLE) != HAL_OK)
  583.   {
  584.     Error_Handler();
  585.   }
  586.   sSlaveConfig.SlaveMode = TIM_SLAVEMODE_TRIGGER;
  587.   sSlaveConfig.InputTrigger = TIM_TS_ETRF;
  588.   sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_INVERTED;
  589.   sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1;
  590.   sSlaveConfig.TriggerFilter = 15;
  591.   if (HAL_TIM_SlaveConfigSynchro(&htim2, &sSlaveConfig) != HAL_OK)
  592.   {
  593.     Error_Handler();
  594.   }
  595.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  596.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  597.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  598.   {
  599.     Error_Handler();
  600.   }
  601.   /* USER CODE BEGIN TIM2_Init 2 */
  602.  
  603.   /* USER CODE END TIM2_Init 2 */
  604. }
  605.  
  606. /**
  607.  * @brief TIM3 Initialization Function
  608.  * @param None
  609.  * @retval None
  610.  */
  611. static void MX_TIM3_Init(void)
  612. {
  613.  
  614.   /* USER CODE BEGIN TIM3_Init 0 */
  615.  
  616.   /* USER CODE END TIM3_Init 0 */
  617.  
  618.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  619.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  620.  
  621.   /* USER CODE BEGIN TIM3_Init 1 */
  622.  
  623.   /* USER CODE END TIM3_Init 1 */
  624.   htim3.Instance = TIM3;
  625.   htim3.Init.Prescaler = 719;
  626.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  627.   htim3.Init.Period = 10000;
  628.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  629.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  630.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  631.   {
  632.     Error_Handler();
  633.   }
  634.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  635.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  636.   {
  637.     Error_Handler();
  638.   }
  639.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  640.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  641.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  642.   {
  643.     Error_Handler();
  644.   }
  645.   /* USER CODE BEGIN TIM3_Init 2 */
  646.  
  647.   /* USER CODE END TIM3_Init 2 */
  648. }
  649.  
  650. /**
  651.  * @brief USART2 Initialization Function
  652.  * @param None
  653.  * @retval None
  654.  */
  655. static void MX_USART2_UART_Init(void)
  656. {
  657.  
  658.   /* USER CODE BEGIN USART2_Init 0 */
  659.  
  660.   /* USER CODE END USART2_Init 0 */
  661.  
  662.   /* USER CODE BEGIN USART2_Init 1 */
  663.  
  664.   /* USER CODE END USART2_Init 1 */
  665.   huart2.Instance = USART2;
  666.   huart2.Init.BaudRate = 19200;
  667.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  668.   huart2.Init.StopBits = UART_STOPBITS_1;
  669.   huart2.Init.Parity = UART_PARITY_NONE;
  670.   huart2.Init.Mode = UART_MODE_TX_RX;
  671.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  672.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  673.   if (HAL_UART_Init(&huart2) != HAL_OK)
  674.   {
  675.     Error_Handler();
  676.   }
  677.   /* USER CODE BEGIN USART2_Init 2 */
  678.  
  679.   /* USER CODE END USART2_Init 2 */
  680. }
  681.  
  682. /**
  683.  * @brief GPIO Initialization Function
  684.  * @param None
  685.  * @retval None
  686.  */
  687. static void MX_GPIO_Init(void)
  688. {
  689.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  690.  
  691.   /* GPIO Ports Clock Enable */
  692.   __HAL_RCC_GPIOD_CLK_ENABLE();
  693.   __HAL_RCC_GPIOA_CLK_ENABLE();
  694.   __HAL_RCC_GPIOB_CLK_ENABLE();
  695.  
  696.   /*Configure GPIO pin Output Level */
  697.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  698.  
  699.   /*Configure GPIO pin Output Level */
  700.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  701.  
  702.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  703.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  704.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  705.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  706.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  707.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  708.  
  709.   /*Configure GPIO pin : SPI1_CD_Pin */
  710.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  711.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  712.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  713.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  714.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  715.  
  716.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  717.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  718.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  719.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  720.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  721.  
  722.   /*Configure GPIO pin : dualSpark_Pin */
  723.   GPIO_InitStruct.Pin = dualSpark_Pin;
  724.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  725.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  726.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  727. }
  728.  
  729. /* USER CODE BEGIN 4 */
  730.  
  731. /* USER CODE END 4 */
  732.  
  733. /**
  734.  * @brief  This function is executed in case of error occurrence.
  735.  * @retval None
  736.  */
  737. void Error_Handler(void)
  738. {
  739.   /* USER CODE BEGIN Error_Handler_Debug */
  740.   /* User can add his own implementation to report the HAL error return state */
  741.   __disable_irq();
  742.   while (1)
  743.   {
  744.   }
  745.   /* USER CODE END Error_Handler_Debug */
  746. }
  747.  
  748. #ifdef USE_FULL_ASSERT
  749. /**
  750.  * @brief  Reports the name of the source file and the source line number
  751.  *         where the assert_param error has occurred.
  752.  * @param  file: pointer to the source file name
  753.  * @param  line: assert_param error line source number
  754.  * @retval None
  755.  */
  756. void assert_failed(uint8_t *file, uint32_t line)
  757. {
  758.   /* USER CODE BEGIN 6 */
  759.   /* User can add his own implementation to report the file name and line number,
  760.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  761.   /* USER CODE END 6 */
  762. }
  763. #endif /* USE_FULL_ASSERT */
  764.