/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
// #define TEST_CODE
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "memory.h"
#include "display.h"
#include "bmp280driver.h"
#include "libMisc/fixI2C.h"
#include "libPlx/plx.h"
#include "libSerial/serial.h"
#include "libIgnTiming/timing.h"
#include "libIgnTiming/edis.h"
#include "libIgnTiming/rpm.h"
#include "saveTiming.h"
#include "libPLX/commsLib.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
I2C_HandleTypeDef hi2c1;
IWDG_HandleTypeDef hiwdg;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
int const T100MS = 100;
int const DISPLAY_REINITIALISE = 60 * 1000;
/// @brief compensated pressure in mb * 100
uint32_t compensatedManifoldPressure = 0;
/// @brief compensated atmospheric pressure
uint32_t compensatedAtmosphericPressure = 0;
/// @brief compensated temperature
int32_t compensatedTemperature = -10000;
int32_t timing = 0;
// 6 degrees error in timing wheel this time ..
int const TIMING_OFFSET = -6 * TIMING_SCALE;
// Switch over to double sparking
int const DOUBLE_SPARK_RPM = 1200;
// default atmospheric pressure - should be 1014
uint32_t const DEFAULT_ATMOSPHERIC_PRESSURE = 1014 * 100;
uint32_t const DEFAULT_ATMOSPHERIC_TEMPERATURE = 25 * 100;
// Serial buffers
#define TX_BUFFER_SIZE 128
#define RX_BUFFER_SIZE 128
unsigned volatile char tx_buffer[TX_BUFFER_SIZE];
unsigned volatile char rx_buffer[RX_BUFFER_SIZE];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_CAN_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_IWDG_Init(void);
/* USER CODE BEGIN PFP */
void libPLXcallbackRecievedData(PLX_SensorInfo *info)
{
(void)info;
}
void libPLXcallbackSendUserData(struct usart_ctl *handle)
{
// send MAP
PLX_SensorInfo info;
ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
ConvToPLXAddr(PLX_MAP, &info);
ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(compensatedManifoldPressure) / 100.0), &info);
sendInfo(handle, &info);
// send timing
ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
ConvToPLXAddr(PLX_Timing, &info);
ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
sendInfo(handle, &info);
// send temperature
ConvToPLXInstance(libPLXgetNextInstance(PLX_AIT), &info);
ConvToPLXAddr(PLX_AIT, &info);
ConvToPLXReading(ConveriMFDData2Raw(PLX_AIT, 0, (float)(compensatedTemperature) / 100.0), &info);
sendInfo(handle, &info);
}
void triggerSAW()
{
// trigger SAW timer, timer 1##pragma endregion
__HAL_TIM_ENABLE(&htim1);
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void watchdogWrite()
{
HAL_IWDG_Refresh(&hiwdg);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CAN_Init();
MX_I2C1_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
MX_TIM3_Init();
MX_IWDG_Init();
/* USER CODE BEGIN 2 */
init_usart_ctl(&uc2, &huart2, tx_buffer,
rx_buffer,
TX_BUFFER_SIZE,
RX_BUFFER_SIZE);
cc_init();
HAL_TIM_Base_MspInit(&htim1);
HAL_TIM_Base_Start(&htim1);
HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
// initialise all the STMCubeMX stuff
HAL_TIM_Base_MspInit(&htim2);
// Start the counter
HAL_TIM_Base_Start(&htim2);
// Start the input capture and the rising edge interrupt
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
// Start the input capture and the falling edge interrupt
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
// HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
MX_I2C1_Init();
init_bmp(&hi2c1, &bmpManifold, &confManifold);
init_bmp(&hi2c1, &bmpAtmosphere, &confAtmosphere);
uint32_t nextTick = HAL_GetTick();
uint32_t displayOff = nextTick + 10000;
uint32_t displayReinitialise = nextTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
uint8_t intensity = 2;
ResetRxBuffer(&uc2);
resetPLX();
// HAL_IWDG_Init(&hiwdg);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
if (button)
{
intensity = 2;
displayOff = HAL_GetTick() + 30000;
}
switch (intensity)
{
case 2:
if (HAL_GetTick() > displayOff)
{
intensity = 1;
displayOff += 60000;
}
break;
case 1:
if (HAL_GetTick() > displayOff)
{
intensity = 1; // was 0
}
default:
break;
}
// periodically write to the display and clear it
if (HAL_GetTick() > displayReinitialise)
{
displayReinitialise += DISPLAY_REINITIALISE;
cc_display(0, intensity, 1);
}
else
cc_display(0, intensity, 0);
if (HAL_GetTick() > nextTick)
{
nextTick = HAL_GetTick() + T100MS;
uint8_t manifoldStatus = 1;
uint8_t temperatureStatus = 1;
uint8_t atmosphericStatus = 1;
/* Reading the raw data from manifold sensor */
struct bmp280_uncomp_data ucomp_data;
uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmpManifold);
if (rslt == BMP280_OK)
{
// always calculate temperature then pressure so the pressure is correctly calibrated
temperatureStatus = bmp280_get_comp_temp_32bit(&compensatedTemperature, ucomp_data.uncomp_temp, &bmpManifold);
manifoldStatus = bmp280_get_comp_pres_32bit(&compensatedManifoldPressure, ucomp_data.uncomp_press, &bmpManifold);
}
// get atmospheric data
rslt = bmp280_get_uncomp_data(&ucomp_data, &bmpAtmosphere);
// now to read the environmental pressure
if (rslt == BMP280_OK)
{
// always calculate temperature then pressure so the pressure is correctly calibrated
temperatureStatus = bmp280_get_comp_temp_32bit(&compensatedTemperature, ucomp_data.uncomp_temp, &bmpAtmosphere);
atmosphericStatus = bmp280_get_comp_pres_32bit(&compensatedAtmosphericPressure, ucomp_data.uncomp_press, &bmpAtmosphere);
}
if (manifoldStatus != BMP280_OK)
compensatedManifoldPressure = DEFAULT_ATMOSPHERIC_PRESSURE;
if (temperatureStatus != BMP280_OK)
compensatedTemperature = DEFAULT_ATMOSPHERIC_TEMPERATURE;
if (atmosphericStatus != BMP280_OK)
compensatedAtmosphericPressure = DEFAULT_ATMOSPHERIC_PRESSURE;
#if defined TEST_CODE
compensatedManifoldPressure = 100000;
compensatedTemperature = 4000;
#endif
int32_t vacuum = compensatedAtmosphericPressure - compensatedManifoldPressure;
if (vacuum < 0)
vacuum = 0;
// if the BMP280 pressure is good, then allow it through, otherwise drop to
// centrifugal advance only.
// feed difference and add default pressure
cc_feed_env(compensatedAtmosphericPressure, 100000 - vacuum, compensatedTemperature);
// compute RPM value, feed to display
#if defined TEST_CODE
int rpm = 1000;
#else
int rpm = CalculateRPM();
#endif
if (rpm > 0)
{
cc_feed_rpm(rpm);
// compute timing value, feed to display
timing = mapTiming(rpm, vacuum / 100);
cc_feed_timing(timing);
// enable double spark below 1200 rpm
int microsecs = mapTimingToMicroseconds(timing + TIMING_OFFSET, rpm < DOUBLE_SPARK_RPM);
__HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
}
}
// Handle PLX
libPLXpollData(&uc2);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
watchdogWrite();
HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
// todo occasionally saveTimingInfoToNvram();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief CAN Initialization Function
* @param None
* @retval None
*/
static void MX_CAN_Init(void)
{
/* USER CODE BEGIN CAN_Init 0 */
/* USER CODE END CAN_Init 0 */
/* USER CODE BEGIN CAN_Init 1 */
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN1;
hcan.Init.Prescaler = 18;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN_Init 2 */
/* USER CODE END CAN_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief IWDG Initialization Function
* @param None
* @retval None
*/
static void MX_IWDG_Init(void)
{
/* USER CODE BEGIN IWDG_Init 0 */
/* USER CODE END IWDG_Init 0 */
/* USER CODE BEGIN IWDG_Init 1 */
/* USER CODE END IWDG_Init 1 */
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
hiwdg.Init.Reload = 1000;
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN IWDG_Init 2 */
/* USER CODE END IWDG_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 71;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = SAW_DELAY;
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 719;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 719;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 10000;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 19200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED_Pin */
GPIO_InitStruct.Pin = LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : SPI1_CD_Pin */
GPIO_InitStruct.Pin = SPI1_CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PUSHBUTTON_Pin */
GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : dualSpark_Pin */
GPIO_InitStruct.Pin = dualSpark_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */