Subversion Repositories EDIS_Ignition

Rev

Rev 16 | Rev 18 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "saveTiming.h"
  33. #include "libPLX/commsLib.h"
  34. /* USER CODE END Includes */
  35.  
  36. /* Private typedef -----------------------------------------------------------*/
  37. /* USER CODE BEGIN PTD */
  38.  
  39. /* USER CODE END PTD */
  40.  
  41. /* Private define ------------------------------------------------------------*/
  42. /* USER CODE BEGIN PD */
  43. /* USER CODE END PD */
  44.  
  45. /* Private macro -------------------------------------------------------------*/
  46. /* USER CODE BEGIN PM */
  47.  
  48. /* USER CODE END PM */
  49.  
  50. /* Private variables ---------------------------------------------------------*/
  51. CAN_HandleTypeDef hcan;
  52.  
  53. I2C_HandleTypeDef hi2c1;
  54.  
  55. IWDG_HandleTypeDef hiwdg;
  56.  
  57. SPI_HandleTypeDef hspi1;
  58.  
  59. TIM_HandleTypeDef htim1;
  60. TIM_HandleTypeDef htim2;
  61. TIM_HandleTypeDef htim3;
  62.  
  63. UART_HandleTypeDef huart2;
  64.  
  65. /* USER CODE BEGIN PV */
  66. int const T100MS = 100;
  67.  
  68. int const DISPLAY_REINITIALISE = 60 * 1000;
  69. // compensated pressure in mb * 100
  70. uint32_t comp_pres = 0;
  71. // compensated temperature
  72. int32_t comp_temp = -10000;
  73.  
  74. int32_t timing = 0;
  75.  
  76. // 6 degrees error in timing wheel this time ..
  77. int const TIMING_OFFSET = -6 * TIMING_SCALE;
  78. /* USER CODE END PV */
  79.  
  80. /* Private function prototypes -----------------------------------------------*/
  81. void SystemClock_Config(void);
  82. static void MX_GPIO_Init(void);
  83. static void MX_CAN_Init(void);
  84. static void MX_I2C1_Init(void);
  85. static void MX_TIM1_Init(void);
  86. static void MX_TIM2_Init(void);
  87. static void MX_SPI1_Init(void);
  88. static void MX_USART2_UART_Init(void);
  89. static void MX_TIM3_Init(void);
  90. static void MX_IWDG_Init(void);
  91. /* USER CODE BEGIN PFP */
  92.  
  93. // send a PLX_SensorInfo structure to the usart.
  94. void sendInfo(usart_ctl *uc, PLX_SensorInfo *info)
  95. {
  96.   for (int i = 0; i < sizeof(PLX_SensorInfo); ++i)
  97.     PutCharSerial(uc, info->bytes[i]);
  98. }
  99.  
  100.  
  101. void libPLXcallbackSendUserData()
  102. {
  103.   // send MAP
  104.   PLX_SensorInfo info;
  105.   ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
  106.   ConvToPLXAddr(PLX_MAP, &info);
  107.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(comp_pres) / 100.0), &info);
  108.   sendInfo(&uc2, &info);
  109.  
  110.   ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
  111.   ConvToPLXAddr(PLX_Timing, &info);
  112.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  113.   sendInfo(&uc2, &info);
  114. }
  115.  
  116. void triggerSAW()
  117. {
  118.   // trigger SAW timer, timer 1##pragma endregion
  119.  
  120.   __HAL_TIM_ENABLE(&htim1);
  121. }
  122.  
  123. /* USER CODE END PFP */
  124.  
  125. /* Private user code ---------------------------------------------------------*/
  126. /* USER CODE BEGIN 0 */
  127. void watchdogWrite()
  128. {
  129.   HAL_IWDG_Refresh(&hiwdg);
  130. }
  131.  
  132. /* USER CODE END 0 */
  133.  
  134. /**
  135.  * @brief  The application entry point.
  136.  * @retval int
  137.  */
  138. int main(void)
  139. {
  140.   /* USER CODE BEGIN 1 */
  141.  
  142.   /* USER CODE END 1 */
  143.  
  144.   /* MCU Configuration--------------------------------------------------------*/
  145.  
  146.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  147.   HAL_Init();
  148.  
  149.   /* USER CODE BEGIN Init */
  150.  
  151.   /* USER CODE END Init */
  152.  
  153.   /* Configure the system clock */
  154.   SystemClock_Config();
  155.  
  156.   /* USER CODE BEGIN SysInit */
  157.  
  158.   /* USER CODE END SysInit */
  159.  
  160.   /* Initialize all configured peripherals */
  161.   MX_GPIO_Init();
  162.   MX_CAN_Init();
  163.   MX_I2C1_Init();
  164.   MX_TIM1_Init();
  165.   MX_TIM2_Init();
  166.   MX_SPI1_Init();
  167.   MX_USART2_UART_Init();
  168.   MX_TIM3_Init();
  169.   MX_IWDG_Init();
  170.   /* USER CODE BEGIN 2 */
  171.  
  172.   init_usart_ctl(&uc2, &huart2);
  173.  
  174.   cc_init();
  175.  
  176.   HAL_TIM_Base_MspInit(&htim1);
  177.  
  178.   HAL_TIM_Base_Start(&htim1);
  179.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  180.  
  181.   // initialise all the STMCubeMX stuff
  182.   HAL_TIM_Base_MspInit(&htim2);
  183.   // Start the counter
  184.   HAL_TIM_Base_Start(&htim2);
  185.   // Start the input capture and the rising edge interrupt
  186.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  187.   // Start the input capture and the falling edge interrupt
  188.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  189.  
  190.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  191.  
  192.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  193.   MX_I2C1_Init();
  194.   init_bmp(&hi2c1);
  195.   uint32_t lastTick = HAL_GetTick();
  196.  
  197.   uint32_t displayOff = lastTick + 10000;
  198.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  199.  
  200.   uint8_t intensity = 2;
  201.  
  202.  
  203.   ResetRxBuffer(&uc2);
  204.  
  205.   resetPLX();
  206.  
  207.   // HAL_IWDG_Init(&hiwdg);
  208.   /* USER CODE END 2 */
  209.  
  210.   /* Infinite loop */
  211.   /* USER CODE BEGIN WHILE */
  212.   while (1)
  213.   {
  214.  
  215.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  216.  
  217.     if (button)
  218.     {
  219.       intensity = 2;
  220.       displayOff = lastTick + 30000;
  221.     }
  222.  
  223.     switch (intensity)
  224.     {
  225.     case 2:
  226.       if (HAL_GetTick() > displayOff)
  227.       {
  228.         intensity = 1;
  229.         displayOff = lastTick + 60000;
  230.       }
  231.  
  232.       break;
  233.     case 1:
  234.       if (HAL_GetTick() > displayOff)
  235.       {
  236.         intensity = 1; // was 0
  237.       }
  238.     default:
  239.       break;
  240.     }
  241.     // periodically write to the display and clear it
  242.     if (HAL_GetTick() > displayReinitialise)
  243.     {
  244.       displayReinitialise += DISPLAY_REINITIALISE;
  245.       cc_display(0, intensity, 1);
  246.     }
  247.     else
  248.       cc_display(0, intensity, 0);
  249.  
  250.     if (HAL_GetTick() - lastTick > T100MS)
  251.     {
  252.       lastTick = HAL_GetTick();
  253.       /* Reading the raw data from sensor */
  254.       struct bmp280_uncomp_data ucomp_data;
  255.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  256.  
  257.       if (rslt == 0)
  258.       {
  259.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  260.  
  261.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  262.  
  263. #if defined TEST_CODE
  264.         comp_pres = 100000;
  265.         comp_temp = 4000;
  266. #endif
  267.         if (rslt2 == 0 && rslt3 == 0)
  268.           cc_feed_env(comp_pres, comp_temp);
  269.       }
  270.  
  271.       // compute RPM value, feed to display
  272. #if defined TEST_CODE
  273.       int rpm = 1000;
  274. #else
  275.       int rpm = CalculateRPM();
  276. #endif
  277.       if (rpm > 0)
  278.       {
  279.         cc_feed_rpm(rpm);
  280.         // compute timing value, feed to display
  281.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  282.         cc_feed_timing(timing );
  283.         int microsecs = mapTimingToMicroseconds(timing + TIMING_OFFSET, 0);
  284.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  285.       }
  286.     }
  287.  
  288.    
  289.     // Handle PLX
  290.     libPLXpollData(&uc2);
  291.  
  292.     /* USER CODE END WHILE */
  293.  
  294.     /* USER CODE BEGIN 3 */
  295.     watchdogWrite();
  296.  
  297.     // todo occasionally     saveTimingInfoToNvram();
  298.   }
  299.   /* USER CODE END 3 */
  300. }
  301.  
  302. /**
  303.  * @brief System Clock Configuration
  304.  * @retval None
  305.  */
  306. void SystemClock_Config(void)
  307. {
  308.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  309.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  310.  
  311.   /** Initializes the RCC Oscillators according to the specified parameters
  312.    * in the RCC_OscInitTypeDef structure.
  313.    */
  314.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  315.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  316.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  317.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  318.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  319.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  320.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  321.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  322.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  323.   {
  324.     Error_Handler();
  325.   }
  326.  
  327.   /** Initializes the CPU, AHB and APB buses clocks
  328.    */
  329.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  330.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  331.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  332.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  333.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  334.  
  335.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  336.   {
  337.     Error_Handler();
  338.   }
  339. }
  340.  
  341. /**
  342.  * @brief CAN Initialization Function
  343.  * @param None
  344.  * @retval None
  345.  */
  346. static void MX_CAN_Init(void)
  347. {
  348.  
  349.   /* USER CODE BEGIN CAN_Init 0 */
  350.  
  351.   /* USER CODE END CAN_Init 0 */
  352.  
  353.   /* USER CODE BEGIN CAN_Init 1 */
  354.  
  355.   /* USER CODE END CAN_Init 1 */
  356.   hcan.Instance = CAN1;
  357.   hcan.Init.Prescaler = 18;
  358.   hcan.Init.Mode = CAN_MODE_NORMAL;
  359.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  360.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  361.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  362.   hcan.Init.TimeTriggeredMode = DISABLE;
  363.   hcan.Init.AutoBusOff = DISABLE;
  364.   hcan.Init.AutoWakeUp = DISABLE;
  365.   hcan.Init.AutoRetransmission = DISABLE;
  366.   hcan.Init.ReceiveFifoLocked = DISABLE;
  367.   hcan.Init.TransmitFifoPriority = DISABLE;
  368.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  369.   {
  370.     Error_Handler();
  371.   }
  372.   /* USER CODE BEGIN CAN_Init 2 */
  373.  
  374.   /* USER CODE END CAN_Init 2 */
  375. }
  376.  
  377. /**
  378.  * @brief I2C1 Initialization Function
  379.  * @param None
  380.  * @retval None
  381.  */
  382. static void MX_I2C1_Init(void)
  383. {
  384.  
  385.   /* USER CODE BEGIN I2C1_Init 0 */
  386.  
  387.   /* USER CODE END I2C1_Init 0 */
  388.  
  389.   /* USER CODE BEGIN I2C1_Init 1 */
  390.  
  391.   /* USER CODE END I2C1_Init 1 */
  392.   hi2c1.Instance = I2C1;
  393.   hi2c1.Init.ClockSpeed = 100000;
  394.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  395.   hi2c1.Init.OwnAddress1 = 0;
  396.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  397.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  398.   hi2c1.Init.OwnAddress2 = 0;
  399.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  400.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  401.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  402.   {
  403.     Error_Handler();
  404.   }
  405.   /* USER CODE BEGIN I2C1_Init 2 */
  406.  
  407.   /* USER CODE END I2C1_Init 2 */
  408. }
  409.  
  410. /**
  411.  * @brief IWDG Initialization Function
  412.  * @param None
  413.  * @retval None
  414.  */
  415. static void MX_IWDG_Init(void)
  416. {
  417.  
  418.   /* USER CODE BEGIN IWDG_Init 0 */
  419.  
  420.   /* USER CODE END IWDG_Init 0 */
  421.  
  422.   /* USER CODE BEGIN IWDG_Init 1 */
  423.  
  424.   /* USER CODE END IWDG_Init 1 */
  425.   hiwdg.Instance = IWDG;
  426.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  427.   hiwdg.Init.Reload = 1000;
  428.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  429.   {
  430.     Error_Handler();
  431.   }
  432.   /* USER CODE BEGIN IWDG_Init 2 */
  433.  
  434.   /* USER CODE END IWDG_Init 2 */
  435. }
  436.  
  437. /**
  438.  * @brief SPI1 Initialization Function
  439.  * @param None
  440.  * @retval None
  441.  */
  442. static void MX_SPI1_Init(void)
  443. {
  444.  
  445.   /* USER CODE BEGIN SPI1_Init 0 */
  446.  
  447.   /* USER CODE END SPI1_Init 0 */
  448.  
  449.   /* USER CODE BEGIN SPI1_Init 1 */
  450.  
  451.   /* USER CODE END SPI1_Init 1 */
  452.   /* SPI1 parameter configuration*/
  453.   hspi1.Instance = SPI1;
  454.   hspi1.Init.Mode = SPI_MODE_MASTER;
  455.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  456.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  457.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  458.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  459.   hspi1.Init.NSS = SPI_NSS_SOFT;
  460.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  461.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  462.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  463.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  464.   hspi1.Init.CRCPolynomial = 10;
  465.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  466.   {
  467.     Error_Handler();
  468.   }
  469.   /* USER CODE BEGIN SPI1_Init 2 */
  470.  
  471.   /* USER CODE END SPI1_Init 2 */
  472. }
  473.  
  474. /**
  475.  * @brief TIM1 Initialization Function
  476.  * @param None
  477.  * @retval None
  478.  */
  479. static void MX_TIM1_Init(void)
  480. {
  481.  
  482.   /* USER CODE BEGIN TIM1_Init 0 */
  483.  
  484.   /* USER CODE END TIM1_Init 0 */
  485.  
  486.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  487.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  488.   TIM_OC_InitTypeDef sConfigOC = {0};
  489.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  490.  
  491.   /* USER CODE BEGIN TIM1_Init 1 */
  492.  
  493.   /* USER CODE END TIM1_Init 1 */
  494.   htim1.Instance = TIM1;
  495.   htim1.Init.Prescaler = 71;
  496.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  497.   htim1.Init.Period = 65535;
  498.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  499.   htim1.Init.RepetitionCounter = 0;
  500.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  501.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  502.   {
  503.     Error_Handler();
  504.   }
  505.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  506.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  507.   {
  508.     Error_Handler();
  509.   }
  510.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  511.   {
  512.     Error_Handler();
  513.   }
  514.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  515.   {
  516.     Error_Handler();
  517.   }
  518.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  519.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  520.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  521.   {
  522.     Error_Handler();
  523.   }
  524.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  525.   sConfigOC.Pulse = SAW_DELAY;
  526.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  527.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  528.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  529.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  530.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  531.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  532.   {
  533.     Error_Handler();
  534.   }
  535.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  536.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  537.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  538.   sBreakDeadTimeConfig.DeadTime = 0;
  539.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  540.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  541.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  542.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  543.   {
  544.     Error_Handler();
  545.   }
  546.   /* USER CODE BEGIN TIM1_Init 2 */
  547.  
  548.   /* USER CODE END TIM1_Init 2 */
  549.   HAL_TIM_MspPostInit(&htim1);
  550. }
  551.  
  552. /**
  553.  * @brief TIM2 Initialization Function
  554.  * @param None
  555.  * @retval None
  556.  */
  557. static void MX_TIM2_Init(void)
  558. {
  559.  
  560.   /* USER CODE BEGIN TIM2_Init 0 */
  561.  
  562.   /* USER CODE END TIM2_Init 0 */
  563.  
  564.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  565.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  566.   TIM_IC_InitTypeDef sConfigIC = {0};
  567.  
  568.   /* USER CODE BEGIN TIM2_Init 1 */
  569.  
  570.   /* USER CODE END TIM2_Init 1 */
  571.   htim2.Instance = TIM2;
  572.   htim2.Init.Prescaler = 719;
  573.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  574.   htim2.Init.Period = 65535;
  575.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  576.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  577.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  578.   {
  579.     Error_Handler();
  580.   }
  581.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  582.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  583.   {
  584.     Error_Handler();
  585.   }
  586.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  587.   {
  588.     Error_Handler();
  589.   }
  590.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  591.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  592.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  593.   {
  594.     Error_Handler();
  595.   }
  596.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  597.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  598.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  599.   sConfigIC.ICFilter = 0;
  600.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  601.   {
  602.     Error_Handler();
  603.   }
  604.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  605.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  606.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  607.   {
  608.     Error_Handler();
  609.   }
  610.   /* USER CODE BEGIN TIM2_Init 2 */
  611.  
  612.   /* USER CODE END TIM2_Init 2 */
  613. }
  614.  
  615. /**
  616.  * @brief TIM3 Initialization Function
  617.  * @param None
  618.  * @retval None
  619.  */
  620. static void MX_TIM3_Init(void)
  621. {
  622.  
  623.   /* USER CODE BEGIN TIM3_Init 0 */
  624.  
  625.   /* USER CODE END TIM3_Init 0 */
  626.  
  627.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  628.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  629.  
  630.   /* USER CODE BEGIN TIM3_Init 1 */
  631.  
  632.   /* USER CODE END TIM3_Init 1 */
  633.   htim3.Instance = TIM3;
  634.   htim3.Init.Prescaler = 719;
  635.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  636.   htim3.Init.Period = 10000;
  637.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  638.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  639.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  640.   {
  641.     Error_Handler();
  642.   }
  643.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  644.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  645.   {
  646.     Error_Handler();
  647.   }
  648.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  649.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  650.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  651.   {
  652.     Error_Handler();
  653.   }
  654.   /* USER CODE BEGIN TIM3_Init 2 */
  655.  
  656.   /* USER CODE END TIM3_Init 2 */
  657. }
  658.  
  659. /**
  660.  * @brief USART2 Initialization Function
  661.  * @param None
  662.  * @retval None
  663.  */
  664. static void MX_USART2_UART_Init(void)
  665. {
  666.  
  667.   /* USER CODE BEGIN USART2_Init 0 */
  668.  
  669.   /* USER CODE END USART2_Init 0 */
  670.  
  671.   /* USER CODE BEGIN USART2_Init 1 */
  672.  
  673.   /* USER CODE END USART2_Init 1 */
  674.   huart2.Instance = USART2;
  675.   huart2.Init.BaudRate = 19200;
  676.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  677.   huart2.Init.StopBits = UART_STOPBITS_1;
  678.   huart2.Init.Parity = UART_PARITY_NONE;
  679.   huart2.Init.Mode = UART_MODE_TX_RX;
  680.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  681.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  682.   if (HAL_UART_Init(&huart2) != HAL_OK)
  683.   {
  684.     Error_Handler();
  685.   }
  686.   /* USER CODE BEGIN USART2_Init 2 */
  687.  
  688.   /* USER CODE END USART2_Init 2 */
  689. }
  690.  
  691. /**
  692.  * @brief GPIO Initialization Function
  693.  * @param None
  694.  * @retval None
  695.  */
  696. static void MX_GPIO_Init(void)
  697. {
  698.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  699.  
  700.   /* GPIO Ports Clock Enable */
  701.   __HAL_RCC_GPIOD_CLK_ENABLE();
  702.   __HAL_RCC_GPIOA_CLK_ENABLE();
  703.   __HAL_RCC_GPIOB_CLK_ENABLE();
  704.  
  705.   /*Configure GPIO pin Output Level */
  706.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  707.  
  708.   /*Configure GPIO pin Output Level */
  709.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  710.  
  711.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  712.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  713.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  714.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  715.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  716.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  717.  
  718.   /*Configure GPIO pin : SPI1_CD_Pin */
  719.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  720.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  721.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  722.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  723.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  724.  
  725.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  726.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  727.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  728.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  729.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  730.  
  731.   /*Configure GPIO pin : dualSpark_Pin */
  732.   GPIO_InitStruct.Pin = dualSpark_Pin;
  733.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  734.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  735.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  736. }
  737.  
  738. /* USER CODE BEGIN 4 */
  739.  
  740. /* USER CODE END 4 */
  741.  
  742. /**
  743.  * @brief  This function is executed in case of error occurrence.
  744.  * @retval None
  745.  */
  746. void Error_Handler(void)
  747. {
  748.   /* USER CODE BEGIN Error_Handler_Debug */
  749.   /* User can add his own implementation to report the HAL error return state */
  750.   __disable_irq();
  751.   while (1)
  752.   {
  753.   }
  754.   /* USER CODE END Error_Handler_Debug */
  755. }
  756.  
  757. #ifdef USE_FULL_ASSERT
  758. /**
  759.  * @brief  Reports the name of the source file and the source line number
  760.  *         where the assert_param error has occurred.
  761.  * @param  file: pointer to the source file name
  762.  * @param  line: assert_param error line source number
  763.  * @retval None
  764.  */
  765. void assert_failed(uint8_t *file, uint32_t line)
  766. {
  767.   /* USER CODE BEGIN 6 */
  768.   /* User can add his own implementation to report the file name and line number,
  769.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  770.   /* USER CODE END 6 */
  771. }
  772. #endif /* USE_FULL_ASSERT */
  773.