Subversion Repositories EDIS_Ignition

Rev

Rev 15 | Rev 17 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "saveTiming.h"
  33. #include "libPLX/commsLib.h"
  34. /* USER CODE END Includes */
  35.  
  36. /* Private typedef -----------------------------------------------------------*/
  37. /* USER CODE BEGIN PTD */
  38.  
  39. /* USER CODE END PTD */
  40.  
  41. /* Private define ------------------------------------------------------------*/
  42. /* USER CODE BEGIN PD */
  43. /* USER CODE END PD */
  44.  
  45. /* Private macro -------------------------------------------------------------*/
  46. /* USER CODE BEGIN PM */
  47.  
  48. /* USER CODE END PM */
  49.  
  50. /* Private variables ---------------------------------------------------------*/
  51. CAN_HandleTypeDef hcan;
  52.  
  53. I2C_HandleTypeDef hi2c1;
  54.  
  55. IWDG_HandleTypeDef hiwdg;
  56.  
  57. SPI_HandleTypeDef hspi1;
  58.  
  59. TIM_HandleTypeDef htim1;
  60. TIM_HandleTypeDef htim2;
  61. TIM_HandleTypeDef htim3;
  62.  
  63. UART_HandleTypeDef huart2;
  64.  
  65. /* USER CODE BEGIN PV */
  66. int const T100MS = 100;
  67.  
  68. int const DISPLAY_REINITIALISE = 60 * 1000;
  69. // compensated pressure in mb * 100
  70. uint32_t comp_pres = 0;
  71. // compensated temperature
  72. int32_t comp_temp = -10000;
  73.  
  74. int32_t timing = 0;
  75.  
  76. /* USER CODE END PV */
  77.  
  78. /* Private function prototypes -----------------------------------------------*/
  79. void SystemClock_Config(void);
  80. static void MX_GPIO_Init(void);
  81. static void MX_CAN_Init(void);
  82. static void MX_I2C1_Init(void);
  83. static void MX_TIM1_Init(void);
  84. static void MX_TIM2_Init(void);
  85. static void MX_SPI1_Init(void);
  86. static void MX_USART2_UART_Init(void);
  87. static void MX_TIM3_Init(void);
  88. static void MX_IWDG_Init(void);
  89. /* USER CODE BEGIN PFP */
  90.  
  91. // send a PLX_SensorInfo structure to the usart.
  92. void sendInfo(usart_ctl *uc, PLX_SensorInfo *info)
  93. {
  94.   for (int i = 0; i < sizeof(PLX_SensorInfo); ++i)
  95.     PutCharSerial(uc, info->bytes[i]);
  96. }
  97.  
  98.  
  99. void libPLXcallbackSendUserData()
  100. {
  101.   // send MAP
  102.   PLX_SensorInfo info;
  103.   ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
  104.   ConvToPLXAddr(PLX_MAP, &info);
  105.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(comp_pres) / 100.0), &info);
  106.   sendInfo(&uc2, &info);
  107.  
  108.   ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
  109.   ConvToPLXAddr(PLX_Timing, &info);
  110.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  111.   sendInfo(&uc2, &info);
  112. }
  113.  
  114. void triggerSAW()
  115. {
  116.   // trigger SAW timer, timer 1##pragma endregion
  117.  
  118.   __HAL_TIM_ENABLE(&htim1);
  119. }
  120.  
  121. /* USER CODE END PFP */
  122.  
  123. /* Private user code ---------------------------------------------------------*/
  124. /* USER CODE BEGIN 0 */
  125. void watchdogWrite()
  126. {
  127.   HAL_IWDG_Refresh(&hiwdg);
  128. }
  129.  
  130. /* USER CODE END 0 */
  131.  
  132. /**
  133.  * @brief  The application entry point.
  134.  * @retval int
  135.  */
  136. int main(void)
  137. {
  138.   /* USER CODE BEGIN 1 */
  139.  
  140.   /* USER CODE END 1 */
  141.  
  142.   /* MCU Configuration--------------------------------------------------------*/
  143.  
  144.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  145.   HAL_Init();
  146.  
  147.   /* USER CODE BEGIN Init */
  148.  
  149.   /* USER CODE END Init */
  150.  
  151.   /* Configure the system clock */
  152.   SystemClock_Config();
  153.  
  154.   /* USER CODE BEGIN SysInit */
  155.  
  156.   /* USER CODE END SysInit */
  157.  
  158.   /* Initialize all configured peripherals */
  159.   MX_GPIO_Init();
  160.   MX_CAN_Init();
  161.   MX_I2C1_Init();
  162.   MX_TIM1_Init();
  163.   MX_TIM2_Init();
  164.   MX_SPI1_Init();
  165.   MX_USART2_UART_Init();
  166.   MX_TIM3_Init();
  167.   MX_IWDG_Init();
  168.   /* USER CODE BEGIN 2 */
  169.  
  170.   init_usart_ctl(&uc2, &huart2);
  171.  
  172.   cc_init();
  173.  
  174.   HAL_TIM_Base_MspInit(&htim1);
  175.  
  176.   HAL_TIM_Base_Start(&htim1);
  177.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  178.  
  179.   // initialise all the STMCubeMX stuff
  180.   HAL_TIM_Base_MspInit(&htim2);
  181.   // Start the counter
  182.   HAL_TIM_Base_Start(&htim2);
  183.   // Start the input capture and the rising edge interrupt
  184.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  185.   // Start the input capture and the falling edge interrupt
  186.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  187.  
  188.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  189.  
  190.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  191.   MX_I2C1_Init();
  192.   init_bmp(&hi2c1);
  193.   uint32_t lastTick = HAL_GetTick();
  194.  
  195.   uint32_t displayOff = lastTick + 10000;
  196.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  197.  
  198.   uint8_t intensity = 2;
  199.  
  200.  
  201.   ResetRxBuffer(&uc2);
  202.  
  203.   resetPLX();
  204.   // HAL_IWDG_Init(&hiwdg);
  205.   /* USER CODE END 2 */
  206.  
  207.   /* Infinite loop */
  208.   /* USER CODE BEGIN WHILE */
  209.   while (1)
  210.   {
  211.  
  212.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  213.  
  214.     if (button)
  215.     {
  216.       intensity = 2;
  217.       displayOff = lastTick + 30000;
  218.     }
  219.  
  220.     switch (intensity)
  221.     {
  222.     case 2:
  223.       if (HAL_GetTick() > displayOff)
  224.       {
  225.         intensity = 1;
  226.         displayOff = lastTick + 60000;
  227.       }
  228.  
  229.       break;
  230.     case 1:
  231.       if (HAL_GetTick() > displayOff)
  232.       {
  233.         intensity = 1; // was 0
  234.       }
  235.     default:
  236.       break;
  237.     }
  238.     // periodically write to the display and clear it
  239.     if (HAL_GetTick() > displayReinitialise)
  240.     {
  241.       displayReinitialise += DISPLAY_REINITIALISE;
  242.       cc_display(0, intensity, 1);
  243.     }
  244.     else
  245.       cc_display(0, intensity, 0);
  246.  
  247.     if (HAL_GetTick() - lastTick > T100MS)
  248.     {
  249.       lastTick = HAL_GetTick();
  250.       /* Reading the raw data from sensor */
  251.       struct bmp280_uncomp_data ucomp_data;
  252.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  253.  
  254.       if (rslt == 0)
  255.       {
  256.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  257.  
  258.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  259.  
  260. #if defined TEST_CODE
  261.         comp_pres = 100000;
  262.         comp_temp = 4000;
  263. #endif
  264.         if (rslt2 == 0 && rslt3 == 0)
  265.           cc_feed_env(comp_pres, comp_temp);
  266.       }
  267.  
  268.       // compute RPM value, feed to display
  269. #if defined TEST_CODE
  270.       int rpm = 1000;
  271. #else
  272.       int rpm = CalculateRPM();
  273. #endif
  274.       if (rpm > 0)
  275.       {
  276.         cc_feed_rpm(rpm);
  277.         // compute timing value, feed to display
  278.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  279.         cc_feed_timing(timing);
  280.         int microsecs = mapTimingToMicroseconds(timing, 0);
  281.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  282.       }
  283.     }
  284.  
  285.    
  286.     // Handle PLX
  287.     libPLXpollData(&uc2);
  288.  
  289.     /* USER CODE END WHILE */
  290.  
  291.     /* USER CODE BEGIN 3 */
  292.     watchdogWrite();
  293.  
  294.     // todo occasionally     saveTimingInfoToNvram();
  295.   }
  296.   /* USER CODE END 3 */
  297. }
  298.  
  299. /**
  300.  * @brief System Clock Configuration
  301.  * @retval None
  302.  */
  303. void SystemClock_Config(void)
  304. {
  305.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  306.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  307.  
  308.   /** Initializes the RCC Oscillators according to the specified parameters
  309.    * in the RCC_OscInitTypeDef structure.
  310.    */
  311.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  312.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  313.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  314.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  315.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  316.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  317.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  318.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  319.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  320.   {
  321.     Error_Handler();
  322.   }
  323.  
  324.   /** Initializes the CPU, AHB and APB buses clocks
  325.    */
  326.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  327.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  328.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  329.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  330.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  331.  
  332.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  333.   {
  334.     Error_Handler();
  335.   }
  336. }
  337.  
  338. /**
  339.  * @brief CAN Initialization Function
  340.  * @param None
  341.  * @retval None
  342.  */
  343. static void MX_CAN_Init(void)
  344. {
  345.  
  346.   /* USER CODE BEGIN CAN_Init 0 */
  347.  
  348.   /* USER CODE END CAN_Init 0 */
  349.  
  350.   /* USER CODE BEGIN CAN_Init 1 */
  351.  
  352.   /* USER CODE END CAN_Init 1 */
  353.   hcan.Instance = CAN1;
  354.   hcan.Init.Prescaler = 18;
  355.   hcan.Init.Mode = CAN_MODE_NORMAL;
  356.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  357.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  358.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  359.   hcan.Init.TimeTriggeredMode = DISABLE;
  360.   hcan.Init.AutoBusOff = DISABLE;
  361.   hcan.Init.AutoWakeUp = DISABLE;
  362.   hcan.Init.AutoRetransmission = DISABLE;
  363.   hcan.Init.ReceiveFifoLocked = DISABLE;
  364.   hcan.Init.TransmitFifoPriority = DISABLE;
  365.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  366.   {
  367.     Error_Handler();
  368.   }
  369.   /* USER CODE BEGIN CAN_Init 2 */
  370.  
  371.   /* USER CODE END CAN_Init 2 */
  372. }
  373.  
  374. /**
  375.  * @brief I2C1 Initialization Function
  376.  * @param None
  377.  * @retval None
  378.  */
  379. static void MX_I2C1_Init(void)
  380. {
  381.  
  382.   /* USER CODE BEGIN I2C1_Init 0 */
  383.  
  384.   /* USER CODE END I2C1_Init 0 */
  385.  
  386.   /* USER CODE BEGIN I2C1_Init 1 */
  387.  
  388.   /* USER CODE END I2C1_Init 1 */
  389.   hi2c1.Instance = I2C1;
  390.   hi2c1.Init.ClockSpeed = 100000;
  391.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  392.   hi2c1.Init.OwnAddress1 = 0;
  393.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  394.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  395.   hi2c1.Init.OwnAddress2 = 0;
  396.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  397.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  398.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  399.   {
  400.     Error_Handler();
  401.   }
  402.   /* USER CODE BEGIN I2C1_Init 2 */
  403.  
  404.   /* USER CODE END I2C1_Init 2 */
  405. }
  406.  
  407. /**
  408.  * @brief IWDG Initialization Function
  409.  * @param None
  410.  * @retval None
  411.  */
  412. static void MX_IWDG_Init(void)
  413. {
  414.  
  415.   /* USER CODE BEGIN IWDG_Init 0 */
  416.  
  417.   /* USER CODE END IWDG_Init 0 */
  418.  
  419.   /* USER CODE BEGIN IWDG_Init 1 */
  420.  
  421.   /* USER CODE END IWDG_Init 1 */
  422.   hiwdg.Instance = IWDG;
  423.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  424.   hiwdg.Init.Reload = 1000;
  425.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  426.   {
  427.     Error_Handler();
  428.   }
  429.   /* USER CODE BEGIN IWDG_Init 2 */
  430.  
  431.   /* USER CODE END IWDG_Init 2 */
  432. }
  433.  
  434. /**
  435.  * @brief SPI1 Initialization Function
  436.  * @param None
  437.  * @retval None
  438.  */
  439. static void MX_SPI1_Init(void)
  440. {
  441.  
  442.   /* USER CODE BEGIN SPI1_Init 0 */
  443.  
  444.   /* USER CODE END SPI1_Init 0 */
  445.  
  446.   /* USER CODE BEGIN SPI1_Init 1 */
  447.  
  448.   /* USER CODE END SPI1_Init 1 */
  449.   /* SPI1 parameter configuration*/
  450.   hspi1.Instance = SPI1;
  451.   hspi1.Init.Mode = SPI_MODE_MASTER;
  452.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  453.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  454.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  455.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  456.   hspi1.Init.NSS = SPI_NSS_SOFT;
  457.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  458.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  459.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  460.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  461.   hspi1.Init.CRCPolynomial = 10;
  462.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  463.   {
  464.     Error_Handler();
  465.   }
  466.   /* USER CODE BEGIN SPI1_Init 2 */
  467.  
  468.   /* USER CODE END SPI1_Init 2 */
  469. }
  470.  
  471. /**
  472.  * @brief TIM1 Initialization Function
  473.  * @param None
  474.  * @retval None
  475.  */
  476. static void MX_TIM1_Init(void)
  477. {
  478.  
  479.   /* USER CODE BEGIN TIM1_Init 0 */
  480.  
  481.   /* USER CODE END TIM1_Init 0 */
  482.  
  483.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  484.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  485.   TIM_OC_InitTypeDef sConfigOC = {0};
  486.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  487.  
  488.   /* USER CODE BEGIN TIM1_Init 1 */
  489.  
  490.   /* USER CODE END TIM1_Init 1 */
  491.   htim1.Instance = TIM1;
  492.   htim1.Init.Prescaler = 71;
  493.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  494.   htim1.Init.Period = 65535;
  495.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  496.   htim1.Init.RepetitionCounter = 0;
  497.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  498.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  499.   {
  500.     Error_Handler();
  501.   }
  502.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  503.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  504.   {
  505.     Error_Handler();
  506.   }
  507.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  508.   {
  509.     Error_Handler();
  510.   }
  511.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  512.   {
  513.     Error_Handler();
  514.   }
  515.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  516.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  517.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  518.   {
  519.     Error_Handler();
  520.   }
  521.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  522.   sConfigOC.Pulse = SAW_DELAY;
  523.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  524.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  525.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  526.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  527.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  528.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  529.   {
  530.     Error_Handler();
  531.   }
  532.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  533.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  534.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  535.   sBreakDeadTimeConfig.DeadTime = 0;
  536.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  537.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  538.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  539.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  540.   {
  541.     Error_Handler();
  542.   }
  543.   /* USER CODE BEGIN TIM1_Init 2 */
  544.  
  545.   /* USER CODE END TIM1_Init 2 */
  546.   HAL_TIM_MspPostInit(&htim1);
  547. }
  548.  
  549. /**
  550.  * @brief TIM2 Initialization Function
  551.  * @param None
  552.  * @retval None
  553.  */
  554. static void MX_TIM2_Init(void)
  555. {
  556.  
  557.   /* USER CODE BEGIN TIM2_Init 0 */
  558.  
  559.   /* USER CODE END TIM2_Init 0 */
  560.  
  561.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  562.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  563.   TIM_IC_InitTypeDef sConfigIC = {0};
  564.  
  565.   /* USER CODE BEGIN TIM2_Init 1 */
  566.  
  567.   /* USER CODE END TIM2_Init 1 */
  568.   htim2.Instance = TIM2;
  569.   htim2.Init.Prescaler = 719;
  570.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  571.   htim2.Init.Period = 65535;
  572.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  573.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  574.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  575.   {
  576.     Error_Handler();
  577.   }
  578.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  579.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  580.   {
  581.     Error_Handler();
  582.   }
  583.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  584.   {
  585.     Error_Handler();
  586.   }
  587.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  588.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  589.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  590.   {
  591.     Error_Handler();
  592.   }
  593.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  594.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  595.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  596.   sConfigIC.ICFilter = 0;
  597.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  598.   {
  599.     Error_Handler();
  600.   }
  601.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  602.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  603.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  604.   {
  605.     Error_Handler();
  606.   }
  607.   /* USER CODE BEGIN TIM2_Init 2 */
  608.  
  609.   /* USER CODE END TIM2_Init 2 */
  610. }
  611.  
  612. /**
  613.  * @brief TIM3 Initialization Function
  614.  * @param None
  615.  * @retval None
  616.  */
  617. static void MX_TIM3_Init(void)
  618. {
  619.  
  620.   /* USER CODE BEGIN TIM3_Init 0 */
  621.  
  622.   /* USER CODE END TIM3_Init 0 */
  623.  
  624.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  625.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  626.  
  627.   /* USER CODE BEGIN TIM3_Init 1 */
  628.  
  629.   /* USER CODE END TIM3_Init 1 */
  630.   htim3.Instance = TIM3;
  631.   htim3.Init.Prescaler = 719;
  632.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  633.   htim3.Init.Period = 10000;
  634.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  635.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  636.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  637.   {
  638.     Error_Handler();
  639.   }
  640.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  641.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  642.   {
  643.     Error_Handler();
  644.   }
  645.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  646.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  647.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  648.   {
  649.     Error_Handler();
  650.   }
  651.   /* USER CODE BEGIN TIM3_Init 2 */
  652.  
  653.   /* USER CODE END TIM3_Init 2 */
  654. }
  655.  
  656. /**
  657.  * @brief USART2 Initialization Function
  658.  * @param None
  659.  * @retval None
  660.  */
  661. static void MX_USART2_UART_Init(void)
  662. {
  663.  
  664.   /* USER CODE BEGIN USART2_Init 0 */
  665.  
  666.   /* USER CODE END USART2_Init 0 */
  667.  
  668.   /* USER CODE BEGIN USART2_Init 1 */
  669.  
  670.   /* USER CODE END USART2_Init 1 */
  671.   huart2.Instance = USART2;
  672.   huart2.Init.BaudRate = 19200;
  673.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  674.   huart2.Init.StopBits = UART_STOPBITS_1;
  675.   huart2.Init.Parity = UART_PARITY_NONE;
  676.   huart2.Init.Mode = UART_MODE_TX_RX;
  677.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  678.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  679.   if (HAL_UART_Init(&huart2) != HAL_OK)
  680.   {
  681.     Error_Handler();
  682.   }
  683.   /* USER CODE BEGIN USART2_Init 2 */
  684.  
  685.   /* USER CODE END USART2_Init 2 */
  686. }
  687.  
  688. /**
  689.  * @brief GPIO Initialization Function
  690.  * @param None
  691.  * @retval None
  692.  */
  693. static void MX_GPIO_Init(void)
  694. {
  695.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  696.  
  697.   /* GPIO Ports Clock Enable */
  698.   __HAL_RCC_GPIOD_CLK_ENABLE();
  699.   __HAL_RCC_GPIOA_CLK_ENABLE();
  700.   __HAL_RCC_GPIOB_CLK_ENABLE();
  701.  
  702.   /*Configure GPIO pin Output Level */
  703.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  704.  
  705.   /*Configure GPIO pin Output Level */
  706.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  707.  
  708.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  709.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  710.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  711.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  712.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  713.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  714.  
  715.   /*Configure GPIO pin : SPI1_CD_Pin */
  716.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  717.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  718.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  719.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  720.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  721.  
  722.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  723.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  724.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  725.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  726.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  727.  
  728.   /*Configure GPIO pin : dualSpark_Pin */
  729.   GPIO_InitStruct.Pin = dualSpark_Pin;
  730.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  731.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  732.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  733. }
  734.  
  735. /* USER CODE BEGIN 4 */
  736.  
  737. /* USER CODE END 4 */
  738.  
  739. /**
  740.  * @brief  This function is executed in case of error occurrence.
  741.  * @retval None
  742.  */
  743. void Error_Handler(void)
  744. {
  745.   /* USER CODE BEGIN Error_Handler_Debug */
  746.   /* User can add his own implementation to report the HAL error return state */
  747.   __disable_irq();
  748.   while (1)
  749.   {
  750.   }
  751.   /* USER CODE END Error_Handler_Debug */
  752. }
  753.  
  754. #ifdef USE_FULL_ASSERT
  755. /**
  756.  * @brief  Reports the name of the source file and the source line number
  757.  *         where the assert_param error has occurred.
  758.  * @param  file: pointer to the source file name
  759.  * @param  line: assert_param error line source number
  760.  * @retval None
  761.  */
  762. void assert_failed(uint8_t *file, uint32_t line)
  763. {
  764.   /* USER CODE BEGIN 6 */
  765.   /* User can add his own implementation to report the file name and line number,
  766.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  767.   /* USER CODE END 6 */
  768. }
  769. #endif /* USE_FULL_ASSERT */
  770.