Subversion Repositories EDIS_Ignition

Rev

Rev 14 | Rev 16 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * Copyright (c) 2023 STMicroelectronics.
  10.  * All rights reserved.
  11.  *
  12.  * This software is licensed under terms that can be found in the LICENSE file
  13.  * in the root directory of this software component.
  14.  * If no LICENSE file comes with this software, it is provided AS-IS.
  15.  *
  16.  ******************************************************************************
  17.  */
  18. /* USER CODE END Header */
  19. /* Includes ------------------------------------------------------------------*/
  20. #include "main.h"
  21.  
  22. /* Private includes ----------------------------------------------------------*/
  23. /* USER CODE BEGIN Includes */
  24. #include "memory.h"
  25. #include "display.h"
  26. #include "bmp280driver.h"
  27. #include "libMisc/fixI2C.h"
  28. #include "libPlx/plx.h"
  29. #include "libSerial/serial.h"
  30. #include "libIgnTiming/timing.h"
  31. #include "libIgnTiming/edis.h"
  32. #include "saveTiming.h"
  33. #include "libPLX/commsLib.h"
  34. /* USER CODE END Includes */
  35.  
  36. /* Private typedef -----------------------------------------------------------*/
  37. /* USER CODE BEGIN PTD */
  38.  
  39. /* USER CODE END PTD */
  40.  
  41. /* Private define ------------------------------------------------------------*/
  42. /* USER CODE BEGIN PD */
  43. /* USER CODE END PD */
  44.  
  45. /* Private macro -------------------------------------------------------------*/
  46. /* USER CODE BEGIN PM */
  47.  
  48. /* USER CODE END PM */
  49.  
  50. /* Private variables ---------------------------------------------------------*/
  51. CAN_HandleTypeDef hcan;
  52.  
  53. I2C_HandleTypeDef hi2c1;
  54.  
  55. IWDG_HandleTypeDef hiwdg;
  56.  
  57. SPI_HandleTypeDef hspi1;
  58.  
  59. TIM_HandleTypeDef htim1;
  60. TIM_HandleTypeDef htim2;
  61. TIM_HandleTypeDef htim3;
  62.  
  63. UART_HandleTypeDef huart2;
  64.  
  65. /* USER CODE BEGIN PV */
  66. int const T100MS = 100;
  67.  
  68. int const DISPLAY_REINITIALISE = 60 * 1000;
  69. // compensated pressure in mb * 100
  70. uint32_t comp_pres = 0;
  71. // compensated temperature
  72. int32_t comp_temp = -10000;
  73.  
  74. int32_t timing = 0;
  75.  
  76. /// A timer flag used to tell the PLX scanning code that it is time to send a frame
  77. int8_t timerFlag = 0;
  78. /// @brief count of how many consecutive timeouts before auto sending begins
  79. int8_t timeoutCount = 0;
  80.  
  81. /* USER CODE END PV */
  82.  
  83. /* Private function prototypes -----------------------------------------------*/
  84. void SystemClock_Config(void);
  85. static void MX_GPIO_Init(void);
  86. static void MX_CAN_Init(void);
  87. static void MX_I2C1_Init(void);
  88. static void MX_TIM1_Init(void);
  89. static void MX_TIM2_Init(void);
  90. static void MX_SPI1_Init(void);
  91. static void MX_USART2_UART_Init(void);
  92. static void MX_TIM3_Init(void);
  93. static void MX_IWDG_Init(void);
  94. /* USER CODE BEGIN PFP */
  95.  
  96. // send a PLX_SensorInfo structure to the usart.
  97. void sendInfo(usart_ctl *uc, PLX_SensorInfo *info)
  98. {
  99.   for (int i = 0; i < sizeof(PLX_SensorInfo); ++i)
  100.     PutCharSerial(uc, info->bytes[i]);
  101. }
  102.  
  103. void libPLXcallbackResetSerialTimeout()
  104. {
  105.   timerFlag = 0;
  106.   timeoutCount = 0;
  107. }
  108.  
  109. void libPLXcallbackSendUserData()
  110. {
  111.   // send MAP
  112.   PLX_SensorInfo info;
  113.   ConvToPLXInstance(libPLXgetNextInstance(PLX_MAP), &info);
  114.   ConvToPLXAddr(PLX_MAP, &info);
  115.   ConvToPLXReading(ConveriMFDData2Raw(PLX_MAP, PRESSURE_kPa, (float)(comp_pres) / 100.0), &info);
  116.   sendInfo(&uc2, &info);
  117.  
  118.   ConvToPLXInstance(libPLXgetNextInstance(PLX_Timing), &info);
  119.   ConvToPLXAddr(PLX_Timing, &info);
  120.   ConvToPLXReading(ConveriMFDData2Raw(PLX_Timing, 0, (float)(timing) / TIMING_SCALE), &info);
  121.   sendInfo(&uc2, &info);
  122. }
  123.  
  124. void triggerSAW()
  125. {
  126.   // trigger SAW timer, timer 1##pragma endregion
  127.  
  128.   __HAL_TIM_ENABLE(&htim1);
  129. }
  130.  
  131. /* USER CODE END PFP */
  132.  
  133. /* Private user code ---------------------------------------------------------*/
  134. /* USER CODE BEGIN 0 */
  135. void watchdogWrite()
  136. {
  137.   HAL_IWDG_Refresh(&hiwdg);
  138. }
  139.  
  140. /* USER CODE END 0 */
  141.  
  142. /**
  143.  * @brief  The application entry point.
  144.  * @retval int
  145.  */
  146. int main(void)
  147. {
  148.   /* USER CODE BEGIN 1 */
  149.  
  150.   /* USER CODE END 1 */
  151.  
  152.   /* MCU Configuration--------------------------------------------------------*/
  153.  
  154.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  155.   HAL_Init();
  156.  
  157.   /* USER CODE BEGIN Init */
  158.  
  159.   /* USER CODE END Init */
  160.  
  161.   /* Configure the system clock */
  162.   SystemClock_Config();
  163.  
  164.   /* USER CODE BEGIN SysInit */
  165.  
  166.   /* USER CODE END SysInit */
  167.  
  168.   /* Initialize all configured peripherals */
  169.   MX_GPIO_Init();
  170.   MX_CAN_Init();
  171.   MX_I2C1_Init();
  172.   MX_TIM1_Init();
  173.   MX_TIM2_Init();
  174.   MX_SPI1_Init();
  175.   MX_USART2_UART_Init();
  176.   MX_TIM3_Init();
  177.   MX_IWDG_Init();
  178.   /* USER CODE BEGIN 2 */
  179.  
  180.   init_usart_ctl(&uc2, &huart2);
  181.  
  182.   cc_init();
  183.  
  184.   HAL_TIM_Base_MspInit(&htim1);
  185.  
  186.   HAL_TIM_Base_Start(&htim1);
  187.   HAL_TIM_OC_Start(&htim1, TIM_CHANNEL_1);
  188.  
  189.   // initialise all the STMCubeMX stuff
  190.   HAL_TIM_Base_MspInit(&htim2);
  191.   // Start the counter
  192.   HAL_TIM_Base_Start(&htim2);
  193.   // Start the input capture and the rising edge interrupt
  194.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  195.   // Start the input capture and the falling edge interrupt
  196.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  197.  
  198.   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1, 5); // delay of 5 uS
  199.  
  200.   HAL_I2C_ClearBusyFlagErrata_2_14_7(&hi2c1);
  201.   MX_I2C1_Init();
  202.   init_bmp(&hi2c1);
  203.   uint32_t lastTick = HAL_GetTick();
  204.  
  205.   uint32_t displayOff = lastTick + 10000;
  206.   uint32_t displayReinitialise = lastTick + DISPLAY_REINITIALISE; // every minute, reinitialise display because of risk of noise
  207.  
  208.   uint8_t intensity = 2;
  209.  
  210.   /// @brief time of next auto send if needed
  211.   uint32_t timeout = 0;
  212.  
  213.   ResetRxBuffer(&uc2);
  214.  
  215.   resetPLX();
  216.   // HAL_IWDG_Init(&hiwdg);
  217.   /* USER CODE END 2 */
  218.  
  219.   /* Infinite loop */
  220.   /* USER CODE BEGIN WHILE */
  221.   while (1)
  222.   {
  223.  
  224.     int button = HAL_GPIO_ReadPin(PUSHBUTTON_GPIO_Port, PUSHBUTTON_Pin) == GPIO_PIN_RESET;
  225.  
  226.     if (button)
  227.     {
  228.       intensity = 2;
  229.       displayOff = lastTick + 30000;
  230.     }
  231.  
  232.     switch (intensity)
  233.     {
  234.     case 2:
  235.       if (HAL_GetTick() > displayOff)
  236.       {
  237.         intensity = 1;
  238.         displayOff = lastTick + 60000;
  239.       }
  240.  
  241.       break;
  242.     case 1:
  243.       if (HAL_GetTick() > displayOff)
  244.       {
  245.         intensity = 1; // was 0
  246.       }
  247.     default:
  248.       break;
  249.     }
  250.     // periodically write to the display and clear it
  251.     if (HAL_GetTick() > displayReinitialise)
  252.     {
  253.       displayReinitialise += DISPLAY_REINITIALISE;
  254.       cc_display(0, intensity, 1);
  255.     }
  256.     else
  257.       cc_display(0, intensity, 0);
  258.  
  259.     if (HAL_GetTick() - lastTick > T100MS)
  260.     {
  261.       lastTick = HAL_GetTick();
  262.       /* Reading the raw data from sensor */
  263.       struct bmp280_uncomp_data ucomp_data;
  264.       uint8_t rslt = bmp280_get_uncomp_data(&ucomp_data, &bmp);
  265.  
  266.       if (rslt == 0)
  267.       {
  268.         uint8_t rslt2 = bmp280_get_comp_pres_32bit(&comp_pres, ucomp_data.uncomp_press, &bmp);
  269.  
  270.         uint8_t rslt3 = bmp280_get_comp_temp_32bit(&comp_temp, ucomp_data.uncomp_temp, &bmp);
  271.  
  272. #if defined TEST_CODE
  273.         comp_pres = 100000;
  274.         comp_temp = 4000;
  275. #endif
  276.         if (rslt2 == 0 && rslt3 == 0)
  277.           cc_feed_env(comp_pres, comp_temp);
  278.       }
  279.  
  280.       // compute RPM value, feed to display
  281. #if defined TEST_CODE
  282.       int rpm = 1000;
  283. #else
  284.       int rpm = CalculateRPM();
  285. #endif
  286.       if (rpm > 0)
  287.       {
  288.         cc_feed_rpm(rpm);
  289.         // compute timing value, feed to display
  290.         timing = mapTiming(rpm, 1000 - comp_pres / 100);
  291.         cc_feed_timing(timing);
  292.         int microsecs = mapTimingToMicroseconds(timing, 0);
  293.         __HAL_TIM_SET_AUTORELOAD(&htim1, microsecs + SAW_DELAY);
  294.       }
  295.     }
  296.  
  297.     // sort out auto-sending
  298.     if (HAL_GetTick() > timeout)
  299.     {
  300.       timeout = HAL_GetTick() + T100MS;
  301.       if (timeoutCount < 2)
  302.         timeoutCount++;
  303.       else
  304.         timerFlag = 1;
  305.     }
  306.  
  307.     // Handle PLX
  308.     libPLXpollData(&uc2, timerFlag);
  309.  
  310.     /* USER CODE END WHILE */
  311.  
  312.     /* USER CODE BEGIN 3 */
  313.     watchdogWrite();
  314.  
  315.     // todo occasionally     saveTimingInfoToNvram();
  316.   }
  317.   /* USER CODE END 3 */
  318. }
  319.  
  320. /**
  321.  * @brief System Clock Configuration
  322.  * @retval None
  323.  */
  324. void SystemClock_Config(void)
  325. {
  326.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  327.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  328.  
  329.   /** Initializes the RCC Oscillators according to the specified parameters
  330.    * in the RCC_OscInitTypeDef structure.
  331.    */
  332.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  333.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  334.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  335.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  336.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  337.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  338.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  339.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  340.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  341.   {
  342.     Error_Handler();
  343.   }
  344.  
  345.   /** Initializes the CPU, AHB and APB buses clocks
  346.    */
  347.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  348.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  349.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  350.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  351.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  352.  
  353.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  354.   {
  355.     Error_Handler();
  356.   }
  357. }
  358.  
  359. /**
  360.  * @brief CAN Initialization Function
  361.  * @param None
  362.  * @retval None
  363.  */
  364. static void MX_CAN_Init(void)
  365. {
  366.  
  367.   /* USER CODE BEGIN CAN_Init 0 */
  368.  
  369.   /* USER CODE END CAN_Init 0 */
  370.  
  371.   /* USER CODE BEGIN CAN_Init 1 */
  372.  
  373.   /* USER CODE END CAN_Init 1 */
  374.   hcan.Instance = CAN1;
  375.   hcan.Init.Prescaler = 18;
  376.   hcan.Init.Mode = CAN_MODE_NORMAL;
  377.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  378.   hcan.Init.TimeSeg1 = CAN_BS1_3TQ;
  379.   hcan.Init.TimeSeg2 = CAN_BS2_4TQ;
  380.   hcan.Init.TimeTriggeredMode = DISABLE;
  381.   hcan.Init.AutoBusOff = DISABLE;
  382.   hcan.Init.AutoWakeUp = DISABLE;
  383.   hcan.Init.AutoRetransmission = DISABLE;
  384.   hcan.Init.ReceiveFifoLocked = DISABLE;
  385.   hcan.Init.TransmitFifoPriority = DISABLE;
  386.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  387.   {
  388.     Error_Handler();
  389.   }
  390.   /* USER CODE BEGIN CAN_Init 2 */
  391.  
  392.   /* USER CODE END CAN_Init 2 */
  393. }
  394.  
  395. /**
  396.  * @brief I2C1 Initialization Function
  397.  * @param None
  398.  * @retval None
  399.  */
  400. static void MX_I2C1_Init(void)
  401. {
  402.  
  403.   /* USER CODE BEGIN I2C1_Init 0 */
  404.  
  405.   /* USER CODE END I2C1_Init 0 */
  406.  
  407.   /* USER CODE BEGIN I2C1_Init 1 */
  408.  
  409.   /* USER CODE END I2C1_Init 1 */
  410.   hi2c1.Instance = I2C1;
  411.   hi2c1.Init.ClockSpeed = 100000;
  412.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  413.   hi2c1.Init.OwnAddress1 = 0;
  414.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  415.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  416.   hi2c1.Init.OwnAddress2 = 0;
  417.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  418.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  419.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  420.   {
  421.     Error_Handler();
  422.   }
  423.   /* USER CODE BEGIN I2C1_Init 2 */
  424.  
  425.   /* USER CODE END I2C1_Init 2 */
  426. }
  427.  
  428. /**
  429.  * @brief IWDG Initialization Function
  430.  * @param None
  431.  * @retval None
  432.  */
  433. static void MX_IWDG_Init(void)
  434. {
  435.  
  436.   /* USER CODE BEGIN IWDG_Init 0 */
  437.  
  438.   /* USER CODE END IWDG_Init 0 */
  439.  
  440.   /* USER CODE BEGIN IWDG_Init 1 */
  441.  
  442.   /* USER CODE END IWDG_Init 1 */
  443.   hiwdg.Instance = IWDG;
  444.   hiwdg.Init.Prescaler = IWDG_PRESCALER_4;
  445.   hiwdg.Init.Reload = 1000;
  446.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  447.   {
  448.     Error_Handler();
  449.   }
  450.   /* USER CODE BEGIN IWDG_Init 2 */
  451.  
  452.   /* USER CODE END IWDG_Init 2 */
  453. }
  454.  
  455. /**
  456.  * @brief SPI1 Initialization Function
  457.  * @param None
  458.  * @retval None
  459.  */
  460. static void MX_SPI1_Init(void)
  461. {
  462.  
  463.   /* USER CODE BEGIN SPI1_Init 0 */
  464.  
  465.   /* USER CODE END SPI1_Init 0 */
  466.  
  467.   /* USER CODE BEGIN SPI1_Init 1 */
  468.  
  469.   /* USER CODE END SPI1_Init 1 */
  470.   /* SPI1 parameter configuration*/
  471.   hspi1.Instance = SPI1;
  472.   hspi1.Init.Mode = SPI_MODE_MASTER;
  473.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  474.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  475.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  476.   hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  477.   hspi1.Init.NSS = SPI_NSS_SOFT;
  478.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  479.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  480.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  481.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  482.   hspi1.Init.CRCPolynomial = 10;
  483.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  484.   {
  485.     Error_Handler();
  486.   }
  487.   /* USER CODE BEGIN SPI1_Init 2 */
  488.  
  489.   /* USER CODE END SPI1_Init 2 */
  490. }
  491.  
  492. /**
  493.  * @brief TIM1 Initialization Function
  494.  * @param None
  495.  * @retval None
  496.  */
  497. static void MX_TIM1_Init(void)
  498. {
  499.  
  500.   /* USER CODE BEGIN TIM1_Init 0 */
  501.  
  502.   /* USER CODE END TIM1_Init 0 */
  503.  
  504.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  505.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  506.   TIM_OC_InitTypeDef sConfigOC = {0};
  507.   TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  508.  
  509.   /* USER CODE BEGIN TIM1_Init 1 */
  510.  
  511.   /* USER CODE END TIM1_Init 1 */
  512.   htim1.Instance = TIM1;
  513.   htim1.Init.Prescaler = 71;
  514.   htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  515.   htim1.Init.Period = 65535;
  516.   htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  517.   htim1.Init.RepetitionCounter = 0;
  518.   htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  519.   if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  520.   {
  521.     Error_Handler();
  522.   }
  523.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  524.   if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
  525.   {
  526.     Error_Handler();
  527.   }
  528.   if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
  529.   {
  530.     Error_Handler();
  531.   }
  532.   if (HAL_TIM_OnePulse_Init(&htim1, TIM_OPMODE_SINGLE) != HAL_OK)
  533.   {
  534.     Error_Handler();
  535.   }
  536.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1REF;
  537.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  538.   if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  539.   {
  540.     Error_Handler();
  541.   }
  542.   sConfigOC.OCMode = TIM_OCMODE_PWM1;
  543.   sConfigOC.Pulse = SAW_DELAY;
  544.   sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  545.   sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  546.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  547.   sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  548.   sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  549.   if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  550.   {
  551.     Error_Handler();
  552.   }
  553.   sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  554.   sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  555.   sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  556.   sBreakDeadTimeConfig.DeadTime = 0;
  557.   sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  558.   sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  559.   sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  560.   if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  561.   {
  562.     Error_Handler();
  563.   }
  564.   /* USER CODE BEGIN TIM1_Init 2 */
  565.  
  566.   /* USER CODE END TIM1_Init 2 */
  567.   HAL_TIM_MspPostInit(&htim1);
  568. }
  569.  
  570. /**
  571.  * @brief TIM2 Initialization Function
  572.  * @param None
  573.  * @retval None
  574.  */
  575. static void MX_TIM2_Init(void)
  576. {
  577.  
  578.   /* USER CODE BEGIN TIM2_Init 0 */
  579.  
  580.   /* USER CODE END TIM2_Init 0 */
  581.  
  582.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  583.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  584.   TIM_IC_InitTypeDef sConfigIC = {0};
  585.  
  586.   /* USER CODE BEGIN TIM2_Init 1 */
  587.  
  588.   /* USER CODE END TIM2_Init 1 */
  589.   htim2.Instance = TIM2;
  590.   htim2.Init.Prescaler = 719;
  591.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  592.   htim2.Init.Period = 65535;
  593.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  594.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  595.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  596.   {
  597.     Error_Handler();
  598.   }
  599.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  600.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  601.   {
  602.     Error_Handler();
  603.   }
  604.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  605.   {
  606.     Error_Handler();
  607.   }
  608.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  609.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  610.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  611.   {
  612.     Error_Handler();
  613.   }
  614.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  615.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  616.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  617.   sConfigIC.ICFilter = 0;
  618.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  619.   {
  620.     Error_Handler();
  621.   }
  622.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  623.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  624.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  625.   {
  626.     Error_Handler();
  627.   }
  628.   /* USER CODE BEGIN TIM2_Init 2 */
  629.  
  630.   /* USER CODE END TIM2_Init 2 */
  631. }
  632.  
  633. /**
  634.  * @brief TIM3 Initialization Function
  635.  * @param None
  636.  * @retval None
  637.  */
  638. static void MX_TIM3_Init(void)
  639. {
  640.  
  641.   /* USER CODE BEGIN TIM3_Init 0 */
  642.  
  643.   /* USER CODE END TIM3_Init 0 */
  644.  
  645.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  646.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  647.  
  648.   /* USER CODE BEGIN TIM3_Init 1 */
  649.  
  650.   /* USER CODE END TIM3_Init 1 */
  651.   htim3.Instance = TIM3;
  652.   htim3.Init.Prescaler = 719;
  653.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  654.   htim3.Init.Period = 10000;
  655.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  656.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  657.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  658.   {
  659.     Error_Handler();
  660.   }
  661.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  662.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  663.   {
  664.     Error_Handler();
  665.   }
  666.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  667.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  668.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  669.   {
  670.     Error_Handler();
  671.   }
  672.   /* USER CODE BEGIN TIM3_Init 2 */
  673.  
  674.   /* USER CODE END TIM3_Init 2 */
  675. }
  676.  
  677. /**
  678.  * @brief USART2 Initialization Function
  679.  * @param None
  680.  * @retval None
  681.  */
  682. static void MX_USART2_UART_Init(void)
  683. {
  684.  
  685.   /* USER CODE BEGIN USART2_Init 0 */
  686.  
  687.   /* USER CODE END USART2_Init 0 */
  688.  
  689.   /* USER CODE BEGIN USART2_Init 1 */
  690.  
  691.   /* USER CODE END USART2_Init 1 */
  692.   huart2.Instance = USART2;
  693.   huart2.Init.BaudRate = 19200;
  694.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  695.   huart2.Init.StopBits = UART_STOPBITS_1;
  696.   huart2.Init.Parity = UART_PARITY_NONE;
  697.   huart2.Init.Mode = UART_MODE_TX_RX;
  698.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  699.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  700.   if (HAL_UART_Init(&huart2) != HAL_OK)
  701.   {
  702.     Error_Handler();
  703.   }
  704.   /* USER CODE BEGIN USART2_Init 2 */
  705.  
  706.   /* USER CODE END USART2_Init 2 */
  707. }
  708.  
  709. /**
  710.  * @brief GPIO Initialization Function
  711.  * @param None
  712.  * @retval None
  713.  */
  714. static void MX_GPIO_Init(void)
  715. {
  716.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  717.  
  718.   /* GPIO Ports Clock Enable */
  719.   __HAL_RCC_GPIOD_CLK_ENABLE();
  720.   __HAL_RCC_GPIOA_CLK_ENABLE();
  721.   __HAL_RCC_GPIOB_CLK_ENABLE();
  722.  
  723.   /*Configure GPIO pin Output Level */
  724.   HAL_GPIO_WritePin(GPIOA, SPI1_NSS_Pin | SPI1_RESET_Pin, GPIO_PIN_RESET);
  725.  
  726.   /*Configure GPIO pin Output Level */
  727.   HAL_GPIO_WritePin(SPI1_CD_GPIO_Port, SPI1_CD_Pin, GPIO_PIN_RESET);
  728.  
  729.   /*Configure GPIO pins : SPI1_NSS_Pin SPI1_RESET_Pin */
  730.   GPIO_InitStruct.Pin = SPI1_NSS_Pin | SPI1_RESET_Pin;
  731.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  732.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  733.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  734.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  735.  
  736.   /*Configure GPIO pin : SPI1_CD_Pin */
  737.   GPIO_InitStruct.Pin = SPI1_CD_Pin;
  738.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  739.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  740.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  741.   HAL_GPIO_Init(SPI1_CD_GPIO_Port, &GPIO_InitStruct);
  742.  
  743.   /*Configure GPIO pin : PUSHBUTTON_Pin */
  744.   GPIO_InitStruct.Pin = PUSHBUTTON_Pin;
  745.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  746.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  747.   HAL_GPIO_Init(PUSHBUTTON_GPIO_Port, &GPIO_InitStruct);
  748.  
  749.   /*Configure GPIO pin : dualSpark_Pin */
  750.   GPIO_InitStruct.Pin = dualSpark_Pin;
  751.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  752.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  753.   HAL_GPIO_Init(dualSpark_GPIO_Port, &GPIO_InitStruct);
  754. }
  755.  
  756. /* USER CODE BEGIN 4 */
  757.  
  758. /* USER CODE END 4 */
  759.  
  760. /**
  761.  * @brief  This function is executed in case of error occurrence.
  762.  * @retval None
  763.  */
  764. void Error_Handler(void)
  765. {
  766.   /* USER CODE BEGIN Error_Handler_Debug */
  767.   /* User can add his own implementation to report the HAL error return state */
  768.   __disable_irq();
  769.   while (1)
  770.   {
  771.   }
  772.   /* USER CODE END Error_Handler_Debug */
  773. }
  774.  
  775. #ifdef USE_FULL_ASSERT
  776. /**
  777.  * @brief  Reports the name of the source file and the source line number
  778.  *         where the assert_param error has occurred.
  779.  * @param  file: pointer to the source file name
  780.  * @param  line: assert_param error line source number
  781.  * @retval None
  782.  */
  783. void assert_failed(uint8_t *file, uint32_t line)
  784. {
  785.   /* USER CODE BEGIN 6 */
  786.   /* User can add his own implementation to report the file name and line number,
  787.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  788.   /* USER CODE END 6 */
  789. }
  790. #endif /* USE_FULL_ASSERT */
  791.