/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "libSerial/serial.h"
#include "libPLX/plx.h"
#include "libPLX/commsLib.h"
#include "misc.h"
#include "libIgnTiming/rpm.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define ADC_CHANNELS 7
#define ADC_MAP_CHAN 2
#define ADC_PRESSURE_CHAN 3
#define ADC_REF_CHAN 5
#define ADC_TEMP_CHAN 6
// wait for about 1 second to decide whether or not starter is on
#define STARTER_LIMIT 10
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
CAN_HandleTypeDef hcan;
IWDG_HandleTypeDef hiwdg;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
// Storage for USART
#define USART_TX_BUFF_SIZE 256
#define USART_RX_BUFF_SIZE 256
uint8_t usartTxBuff[USART_TX_BUFF_SIZE];
uint8_t usartRxBuff[USART_RX_BUFF_SIZE];
// storage for ADC
uint16_t ADC_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0};
uint32_t FILT_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0}; // filtered ADC samples * Scale
#define NOM_VREF 3.3
// initial ADC vref
float adc_vref = NOM_VREF;
// internal bandgap voltage reference
const float STM32REF = 1.2; // 1.2V typical
// scale factor initially assuming
float ADC_Scale = 1 / (Scale * 4096) * NOM_VREF;
unsigned int Coded_RPM = 0;
unsigned int Coded_CHT = 0;
uint32_t PowerTempTimer;
uint16_t Starter_Debounce = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_CAN_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_IWDG_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void libPLXcallbackRecievedData(PLX_SensorInfo * data)
{
(void )data;
}
void filter_ADC_samples()
{
int i;
for (i = 0; i < ADC_CHANNELS; i++)
{
FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
}
}
/****!
* @brief this reads the reference voltage within the STM32L151
* Powers up reference voltage and temperature sensor, waits 3mS and takes reading
* Requires that the ADC be powered up
*/
void CalibrateADC(void)
{
float adc_val = FILT_Samples[ADC_REF_CHAN]; // as set up in device config
float adc_vref = STM32REF * (4096.0 * Scale) / adc_val; // the estimate for checking
ADC_Scale = 1 / (Scale * 4096) * adc_vref;
}
void ProcessRPM(void)
{
static unsigned int Coded_RPM = 0;
int32_t rpm = CalculateRPM();
// suppress the EDIS "heartbeat" 90 RPM
if (rpm >= 100)
Coded_RPM = rpm / 19.55;
// send the current RPM *calculation
sendPlxInfo(& uc1, PLX_RPM, Coded_RPM/ Scale);
}
// this uses a MAX6675 which is a simple 16 bit read
// SPI is configured for 8 bits so I can use an OLED display if I need it
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
//
FunctionalState CHT_Enable = ENABLE;
#define CORR 3
uint16_t Temp_Observations[NUM_SPI_TEMP_SENS] = {[0 ... NUM_SPI_TEMP_SENS - 1] = 0};
/// \param item The array index to send
/// \param type the code to use for this observation
void ProcessTemp(char item, enum PLX_Observations type)
{
if (item > NUM_SPI_TEMP_SENS)
return;
sendPlxInfo(& uc1, type , Temp_Observations[(int)item]);
}
/// \brief Reset the temperature chip select system
void resetTempCS(void)
{
HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
GPIO_PIN_SET);
for (int i = 0; i < 8; i++)
{
HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
GPIO_PIN_SET);
}
// prepare for selecting next pin
HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_RESET);
}
void nextTempCS(void)
{
HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
GPIO_PIN_RESET);
HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
GPIO_PIN_SET);
HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
}
void EnableTempSensors(FunctionalState state)
{
GPIO_InitTypeDef GPIO_InitStruct;
CHT_Enable = state;
/* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
if (state == ENABLE)
{
HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
resetTempCS();
/* put the SPI pins back into SPI AF mode */
GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
}
else
{
/* Power down the SPI interface taking signals all low */
HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
GPIO_PIN_RESET);
/* put the SPI pins back into GPIO mode */
GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
}
}
// 1023 is 20.00 volts.
/// \param item - used to lookup the index of the local reading
void ProcessBatteryVoltage(int item)
{
float reading = FILT_Samples[item] * ADC_Scale;
reading = reading * 7.8125; // real voltage
reading = reading * 51.15; // PLC scaling = 1023/20
sendPlxInfo(& uc1, PLX_Volts, reading);
}
void ProcessCPUTemperature(void)
{
// this is defined in the STM32F103 reference manual . #
// V25 = 1.43 volts
// Avg_slope = 4.3mV /degree C
// temperature = {(V25 - VSENSE) / Avg_Slope} + 25
/* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
float temp_val = FILT_Samples[ADC_TEMP_CHAN] * ADC_Scale;
/* renormalise temperature value to account for different ADC Vref : normalise to that which we would get for a 3000mV reference */
temp_val = (1.43 - temp_val) / 4.3e-3 + 25;
int32_t result = temp_val;
sendPlxInfo(& uc1, PLX_FluidTemp, result);
}
// the MAP sensor is giving us a reading of
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
// I believe the sensor reads 4.5V at 1000kPa and 0.5V at 0kPa
// Calibration is a bit off
// Real Displayed
// 989 968
// 994.1 986
// 992.3 984
void ProcessMAP(void)
{
// Using ADC_Samples[3] as the MAP input
float reading = FILT_Samples[ADC_MAP_CHAN] * ADC_Scale;
reading = reading * 2.016; // real voltage
// values computed from slope / intercept of map.ods
// reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
// using a pressure gauge.
reading = (reading) * 150 + 326;
sendPlxInfo(& uc1, PLX_MAP, reading);
}
// the Oil pressi sensor is giving us a reading of
// 4.5 volts for 100 PSI or 2.25 volts at the ADC input (resistive divider by 2.016)
// I believe the sensor reads 4.5V at 100PSI and 0.5V at 0PSI
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
void ProcessOilPress(void)
{
// Using ADC_Samples[2] as the MAP input
float reading = FILT_Samples[ADC_PRESSURE_CHAN] * ADC_Scale;
reading = reading * 2.00; // real voltage
reading = (reading - 0.5) * 512 / 4; // this is 1023 * 100/200
sendPlxInfo(& uc1, PLX_FluidPressure, reading);
}
void libPLXcallbackSendUserData()
{
// send the observations
ProcessRPM();
ProcessTemp(0, PLX_X_CHT);
ProcessTemp(1, PLX_X_CHT);
ProcessTemp(2, PLX_AIT);
ProcessTemp(3, PLX_AIT);
ProcessBatteryVoltage(0); // Batt 1
ProcessBatteryVoltage(1); // Batt 2
ProcessCPUTemperature(); // built in temperature sensor
ProcessMAP();
ProcessOilPress();
PutCharSerial(&uc1, PLX_Stop);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_CAN_Init();
MX_SPI1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_USART1_UART_Init();
MX_IWDG_Init();
/* USER CODE BEGIN 2 */
HAL_MspInit();
// Not using HAL USART code
__HAL_RCC_USART1_CLK_ENABLE(); // PLX comms port
/* setup the USART control blocks */
init_usart_ctl(&uc1, &huart1,
usartTxBuff,
usartRxBuff,
USART_TX_BUFF_SIZE,
USART_RX_BUFF_SIZE);
EnableSerialRxInterrupt(&uc1);
HAL_SPI_MspInit(&hspi1);
HAL_ADC_MspInit(&hadc1);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADC_Samples, ADC_CHANNELS);
HAL_ADC_Start_IT(&hadc1);
HAL_TIM_Base_MspInit(&htim4);
HAL_TIM_Base_Start_IT(&htim4);
// initialise all the STMCubeMX stuff
HAL_TIM_Base_MspInit(&htim2);
// Start the counter
HAL_TIM_Base_Start(&htim2);
// Start the input capture and the rising edge interrupt
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
// Start the input capture and the falling edge interrupt
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
HAL_TIM_Base_MspInit(&htim3);
__HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
uint32_t Ticks = HAL_GetTick() + 100;
int CalCounter = 0;
PowerTempTimer = HAL_GetTick() + 1000; /* wait 10 seconds before powering up the CHT sensor */
ResetRxBuffer(&uc1);
resetPLX();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
if (HAL_GetTick() > Ticks)
{
Ticks += 100;
filter_ADC_samples();
// delay to calibrate ADC
if (CalCounter < 1000)
{
CalCounter += 100;
}
if (CalCounter == 900)
{
CalibrateADC();
}
}
/* when the starter motor is on then power down the CHT sensors as they seem to fail */
if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin) == GPIO_PIN_RESET)
{
if (Starter_Debounce < STARTER_LIMIT)
{
Starter_Debounce++;
}
}
else
{
if (Starter_Debounce > 0)
{
Starter_Debounce--;
}
}
if (Starter_Debounce == STARTER_LIMIT)
{
EnableTempSensors(DISABLE);
PowerTempTimer = HAL_GetTick() + 1000;
}
else
/* if the PowerTempTimer is set then wait for it to timeout, then power up CHT */
{
if ((PowerTempTimer > 0) && (HAL_GetTick() > PowerTempTimer))
{
EnableTempSensors(ENABLE);
PowerTempTimer = 0;
}
}
// check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
// poll the input data and produce automatic output if the timer expires and no serial input data
libPLXpollData(&uc1);
HAL_IWDG_Refresh(&hiwdg);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 7;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_REGULAR_RANK_6;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = ADC_REGULAR_RANK_7;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief CAN Initialization Function
* @param None
* @retval None
*/
static void MX_CAN_Init(void)
{
/* USER CODE BEGIN CAN_Init 0 */
/* USER CODE END CAN_Init 0 */
/* USER CODE BEGIN CAN_Init 1 */
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN1;
hcan.Init.Prescaler = 16;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN_Init 2 */
/* USER CODE END CAN_Init 2 */
}
/**
* @brief IWDG Initialization Function
* @param None
* @retval None
*/
static void MX_IWDG_Init(void)
{
/* USER CODE BEGIN IWDG_Init 0 */
/* USER CODE END IWDG_Init 0 */
/* USER CODE BEGIN IWDG_Init 1 */
/* USER CODE END IWDG_Init 1 */
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_64;
hiwdg.Init.Reload = 4095;
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN IWDG_Init 2 */
/* USER CODE END IWDG_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 719;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 15;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 719;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 199;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 198;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 719;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 9999;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED_Blink_Pin */
GPIO_InitStruct.Pin = LED_Blink_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_CS_Clk_Pin SPI_CS_D_Pin ENA_AUX_5V_Pin */
GPIO_InitStruct.Pin = SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : STARTER_ON_Pin */
GPIO_InitStruct.Pin = STARTER_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */