Subversion Repositories EngineBay2

Rev

Rev 52 | Rev 54 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25. #include <string.h>
  26. #include "libSerial/serial.h"
  27. #include "libPLX/plx.h"
  28. #include "libPLX/commsLib.h"
  29. #include "misc.h"
  30.  
  31. #include "libIgnTiming/rpm.h"
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46. #define ADC_CHANNELS 7
  47.  
  48. #define ADC_MAP_CHAN 2
  49.  
  50. #define ADC_PRESSURE_CHAN 3
  51.  
  52. #define ADC_REF_CHAN 5
  53.  
  54. #define ADC_TEMP_CHAN 6
  55.  
  56. // wait for about 1 second to decide whether or not starter is on
  57.  
  58. #define STARTER_LIMIT 10
  59.  
  60. /* USER CODE END PM */
  61.  
  62. /* Private variables ---------------------------------------------------------*/
  63. ADC_HandleTypeDef hadc1;
  64. DMA_HandleTypeDef hdma_adc1;
  65.  
  66. CAN_HandleTypeDef hcan;
  67.  
  68. IWDG_HandleTypeDef hiwdg;
  69.  
  70. SPI_HandleTypeDef hspi1;
  71.  
  72. TIM_HandleTypeDef htim2;
  73. TIM_HandleTypeDef htim3;
  74. TIM_HandleTypeDef htim4;
  75.  
  76. UART_HandleTypeDef huart1;
  77.  
  78. /* USER CODE BEGIN PV */
  79.  
  80. // Storage for USART
  81. #define USART_TX_BUFF_SIZE 256
  82. #define USART_RX_BUFF_SIZE 256
  83. uint8_t usartTxBuff[USART_TX_BUFF_SIZE];
  84. uint8_t usartRxBuff[USART_RX_BUFF_SIZE];
  85.  
  86. // storage for ADC
  87. uint16_t ADC_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0};
  88.  
  89. uint32_t FILT_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0}; // filtered ADC samples * Scale
  90.  
  91. #define NOM_VREF 3.3
  92. // initial ADC vref
  93. float adc_vref = NOM_VREF;
  94.  
  95. // internal bandgap voltage reference
  96. const float STM32REF = 1.2; // 1.2V typical
  97.  
  98. // scale factor initially assuming
  99. float ADC_Scale = 1 / (Scale * 4096) * NOM_VREF;
  100.  
  101. unsigned int Coded_RPM = 0;
  102. unsigned int Coded_CHT = 0;
  103.  
  104. uint32_t PowerTempTimer;
  105.  
  106. uint16_t Starter_Debounce = 0;
  107.  
  108. /* USER CODE END PV */
  109.  
  110. /* Private function prototypes -----------------------------------------------*/
  111. void SystemClock_Config(void);
  112. static void MX_GPIO_Init(void);
  113. static void MX_DMA_Init(void);
  114. static void MX_ADC1_Init(void);
  115. static void MX_CAN_Init(void);
  116. static void MX_SPI1_Init(void);
  117. static void MX_TIM2_Init(void);
  118. static void MX_TIM3_Init(void);
  119. static void MX_TIM4_Init(void);
  120. static void MX_USART1_UART_Init(void);
  121. static void MX_IWDG_Init(void);
  122. /* USER CODE BEGIN PFP */
  123.  
  124. /* USER CODE END PFP */
  125.  
  126. /* Private user code ---------------------------------------------------------*/
  127. /* USER CODE BEGIN 0 */
  128. void libPLXcallbackRecievedData(PLX_SensorInfo * data)
  129. {
  130.   (void )data;
  131.  
  132. }
  133.  
  134.  
  135. void filter_ADC_samples()
  136. {
  137.   int i;
  138.   for (i = 0; i < ADC_CHANNELS; i++)
  139.   {
  140.     FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
  141.   }
  142. }
  143.  
  144. /****!
  145.  * @brief this reads the reference voltage within the STM32L151
  146.  * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
  147.  * Requires that the ADC be powered up
  148.  */
  149.  
  150. void CalibrateADC(void)
  151. {
  152.   float adc_val = FILT_Samples[ADC_REF_CHAN]; // as set up in device config
  153.  
  154.   float adc_vref = STM32REF * (4096.0 * Scale) / adc_val; // the estimate for checking
  155.  
  156.   ADC_Scale = 1 / (Scale * 4096) * adc_vref;
  157. }
  158.  
  159. void ProcessRPM(void)
  160. {
  161.   static unsigned int Coded_RPM = 0;
  162.   int32_t rpm = CalculateRPM();
  163.   // suppress the EDIS "heartbeat" 90 RPM
  164.   if (rpm >= 100)
  165.     Coded_RPM = rpm / 19.55;
  166.  
  167.   // send the current RPM *calculation
  168.  
  169.   sendPlxInfo(& uc1, PLX_RPM, Coded_RPM/ Scale);
  170.  
  171.  
  172. }
  173.  
  174. // this uses a MAX6675 which is a simple 16 bit read
  175. // SPI is configured for 8 bits so I can use an OLED display if I need it
  176. // must wait > 0.22 seconds between conversion attempts as this is the measurement time
  177. //
  178.  
  179. FunctionalState CHT_Enable = ENABLE;
  180.  
  181. #define CORR 3
  182.  
  183. uint16_t Temp_Observations[NUM_SPI_TEMP_SENS] = {[0 ... NUM_SPI_TEMP_SENS - 1] = 0};
  184.  
  185. /// \param item The array index to send
  186. /// \param type the code to use for this observation
  187. void ProcessTemp(char item, enum PLX_Observations type)
  188. {
  189.   if (item > NUM_SPI_TEMP_SENS)
  190.     return;
  191.  
  192.   sendPlxInfo(& uc1, type , Temp_Observations[(int)item]);
  193.  
  194. }
  195.  
  196. /// \brief Reset the temperature chip select system
  197. void resetTempCS(void)
  198. {
  199.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
  200.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  201.                     GPIO_PIN_SET);
  202.  
  203.   for (int i = 0; i < 8; i++)
  204.   {
  205.     HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  206.                       GPIO_PIN_RESET);
  207.     HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  208.                       GPIO_PIN_SET);
  209.   }
  210.  
  211.   // prepare for selecting next pin
  212.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_RESET);
  213. }
  214.  
  215. void nextTempCS(void)
  216. {
  217.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  218.                     GPIO_PIN_RESET);
  219.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  220.                     GPIO_PIN_SET);
  221.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
  222. }
  223.  
  224. void EnableTempSensors(FunctionalState state)
  225.  
  226. {
  227.   GPIO_InitTypeDef GPIO_InitStruct;
  228.  
  229.   CHT_Enable = state;
  230.  
  231.   /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
  232.   if (state == ENABLE)
  233.   {
  234.     HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
  235.  
  236.     resetTempCS();
  237.  
  238.     /* put the SPI pins back into SPI AF mode */
  239.     GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  240.     GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  241.     GPIO_InitStruct.Pull = GPIO_NOPULL;
  242.     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  243.     HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  244.   }
  245.   else
  246.   {
  247.     /*  Power down the SPI interface taking signals all low */
  248.     HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  249.  
  250.     HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
  251.                       SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
  252.                       GPIO_PIN_RESET);
  253.  
  254.     /* put the SPI pins back into GPIO mode */
  255.     GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  256.     GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  257.     GPIO_InitStruct.Pull = GPIO_NOPULL;
  258.     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  259.     HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  260.   }
  261. }
  262.  
  263. // 1023 is 20.00 volts.
  264. /// \param item - used to lookup the index of the local reading
  265. void ProcessBatteryVoltage(int item)
  266. {
  267.   float reading = FILT_Samples[item] * ADC_Scale;
  268.   reading = reading * 7.8125; // real voltage
  269.   reading = reading * 51.15;  // PLC scaling =  1023/20
  270.  
  271.   sendPlxInfo(& uc1, PLX_Volts, reading);
  272.  
  273. }
  274.  
  275. void ProcessCPUTemperature(void)
  276. {
  277.   // this is defined in the STM32F103 reference manual . #
  278.   // V25 = 1.43 volts
  279.   // Avg_slope = 4.3mV /degree C
  280.   // temperature = {(V25 - VSENSE) / Avg_Slope} + 25
  281.  
  282.   /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
  283.  
  284.   float temp_val = FILT_Samples[ADC_TEMP_CHAN] * ADC_Scale;
  285.   /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
  286.   temp_val = (1.43 - temp_val) / 4.3e-3 + 25;
  287.  
  288.   int32_t result = temp_val;
  289.  
  290.   sendPlxInfo(& uc1, PLX_FluidTemp, result);
  291.  
  292. }
  293.  
  294. // the MAP sensor is giving us a reading of
  295. // 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
  296. // I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
  297. // Calibration is a bit off
  298. // Real   Displayed
  299. // 989    968
  300. // 994.1    986
  301. // 992.3  984
  302.  
  303. void ProcessMAP(void)
  304. {
  305.   // Using ADC_Samples[3] as the MAP input
  306.   float reading = FILT_Samples[ADC_MAP_CHAN] * ADC_Scale;
  307.   reading = reading * 2.016; // real voltage
  308.   // values computed from slope / intercept of map.ods
  309.   // reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
  310.   // using a pressure gauge.
  311.   reading = (reading) * 150 + 326;
  312.  
  313.   sendPlxInfo(& uc1, PLX_MAP, reading);
  314.  
  315. }
  316.  
  317. // the Oil pressi sensor is giving us a reading of
  318. // 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
  319. // I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
  320. // an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
  321.  
  322. void ProcessOilPress(void)
  323. {
  324.   // Using ADC_Samples[2] as the MAP input
  325.   float reading = FILT_Samples[ADC_PRESSURE_CHAN] * ADC_Scale;
  326.   reading = reading * 2.00;            // real voltage
  327.   reading = (reading - 0.5) * 512 / 4; // this is 1023 * 100/200
  328.  
  329.   sendPlxInfo(& uc1, PLX_FluidPressure, reading);
  330.  
  331. }
  332.  
  333.  
  334. void libPLXcallbackSendUserData()
  335. {
  336.   // send the observations
  337.   ProcessRPM();
  338.   ProcessTemp(0, PLX_X_CHT);
  339.   ProcessTemp(1, PLX_X_CHT);
  340.   ProcessTemp(2, PLX_AIT);
  341.   ProcessTemp(3, PLX_AIT);
  342.   ProcessBatteryVoltage(0); // Batt 1
  343.   ProcessBatteryVoltage(1); // Batt 2
  344.   ProcessCPUTemperature();  //  built in temperature sensor
  345.  
  346.   ProcessMAP();
  347.   ProcessOilPress();
  348.  
  349.   PutCharSerial(&uc1, PLX_Stop);
  350. }
  351. /* USER CODE END 0 */
  352.  
  353. /**
  354.  * @brief  The application entry point.
  355.  * @retval int
  356.  */
  357. int main(void)
  358. {
  359.   /* USER CODE BEGIN 1 */
  360.  
  361.   /* USER CODE END 1 */
  362.  
  363.   /* MCU Configuration--------------------------------------------------------*/
  364.  
  365.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  366.   HAL_Init();
  367.  
  368.   /* USER CODE BEGIN Init */
  369.  
  370.   /* USER CODE END Init */
  371.  
  372.   /* Configure the system clock */
  373.   SystemClock_Config();
  374.  
  375.   /* USER CODE BEGIN SysInit */
  376.  
  377.   /* USER CODE END SysInit */
  378.  
  379.   /* Initialize all configured peripherals */
  380.   MX_GPIO_Init();
  381.   MX_DMA_Init();
  382.   MX_ADC1_Init();
  383.   MX_CAN_Init();
  384.   MX_SPI1_Init();
  385.   MX_TIM2_Init();
  386.   MX_TIM3_Init();
  387.   MX_TIM4_Init();
  388.   MX_USART1_UART_Init();
  389.   MX_IWDG_Init();
  390.   /* USER CODE BEGIN 2 */
  391.   HAL_MspInit();
  392.  
  393.   // Not using HAL USART code
  394.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX comms port
  395.   /* setup the USART control blocks */
  396.   init_usart_ctl(&uc1, &huart1,
  397.                  usartTxBuff,
  398.                  usartRxBuff,
  399.                  USART_TX_BUFF_SIZE,
  400.                  USART_RX_BUFF_SIZE);
  401.  
  402.   EnableSerialRxInterrupt(&uc1);
  403.  
  404.   HAL_SPI_MspInit(&hspi1);
  405.  
  406.   HAL_ADC_MspInit(&hadc1);
  407.  
  408.   HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADC_Samples, ADC_CHANNELS);
  409.  
  410.   HAL_ADC_Start_IT(&hadc1);
  411.  
  412.   HAL_TIM_Base_MspInit(&htim4);
  413.   HAL_TIM_Base_Start_IT(&htim4);
  414.  
  415.   // initialise all the STMCubeMX stuff
  416.   HAL_TIM_Base_MspInit(&htim2);
  417.   // Start the counter
  418.   HAL_TIM_Base_Start(&htim2);
  419.   // Start the input capture and the rising edge interrupt
  420.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  421.   // Start the input capture and the falling edge interrupt
  422.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  423.  
  424.   HAL_TIM_Base_MspInit(&htim3);
  425.   __HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
  426.   uint32_t Ticks = HAL_GetTick() + 100;
  427.   int CalCounter = 0;
  428.  
  429.   PowerTempTimer = HAL_GetTick() + 1000; /* wait 10 seconds before powering up the CHT sensor */
  430.  
  431.   ResetRxBuffer(&uc1);
  432.  
  433.   resetPLX();
  434.   /* USER CODE END 2 */
  435.  
  436.   /* Infinite loop */
  437.   /* USER CODE BEGIN WHILE */
  438.   while (1)
  439.   {
  440.     /* USER CODE END WHILE */
  441.  
  442.     /* USER CODE BEGIN 3 */
  443.  
  444.     if (HAL_GetTick() > Ticks)
  445.     {
  446.       Ticks += 100;
  447.       filter_ADC_samples();
  448.       // delay to calibrate ADC
  449.       if (CalCounter < 1000)
  450.       {
  451.         CalCounter += 100;
  452.       }
  453.  
  454.       if (CalCounter == 900)
  455.       {
  456.         CalibrateADC();
  457.       }
  458.     }
  459.     /* when the starter motor is on then power down the CHT sensors as they seem to fail */
  460.  
  461.     if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin) == GPIO_PIN_RESET)
  462.     {
  463.       if (Starter_Debounce < STARTER_LIMIT)
  464.       {
  465.         Starter_Debounce++;
  466.       }
  467.     }
  468.     else
  469.     {
  470.       if (Starter_Debounce > 0)
  471.       {
  472.         Starter_Debounce--;
  473.       }
  474.     }
  475.  
  476.     if (Starter_Debounce == STARTER_LIMIT)
  477.     {
  478.       EnableTempSensors(DISABLE);
  479.       PowerTempTimer = HAL_GetTick() + 1000;
  480.     }
  481.     else
  482.     /* if the PowerTempTimer is set then wait for it to timeout, then power up CHT */
  483.     {
  484.       if ((PowerTempTimer > 0) && (HAL_GetTick() > PowerTempTimer))
  485.       {
  486.         EnableTempSensors(ENABLE);
  487.         PowerTempTimer = 0;
  488.       }
  489.     }
  490.  
  491.     // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
  492.  
  493.     // poll the input data and produce automatic output if the timer expires and no serial input data
  494.     libPLXpollData(&uc1);
  495.  
  496.     HAL_IWDG_Refresh(&hiwdg);
  497.   }
  498.  
  499.   /* USER CODE END 3 */
  500. }
  501.  
  502. /**
  503.  * @brief System Clock Configuration
  504.  * @retval None
  505.  */
  506. void SystemClock_Config(void)
  507. {
  508.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  509.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  510.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  511.  
  512.   /** Initializes the RCC Oscillators according to the specified parameters
  513.    * in the RCC_OscInitTypeDef structure.
  514.    */
  515.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
  516.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  517.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  518.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  519.   RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  520.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  521.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  522.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  523.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  524.   {
  525.     Error_Handler();
  526.   }
  527.  
  528.   /** Initializes the CPU, AHB and APB buses clocks
  529.    */
  530.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  531.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  532.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  533.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  534.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  535.  
  536.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  537.   {
  538.     Error_Handler();
  539.   }
  540.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  541.   PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
  542.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  543.   {
  544.     Error_Handler();
  545.   }
  546. }
  547.  
  548. /**
  549.  * @brief ADC1 Initialization Function
  550.  * @param None
  551.  * @retval None
  552.  */
  553. static void MX_ADC1_Init(void)
  554. {
  555.  
  556.   /* USER CODE BEGIN ADC1_Init 0 */
  557.  
  558.   /* USER CODE END ADC1_Init 0 */
  559.  
  560.   ADC_ChannelConfTypeDef sConfig = {0};
  561.  
  562.   /* USER CODE BEGIN ADC1_Init 1 */
  563.  
  564.   /* USER CODE END ADC1_Init 1 */
  565.  
  566.   /** Common config
  567.    */
  568.   hadc1.Instance = ADC1;
  569.   hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  570.   hadc1.Init.ContinuousConvMode = DISABLE;
  571.   hadc1.Init.DiscontinuousConvMode = DISABLE;
  572.   hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
  573.   hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  574.   hadc1.Init.NbrOfConversion = 7;
  575.   if (HAL_ADC_Init(&hadc1) != HAL_OK)
  576.   {
  577.     Error_Handler();
  578.   }
  579.  
  580.   /** Configure Regular Channel
  581.    */
  582.   sConfig.Channel = ADC_CHANNEL_0;
  583.   sConfig.Rank = ADC_REGULAR_RANK_1;
  584.   sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
  585.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  586.   {
  587.     Error_Handler();
  588.   }
  589.  
  590.   /** Configure Regular Channel
  591.    */
  592.   sConfig.Channel = ADC_CHANNEL_1;
  593.   sConfig.Rank = ADC_REGULAR_RANK_2;
  594.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  595.   {
  596.     Error_Handler();
  597.   }
  598.  
  599.   /** Configure Regular Channel
  600.    */
  601.   sConfig.Channel = ADC_CHANNEL_2;
  602.   sConfig.Rank = ADC_REGULAR_RANK_3;
  603.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  604.   {
  605.     Error_Handler();
  606.   }
  607.  
  608.   /** Configure Regular Channel
  609.    */
  610.   sConfig.Channel = ADC_CHANNEL_3;
  611.   sConfig.Rank = ADC_REGULAR_RANK_4;
  612.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  613.   {
  614.     Error_Handler();
  615.   }
  616.  
  617.   /** Configure Regular Channel
  618.    */
  619.   sConfig.Channel = ADC_CHANNEL_4;
  620.   sConfig.Rank = ADC_REGULAR_RANK_5;
  621.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  622.   {
  623.     Error_Handler();
  624.   }
  625.  
  626.   /** Configure Regular Channel
  627.    */
  628.   sConfig.Channel = ADC_CHANNEL_VREFINT;
  629.   sConfig.Rank = ADC_REGULAR_RANK_6;
  630.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  631.   {
  632.     Error_Handler();
  633.   }
  634.  
  635.   /** Configure Regular Channel
  636.    */
  637.   sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  638.   sConfig.Rank = ADC_REGULAR_RANK_7;
  639.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  640.   {
  641.     Error_Handler();
  642.   }
  643.   /* USER CODE BEGIN ADC1_Init 2 */
  644.  
  645.   /* USER CODE END ADC1_Init 2 */
  646. }
  647.  
  648. /**
  649.  * @brief CAN Initialization Function
  650.  * @param None
  651.  * @retval None
  652.  */
  653. static void MX_CAN_Init(void)
  654. {
  655.  
  656.   /* USER CODE BEGIN CAN_Init 0 */
  657.  
  658.   /* USER CODE END CAN_Init 0 */
  659.  
  660.   /* USER CODE BEGIN CAN_Init 1 */
  661.  
  662.   /* USER CODE END CAN_Init 1 */
  663.   hcan.Instance = CAN1;
  664.   hcan.Init.Prescaler = 16;
  665.   hcan.Init.Mode = CAN_MODE_NORMAL;
  666.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  667.   hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
  668.   hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
  669.   hcan.Init.TimeTriggeredMode = DISABLE;
  670.   hcan.Init.AutoBusOff = DISABLE;
  671.   hcan.Init.AutoWakeUp = DISABLE;
  672.   hcan.Init.AutoRetransmission = DISABLE;
  673.   hcan.Init.ReceiveFifoLocked = DISABLE;
  674.   hcan.Init.TransmitFifoPriority = DISABLE;
  675.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  676.   {
  677.     Error_Handler();
  678.   }
  679.   /* USER CODE BEGIN CAN_Init 2 */
  680.  
  681.   /* USER CODE END CAN_Init 2 */
  682. }
  683.  
  684. /**
  685.  * @brief IWDG Initialization Function
  686.  * @param None
  687.  * @retval None
  688.  */
  689. static void MX_IWDG_Init(void)
  690. {
  691.  
  692.   /* USER CODE BEGIN IWDG_Init 0 */
  693.  
  694.   /* USER CODE END IWDG_Init 0 */
  695.  
  696.   /* USER CODE BEGIN IWDG_Init 1 */
  697.  
  698.   /* USER CODE END IWDG_Init 1 */
  699.   hiwdg.Instance = IWDG;
  700.   hiwdg.Init.Prescaler = IWDG_PRESCALER_64;
  701.   hiwdg.Init.Reload = 4095;
  702.   if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  703.   {
  704.     Error_Handler();
  705.   }
  706.   /* USER CODE BEGIN IWDG_Init 2 */
  707.  
  708.   /* USER CODE END IWDG_Init 2 */
  709. }
  710.  
  711. /**
  712.  * @brief SPI1 Initialization Function
  713.  * @param None
  714.  * @retval None
  715.  */
  716. static void MX_SPI1_Init(void)
  717. {
  718.  
  719.   /* USER CODE BEGIN SPI1_Init 0 */
  720.  
  721.   /* USER CODE END SPI1_Init 0 */
  722.  
  723.   /* USER CODE BEGIN SPI1_Init 1 */
  724.  
  725.   /* USER CODE END SPI1_Init 1 */
  726.   /* SPI1 parameter configuration*/
  727.   hspi1.Instance = SPI1;
  728.   hspi1.Init.Mode = SPI_MODE_MASTER;
  729.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  730.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  731.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  732.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  733.   hspi1.Init.NSS = SPI_NSS_SOFT;
  734.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  735.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  736.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  737.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  738.   hspi1.Init.CRCPolynomial = 10;
  739.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  740.   {
  741.     Error_Handler();
  742.   }
  743.   /* USER CODE BEGIN SPI1_Init 2 */
  744.  
  745.   /* USER CODE END SPI1_Init 2 */
  746. }
  747.  
  748. /**
  749.  * @brief TIM2 Initialization Function
  750.  * @param None
  751.  * @retval None
  752.  */
  753. static void MX_TIM2_Init(void)
  754. {
  755.  
  756.   /* USER CODE BEGIN TIM2_Init 0 */
  757.  
  758.   /* USER CODE END TIM2_Init 0 */
  759.  
  760.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  761.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  762.   TIM_IC_InitTypeDef sConfigIC = {0};
  763.  
  764.   /* USER CODE BEGIN TIM2_Init 1 */
  765.  
  766.   /* USER CODE END TIM2_Init 1 */
  767.   htim2.Instance = TIM2;
  768.   htim2.Init.Prescaler = 719;
  769.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  770.   htim2.Init.Period = 65535;
  771.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  772.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  773.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  774.   {
  775.     Error_Handler();
  776.   }
  777.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  778.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  779.   {
  780.     Error_Handler();
  781.   }
  782.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  783.   {
  784.     Error_Handler();
  785.   }
  786.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  787.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  788.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  789.   {
  790.     Error_Handler();
  791.   }
  792.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  793.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  794.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  795.   sConfigIC.ICFilter = 15;
  796.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  797.   {
  798.     Error_Handler();
  799.   }
  800.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  801.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  802.   sConfigIC.ICFilter = 0;
  803.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  804.   {
  805.     Error_Handler();
  806.   }
  807.   /* USER CODE BEGIN TIM2_Init 2 */
  808.  
  809.   /* USER CODE END TIM2_Init 2 */
  810. }
  811.  
  812. /**
  813.  * @brief TIM3 Initialization Function
  814.  * @param None
  815.  * @retval None
  816.  */
  817. static void MX_TIM3_Init(void)
  818. {
  819.  
  820.   /* USER CODE BEGIN TIM3_Init 0 */
  821.  
  822.   /* USER CODE END TIM3_Init 0 */
  823.  
  824.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  825.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  826.   TIM_OC_InitTypeDef sConfigOC = {0};
  827.  
  828.   /* USER CODE BEGIN TIM3_Init 1 */
  829.  
  830.   /* USER CODE END TIM3_Init 1 */
  831.   htim3.Instance = TIM3;
  832.   htim3.Init.Prescaler = 719;
  833.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  834.   htim3.Init.Period = 199;
  835.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  836.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  837.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  838.   {
  839.     Error_Handler();
  840.   }
  841.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  842.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  843.   {
  844.     Error_Handler();
  845.   }
  846.   if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  847.   {
  848.     Error_Handler();
  849.   }
  850.   if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
  851.   {
  852.     Error_Handler();
  853.   }
  854.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
  855.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  856.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  857.   {
  858.     Error_Handler();
  859.   }
  860.   sConfigOC.OCMode = TIM_OCMODE_TIMING;
  861.   sConfigOC.Pulse = 198;
  862.   sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  863.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  864.   if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  865.   {
  866.     Error_Handler();
  867.   }
  868.   /* USER CODE BEGIN TIM3_Init 2 */
  869.  
  870.   /* USER CODE END TIM3_Init 2 */
  871. }
  872.  
  873. /**
  874.  * @brief TIM4 Initialization Function
  875.  * @param None
  876.  * @retval None
  877.  */
  878. static void MX_TIM4_Init(void)
  879. {
  880.  
  881.   /* USER CODE BEGIN TIM4_Init 0 */
  882.  
  883.   /* USER CODE END TIM4_Init 0 */
  884.  
  885.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  886.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  887.  
  888.   /* USER CODE BEGIN TIM4_Init 1 */
  889.  
  890.   /* USER CODE END TIM4_Init 1 */
  891.   htim4.Instance = TIM4;
  892.   htim4.Init.Prescaler = 719;
  893.   htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  894.   htim4.Init.Period = 9999;
  895.   htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  896.   htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  897.   if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  898.   {
  899.     Error_Handler();
  900.   }
  901.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  902.   if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  903.   {
  904.     Error_Handler();
  905.   }
  906.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  907.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  908.   if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  909.   {
  910.     Error_Handler();
  911.   }
  912.   /* USER CODE BEGIN TIM4_Init 2 */
  913.  
  914.   /* USER CODE END TIM4_Init 2 */
  915. }
  916.  
  917. /**
  918.  * @brief USART1 Initialization Function
  919.  * @param None
  920.  * @retval None
  921.  */
  922. static void MX_USART1_UART_Init(void)
  923. {
  924.  
  925.   /* USER CODE BEGIN USART1_Init 0 */
  926.  
  927.   /* USER CODE END USART1_Init 0 */
  928.  
  929.   /* USER CODE BEGIN USART1_Init 1 */
  930.  
  931.   /* USER CODE END USART1_Init 1 */
  932.   huart1.Instance = USART1;
  933.   huart1.Init.BaudRate = 19200;
  934.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  935.   huart1.Init.StopBits = UART_STOPBITS_1;
  936.   huart1.Init.Parity = UART_PARITY_NONE;
  937.   huart1.Init.Mode = UART_MODE_TX_RX;
  938.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  939.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  940.   if (HAL_UART_Init(&huart1) != HAL_OK)
  941.   {
  942.     Error_Handler();
  943.   }
  944.   /* USER CODE BEGIN USART1_Init 2 */
  945.  
  946.   /* USER CODE END USART1_Init 2 */
  947. }
  948.  
  949. /**
  950.  * Enable DMA controller clock
  951.  */
  952. static void MX_DMA_Init(void)
  953. {
  954.  
  955.   /* DMA controller clock enable */
  956.   __HAL_RCC_DMA1_CLK_ENABLE();
  957.  
  958.   /* DMA interrupt init */
  959.   /* DMA1_Channel1_IRQn interrupt configuration */
  960.   HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  961.   HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  962. }
  963.  
  964. /**
  965.  * @brief GPIO Initialization Function
  966.  * @param None
  967.  * @retval None
  968.  */
  969. static void MX_GPIO_Init(void)
  970. {
  971.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  972.   /* USER CODE BEGIN MX_GPIO_Init_1 */
  973.   /* USER CODE END MX_GPIO_Init_1 */
  974.  
  975.   /* GPIO Ports Clock Enable */
  976.   __HAL_RCC_GPIOC_CLK_ENABLE();
  977.   __HAL_RCC_GPIOD_CLK_ENABLE();
  978.   __HAL_RCC_GPIOA_CLK_ENABLE();
  979.   __HAL_RCC_GPIOB_CLK_ENABLE();
  980.  
  981.   /*Configure GPIO pin Output Level */
  982.   HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
  983.  
  984.   /*Configure GPIO pin Output Level */
  985.   HAL_GPIO_WritePin(GPIOB, SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  986.  
  987.   /*Configure GPIO pin : LED_Blink_Pin */
  988.   GPIO_InitStruct.Pin = LED_Blink_Pin;
  989.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  990.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  991.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  992.   HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
  993.  
  994.   /*Configure GPIO pins : SPI_CS_Clk_Pin SPI_CS_D_Pin ENA_AUX_5V_Pin */
  995.   GPIO_InitStruct.Pin = SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin;
  996.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  997.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  998.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  999.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1000.  
  1001.   /*Configure GPIO pin : STARTER_ON_Pin */
  1002.   GPIO_InitStruct.Pin = STARTER_ON_Pin;
  1003.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1004.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1005.   HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
  1006.  
  1007.   /* USER CODE BEGIN MX_GPIO_Init_2 */
  1008.   /* USER CODE END MX_GPIO_Init_2 */
  1009. }
  1010.  
  1011. /* USER CODE BEGIN 4 */
  1012.  
  1013. /* USER CODE END 4 */
  1014.  
  1015. /**
  1016.  * @brief  This function is executed in case of error occurrence.
  1017.  * @retval None
  1018.  */
  1019. void Error_Handler(void)
  1020. {
  1021.   /* USER CODE BEGIN Error_Handler_Debug */
  1022.   /* User can add his own implementation to report the HAL error return state */
  1023.  
  1024.   /* USER CODE END Error_Handler_Debug */
  1025. }
  1026.  
  1027. #ifdef USE_FULL_ASSERT
  1028. /**
  1029.  * @brief  Reports the name of the source file and the source line number
  1030.  *         where the assert_param error has occurred.
  1031.  * @param  file: pointer to the source file name
  1032.  * @param  line: assert_param error line source number
  1033.  * @retval None
  1034.  */
  1035. void assert_failed(uint8_t *file, uint32_t line)
  1036. {
  1037.   /* USER CODE BEGIN 6 */
  1038.   /* User can add his own implementation to report the file name and line number,
  1039.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1040.   /* USER CODE END 6 */
  1041. }
  1042. #endif /* USE_FULL_ASSERT */
  1043.