Subversion Repositories EngineBay2

Rev

Rev 49 | Rev 53 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25. #include <string.h>
  26. #include "libSerial/serial.h"
  27. #include "libPLX/plx.h"
  28. #include "libPLX/commsLib.h"
  29. #include "misc.h"
  30.  
  31. #include "libIgnTiming/rpm.h"
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46. #define ADC_CHANNELS 7
  47.  
  48. #define ADC_MAP_CHAN 2
  49.  
  50. #define ADC_PRESSURE_CHAN 3
  51.  
  52. #define ADC_REF_CHAN 5
  53.  
  54. #define ADC_TEMP_CHAN 6
  55.  
  56. // wait for about 1 second to decide whether or not starter is on
  57.  
  58. #define STARTER_LIMIT 10
  59.  
  60. /* USER CODE END PM */
  61.  
  62. /* Private variables ---------------------------------------------------------*/
  63. ADC_HandleTypeDef hadc1;
  64. DMA_HandleTypeDef hdma_adc1;
  65.  
  66. CAN_HandleTypeDef hcan;
  67.  
  68. SPI_HandleTypeDef hspi1;
  69.  
  70. TIM_HandleTypeDef htim2;
  71. TIM_HandleTypeDef htim3;
  72. TIM_HandleTypeDef htim4;
  73.  
  74. UART_HandleTypeDef huart1;
  75.  
  76. /* USER CODE BEGIN PV */
  77.  
  78. volatile char TimerFlag = 0;
  79.  
  80. volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
  81. volatile char NoSerialIn = 0;
  82.  
  83. // storage for ADC
  84. uint16_t ADC_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0};
  85.  
  86. uint32_t FILT_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0}; // filtered ADC samples * Scale
  87.  
  88. #define NOM_VREF 3.3
  89. // initial ADC vref
  90. float adc_vref = NOM_VREF;
  91.  
  92. // internal bandgap voltage reference
  93. const float STM32REF = 1.2; // 1.2V typical
  94.  
  95. // scale factor initially assuming
  96. float ADC_Scale = 1 / (Scale * 4096) * NOM_VREF;
  97.  
  98. unsigned int Coded_RPM = 0;
  99. unsigned int Coded_CHT = 0;
  100.  
  101. uint32_t PowerTempTimer;
  102.  
  103. uint16_t Starter_Debounce = 0;
  104.  
  105. /* USER CODE END PV */
  106.  
  107. /* Private function prototypes -----------------------------------------------*/
  108. void SystemClock_Config(void);
  109. static void MX_GPIO_Init(void);
  110. static void MX_DMA_Init(void);
  111. static void MX_ADC1_Init(void);
  112. static void MX_CAN_Init(void);
  113. static void MX_SPI1_Init(void);
  114. static void MX_TIM2_Init(void);
  115. static void MX_TIM3_Init(void);
  116. static void MX_TIM4_Init(void);
  117. static void MX_USART1_UART_Init(void);
  118. /* USER CODE BEGIN PFP */
  119.  
  120. /* USER CODE END PFP */
  121.  
  122. /* Private user code ---------------------------------------------------------*/
  123. /* USER CODE BEGIN 0 */
  124.  
  125. void plx_sendword(int x)
  126. {
  127.   PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
  128.   PutCharSerial(&uc1, (x)&0x3F);
  129. }
  130.  
  131. void filter_ADC_samples()
  132. {
  133.   int i;
  134.   for (i = 0; i < ADC_CHANNELS; i++)
  135.   {
  136.     FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
  137.   }
  138. }
  139.  
  140. /****!
  141.  * @brief this reads the reference voltage within the STM32L151
  142.  * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
  143.  * Requires that the ADC be powered up
  144.  */
  145.  
  146. void CalibrateADC(void)
  147. {
  148.   float adc_val = FILT_Samples[ADC_REF_CHAN]; // as set up in device config
  149.  
  150.   float adc_vref = STM32REF * (4096.0 * Scale) / adc_val; // the estimate for checking
  151.  
  152.   ADC_Scale = 1 / (Scale * 4096) * adc_vref;
  153. }
  154.  
  155. void ProcessRPM(void)
  156. {
  157.   static unsigned int Coded_RPM = 0;
  158.   int32_t rpm = CalculateRPM();
  159.   if (rpm >= 0)
  160.     Coded_RPM = rpm / 19.55;
  161.  
  162.   // send the current RPM *calculation
  163.   plx_sendword(PLX_RPM);
  164.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_RPM));
  165.   plx_sendword(Coded_RPM / Scale);
  166. }
  167.  
  168. // this uses a MAX6675 which is a simple 16 bit read
  169. // SPI is configured for 8 bits so I can use an OLED display if I need it
  170. // must wait > 0.22 seconds between conversion attempts as this is the measurement time
  171. //
  172.  
  173. FunctionalState CHT_Enable = ENABLE;
  174.  
  175. #define CORR 3
  176.  
  177. uint16_t Temp_Observations[NUM_SPI_TEMP_SENS] = {[0 ... NUM_SPI_TEMP_SENS - 1] = 0};
  178.  
  179. /// \param item The array index to send
  180. /// \param type the code to use for this observation
  181. void ProcessTemp(char item, enum PLX_Observations type)
  182. {
  183.   if (item > NUM_SPI_TEMP_SENS)
  184.     return;
  185.   plx_sendword(type);
  186.   PutCharSerial(&uc1, libPLXgetNextInstance(type));
  187.   plx_sendword(Temp_Observations[(int)item]);
  188. }
  189.  
  190. /// \brief Reset the temperature chip select system
  191. void resetTempCS(void)
  192. {
  193.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
  194.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  195.                     GPIO_PIN_SET);
  196.  
  197.   for (int i = 0; i < 8; i++)
  198.   {
  199.     HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  200.                       GPIO_PIN_RESET);
  201.     HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  202.                       GPIO_PIN_SET);
  203.   }
  204.  
  205.   // prepare for selecting next pin
  206.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_RESET);
  207. }
  208.  
  209. void nextTempCS(void)
  210. {
  211.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  212.                     GPIO_PIN_RESET);
  213.   HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
  214.                     GPIO_PIN_SET);
  215.   HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
  216. }
  217.  
  218. void EnableTempSensors(FunctionalState state)
  219.  
  220. {
  221.   GPIO_InitTypeDef GPIO_InitStruct;
  222.  
  223.   CHT_Enable = state;
  224.  
  225.   /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
  226.   if (state == ENABLE)
  227.   {
  228.     HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
  229.  
  230.     resetTempCS();
  231.  
  232.     /* put the SPI pins back into SPI AF mode */
  233.     GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  234.     GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  235.     GPIO_InitStruct.Pull = GPIO_NOPULL;
  236.     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  237.     HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  238.   }
  239.   else
  240.   {
  241.     /*  Power down the SPI interface taking signals all low */
  242.     HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  243.  
  244.     HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
  245.                       SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
  246.                       GPIO_PIN_RESET);
  247.  
  248.     /* put the SPI pins back into GPIO mode */
  249.     GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  250.     GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  251.     GPIO_InitStruct.Pull = GPIO_NOPULL;
  252.     GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  253.     HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  254.   }
  255. }
  256.  
  257. // 1023 is 20.00 volts.
  258. /// \param item - used to lookup the index of the local reading
  259. void ProcessBatteryVoltage(int item)
  260. {
  261.   float reading = FILT_Samples[item] * ADC_Scale;
  262.   reading = reading * 7.8125; // real voltage
  263.   reading = reading * 51.15;  // PLC scaling =  1023/20
  264.  
  265.   plx_sendword(PLX_Volts);
  266.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_Volts));
  267.   plx_sendword((uint16_t)reading);
  268. }
  269.  
  270. void ProcessCPUTemperature(void)
  271. {
  272.   // this is defined in the STM32F103 reference manual . #
  273.   // V25 = 1.43 volts
  274.   // Avg_slope = 4.3mV /degree C
  275.   // temperature = {(V25 - VSENSE) / Avg_Slope} + 25
  276.  
  277.   /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
  278.  
  279.   float temp_val = FILT_Samples[ADC_TEMP_CHAN] * ADC_Scale;
  280.   /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
  281.   temp_val = (1.43 - temp_val) / 4.3e-3 + 25;
  282.  
  283.   int32_t result = temp_val;
  284.  
  285.   //  int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
  286.   //  result = result / (TS_CAL110 - TS_CAL30) + 300;
  287.  
  288.   plx_sendword(PLX_FluidTemp);
  289.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_FluidTemp));
  290.   plx_sendword(result);
  291. }
  292.  
  293. // the MAP sensor is giving us a reading of
  294. // 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
  295. // I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
  296. // Calibration is a bit off
  297. // Real   Displayed
  298. // 989    968
  299. // 994.1    986
  300. // 992.3  984
  301.  
  302. void ProcessMAP(void)
  303. {
  304.   // Using ADC_Samples[3] as the MAP input
  305.   float reading = FILT_Samples[ADC_MAP_CHAN] * ADC_Scale;
  306.   reading = reading * 2.016; // real voltage
  307.   // values computed from slope / intercept of map.ods
  308.   // reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
  309.   // using a pressure gauge.
  310.   reading = (reading)*150 + 326;
  311.  
  312.   plx_sendword(PLX_MAP);
  313.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_MAP));
  314.   plx_sendword((uint16_t)reading);
  315. }
  316.  
  317. // the Oil pressi sensor is giving us a reading of
  318. // 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
  319. // I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
  320. // an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
  321.  
  322. void ProcessOilPress(void)
  323. {
  324.   // Using ADC_Samples[2] as the MAP input
  325.   float reading = FILT_Samples[ADC_PRESSURE_CHAN] * ADC_Scale;
  326.   reading = reading * 2.00;            // real voltage
  327.   reading = (reading - 0.5) * 512 / 4; // this is 1023 * 100/200
  328.  
  329.   plx_sendword(PLX_FluidPressure);
  330.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_FluidPressure));
  331.   plx_sendword((uint16_t)reading);
  332. }
  333.  
  334. void ProcessTiming(void)
  335. {
  336.   plx_sendword(PLX_Timing);
  337.   PutCharSerial(&uc1, libPLXgetNextInstance(PLX_Timing));
  338.   plx_sendword(64 - 15); // make it negative
  339. }
  340.  
  341. void libPLXcallbackResetSerialTimeout()
  342. {
  343.   resetSerialTimeout();
  344.   TimerFlag = 0;
  345. }
  346.  
  347. void libPLXcallbackSendUserData()
  348. {
  349.   // send the observations
  350.   ProcessRPM();
  351.   ProcessTemp(0, PLX_X_CHT);
  352.   ProcessTemp(1, PLX_X_CHT);
  353.   ProcessTemp(2, PLX_AIT);
  354.   ProcessTemp(3, PLX_AIT);
  355.   ProcessBatteryVoltage(0); // Batt 1
  356.   ProcessBatteryVoltage(1); // Batt 2
  357.   ProcessCPUTemperature();  //  built in temperature sensor
  358.  
  359.   ProcessMAP();
  360.   ProcessOilPress();
  361.  
  362.   PutCharSerial(&uc1, PLX_Stop);
  363. }
  364. /* USER CODE END 0 */
  365.  
  366. /**
  367.  * @brief  The application entry point.
  368.  * @retval int
  369.  */
  370. int main(void)
  371. {
  372.   /* USER CODE BEGIN 1 */
  373.  
  374.   /* USER CODE END 1 */
  375.  
  376.   /* MCU Configuration--------------------------------------------------------*/
  377.  
  378.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  379.   HAL_Init();
  380.  
  381.   /* USER CODE BEGIN Init */
  382.  
  383.   /* USER CODE END Init */
  384.  
  385.   /* Configure the system clock */
  386.   SystemClock_Config();
  387.  
  388.   /* USER CODE BEGIN SysInit */
  389.  
  390.   /* USER CODE END SysInit */
  391.  
  392.   /* Initialize all configured peripherals */
  393.   MX_GPIO_Init();
  394.   MX_DMA_Init();
  395.   MX_ADC1_Init();
  396.   MX_CAN_Init();
  397.   MX_SPI1_Init();
  398.   MX_TIM2_Init();
  399.   MX_TIM3_Init();
  400.   MX_TIM4_Init();
  401.   MX_USART1_UART_Init();
  402.   /* USER CODE BEGIN 2 */
  403.   HAL_MspInit();
  404.  
  405.   // Not using HAL USART code
  406.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX comms port
  407.   /* setup the USART control blocks */
  408.   init_usart_ctl(&uc1, &huart1);
  409.  
  410.   EnableSerialRxInterrupt(&uc1);
  411.  
  412.   HAL_SPI_MspInit(&hspi1);
  413.  
  414.   HAL_ADC_MspInit(&hadc1);
  415.  
  416.   HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADC_Samples, ADC_CHANNELS);
  417.  
  418.   HAL_ADC_Start_IT(&hadc1);
  419.  
  420.   HAL_TIM_Base_MspInit(&htim4);
  421.   HAL_TIM_Base_Start_IT(&htim4);
  422.  
  423.   // initialise all the STMCubeMX stuff
  424.   HAL_TIM_Base_MspInit(&htim2);
  425.   // Start the counter
  426.   HAL_TIM_Base_Start(&htim2);
  427.   // Start the input capture and the rising edge interrupt
  428.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
  429.   // Start the input capture and the falling edge interrupt
  430.   HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
  431.  
  432.   HAL_TIM_Base_MspInit(&htim3);
  433.   __HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
  434.   uint32_t Ticks = HAL_GetTick() + 100;
  435.   int CalCounter = 0;
  436.  
  437.   PowerTempTimer = HAL_GetTick() + 1000; /* wait 10 seconds before powering up the CHT sensor */
  438.  
  439.   ResetRxBuffer(&uc1);
  440.  
  441.   resetPLX();
  442.   /* USER CODE END 2 */
  443.  
  444.   /* Infinite loop */
  445.   /* USER CODE BEGIN WHILE */
  446.   while (1)
  447.   {
  448.     /* USER CODE END WHILE */
  449.  
  450.     /* USER CODE BEGIN 3 */
  451.  
  452.     if (HAL_GetTick() > Ticks)
  453.     {
  454.       Ticks += 100;
  455.       filter_ADC_samples();
  456.       // delay to calibrate ADC
  457.       if (CalCounter < 1000)
  458.       {
  459.         CalCounter += 100;
  460.       }
  461.  
  462.       if (CalCounter == 900)
  463.       {
  464.         CalibrateADC();
  465.       }
  466.     }
  467.     /* when the starter motor is on then power down the CHT sensors as they seem to fail */
  468.  
  469.     if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin) == GPIO_PIN_RESET)
  470.     {
  471.       if (Starter_Debounce < STARTER_LIMIT)
  472.       {
  473.         Starter_Debounce++;
  474.       }
  475.     }
  476.     else
  477.     {
  478.       if (Starter_Debounce > 0)
  479.       {
  480.         Starter_Debounce--;
  481.       }
  482.     }
  483.  
  484.     if (Starter_Debounce == STARTER_LIMIT)
  485.     {
  486.       EnableTempSensors(DISABLE);
  487.       PowerTempTimer = HAL_GetTick() + 1000;
  488.     }
  489.     else
  490.     /* if the PowerTempTimer is set then wait for it to timeout, then power up CHT */
  491.     {
  492.       if ((PowerTempTimer > 0) && (HAL_GetTick() > PowerTempTimer))
  493.       {
  494.         EnableTempSensors(ENABLE);
  495.         PowerTempTimer = 0;
  496.       }
  497.     }
  498.  
  499.     // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
  500.  
  501.     // poll the input data and produce automatic output if the timer expires and no serial input data
  502.     libPLXpollData(&uc1, TimerFlag && NoSerialIn);
  503.   }
  504.  
  505.   /* USER CODE END 3 */
  506. }
  507.  
  508. /**
  509.  * @brief System Clock Configuration
  510.  * @retval None
  511.  */
  512. void SystemClock_Config(void)
  513. {
  514.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  515.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  516.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  517.  
  518.   /** Initializes the RCC Oscillators according to the specified parameters
  519.    * in the RCC_OscInitTypeDef structure.
  520.    */
  521.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  522.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  523.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  524.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  525.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  526.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  527.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  528.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  529.   {
  530.     Error_Handler();
  531.   }
  532.  
  533.   /** Initializes the CPU, AHB and APB buses clocks
  534.    */
  535.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  536.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  537.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  538.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  539.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  540.  
  541.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  542.   {
  543.     Error_Handler();
  544.   }
  545.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  546.   PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
  547.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  548.   {
  549.     Error_Handler();
  550.   }
  551. }
  552.  
  553. /**
  554.  * @brief ADC1 Initialization Function
  555.  * @param None
  556.  * @retval None
  557.  */
  558. static void MX_ADC1_Init(void)
  559. {
  560.  
  561.   /* USER CODE BEGIN ADC1_Init 0 */
  562.  
  563.   /* USER CODE END ADC1_Init 0 */
  564.  
  565.   ADC_ChannelConfTypeDef sConfig = {0};
  566.  
  567.   /* USER CODE BEGIN ADC1_Init 1 */
  568.  
  569.   /* USER CODE END ADC1_Init 1 */
  570.  
  571.   /** Common config
  572.    */
  573.   hadc1.Instance = ADC1;
  574.   hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  575.   hadc1.Init.ContinuousConvMode = DISABLE;
  576.   hadc1.Init.DiscontinuousConvMode = DISABLE;
  577.   hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
  578.   hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  579.   hadc1.Init.NbrOfConversion = 7;
  580.   if (HAL_ADC_Init(&hadc1) != HAL_OK)
  581.   {
  582.     Error_Handler();
  583.   }
  584.  
  585.   /** Configure Regular Channel
  586.    */
  587.   sConfig.Channel = ADC_CHANNEL_0;
  588.   sConfig.Rank = ADC_REGULAR_RANK_1;
  589.   sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
  590.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  591.   {
  592.     Error_Handler();
  593.   }
  594.  
  595.   /** Configure Regular Channel
  596.    */
  597.   sConfig.Channel = ADC_CHANNEL_1;
  598.   sConfig.Rank = ADC_REGULAR_RANK_2;
  599.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  600.   {
  601.     Error_Handler();
  602.   }
  603.  
  604.   /** Configure Regular Channel
  605.    */
  606.   sConfig.Channel = ADC_CHANNEL_2;
  607.   sConfig.Rank = ADC_REGULAR_RANK_3;
  608.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  609.   {
  610.     Error_Handler();
  611.   }
  612.  
  613.   /** Configure Regular Channel
  614.    */
  615.   sConfig.Channel = ADC_CHANNEL_3;
  616.   sConfig.Rank = ADC_REGULAR_RANK_4;
  617.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  618.   {
  619.     Error_Handler();
  620.   }
  621.  
  622.   /** Configure Regular Channel
  623.    */
  624.   sConfig.Channel = ADC_CHANNEL_4;
  625.   sConfig.Rank = ADC_REGULAR_RANK_5;
  626.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  627.   {
  628.     Error_Handler();
  629.   }
  630.  
  631.   /** Configure Regular Channel
  632.    */
  633.   sConfig.Channel = ADC_CHANNEL_VREFINT;
  634.   sConfig.Rank = ADC_REGULAR_RANK_6;
  635.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  636.   {
  637.     Error_Handler();
  638.   }
  639.  
  640.   /** Configure Regular Channel
  641.    */
  642.   sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  643.   sConfig.Rank = ADC_REGULAR_RANK_7;
  644.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  645.   {
  646.     Error_Handler();
  647.   }
  648.   /* USER CODE BEGIN ADC1_Init 2 */
  649.  
  650.   /* USER CODE END ADC1_Init 2 */
  651. }
  652.  
  653. /**
  654.  * @brief CAN Initialization Function
  655.  * @param None
  656.  * @retval None
  657.  */
  658. static void MX_CAN_Init(void)
  659. {
  660.  
  661.   /* USER CODE BEGIN CAN_Init 0 */
  662.  
  663.   /* USER CODE END CAN_Init 0 */
  664.  
  665.   /* USER CODE BEGIN CAN_Init 1 */
  666.  
  667.   /* USER CODE END CAN_Init 1 */
  668.   hcan.Instance = CAN1;
  669.   hcan.Init.Prescaler = 16;
  670.   hcan.Init.Mode = CAN_MODE_NORMAL;
  671.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  672.   hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
  673.   hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
  674.   hcan.Init.TimeTriggeredMode = DISABLE;
  675.   hcan.Init.AutoBusOff = DISABLE;
  676.   hcan.Init.AutoWakeUp = DISABLE;
  677.   hcan.Init.AutoRetransmission = DISABLE;
  678.   hcan.Init.ReceiveFifoLocked = DISABLE;
  679.   hcan.Init.TransmitFifoPriority = DISABLE;
  680.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  681.   {
  682.     Error_Handler();
  683.   }
  684.   /* USER CODE BEGIN CAN_Init 2 */
  685.  
  686.   /* USER CODE END CAN_Init 2 */
  687. }
  688.  
  689. /**
  690.  * @brief SPI1 Initialization Function
  691.  * @param None
  692.  * @retval None
  693.  */
  694. static void MX_SPI1_Init(void)
  695. {
  696.  
  697.   /* USER CODE BEGIN SPI1_Init 0 */
  698.  
  699.   /* USER CODE END SPI1_Init 0 */
  700.  
  701.   /* USER CODE BEGIN SPI1_Init 1 */
  702.  
  703.   /* USER CODE END SPI1_Init 1 */
  704.   /* SPI1 parameter configuration*/
  705.   hspi1.Instance = SPI1;
  706.   hspi1.Init.Mode = SPI_MODE_MASTER;
  707.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  708.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  709.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  710.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  711.   hspi1.Init.NSS = SPI_NSS_SOFT;
  712.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  713.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  714.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  715.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  716.   hspi1.Init.CRCPolynomial = 10;
  717.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  718.   {
  719.     Error_Handler();
  720.   }
  721.   /* USER CODE BEGIN SPI1_Init 2 */
  722.  
  723.   /* USER CODE END SPI1_Init 2 */
  724. }
  725.  
  726. /**
  727.  * @brief TIM2 Initialization Function
  728.  * @param None
  729.  * @retval None
  730.  */
  731. static void MX_TIM2_Init(void)
  732. {
  733.  
  734.   /* USER CODE BEGIN TIM2_Init 0 */
  735.  
  736.   /* USER CODE END TIM2_Init 0 */
  737.  
  738.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  739.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  740.   TIM_IC_InitTypeDef sConfigIC = {0};
  741.  
  742.   /* USER CODE BEGIN TIM2_Init 1 */
  743.  
  744.   /* USER CODE END TIM2_Init 1 */
  745.   htim2.Instance = TIM2;
  746.   htim2.Init.Prescaler = 719;
  747.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  748.   htim2.Init.Period = 65535;
  749.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  750.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  751.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  752.   {
  753.     Error_Handler();
  754.   }
  755.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  756.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  757.   {
  758.     Error_Handler();
  759.   }
  760.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  761.   {
  762.     Error_Handler();
  763.   }
  764.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  765.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  766.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  767.   {
  768.     Error_Handler();
  769.   }
  770.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  771.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  772.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  773.   sConfigIC.ICFilter = 15;
  774.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  775.   {
  776.     Error_Handler();
  777.   }
  778.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
  779.   sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
  780.   sConfigIC.ICFilter = 0;
  781.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
  782.   {
  783.     Error_Handler();
  784.   }
  785.   /* USER CODE BEGIN TIM2_Init 2 */
  786.  
  787.   /* USER CODE END TIM2_Init 2 */
  788. }
  789.  
  790. /**
  791.  * @brief TIM3 Initialization Function
  792.  * @param None
  793.  * @retval None
  794.  */
  795. static void MX_TIM3_Init(void)
  796. {
  797.  
  798.   /* USER CODE BEGIN TIM3_Init 0 */
  799.  
  800.   /* USER CODE END TIM3_Init 0 */
  801.  
  802.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  803.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  804.   TIM_OC_InitTypeDef sConfigOC = {0};
  805.  
  806.   /* USER CODE BEGIN TIM3_Init 1 */
  807.  
  808.   /* USER CODE END TIM3_Init 1 */
  809.   htim3.Instance = TIM3;
  810.   htim3.Init.Prescaler = 719;
  811.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  812.   htim3.Init.Period = 199;
  813.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  814.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  815.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  816.   {
  817.     Error_Handler();
  818.   }
  819.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  820.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  821.   {
  822.     Error_Handler();
  823.   }
  824.   if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  825.   {
  826.     Error_Handler();
  827.   }
  828.   if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
  829.   {
  830.     Error_Handler();
  831.   }
  832.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
  833.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  834.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  835.   {
  836.     Error_Handler();
  837.   }
  838.   sConfigOC.OCMode = TIM_OCMODE_TIMING;
  839.   sConfigOC.Pulse = 198;
  840.   sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  841.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  842.   if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  843.   {
  844.     Error_Handler();
  845.   }
  846.   /* USER CODE BEGIN TIM3_Init 2 */
  847.  
  848.   /* USER CODE END TIM3_Init 2 */
  849. }
  850.  
  851. /**
  852.  * @brief TIM4 Initialization Function
  853.  * @param None
  854.  * @retval None
  855.  */
  856. static void MX_TIM4_Init(void)
  857. {
  858.  
  859.   /* USER CODE BEGIN TIM4_Init 0 */
  860.  
  861.   /* USER CODE END TIM4_Init 0 */
  862.  
  863.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  864.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  865.  
  866.   /* USER CODE BEGIN TIM4_Init 1 */
  867.  
  868.   /* USER CODE END TIM4_Init 1 */
  869.   htim4.Instance = TIM4;
  870.   htim4.Init.Prescaler = 719;
  871.   htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  872.   htim4.Init.Period = 9999;
  873.   htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  874.   htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  875.   if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  876.   {
  877.     Error_Handler();
  878.   }
  879.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  880.   if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  881.   {
  882.     Error_Handler();
  883.   }
  884.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  885.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  886.   if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  887.   {
  888.     Error_Handler();
  889.   }
  890.   /* USER CODE BEGIN TIM4_Init 2 */
  891.  
  892.   /* USER CODE END TIM4_Init 2 */
  893. }
  894.  
  895. /**
  896.  * @brief USART1 Initialization Function
  897.  * @param None
  898.  * @retval None
  899.  */
  900. static void MX_USART1_UART_Init(void)
  901. {
  902.  
  903.   /* USER CODE BEGIN USART1_Init 0 */
  904.  
  905.   /* USER CODE END USART1_Init 0 */
  906.  
  907.   /* USER CODE BEGIN USART1_Init 1 */
  908.  
  909.   /* USER CODE END USART1_Init 1 */
  910.   huart1.Instance = USART1;
  911.   huart1.Init.BaudRate = 19200;
  912.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  913.   huart1.Init.StopBits = UART_STOPBITS_1;
  914.   huart1.Init.Parity = UART_PARITY_NONE;
  915.   huart1.Init.Mode = UART_MODE_TX_RX;
  916.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  917.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  918.   if (HAL_UART_Init(&huart1) != HAL_OK)
  919.   {
  920.     Error_Handler();
  921.   }
  922.   /* USER CODE BEGIN USART1_Init 2 */
  923.  
  924.   /* USER CODE END USART1_Init 2 */
  925. }
  926.  
  927. /**
  928.  * Enable DMA controller clock
  929.  */
  930. static void MX_DMA_Init(void)
  931. {
  932.  
  933.   /* DMA controller clock enable */
  934.   __HAL_RCC_DMA1_CLK_ENABLE();
  935.  
  936.   /* DMA interrupt init */
  937.   /* DMA1_Channel1_IRQn interrupt configuration */
  938.   HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  939.   HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  940. }
  941.  
  942. /**
  943.  * @brief GPIO Initialization Function
  944.  * @param None
  945.  * @retval None
  946.  */
  947. static void MX_GPIO_Init(void)
  948. {
  949.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  950.  
  951.   /* GPIO Ports Clock Enable */
  952.   __HAL_RCC_GPIOC_CLK_ENABLE();
  953.   __HAL_RCC_GPIOD_CLK_ENABLE();
  954.   __HAL_RCC_GPIOA_CLK_ENABLE();
  955.   __HAL_RCC_GPIOB_CLK_ENABLE();
  956.  
  957.   /*Configure GPIO pin Output Level */
  958.   HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
  959.  
  960.   /*Configure GPIO pin Output Level */
  961.   HAL_GPIO_WritePin(GPIOB, SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  962.  
  963.   /*Configure GPIO pin : LED_Blink_Pin */
  964.   GPIO_InitStruct.Pin = LED_Blink_Pin;
  965.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  966.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  967.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  968.   HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
  969.  
  970.   /*Configure GPIO pins : SPI_CS_Clk_Pin SPI_CS_D_Pin ENA_AUX_5V_Pin */
  971.   GPIO_InitStruct.Pin = SPI_CS_Clk_Pin | SPI_CS_D_Pin | ENA_AUX_5V_Pin;
  972.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  973.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  974.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  975.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  976.  
  977.   /*Configure GPIO pin : STARTER_ON_Pin */
  978.   GPIO_InitStruct.Pin = STARTER_ON_Pin;
  979.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  980.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  981.   HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
  982. }
  983.  
  984. /* USER CODE BEGIN 4 */
  985.  
  986. /* USER CODE END 4 */
  987.  
  988. /**
  989.  * @brief  This function is executed in case of error occurrence.
  990.  * @retval None
  991.  */
  992. void Error_Handler(void)
  993. {
  994.   /* USER CODE BEGIN Error_Handler_Debug */
  995.   /* User can add his own implementation to report the HAL error return state */
  996.  
  997.   /* USER CODE END Error_Handler_Debug */
  998. }
  999.  
  1000. #ifdef USE_FULL_ASSERT
  1001. /**
  1002.  * @brief  Reports the name of the source file and the source line number
  1003.  *         where the assert_param error has occurred.
  1004.  * @param  file: pointer to the source file name
  1005.  * @param  line: assert_param error line source number
  1006.  * @retval None
  1007.  */
  1008. void assert_failed(uint8_t *file, uint32_t line)
  1009. {
  1010.   /* USER CODE BEGIN 6 */
  1011.   /* User can add his own implementation to report the file name and line number,
  1012.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1013.   /* USER CODE END 6 */
  1014. }
  1015. #endif /* USE_FULL_ASSERT */
  1016.