Subversion Repositories EngineBay2

Rev

Rev 39 | Rev 41 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25. #include "libSerial/serial.h"
  26. #include "libPLX/plx.h"
  27. #include "misc.h"
  28.  
  29. /* USER CODE END Includes */
  30.  
  31. /* Private typedef -----------------------------------------------------------*/
  32. /* USER CODE BEGIN PTD */
  33.  
  34. /* USER CODE END PTD */
  35.  
  36. /* Private define ------------------------------------------------------------*/
  37. /* USER CODE BEGIN PD */
  38. /* USER CODE END PD */
  39.  
  40. /* Private macro -------------------------------------------------------------*/
  41. /* USER CODE BEGIN PM */
  42. #define ADC_CHANNELS 7
  43.  
  44. #define ADC_MAP_CHAN 2
  45.  
  46. #define ADC_PRESSURE_CHAN 3
  47.  
  48. #define ADC_REF_CHAN 5
  49.  
  50. #define ADC_TEMP_CHAN 6
  51.  
  52. // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
  53. // freq = 5000/60 * 2 = 166Hz.
  54. // the TIM2 counter counts in 10uS increments,
  55. // TODO this is wrong algo. Accept FIRST pulse, skip shorter pulses
  56. // Accept the first pulse with over 2.5mS (1/400 sec)  duration as the closure
  57. #define BREAKER_MIN (RPM_COUNT_RATE/400)
  58.  
  59. #define RPM_AVERAGE 4
  60.  
  61. // wait for about 1 second to decide whether or not starter is on
  62.  
  63. #define STARTER_LIMIT 10
  64.  
  65.  
  66. /* USER CODE END PM */
  67.  
  68. /* Private variables ---------------------------------------------------------*/
  69. ADC_HandleTypeDef hadc1;
  70. DMA_HandleTypeDef hdma_adc1;
  71.  
  72. CAN_HandleTypeDef hcan;
  73.  
  74. SPI_HandleTypeDef hspi1;
  75.  
  76. TIM_HandleTypeDef htim2;
  77. TIM_HandleTypeDef htim3;
  78. TIM_HandleTypeDef htim4;
  79.  
  80. UART_HandleTypeDef huart1;
  81.  
  82. /* USER CODE BEGIN PV */
  83.  
  84.  
  85. volatile char TimerFlag = 0;
  86.  
  87. volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
  88. volatile char NoSerialIn = 0;
  89.  
  90. // scale for filtered samples
  91. #define Scale 1024.0
  92.  
  93. // storage for ADC
  94. uint16_t ADC_Samples[ADC_CHANNELS];
  95.  
  96. uint32_t FILT_Samples[ADC_CHANNELS]; // filtered ADC samples * Scale
  97.  
  98.  
  99. #define NOM_VREF 3.3
  100. // initial ADC vref
  101. float  adc_vref   = NOM_VREF;
  102.  
  103. // internal bandgap voltage reference
  104. const float STM32REF = 1.2;           // 1.2V typical
  105.  
  106. // scale factor initially assuming
  107. float ADC_Scale = 1/(Scale * 4096) * NOM_VREF ;
  108.  
  109. // Rev counter processing from original RevCounter Project
  110. uint16_t RPM_Diff = 0;
  111. uint16_t RPM_Count_Latch = 0;
  112. // accumulators
  113. uint16_t RPM_Pulsecount = 0;
  114. unsigned int RPM_FilteredWidth = 0;
  115.  
  116. // last time we detected end of dwell i.e. ignition pulse
  117. uint16_t last_dwell_end = 0;
  118. uint16_t RPM_Period[RPM_AVERAGE];
  119. unsigned int RPM_Period_Ptr = 0;
  120.  
  121. unsigned int Coded_RPM = 0;
  122. unsigned int Coded_CHT = 0;
  123.  
  124. uint32_t Power_CHT_Timer;
  125.  
  126. uint16_t Starter_Debounce = 0;
  127.  
  128. /* USER CODE END PV */
  129.  
  130. /* Private function prototypes -----------------------------------------------*/
  131. void SystemClock_Config(void);
  132. static void MX_GPIO_Init(void);
  133. static void MX_DMA_Init(void);
  134. static void MX_ADC1_Init(void);
  135. static void MX_CAN_Init(void);
  136. static void MX_SPI1_Init(void);
  137. static void MX_TIM2_Init(void);
  138. static void MX_TIM3_Init(void);
  139. static void MX_TIM4_Init(void);
  140. static void MX_USART1_UART_Init(void);
  141. /* USER CODE BEGIN PFP */
  142.  
  143. /* USER CODE END PFP */
  144.  
  145. /* Private user code ---------------------------------------------------------*/
  146. /* USER CODE BEGIN 0 */
  147.  
  148. void
  149. plx_sendword (int x)
  150. {
  151.   PutCharSerial (&uc1, ((x) >> 6) & 0x3F);
  152.   PutCharSerial (&uc1, (x) & 0x3F);
  153. }
  154.  
  155. void
  156. init_ADC_filter ()
  157. {
  158.   int i;
  159.   for (i = 0; i < ADC_CHANNELS; i++)
  160.     {
  161.       FILT_Samples[i] = 0;
  162.     }
  163. }
  164.  
  165. void
  166. filter_ADC_samples ()
  167. {
  168.   int i;
  169.   for (i = 0; i < ADC_CHANNELS; i++)
  170.     {
  171.       FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
  172.     }
  173. }
  174.  
  175.  
  176. /****!
  177.  * @brief this reads the reference voltage within the STM32L151
  178.  * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
  179.  * Requires that the ADC be powered up
  180.  */
  181.  
  182.  
  183. void
  184. CalibrateADC (void)
  185. {
  186.   float adc_val = FILT_Samples[ADC_REF_CHAN]  ;       // as set up in device config
  187.  
  188.   float adc_vref = STM32REF * ( 4096.0 * Scale)/  adc_val; // the estimate for checking
  189.  
  190.   ADC_Scale = 1/(Scale * 4096) * adc_vref ;
  191.  
  192.  
  193. }
  194.  
  195.  
  196.  
  197. void
  198. ProcessRPM (int instance)
  199. {
  200. // compute the timer values
  201. // snapshot timers
  202.   unsigned long RPM_Pulsewidth;
  203.   // current RPM pulse next slot index
  204.   unsigned long RPM_Count_Val;
  205.   __disable_irq (); // copy the counter value
  206.   RPM_Count_Val = RPM_Count;
  207.   __enable_irq ();
  208. // do calculations
  209. // if there is only one entry, cannot get difference
  210.   if (RPM_Count_Latch != RPM_Count_Val)
  211.     {
  212.       while (1)
  213.         {
  214.           unsigned int base_time;
  215.           unsigned int new_time;
  216.           // if we are at N-1, stop.
  217.           unsigned int next_count = (RPM_Count_Latch + 1) % RPM_SAMPLES;
  218.           if (next_count == RPM_Count_Val)
  219.             {
  220.               break; // completed loop
  221.             }
  222.           base_time = RPM_Time[RPM_Count_Latch];
  223.           new_time = RPM_Time[next_count];
  224.           RPM_Count_Latch = next_count;
  225.  
  226.           RPM_Pulsewidth = new_time - base_time; // not wrapped
  227.  
  228.           if (RPM_Pulsewidth > BREAKER_MIN)
  229.             {
  230.  
  231.               RPM_Diff = new_time - last_dwell_end;
  232.  
  233.               RPM_Period[RPM_Period_Ptr] = RPM_Diff;
  234.               RPM_Period_Ptr = (RPM_Period_Ptr + 1) % RPM_AVERAGE;
  235.               if (RPM_Pulsecount < RPM_AVERAGE)
  236.                 RPM_Pulsecount++; // count one pulse
  237.               last_dwell_end = new_time;
  238.  
  239.             }
  240.         }
  241.  
  242.     }
  243.  
  244.   if (RPM_Pulsecount == RPM_AVERAGE)
  245.     {
  246.       // now have time for N pulses in clocks
  247.       // need to scale by 19.55: one unit is 19.55 RPM
  248.       // 1Hz is 30 RPM
  249.       int i;
  250.       RPM_FilteredWidth = 0;
  251.       for (i = 0; i < RPM_AVERAGE; i++)
  252.         RPM_FilteredWidth += RPM_Period[i];
  253.  
  254.       Coded_RPM = (Scale * 30.0 * RPM_AVERAGE * RPM_COUNT_RATE)
  255.           / (19.55 * RPM_FilteredWidth);
  256.  
  257. #if !defined MY_DEBUG
  258.       // reset here unless we want to debug
  259.       RPM_Pulsecount = 0;
  260.       RPM_FilteredWidth = 0;
  261. #endif
  262.     }
  263.  
  264. // send the current RPM *calculation
  265.   plx_sendword (PLX_RPM);
  266.   PutCharSerial (&uc1, instance);
  267.   plx_sendword (Coded_RPM / Scale);
  268. }
  269.  
  270. // this uses a MAX6675 which is a simple 16 bit read
  271. // SPI is configured for 8 bits so I can use an OLED display if I need it
  272. // must wait > 0.22 seconds between conversion attempts as this is the measurement time
  273. //
  274.  
  275. FunctionalState CHT_Enable = ENABLE;
  276.  
  277. #define CORR 3
  278.  
  279. uint16_t CHT_Observations[2] =
  280.   { 0, 0 };
  281.  
  282. // look for the trigger pin being high then low - the points
  283. // are opening, and skip the reading
  284.  
  285. void
  286. ProcessCHT (int instance)
  287. {
  288.   plx_sendword (PLX_X_CHT);
  289.   PutCharSerial (&uc1, instance);
  290.   plx_sendword (CHT_Observations[instance]);
  291.  
  292. }
  293.  
  294. void
  295. EnableCHT (FunctionalState state)
  296.  
  297. {
  298.   GPIO_InitTypeDef GPIO_InitStruct;
  299.  
  300.   CHT_Enable = state;
  301.  
  302.   /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
  303.   if (state == ENABLE)
  304.     {
  305.       HAL_GPIO_WritePin (ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
  306.       HAL_GPIO_WritePin (SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
  307.       HAL_GPIO_WritePin (SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
  308.                          GPIO_PIN_SET);
  309.  
  310.       /* put the SPI pins back into SPI AF mode */
  311.       GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  312.       GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  313.       GPIO_InitStruct.Pull = GPIO_NOPULL;
  314.       GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  315.       HAL_GPIO_Init (SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  316.  
  317.     }
  318.   else
  319.     {
  320.       /*  Power down the SPI interface taking signals all low */
  321.       HAL_GPIO_WritePin (ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  322.       HAL_GPIO_WritePin (SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
  323.                          GPIO_PIN_RESET);
  324.       HAL_GPIO_WritePin (SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
  325.                          GPIO_PIN_RESET);
  326.  
  327.       HAL_GPIO_WritePin (SPI1_SCK_GPIO_Port,
  328.                          SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
  329.                          GPIO_PIN_RESET);
  330.  
  331.       /* put the SPI pins back into GPIO mode */
  332.       GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
  333.       GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  334.       GPIO_InitStruct.Pull = GPIO_NOPULL;
  335.       GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  336.       HAL_GPIO_Init (SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
  337.  
  338.     }
  339.  
  340. }
  341.  
  342. // 1023 is 20.00 volts.
  343. void
  344. ProcessBatteryVoltage (int instance)
  345. {
  346.   float reading = FILT_Samples[instance] * ADC_Scale;
  347.   reading = reading * 7.8125; // real voltage
  348.   reading = reading * 51.15; // PLC scaling =  1023/20
  349.  
  350.   plx_sendword (PLX_Volts);
  351.   PutCharSerial (&uc1, instance);
  352.   plx_sendword ((uint16_t) reading);
  353.  
  354. }
  355.  
  356.  
  357. void
  358. ProcessCPUTemperature (int instance)
  359. {
  360.    // this is defined in the STM32F103 reference manual . #
  361.   // V25 = 1.43 volts
  362.   // Avg_slope = 4.3mV /degree C
  363.   // temperature = {(V25 - VSENSE) / Avg_Slope} + 25
  364.  
  365.   /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
  366.  
  367.   float temp_val = FILT_Samples[ADC_TEMP_CHAN] * ADC_Scale;
  368.   /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
  369.   temp_val = (1.43- temp_val) / 4.3e-3 + 25;
  370.  
  371.   int32_t result = temp_val  ;
  372.  
  373. //  int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
  374. //  result = result / (TS_CAL110 - TS_CAL30) + 300;
  375.  
  376.  
  377.   plx_sendword (PLX_FluidTemp);
  378.   PutCharSerial (&uc1, instance);
  379.   plx_sendword (result);
  380.  
  381. }
  382.  
  383. // the MAP sensor is giving us a reading of
  384. // 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
  385. // I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
  386. // Calibration is a bit off
  387. // Real   Displayed
  388. // 989    968
  389. // 994.1    986
  390. // 992.3  984
  391.  
  392. void
  393. ProcessMAP (int instance)
  394. {
  395. // Using ADC_Samples[3] as the MAP input
  396.   float reading = FILT_Samples[ADC_MAP_CHAN] * ADC_Scale;
  397.   reading = reading * 2.016;      // real voltage
  398.   // values computed from slope / intercept of map.ods
  399.   //reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
  400.   // using a pressure gauge.
  401.   reading = (reading) * 150 + 326;
  402.  
  403.   plx_sendword (PLX_MAP);
  404.   PutCharSerial (&uc1, instance);
  405.   plx_sendword ((uint16_t) reading);
  406.  
  407. }
  408.  
  409. // the Oil pressi sensor is giving us a reading of
  410. // 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
  411. // I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
  412. // an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
  413.  
  414. void
  415. ProcessOilPress (int instance)
  416. {
  417. // Using ADC_Samples[2] as the MAP input
  418.   float reading = FILT_Samples[ADC_PRESSURE_CHAN] * ADC_Scale;
  419.   reading = reading * 2.00; // real voltage
  420.   reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
  421.  
  422.   plx_sendword (PLX_FluidPressure);
  423.   PutCharSerial (&uc1, instance);
  424.   plx_sendword ((uint16_t) reading);
  425.  
  426. }
  427.  
  428. void
  429. ProcessTiming (int instance)
  430. {
  431.   plx_sendword (PLX_Timing);
  432.   PutCharSerial (&uc1, instance);
  433.   plx_sendword (64 - 15); // make it negative
  434. }
  435.  
  436. /* USER CODE END 0 */
  437.  
  438. /**
  439.   * @brief  The application entry point.
  440.   * @retval int
  441.   */
  442. int main(void)
  443. {
  444.   /* USER CODE BEGIN 1 */
  445.  
  446.   /* USER CODE END 1 */
  447.  
  448.   /* MCU Configuration--------------------------------------------------------*/
  449.  
  450.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  451.   HAL_Init();
  452.  
  453.   /* USER CODE BEGIN Init */
  454.  
  455.   /* USER CODE END Init */
  456.  
  457.   /* Configure the system clock */
  458.   SystemClock_Config();
  459.  
  460.   /* USER CODE BEGIN SysInit */
  461.  
  462.   /* USER CODE END SysInit */
  463.  
  464.   /* Initialize all configured peripherals */
  465.   MX_GPIO_Init();
  466.   MX_DMA_Init();
  467.   MX_ADC1_Init();
  468.   MX_CAN_Init();
  469.   MX_SPI1_Init();
  470.   MX_TIM2_Init();
  471.   MX_TIM3_Init();
  472.   MX_TIM4_Init();
  473.   MX_USART1_UART_Init();
  474.   /* USER CODE BEGIN 2 */
  475.   HAL_MspInit ();
  476.  
  477.   // Not using HAL USART code
  478.   __HAL_RCC_USART1_CLK_ENABLE()
  479.   ; // PLX comms port
  480.   /* setup the USART control blocks */
  481.   init_usart_ctl (&uc1, huart1.Instance);
  482.  
  483.   EnableSerialRxInterrupt (&uc1);
  484.  
  485.   HAL_SPI_MspInit (&hspi1);
  486.  
  487.   HAL_ADC_MspInit (&hadc1);
  488.  
  489.   HAL_ADC_Start_DMA (&hadc1, (uint32_t *)ADC_Samples, ADC_CHANNELS);
  490.  
  491.   HAL_ADC_Start_IT (&hadc1);
  492.  
  493.   HAL_TIM_Base_MspInit (&htim4);
  494.   HAL_TIM_Base_Start_IT (&htim4);
  495.  
  496.   // initialise all the STMCubeMX stuff
  497.   HAL_TIM_Base_MspInit (&htim2);
  498.   // Start the counter
  499.   HAL_TIM_Base_Start (&htim2);
  500.   // Start the input capture and the interrupt
  501.   HAL_TIM_IC_Start_IT (&htim2, TIM_CHANNEL_1);
  502.  
  503.   HAL_TIM_Base_MspInit (&htim3);
  504.   __HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
  505.   uint32_t Ticks = HAL_GetTick () + 100;
  506.   int CalCounter = 0;
  507.  
  508.   Power_CHT_Timer = HAL_GetTick () + 1000; /* wait 10 seconds before powering up the CHT sensor */
  509.  
  510.   /* USER CODE END 2 */
  511.  
  512.   /* Infinite loop */
  513.   /* USER CODE BEGIN WHILE */
  514.   while (1)
  515.     {
  516.     /* USER CODE END WHILE */
  517.  
  518.     /* USER CODE BEGIN 3 */
  519.  
  520.       if (HAL_GetTick () > Ticks)
  521.         {
  522.           Ticks += 100;
  523.           filter_ADC_samples ();
  524.           // delay to calibrate ADC
  525.           if (CalCounter < 1000)
  526.             {
  527.               CalCounter += 100;
  528.             }
  529.  
  530.           if (CalCounter == 900)
  531.             {
  532.               CalibrateADC ();
  533.             }
  534.         }
  535.       /* when the starter motor is on then power down the CHT sensors as they seem to fail */
  536.  
  537.       if (HAL_GPIO_ReadPin (STARTER_ON_GPIO_Port, STARTER_ON_Pin)
  538.           == GPIO_PIN_RESET)
  539.         {
  540.           if (Starter_Debounce < STARTER_LIMIT)
  541.             {
  542.               Starter_Debounce++;
  543.             }
  544.         }
  545.       else
  546.         {
  547.           if (Starter_Debounce > 0)
  548.             {
  549.               Starter_Debounce--;
  550.             }
  551.         }
  552.  
  553.       if (Starter_Debounce == STARTER_LIMIT)
  554.         {
  555.           EnableCHT (DISABLE);
  556.           Power_CHT_Timer = HAL_GetTick () + 1000;
  557.         }
  558.       else
  559.       /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
  560.         {
  561.           if ((Power_CHT_Timer > 0) && (HAL_GetTick () > Power_CHT_Timer))
  562.             {
  563.               EnableCHT (ENABLE);
  564.               Power_CHT_Timer = 0;
  565.             }
  566.         }
  567.  
  568.       // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
  569.       int c;
  570.       char send = 0;
  571.  
  572.       // poll the  input for a stop bit or timeout
  573.       if (PollSerial (&uc1))
  574.         {
  575.           resetSerialTimeout ();
  576.           c = GetCharSerial (&uc1);
  577.           if (c != PLX_Stop)
  578.             {
  579.               PutCharSerial (&uc1, c); // echo all but the stop bit
  580.             }
  581.           else
  582.             { // must be a stop character
  583.               send = 1; // start our sending process.
  584.             }
  585.         }
  586.  
  587.       // sort out auto-sending
  588.       if (TimerFlag)
  589.         {
  590.           TimerFlag = 0;
  591.           if (NoSerialIn)
  592.             {
  593.               PutCharSerial (&uc1, PLX_Start);
  594.               send = 1;
  595.             }
  596.         }
  597.       if (send)
  598.         {
  599.           send = 0;
  600.  
  601.           // send the observations
  602.           ProcessRPM (0);
  603.           ProcessCHT (0);
  604.           ProcessCHT (1);
  605.           ProcessBatteryVoltage (0); // Batt 1
  606.           ProcessBatteryVoltage (1); // Batt 2
  607.           ProcessCPUTemperature (0); //  built in temperature sensor
  608.  
  609.           ProcessMAP (0);
  610.           ProcessOilPress (0);
  611.  
  612.           PutCharSerial (&uc1, PLX_Stop);
  613.         }
  614.     }
  615.  
  616.  
  617.   /* USER CODE END 3 */
  618. }
  619.  
  620. /**
  621.   * @brief System Clock Configuration
  622.   * @retval None
  623.   */
  624. void SystemClock_Config(void)
  625. {
  626.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  627.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  628.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  629.  
  630.   /** Initializes the RCC Oscillators according to the specified parameters
  631.   * in the RCC_OscInitTypeDef structure.
  632.   */
  633.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  634.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  635.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  636.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  637.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  638.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  639.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  640.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  641.   {
  642.     Error_Handler();
  643.   }
  644.   /** Initializes the CPU, AHB and APB buses clocks
  645.   */
  646.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  647.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  648.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  649.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  650.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  651.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  652.  
  653.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  654.   {
  655.     Error_Handler();
  656.   }
  657.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  658.   PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
  659.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  660.   {
  661.     Error_Handler();
  662.   }
  663. }
  664.  
  665. /**
  666.   * @brief ADC1 Initialization Function
  667.   * @param None
  668.   * @retval None
  669.   */
  670. static void MX_ADC1_Init(void)
  671. {
  672.  
  673.   /* USER CODE BEGIN ADC1_Init 0 */
  674.  
  675.   /* USER CODE END ADC1_Init 0 */
  676.  
  677.   ADC_ChannelConfTypeDef sConfig = {0};
  678.  
  679.   /* USER CODE BEGIN ADC1_Init 1 */
  680.  
  681.   /* USER CODE END ADC1_Init 1 */
  682.   /** Common config
  683.   */
  684.   hadc1.Instance = ADC1;
  685.   hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  686.   hadc1.Init.ContinuousConvMode = DISABLE;
  687.   hadc1.Init.DiscontinuousConvMode = DISABLE;
  688.   hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
  689.   hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  690.   hadc1.Init.NbrOfConversion = 7;
  691.   if (HAL_ADC_Init(&hadc1) != HAL_OK)
  692.   {
  693.     Error_Handler();
  694.   }
  695.   /** Configure Regular Channel
  696.   */
  697.   sConfig.Channel = ADC_CHANNEL_0;
  698.   sConfig.Rank = ADC_REGULAR_RANK_1;
  699.   sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
  700.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  701.   {
  702.     Error_Handler();
  703.   }
  704.   /** Configure Regular Channel
  705.   */
  706.   sConfig.Channel = ADC_CHANNEL_1;
  707.   sConfig.Rank = ADC_REGULAR_RANK_2;
  708.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  709.   {
  710.     Error_Handler();
  711.   }
  712.   /** Configure Regular Channel
  713.   */
  714.   sConfig.Channel = ADC_CHANNEL_2;
  715.   sConfig.Rank = ADC_REGULAR_RANK_3;
  716.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  717.   {
  718.     Error_Handler();
  719.   }
  720.   /** Configure Regular Channel
  721.   */
  722.   sConfig.Channel = ADC_CHANNEL_3;
  723.   sConfig.Rank = ADC_REGULAR_RANK_4;
  724.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  725.   {
  726.     Error_Handler();
  727.   }
  728.   /** Configure Regular Channel
  729.   */
  730.   sConfig.Channel = ADC_CHANNEL_4;
  731.   sConfig.Rank = ADC_REGULAR_RANK_5;
  732.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  733.   {
  734.     Error_Handler();
  735.   }
  736.   /** Configure Regular Channel
  737.   */
  738.   sConfig.Channel = ADC_CHANNEL_VREFINT;
  739.   sConfig.Rank = ADC_REGULAR_RANK_6;
  740.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  741.   {
  742.     Error_Handler();
  743.   }
  744.   /** Configure Regular Channel
  745.   */
  746.   sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
  747.   sConfig.Rank = ADC_REGULAR_RANK_7;
  748.   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  749.   {
  750.     Error_Handler();
  751.   }
  752.   /* USER CODE BEGIN ADC1_Init 2 */
  753.  
  754.   /* USER CODE END ADC1_Init 2 */
  755.  
  756. }
  757.  
  758. /**
  759.   * @brief CAN Initialization Function
  760.   * @param None
  761.   * @retval None
  762.   */
  763. static void MX_CAN_Init(void)
  764. {
  765.  
  766.   /* USER CODE BEGIN CAN_Init 0 */
  767.  
  768.   /* USER CODE END CAN_Init 0 */
  769.  
  770.   /* USER CODE BEGIN CAN_Init 1 */
  771.  
  772.   /* USER CODE END CAN_Init 1 */
  773.   hcan.Instance = CAN1;
  774.   hcan.Init.Prescaler = 16;
  775.   hcan.Init.Mode = CAN_MODE_NORMAL;
  776.   hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
  777.   hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
  778.   hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
  779.   hcan.Init.TimeTriggeredMode = DISABLE;
  780.   hcan.Init.AutoBusOff = DISABLE;
  781.   hcan.Init.AutoWakeUp = DISABLE;
  782.   hcan.Init.AutoRetransmission = DISABLE;
  783.   hcan.Init.ReceiveFifoLocked = DISABLE;
  784.   hcan.Init.TransmitFifoPriority = DISABLE;
  785.   if (HAL_CAN_Init(&hcan) != HAL_OK)
  786.   {
  787.     Error_Handler();
  788.   }
  789.   /* USER CODE BEGIN CAN_Init 2 */
  790.  
  791.   /* USER CODE END CAN_Init 2 */
  792.  
  793. }
  794.  
  795. /**
  796.   * @brief SPI1 Initialization Function
  797.   * @param None
  798.   * @retval None
  799.   */
  800. static void MX_SPI1_Init(void)
  801. {
  802.  
  803.   /* USER CODE BEGIN SPI1_Init 0 */
  804.  
  805.   /* USER CODE END SPI1_Init 0 */
  806.  
  807.   /* USER CODE BEGIN SPI1_Init 1 */
  808.  
  809.   /* USER CODE END SPI1_Init 1 */
  810.   /* SPI1 parameter configuration*/
  811.   hspi1.Instance = SPI1;
  812.   hspi1.Init.Mode = SPI_MODE_MASTER;
  813.   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  814.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  815.   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  816.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  817.   hspi1.Init.NSS = SPI_NSS_SOFT;
  818.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  819.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  820.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  821.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  822.   hspi1.Init.CRCPolynomial = 10;
  823.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  824.   {
  825.     Error_Handler();
  826.   }
  827.   /* USER CODE BEGIN SPI1_Init 2 */
  828.  
  829.   /* USER CODE END SPI1_Init 2 */
  830.  
  831. }
  832.  
  833. /**
  834.   * @brief TIM2 Initialization Function
  835.   * @param None
  836.   * @retval None
  837.   */
  838. static void MX_TIM2_Init(void)
  839. {
  840.  
  841.   /* USER CODE BEGIN TIM2_Init 0 */
  842.  
  843.   /* USER CODE END TIM2_Init 0 */
  844.  
  845.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  846.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  847.   TIM_IC_InitTypeDef sConfigIC = {0};
  848.  
  849.   /* USER CODE BEGIN TIM2_Init 1 */
  850.  
  851.   /* USER CODE END TIM2_Init 1 */
  852.   htim2.Instance = TIM2;
  853.   htim2.Init.Prescaler = 359;
  854.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  855.   htim2.Init.Period = 65535;
  856.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  857.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  858.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  859.   {
  860.     Error_Handler();
  861.   }
  862.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  863.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  864.   {
  865.     Error_Handler();
  866.   }
  867.   if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
  868.   {
  869.     Error_Handler();
  870.   }
  871.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  872.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  873.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  874.   {
  875.     Error_Handler();
  876.   }
  877.   sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
  878.   sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
  879.   sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
  880.   sConfigIC.ICFilter = 15;
  881.   if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
  882.   {
  883.     Error_Handler();
  884.   }
  885.   /* USER CODE BEGIN TIM2_Init 2 */
  886.  
  887.   /* USER CODE END TIM2_Init 2 */
  888.  
  889. }
  890.  
  891. /**
  892.   * @brief TIM3 Initialization Function
  893.   * @param None
  894.   * @retval None
  895.   */
  896. static void MX_TIM3_Init(void)
  897. {
  898.  
  899.   /* USER CODE BEGIN TIM3_Init 0 */
  900.  
  901.   /* USER CODE END TIM3_Init 0 */
  902.  
  903.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  904.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  905.   TIM_OC_InitTypeDef sConfigOC = {0};
  906.  
  907.   /* USER CODE BEGIN TIM3_Init 1 */
  908.  
  909.   /* USER CODE END TIM3_Init 1 */
  910.   htim3.Instance = TIM3;
  911.   htim3.Init.Prescaler = 359;
  912.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  913.   htim3.Init.Period = 99;
  914.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  915.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  916.   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  917.   {
  918.     Error_Handler();
  919.   }
  920.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  921.   if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  922.   {
  923.     Error_Handler();
  924.   }
  925.   if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  926.   {
  927.     Error_Handler();
  928.   }
  929.   if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
  930.   {
  931.     Error_Handler();
  932.   }
  933.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
  934.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  935.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  936.   {
  937.     Error_Handler();
  938.   }
  939.   sConfigOC.OCMode = TIM_OCMODE_TIMING;
  940.   sConfigOC.Pulse = 98;
  941.   sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  942.   sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  943.   if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  944.   {
  945.     Error_Handler();
  946.   }
  947.   /* USER CODE BEGIN TIM3_Init 2 */
  948.  
  949.   /* USER CODE END TIM3_Init 2 */
  950.  
  951. }
  952.  
  953. /**
  954.   * @brief TIM4 Initialization Function
  955.   * @param None
  956.   * @retval None
  957.   */
  958. static void MX_TIM4_Init(void)
  959. {
  960.  
  961.   /* USER CODE BEGIN TIM4_Init 0 */
  962.  
  963.   /* USER CODE END TIM4_Init 0 */
  964.  
  965.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  966.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  967.  
  968.   /* USER CODE BEGIN TIM4_Init 1 */
  969.  
  970.   /* USER CODE END TIM4_Init 1 */
  971.   htim4.Instance = TIM4;
  972.   htim4.Init.Prescaler = 359;
  973.   htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  974.   htim4.Init.Period = 9999;
  975.   htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  976.   htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  977.   if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  978.   {
  979.     Error_Handler();
  980.   }
  981.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  982.   if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  983.   {
  984.     Error_Handler();
  985.   }
  986.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  987.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  988.   if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  989.   {
  990.     Error_Handler();
  991.   }
  992.   /* USER CODE BEGIN TIM4_Init 2 */
  993.  
  994.   /* USER CODE END TIM4_Init 2 */
  995.  
  996. }
  997.  
  998. /**
  999.   * @brief USART1 Initialization Function
  1000.   * @param None
  1001.   * @retval None
  1002.   */
  1003. static void MX_USART1_UART_Init(void)
  1004. {
  1005.  
  1006.   /* USER CODE BEGIN USART1_Init 0 */
  1007.  
  1008.   /* USER CODE END USART1_Init 0 */
  1009.  
  1010.   /* USER CODE BEGIN USART1_Init 1 */
  1011.  
  1012.   /* USER CODE END USART1_Init 1 */
  1013.   huart1.Instance = USART1;
  1014.   huart1.Init.BaudRate = 19200;
  1015.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  1016.   huart1.Init.StopBits = UART_STOPBITS_1;
  1017.   huart1.Init.Parity = UART_PARITY_NONE;
  1018.   huart1.Init.Mode = UART_MODE_TX_RX;
  1019.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  1020.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  1021.   if (HAL_UART_Init(&huart1) != HAL_OK)
  1022.   {
  1023.     Error_Handler();
  1024.   }
  1025.   /* USER CODE BEGIN USART1_Init 2 */
  1026.  
  1027.   /* USER CODE END USART1_Init 2 */
  1028.  
  1029. }
  1030.  
  1031. /**
  1032.   * Enable DMA controller clock
  1033.   */
  1034. static void MX_DMA_Init(void)
  1035. {
  1036.  
  1037.   /* DMA controller clock enable */
  1038.   __HAL_RCC_DMA1_CLK_ENABLE();
  1039.  
  1040.   /* DMA interrupt init */
  1041.   /* DMA1_Channel1_IRQn interrupt configuration */
  1042.   HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
  1043.   HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  1044.  
  1045. }
  1046.  
  1047. /**
  1048.   * @brief GPIO Initialization Function
  1049.   * @param None
  1050.   * @retval None
  1051.   */
  1052. static void MX_GPIO_Init(void)
  1053. {
  1054.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  1055.  
  1056.   /* GPIO Ports Clock Enable */
  1057.   __HAL_RCC_GPIOC_CLK_ENABLE();
  1058.   __HAL_RCC_GPIOD_CLK_ENABLE();
  1059.   __HAL_RCC_GPIOA_CLK_ENABLE();
  1060.   __HAL_RCC_GPIOB_CLK_ENABLE();
  1061.  
  1062.   /*Configure GPIO pin Output Level */
  1063.   HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
  1064.  
  1065.   /*Configure GPIO pin Output Level */
  1066.   HAL_GPIO_WritePin(GPIOB, SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
  1067.  
  1068.   /*Configure GPIO pin : LED_Blink_Pin */
  1069.   GPIO_InitStruct.Pin = LED_Blink_Pin;
  1070.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1071.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1072.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1073.   HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
  1074.  
  1075.   /*Configure GPIO pins : SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
  1076.   GPIO_InitStruct.Pin = SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
  1077.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1078.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1079.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1080.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1081.  
  1082.   /*Configure GPIO pin : STARTER_ON_Pin */
  1083.   GPIO_InitStruct.Pin = STARTER_ON_Pin;
  1084.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1085.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1086.   HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
  1087.  
  1088. }
  1089.  
  1090. /* USER CODE BEGIN 4 */
  1091.  
  1092. /* USER CODE END 4 */
  1093.  
  1094. /**
  1095.   * @brief  This function is executed in case of error occurrence.
  1096.   * @retval None
  1097.   */
  1098. void Error_Handler(void)
  1099. {
  1100.   /* USER CODE BEGIN Error_Handler_Debug */
  1101. /* User can add his own implementation to report the HAL error return state */
  1102.  
  1103.   /* USER CODE END Error_Handler_Debug */
  1104. }
  1105.  
  1106. #ifdef  USE_FULL_ASSERT
  1107. /**
  1108.   * @brief  Reports the name of the source file and the source line number
  1109.   *         where the assert_param error has occurred.
  1110.   * @param  file: pointer to the source file name
  1111.   * @param  line: assert_param error line source number
  1112.   * @retval None
  1113.   */
  1114. void assert_failed(uint8_t *file, uint32_t line)
  1115. {
  1116.   /* USER CODE BEGIN 6 */
  1117.   /* User can add his own implementation to report the file name and line number,
  1118.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1119.   /* USER CODE END 6 */
  1120. }
  1121. #endif /* USE_FULL_ASSERT */
  1122.  
  1123. /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
  1124.