/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_common_tables.c
* Description: common tables like fft twiddle factors, Bitreverse, reciprocal etc
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include "arm_common_tables.h"
/**
* @ingroup ComplexFFT
*/
/**
* @addtogroup CFFT_CIFFT Complex FFT Tables
* @{
*/
/**
* \par
* Pseudo code for Generation of Bit reversal Table is
* \par
* <pre>for(l=1;l <= N/4;l++)
* {
* for(i=0;i<logN2;i++)
* {
* a[i]=l&(1<<i);
* }
* for(j=0; j<logN2; j++)
* {
* if (a[j]!=0)
* y[l]+=(1<<((logN2-1)-j));
* }
* y[l] = y[l] >> 1;
* } </pre>
* \par
* where N = 4096 logN2 = 12
* \par
* N is the maximum FFT Size supported
*/
/*
* @brief Table for bit reversal process
*/
const uint16_t armBitRevTable[1024] = {
0x400, 0x200, 0x600, 0x100, 0x500, 0x300, 0x700, 0x80, 0x480, 0x280,
0x680, 0x180, 0x580, 0x380, 0x780, 0x40, 0x440, 0x240, 0x640, 0x140,
0x540, 0x340, 0x740, 0xc0, 0x4c0, 0x2c0, 0x6c0, 0x1c0, 0x5c0, 0x3c0,
0x7c0, 0x20, 0x420, 0x220, 0x620, 0x120, 0x520, 0x320, 0x720, 0xa0,
0x4a0, 0x2a0, 0x6a0, 0x1a0, 0x5a0, 0x3a0, 0x7a0, 0x60, 0x460, 0x260,
0x660, 0x160, 0x560, 0x360, 0x760, 0xe0, 0x4e0, 0x2e0, 0x6e0, 0x1e0,
0x5e0, 0x3e0, 0x7e0, 0x10, 0x410, 0x210, 0x610, 0x110, 0x510, 0x310,
0x710, 0x90, 0x490, 0x290, 0x690, 0x190, 0x590, 0x390, 0x790, 0x50,
0x450, 0x250, 0x650, 0x150, 0x550, 0x350, 0x750, 0xd0, 0x4d0, 0x2d0,
0x6d0, 0x1d0, 0x5d0, 0x3d0, 0x7d0, 0x30, 0x430, 0x230, 0x630, 0x130,
0x530, 0x330, 0x730, 0xb0, 0x4b0, 0x2b0, 0x6b0, 0x1b0, 0x5b0, 0x3b0,
0x7b0, 0x70, 0x470, 0x270, 0x670, 0x170, 0x570, 0x370, 0x770, 0xf0,
0x4f0, 0x2f0, 0x6f0, 0x1f0, 0x5f0, 0x3f0, 0x7f0, 0x8, 0x408, 0x208,
0x608, 0x108, 0x508, 0x308, 0x708, 0x88, 0x488, 0x288, 0x688, 0x188,
0x588, 0x388, 0x788, 0x48, 0x448, 0x248, 0x648, 0x148, 0x548, 0x348,
0x748, 0xc8, 0x4c8, 0x2c8, 0x6c8, 0x1c8, 0x5c8, 0x3c8, 0x7c8, 0x28,
0x428, 0x228, 0x628, 0x128, 0x528, 0x328, 0x728, 0xa8, 0x4a8, 0x2a8,
0x6a8, 0x1a8, 0x5a8, 0x3a8, 0x7a8, 0x68, 0x468, 0x268, 0x668, 0x168,
0x568, 0x368, 0x768, 0xe8, 0x4e8, 0x2e8, 0x6e8, 0x1e8, 0x5e8, 0x3e8,
0x7e8, 0x18, 0x418, 0x218, 0x618, 0x118, 0x518, 0x318, 0x718, 0x98,
0x498, 0x298, 0x698, 0x198, 0x598, 0x398, 0x798, 0x58, 0x458, 0x258,
0x658, 0x158, 0x558, 0x358, 0x758, 0xd8, 0x4d8, 0x2d8, 0x6d8, 0x1d8,
0x5d8, 0x3d8, 0x7d8, 0x38, 0x438, 0x238, 0x638, 0x138, 0x538, 0x338,
0x738, 0xb8, 0x4b8, 0x2b8, 0x6b8, 0x1b8, 0x5b8, 0x3b8, 0x7b8, 0x78,
0x478, 0x278, 0x678, 0x178, 0x578, 0x378, 0x778, 0xf8, 0x4f8, 0x2f8,
0x6f8, 0x1f8, 0x5f8, 0x3f8, 0x7f8, 0x4, 0x404, 0x204, 0x604, 0x104,
0x504, 0x304, 0x704, 0x84, 0x484, 0x284, 0x684, 0x184, 0x584, 0x384,
0x784, 0x44, 0x444, 0x244, 0x644, 0x144, 0x544, 0x344, 0x744, 0xc4,
0x4c4, 0x2c4, 0x6c4, 0x1c4, 0x5c4, 0x3c4, 0x7c4, 0x24, 0x424, 0x224,
0x624, 0x124, 0x524, 0x324, 0x724, 0xa4, 0x4a4, 0x2a4, 0x6a4, 0x1a4,
0x5a4, 0x3a4, 0x7a4, 0x64, 0x464, 0x264, 0x664, 0x164, 0x564, 0x364,
0x764, 0xe4, 0x4e4, 0x2e4, 0x6e4, 0x1e4, 0x5e4, 0x3e4, 0x7e4, 0x14,
0x414, 0x214, 0x614, 0x114, 0x514, 0x314, 0x714, 0x94, 0x494, 0x294,
0x694, 0x194, 0x594, 0x394, 0x794, 0x54, 0x454, 0x254, 0x654, 0x154,
0x554, 0x354, 0x754, 0xd4, 0x4d4, 0x2d4, 0x6d4, 0x1d4, 0x5d4, 0x3d4,
0x7d4, 0x34, 0x434, 0x234, 0x634, 0x134, 0x534, 0x334, 0x734, 0xb4,
0x4b4, 0x2b4, 0x6b4, 0x1b4, 0x5b4, 0x3b4, 0x7b4, 0x74, 0x474, 0x274,
0x674, 0x174, 0x574, 0x374, 0x774, 0xf4, 0x4f4, 0x2f4, 0x6f4, 0x1f4,
0x5f4, 0x3f4, 0x7f4, 0xc, 0x40c, 0x20c, 0x60c, 0x10c, 0x50c, 0x30c,
0x70c, 0x8c, 0x48c, 0x28c, 0x68c, 0x18c, 0x58c, 0x38c, 0x78c, 0x4c,
0x44c, 0x24c, 0x64c, 0x14c, 0x54c, 0x34c, 0x74c, 0xcc, 0x4cc, 0x2cc,
0x6cc, 0x1cc, 0x5cc, 0x3cc, 0x7cc, 0x2c, 0x42c, 0x22c, 0x62c, 0x12c,
0x52c, 0x32c, 0x72c, 0xac, 0x4ac, 0x2ac, 0x6ac, 0x1ac, 0x5ac, 0x3ac,
0x7ac, 0x6c, 0x46c, 0x26c, 0x66c, 0x16c, 0x56c, 0x36c, 0x76c, 0xec,
0x4ec, 0x2ec, 0x6ec, 0x1ec, 0x5ec, 0x3ec, 0x7ec, 0x1c, 0x41c, 0x21c,
0x61c, 0x11c, 0x51c, 0x31c, 0x71c, 0x9c, 0x49c, 0x29c, 0x69c, 0x19c,
0x59c, 0x39c, 0x79c, 0x5c, 0x45c, 0x25c, 0x65c, 0x15c, 0x55c, 0x35c,
0x75c, 0xdc, 0x4dc, 0x2dc, 0x6dc, 0x1dc, 0x5dc, 0x3dc, 0x7dc, 0x3c,
0x43c, 0x23c, 0x63c, 0x13c, 0x53c, 0x33c, 0x73c, 0xbc, 0x4bc, 0x2bc,
0x6bc, 0x1bc, 0x5bc, 0x3bc, 0x7bc, 0x7c, 0x47c, 0x27c, 0x67c, 0x17c,
0x57c, 0x37c, 0x77c, 0xfc, 0x4fc, 0x2fc, 0x6fc, 0x1fc, 0x5fc, 0x3fc,
0x7fc, 0x2, 0x402, 0x202, 0x602, 0x102, 0x502, 0x302, 0x702, 0x82,
0x482, 0x282, 0x682, 0x182, 0x582, 0x382, 0x782, 0x42, 0x442, 0x242,
0x642, 0x142, 0x542, 0x342, 0x742, 0xc2, 0x4c2, 0x2c2, 0x6c2, 0x1c2,
0x5c2, 0x3c2, 0x7c2, 0x22, 0x422, 0x222, 0x622, 0x122, 0x522, 0x322,
0x722, 0xa2, 0x4a2, 0x2a2, 0x6a2, 0x1a2, 0x5a2, 0x3a2, 0x7a2, 0x62,
0x462, 0x262, 0x662, 0x162, 0x562, 0x362, 0x762, 0xe2, 0x4e2, 0x2e2,
0x6e2, 0x1e2, 0x5e2, 0x3e2, 0x7e2, 0x12, 0x412, 0x212, 0x612, 0x112,
0x512, 0x312, 0x712, 0x92, 0x492, 0x292, 0x692, 0x192, 0x592, 0x392,
0x792, 0x52, 0x452, 0x252, 0x652, 0x152, 0x552, 0x352, 0x752, 0xd2,
0x4d2, 0x2d2, 0x6d2, 0x1d2, 0x5d2, 0x3d2, 0x7d2, 0x32, 0x432, 0x232,
0x632, 0x132, 0x532, 0x332, 0x732, 0xb2, 0x4b2, 0x2b2, 0x6b2, 0x1b2,
0x5b2, 0x3b2, 0x7b2, 0x72, 0x472, 0x272, 0x672, 0x172, 0x572, 0x372,
0x772, 0xf2, 0x4f2, 0x2f2, 0x6f2, 0x1f2, 0x5f2, 0x3f2, 0x7f2, 0xa,
0x40a, 0x20a, 0x60a, 0x10a, 0x50a, 0x30a, 0x70a, 0x8a, 0x48a, 0x28a,
0x68a, 0x18a, 0x58a, 0x38a, 0x78a, 0x4a, 0x44a, 0x24a, 0x64a, 0x14a,
0x54a, 0x34a, 0x74a, 0xca, 0x4ca, 0x2ca, 0x6ca, 0x1ca, 0x5ca, 0x3ca,
0x7ca, 0x2a, 0x42a, 0x22a, 0x62a, 0x12a, 0x52a, 0x32a, 0x72a, 0xaa,
0x4aa, 0x2aa, 0x6aa, 0x1aa, 0x5aa, 0x3aa, 0x7aa, 0x6a, 0x46a, 0x26a,
0x66a, 0x16a, 0x56a, 0x36a, 0x76a, 0xea, 0x4ea, 0x2ea, 0x6ea, 0x1ea,
0x5ea, 0x3ea, 0x7ea, 0x1a, 0x41a, 0x21a, 0x61a, 0x11a, 0x51a, 0x31a,
0x71a, 0x9a, 0x49a, 0x29a, 0x69a, 0x19a, 0x59a, 0x39a, 0x79a, 0x5a,
0x45a, 0x25a, 0x65a, 0x15a, 0x55a, 0x35a, 0x75a, 0xda, 0x4da, 0x2da,
0x6da, 0x1da, 0x5da, 0x3da, 0x7da, 0x3a, 0x43a, 0x23a, 0x63a, 0x13a,
0x53a, 0x33a, 0x73a, 0xba, 0x4ba, 0x2ba, 0x6ba, 0x1ba, 0x5ba, 0x3ba,
0x7ba, 0x7a, 0x47a, 0x27a, 0x67a, 0x17a, 0x57a, 0x37a, 0x77a, 0xfa,
0x4fa, 0x2fa, 0x6fa, 0x1fa, 0x5fa, 0x3fa, 0x7fa, 0x6, 0x406, 0x206,
0x606, 0x106, 0x506, 0x306, 0x706, 0x86, 0x486, 0x286, 0x686, 0x186,
0x586, 0x386, 0x786, 0x46, 0x446, 0x246, 0x646, 0x146, 0x546, 0x346,
0x746, 0xc6, 0x4c6, 0x2c6, 0x6c6, 0x1c6, 0x5c6, 0x3c6, 0x7c6, 0x26,
0x426, 0x226, 0x626, 0x126, 0x526, 0x326, 0x726, 0xa6, 0x4a6, 0x2a6,
0x6a6, 0x1a6, 0x5a6, 0x3a6, 0x7a6, 0x66, 0x466, 0x266, 0x666, 0x166,
0x566, 0x366, 0x766, 0xe6, 0x4e6, 0x2e6, 0x6e6, 0x1e6, 0x5e6, 0x3e6,
0x7e6, 0x16, 0x416, 0x216, 0x616, 0x116, 0x516, 0x316, 0x716, 0x96,
0x496, 0x296, 0x696, 0x196, 0x596, 0x396, 0x796, 0x56, 0x456, 0x256,
0x656, 0x156, 0x556, 0x356, 0x756, 0xd6, 0x4d6, 0x2d6, 0x6d6, 0x1d6,
0x5d6, 0x3d6, 0x7d6, 0x36, 0x436, 0x236, 0x636, 0x136, 0x536, 0x336,
0x736, 0xb6, 0x4b6, 0x2b6, 0x6b6, 0x1b6, 0x5b6, 0x3b6, 0x7b6, 0x76,
0x476, 0x276, 0x676, 0x176, 0x576, 0x376, 0x776, 0xf6, 0x4f6, 0x2f6,
0x6f6, 0x1f6, 0x5f6, 0x3f6, 0x7f6, 0xe, 0x40e, 0x20e, 0x60e, 0x10e,
0x50e, 0x30e, 0x70e, 0x8e, 0x48e, 0x28e, 0x68e, 0x18e, 0x58e, 0x38e,
0x78e, 0x4e, 0x44e, 0x24e, 0x64e, 0x14e, 0x54e, 0x34e, 0x74e, 0xce,
0x4ce, 0x2ce, 0x6ce, 0x1ce, 0x5ce, 0x3ce, 0x7ce, 0x2e, 0x42e, 0x22e,
0x62e, 0x12e, 0x52e, 0x32e, 0x72e, 0xae, 0x4ae, 0x2ae, 0x6ae, 0x1ae,
0x5ae, 0x3ae, 0x7ae, 0x6e, 0x46e, 0x26e, 0x66e, 0x16e, 0x56e, 0x36e,
0x76e, 0xee, 0x4ee, 0x2ee, 0x6ee, 0x1ee, 0x5ee, 0x3ee, 0x7ee, 0x1e,
0x41e, 0x21e, 0x61e, 0x11e, 0x51e, 0x31e, 0x71e, 0x9e, 0x49e, 0x29e,
0x69e, 0x19e, 0x59e, 0x39e, 0x79e, 0x5e, 0x45e, 0x25e, 0x65e, 0x15e,
0x55e, 0x35e, 0x75e, 0xde, 0x4de, 0x2de, 0x6de, 0x1de, 0x5de, 0x3de,
0x7de, 0x3e, 0x43e, 0x23e, 0x63e, 0x13e, 0x53e, 0x33e, 0x73e, 0xbe,
0x4be, 0x2be, 0x6be, 0x1be, 0x5be, 0x3be, 0x7be, 0x7e, 0x47e, 0x27e,
0x67e, 0x17e, 0x57e, 0x37e, 0x77e, 0xfe, 0x4fe, 0x2fe, 0x6fe, 0x1fe,
0x5fe, 0x3fe, 0x7fe, 0x1
};
/*
* @brief Floating-point Twiddle factors Table Generation
*/
/**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 16 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*/
const float32_t twiddleCoef_16[32] = {
1.000000000f, 0.000000000f,
0.923879533f, 0.382683432f,
0.707106781f, 0.707106781f,
0.382683432f, 0.923879533f,
0.000000000f, 1.000000000f,
-0.382683432f, 0.923879533f,
-0.707106781f, 0.707106781f,
-0.923879533f, 0.382683432f,
-1.000000000f, 0.000000000f,
-0.923879533f, -0.382683432f,
-0.707106781f, -0.707106781f,
-0.382683432f, -0.923879533f,
-0.000000000f, -1.000000000f,
0.382683432f, -0.923879533f,
0.707106781f, -0.707106781f,
0.923879533f, -0.382683432f
};
/**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 32 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*/
const float32_t twiddleCoef_32[64] = {
1.000000000f, 0.000000000f,
0.980785280f, 0.195090322f,
0.923879533f, 0.382683432f,
0.831469612f, 0.555570233f,
0.707106781f, 0.707106781f,
0.555570233f, 0.831469612f,
0.382683432f, 0.923879533f,
0.195090322f, 0.980785280f,
0.000000000f, 1.000000000f,
-0.195090322f, 0.980785280f,
-0.382683432f, 0.923879533f,
-0.555570233f, 0.831469612f,
-0.707106781f, 0.707106781f,
-0.831469612f, 0.555570233f,
-0.923879533f, 0.382683432f,
-0.980785280f, 0.195090322f,
-1.000000000f, 0.000000000f,
-0.980785280f, -0.195090322f,
-0.923879533f, -0.382683432f,
-0.831469612f, -0.555570233f,
-0.707106781f, -0.707106781f,
-0.555570233f, -0.831469612f,
-0.382683432f, -0.923879533f,
-0.195090322f, -0.980785280f,
-0.000000000f, -1.000000000f,
0.195090322f, -0.980785280f,
0.382683432f, -0.923879533f,
0.555570233f, -0.831469612f,
0.707106781f, -0.707106781f,
0.831469612f, -0.555570233f,
0.923879533f, -0.382683432f,
0.980785280f, -0.195090322f
};
/**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 64 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*/
const float32_t twiddleCoef_64[128] = {
1.000000000f, 0.000000000f,
0.995184727f, 0.098017140f,
0.980785280f, 0.195090322f,
0.956940336f, 0.290284677f,
0.923879533f, 0.382683432f,
0.881921264f, 0.471396737f,
0.831469612f, 0.555570233f,
0.773010453f, 0.634393284f,
0.707106781f, 0.707106781f,
0.634393284f, 0.773010453f,
0.555570233f, 0.831469612f,
0.471396737f, 0.881921264f,
0.382683432f, 0.923879533f,
0.290284677f, 0.956940336f,
0.195090322f, 0.980785280f,
0.098017140f, 0.995184727f,
0.000000000f, 1.000000000f,
-0.098017140f, 0.995184727f,
-0.195090322f, 0.980785280f,
-0.290284677f, 0.956940336f,
-0.382683432f, 0.923879533f,
-0.471396737f, 0.881921264f,
-0.555570233f, 0.831469612f,
-0.634393284f, 0.773010453f,
-0.707106781f, 0.707106781f,
-0.773010453f, 0.634393284f,
-0.831469612f, 0.555570233f,
-0.881921264f, 0.471396737f,
-0.923879533f, 0.382683432f,
-0.956940336f, 0.290284677f,
-0.980785280f, 0.195090322f,
-0.995184727f, 0.098017140f,
-1.000000000f, 0.000000000f,
-0.995184727f, -0.098017140f,
-0.980785280f, -0.195090322f,
-0.956940336f, -0.290284677f,
-0.923879533f, -0.382683432f,
-0.881921264f, -0.471396737f,
-0.831469612f, -0.555570233f,
-0.773010453f, -0.634393284f,
-0.707106781f, -0.707106781f,
-0.634393284f, -0.773010453f,
-0.555570233f, -0.831469612f,
-0.471396737f, -0.881921264f,
-0.382683432f, -0.923879533f,
-0.290284677f, -0.956940336f,
-0.195090322f, -0.980785280f,
-0.098017140f, -0.995184727f,
-0.000000000f, -1.000000000f,
0.098017140f, -0.995184727f,
0.195090322f, -0.980785280f,
0.290284677f, -0.956940336f,
0.382683432f, -0.923879533f,
0.471396737f, -0.881921264f,
0.555570233f, -0.831469612f,
0.634393284f, -0.773010453f,
0.707106781f, -0.707106781f,
0.773010453f, -0.634393284f,
0.831469612f, -0.555570233f,
0.881921264f, -0.471396737f,
0.923879533f, -0.382683432f,
0.956940336f, -0.290284677f,
0.980785280f, -0.195090322f,
0.995184727f, -0.098017140f
};
/**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 128 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*/
const float32_t twiddleCoef_128[256] = {
1.000000000f, 0.000000000f,
0.998795456f, 0.049067674f,
0.995184727f, 0.098017140f,
0.989176510f, 0.146730474f,
0.980785280f, 0.195090322f,
0.970031253f, 0.242980180f,
0.956940336f, 0.290284677f,
0.941544065f, 0.336889853f,
0.923879533f, 0.382683432f,
0.903989293f, 0.427555093f,
0.881921264f, 0.471396737f,
0.857728610f, 0.514102744f,
0.831469612f, 0.555570233f,
0.803207531f, 0.595699304f,
0.773010453f, 0.634393284f,
0.740951125f, 0.671558955f,
0.707106781f, 0.707106781f,
0.671558955f, 0.740951125f,
0.634393284f, 0.773010453f,
0.595699304f, 0.803207531f,
0.555570233f, 0.831469612f,
0.514102744f, 0.857728610f,
0.471396737f, 0.881921264f,
0.427555093f, 0.903989293f,
0.382683432f, 0.923879533f,
0.336889853f, 0.941544065f,
0.290284677f, 0.956940336f,
0.242980180f, 0.970031253f,
0.195090322f, 0.980785280f,
0.146730474f, 0.989176510f,
0.098017140f, 0.995184727f,
0.049067674f, 0.998795456f,
0.000000000f, 1.000000000f,
-0.049067674f, 0.998795456f,
-0.098017140f, 0.995184727f,
-0.146730474f, 0.989176510f,
-0.195090322f, 0.980785280f,
-0.242980180f, 0.970031253f,
-0.290284677f, 0.956940336f,
-0.336889853f, 0.941544065f,
-0.382683432f, 0.923879533f,
-0.427555093f, 0.903989293f,
-0.471396737f, 0.881921264f,
-0.514102744f, 0.857728610f,
-0.555570233f, 0.831469612f,
-0.595699304f, 0.803207531f,
-0.634393284f, 0.773010453f,
-0.671558955f, 0.740951125f,
-0.707106781f, 0.707106781f,
-0.740951125f, 0.671558955f,
-0.773010453f, 0.634393284f,
-0.803207531f, 0.595699304f,
-0.831469612f, 0.555570233f,
-0.857728610f, 0.514102744f,
-0.881921264f, 0.471396737f,
-0.903989293f, 0.427555093f,
-0.923879533f, 0.382683432f,
-0.941544065f, 0.336889853f,
-0.956940336f, 0.290284677f,
-0.970031253f, 0.242980180f,
-0.980785280f, 0.195090322f,
-0.989176510f, 0.146730474f,
-0.995184727f, 0.098017140f,
-0.998795456f, 0.049067674f,
-1.000000000f, 0.000000000f,
-0.998795456f, -0.049067674f,
-0.995184727f, -0.098017140f,
-0.989176510f, -0.146730474f,
-0.980785280f, -0.195090322f,
-0.970031253f, -0.242980180f,
-0.956940336f, -0.290284677f,
-0.941544065f, -0.336889853f,
-0.923879533f, -0.382683432f,
-0.903989293f, -0.427555093f,
-0.881921264f, -0.471396737f,
-0.857728610f, -0.514102744f,
-0.831469612f, -0.555570233f,
-0.803207531f, -0.595699304f,
-0.773010453f, -0.634393284f,
-0.740951125f, -0.671558955f,
-0.707106781f, -0.707106781f,
-0.671558955f, -0.740951125f,
-0.634393284f, -0.773010453f,
-0.595699304f, -0.803207531f,
-0.555570233f, -0.831469612f,
-0.514102744f, -0.857728610f,
-0.471396737f, -0.881921264f,
-0.427555093f, -0.903989293f,
-0.382683432f, -0.923879533f,
-0.336889853f, -0.941544065f,
-0.290284677f, -0.956940336f,
-0.242980180f, -0.970031253f,
-0.195090322f, -0.980785280f,
-0.146730474f, -0.989176510f,
-0.098017140f, -0.995184727f,
-0.049067674f, -0.998795456f,
-0.000000000f, -1.000000000f,
0.049067674f, -0.998795456f,
0.098017140f, -0.995184727f,
0.146730474f, -0.989176510f,
0.195090322f, -0.980785280f,
0.242980180f, -0.970031253f,
0.290284677f, -0.956940336f,
0.336889853f, -0.941544065f,
0.382683432f, -0.923879533f,
0.427555093f, -0.903989293f,
0.471396737f, -0.881921264f,
0.514102744f, -0.857728610f,
0.555570233f, -0.831469612f,
0.595699304f, -0.803207531f,
0.634393284f, -0.773010453f,
0.671558955f, -0.740951125f,
0.707106781f, -0.707106781f,
0.740951125f, -0.671558955f,
0.773010453f, -0.634393284f,
0.803207531f, -0.595699304f,
0.831469612f, -0.555570233f,
0.857728610f, -0.514102744f,
0.881921264f, -0.471396737f,
0.903989293f, -0.427555093f,
0.923879533f, -0.382683432f,
0.941544065f, -0.336889853f,
0.956940336f, -0.290284677f,
0.970031253f, -0.242980180f,
0.980785280f, -0.195090322f,
0.989176510f, -0.146730474f,
0.995184727f, -0.098017140f,
0.998795456f, -0.049067674f
};
/**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 256 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*//**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 512 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*//**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 1024 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*//**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 2048 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*//**
* \par
* Example code for Floating-point Twiddle factors Generation:
* \par
* <pre>for(i = 0; i< N/; i++)
* {
* twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 4096 and PI = 3.14159265358979
* \par
* Cos and Sin values are in interleaved fashion
*
*//*
* @brief Q31 Twiddle factors Table
*/
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 16 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*/
const q31_t twiddleCoef_16_q31[24] = {
(q31_t)0x7FFFFFFF, (q31_t)0x00000000,
(q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
(q31_t)0x5A82799A, (q31_t)0x5A82799A,
(q31_t)0x30FBC54D, (q31_t)0x7641AF3C,
(q31_t)0x00000000, (q31_t)0x7FFFFFFF,
(q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
(q31_t)0xA57D8666, (q31_t)0x5A82799A,
(q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
(q31_t)0x80000000, (q31_t)0x00000000,
(q31_t)0x89BE50C3, (q31_t)0xCF043AB2,
(q31_t)0xA57D8666, (q31_t)0xA57D8666,
(q31_t)0xCF043AB2, (q31_t)0x89BE50C3
};
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 32 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*/
const q31_t twiddleCoef_32_q31[48] = {
(q31_t)0x7FFFFFFF, (q31_t)0x00000000,
(q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
(q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
(q31_t)0x6A6D98A4, (q31_t)0x471CECE6,
(q31_t)0x5A82799A, (q31_t)0x5A82799A,
(q31_t)0x471CECE6, (q31_t)0x6A6D98A4,
(q31_t)0x30FBC54D, (q31_t)0x7641AF3C,
(q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
(q31_t)0x00000000, (q31_t)0x7FFFFFFF,
(q31_t)0xE70747C3, (q31_t)0x7D8A5F3F,
(q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
(q31_t)0xB8E31319, (q31_t)0x6A6D98A4,
(q31_t)0xA57D8666, (q31_t)0x5A82799A,
(q31_t)0x9592675B, (q31_t)0x471CECE6,
(q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
(q31_t)0x8275A0C0, (q31_t)0x18F8B83C,
(q31_t)0x80000000, (q31_t)0x00000000,
(q31_t)0x8275A0C0, (q31_t)0xE70747C3,
(q31_t)0x89BE50C3, (q31_t)0xCF043AB2,
(q31_t)0x9592675B, (q31_t)0xB8E31319,
(q31_t)0xA57D8666, (q31_t)0xA57D8666,
(q31_t)0xB8E31319, (q31_t)0x9592675B,
(q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
(q31_t)0xE70747C3, (q31_t)0x8275A0C0
};
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 64 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*/
const q31_t twiddleCoef_64_q31[96] = {
(q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7F62368F,
(q31_t)0x0C8BD35E, (q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
(q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x7641AF3C,
(q31_t)0x30FBC54D, (q31_t)0x70E2CBC6, (q31_t)0x3C56BA70,
(q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x62F201AC,
(q31_t)0x5133CC94, (q31_t)0x5A82799A, (q31_t)0x5A82799A,
(q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x471CECE6,
(q31_t)0x6A6D98A4, (q31_t)0x3C56BA70, (q31_t)0x70E2CBC6,
(q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x25280C5D,
(q31_t)0x7A7D055B, (q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
(q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x00000000,
(q31_t)0x7FFFFFFF, (q31_t)0xF3742CA1, (q31_t)0x7F62368F,
(q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xDAD7F3A2,
(q31_t)0x7A7D055B, (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
(q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xB8E31319,
(q31_t)0x6A6D98A4, (q31_t)0xAECC336B, (q31_t)0x62F201AC,
(q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0x9D0DFE53,
(q31_t)0x5133CC94, (q31_t)0x9592675B, (q31_t)0x471CECE6,
(q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x89BE50C3,
(q31_t)0x30FBC54D, (q31_t)0x8582FAA4, (q31_t)0x25280C5D,
(q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x809DC970,
(q31_t)0x0C8BD35E, (q31_t)0x80000000, (q31_t)0x00000000,
(q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x8275A0C0,
(q31_t)0xE70747C3, (q31_t)0x8582FAA4, (q31_t)0xDAD7F3A2,
(q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8F1D343A,
(q31_t)0xC3A9458F, (q31_t)0x9592675B, (q31_t)0xB8E31319,
(q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0xA57D8666,
(q31_t)0xA57D8666, (q31_t)0xAECC336B, (q31_t)0x9D0DFE53,
(q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xC3A9458F,
(q31_t)0x8F1D343A, (q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
(q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xE70747C3,
(q31_t)0x8275A0C0, (q31_t)0xF3742CA1, (q31_t)0x809DC970
};
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 128 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*/
const q31_t twiddleCoef_128_q31[192] = {
(q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7FD8878D,
(q31_t)0x0647D97C, (q31_t)0x7F62368F, (q31_t)0x0C8BD35E,
(q31_t)0x7E9D55FC, (q31_t)0x12C8106E, (q31_t)0x7D8A5F3F,
(q31_t)0x18F8B83C, (q31_t)0x7C29FBEE, (q31_t)0x1F19F97B,
(q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x78848413,
(q31_t)0x2B1F34EB, (q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
(q31_t)0x73B5EBD0, (q31_t)0x36BA2013, (q31_t)0x70E2CBC6,
(q31_t)0x3C56BA70, (q31_t)0x6DCA0D14, (q31_t)0x41CE1E64,
(q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x66CF811F,
(q31_t)0x4C3FDFF3, (q31_t)0x62F201AC, (q31_t)0x5133CC94,
(q31_t)0x5ED77C89, (q31_t)0x55F5A4D2, (q31_t)0x5A82799A,
(q31_t)0x5A82799A, (q31_t)0x55F5A4D2, (q31_t)0x5ED77C89,
(q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x4C3FDFF3,
(q31_t)0x66CF811F, (q31_t)0x471CECE6, (q31_t)0x6A6D98A4,
(q31_t)0x41CE1E64, (q31_t)0x6DCA0D14, (q31_t)0x3C56BA70,
(q31_t)0x70E2CBC6, (q31_t)0x36BA2013, (q31_t)0x73B5EBD0,
(q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x2B1F34EB,
(q31_t)0x78848413, (q31_t)0x25280C5D, (q31_t)0x7A7D055B,
(q31_t)0x1F19F97B, (q31_t)0x7C29FBEE, (q31_t)0x18F8B83C,
(q31_t)0x7D8A5F3F, (q31_t)0x12C8106E, (q31_t)0x7E9D55FC,
(q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x0647D97C,
(q31_t)0x7FD8878D, (q31_t)0x00000000, (q31_t)0x7FFFFFFF,
(q31_t)0xF9B82683, (q31_t)0x7FD8878D, (q31_t)0xF3742CA1,
(q31_t)0x7F62368F, (q31_t)0xED37EF91, (q31_t)0x7E9D55FC,
(q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xE0E60684,
(q31_t)0x7C29FBEE, (q31_t)0xDAD7F3A2, (q31_t)0x7A7D055B,
(q31_t)0xD4E0CB14, (q31_t)0x78848413, (q31_t)0xCF043AB2,
(q31_t)0x7641AF3C, (q31_t)0xC945DFEC, (q31_t)0x73B5EBD0,
(q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xBE31E19B,
(q31_t)0x6DCA0D14, (q31_t)0xB8E31319, (q31_t)0x6A6D98A4,
(q31_t)0xB3C0200C, (q31_t)0x66CF811F, (q31_t)0xAECC336B,
(q31_t)0x62F201AC, (q31_t)0xAA0A5B2D, (q31_t)0x5ED77C89,
(q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0xA1288376,
(q31_t)0x55F5A4D2, (q31_t)0x9D0DFE53, (q31_t)0x5133CC94,
(q31_t)0x99307EE0, (q31_t)0x4C3FDFF3, (q31_t)0x9592675B,
(q31_t)0x471CECE6, (q31_t)0x9235F2EB, (q31_t)0x41CE1E64,
(q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x8C4A142F,
(q31_t)0x36BA2013, (q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
(q31_t)0x877B7BEC, (q31_t)0x2B1F34EB, (q31_t)0x8582FAA4,
(q31_t)0x25280C5D, (q31_t)0x83D60411, (q31_t)0x1F19F97B,
(q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x8162AA03,
(q31_t)0x12C8106E, (q31_t)0x809DC970, (q31_t)0x0C8BD35E,
(q31_t)0x80277872, (q31_t)0x0647D97C, (q31_t)0x80000000,
(q31_t)0x00000000, (q31_t)0x80277872, (q31_t)0xF9B82683,
(q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x8162AA03,
(q31_t)0xED37EF91, (q31_t)0x8275A0C0, (q31_t)0xE70747C3,
(q31_t)0x83D60411, (q31_t)0xE0E60684, (q31_t)0x8582FAA4,
(q31_t)0xDAD7F3A2, (q31_t)0x877B7BEC, (q31_t)0xD4E0CB14,
(q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8C4A142F,
(q31_t)0xC945DFEC, (q31_t)0x8F1D343A, (q31_t)0xC3A9458F,
(q31_t)0x9235F2EB, (q31_t)0xBE31E19B, (q31_t)0x9592675B,
(q31_t)0xB8E31319, (q31_t)0x99307EE0, (q31_t)0xB3C0200C,
(q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0xA1288376,
(q31_t)0xAA0A5B2D, (q31_t)0xA57D8666, (q31_t)0xA57D8666,
(q31_t)0xAA0A5B2D, (q31_t)0xA1288376, (q31_t)0xAECC336B,
(q31_t)0x9D0DFE53, (q31_t)0xB3C0200C, (q31_t)0x99307EE0,
(q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xBE31E19B,
(q31_t)0x9235F2EB, (q31_t)0xC3A9458F, (q31_t)0x8F1D343A,
(q31_t)0xC945DFEC, (q31_t)0x8C4A142F, (q31_t)0xCF043AB2,
(q31_t)0x89BE50C3, (q31_t)0xD4E0CB14, (q31_t)0x877B7BEC,
(q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xE0E60684,
(q31_t)0x83D60411, (q31_t)0xE70747C3, (q31_t)0x8275A0C0,
(q31_t)0xED37EF91, (q31_t)0x8162AA03, (q31_t)0xF3742CA1,
(q31_t)0x809DC970, (q31_t)0xF9B82683, (q31_t)0x80277872
};
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 256 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*/
const q31_t twiddleCoef_256_q31[384] = {
(q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7FF62182,
(q31_t)0x03242ABF, (q31_t)0x7FD8878D, (q31_t)0x0647D97C,
(q31_t)0x7FA736B4, (q31_t)0x096A9049, (q31_t)0x7F62368F,
(q31_t)0x0C8BD35E, (q31_t)0x7F0991C3, (q31_t)0x0FAB272B,
(q31_t)0x7E9D55FC, (q31_t)0x12C8106E, (q31_t)0x7E1D93E9,
(q31_t)0x15E21444, (q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
(q31_t)0x7CE3CEB1, (q31_t)0x1C0B826A, (q31_t)0x7C29FBEE,
(q31_t)0x1F19F97B, (q31_t)0x7B5D039D, (q31_t)0x2223A4C5,
(q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x798A23B1,
(q31_t)0x2826B928, (q31_t)0x78848413, (q31_t)0x2B1F34EB,
(q31_t)0x776C4EDB, (q31_t)0x2E110A62, (q31_t)0x7641AF3C,
(q31_t)0x30FBC54D, (q31_t)0x7504D345, (q31_t)0x33DEF287,
(q31_t)0x73B5EBD0, (q31_t)0x36BA2013, (q31_t)0x72552C84,
(q31_t)0x398CDD32, (q31_t)0x70E2CBC6, (q31_t)0x3C56BA70,
(q31_t)0x6F5F02B1, (q31_t)0x3F1749B7, (q31_t)0x6DCA0D14,
(q31_t)0x41CE1E64, (q31_t)0x6C242960, (q31_t)0x447ACD50,
(q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x68A69E81,
(q31_t)0x49B41533, (q31_t)0x66CF811F, (q31_t)0x4C3FDFF3,
(q31_t)0x64E88926, (q31_t)0x4EBFE8A4, (q31_t)0x62F201AC,
(q31_t)0x5133CC94, (q31_t)0x60EC3830, (q31_t)0x539B2AEF,
(q31_t)0x5ED77C89, (q31_t)0x55F5A4D2, (q31_t)0x5CB420DF,
(q31_t)0x5842DD54, (q31_t)0x5A82799A, (q31_t)0x5A82799A,
(q31_t)0x5842DD54, (q31_t)0x5CB420DF, (q31_t)0x55F5A4D2,
(q31_t)0x5ED77C89, (q31_t)0x539B2AEF, (q31_t)0x60EC3830,
(q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x4EBFE8A4,
(q31_t)0x64E88926, (q31_t)0x4C3FDFF3, (q31_t)0x66CF811F,
(q31_t)0x49B41533, (q31_t)0x68A69E81, (q31_t)0x471CECE6,
(q31_t)0x6A6D98A4, (q31_t)0x447ACD50, (q31_t)0x6C242960,
(q31_t)0x41CE1E64, (q31_t)0x6DCA0D14, (q31_t)0x3F1749B7,
(q31_t)0x6F5F02B1, (q31_t)0x3C56BA70, (q31_t)0x70E2CBC6,
(q31_t)0x398CDD32, (q31_t)0x72552C84, (q31_t)0x36BA2013,
(q31_t)0x73B5EBD0, (q31_t)0x33DEF287, (q31_t)0x7504D345,
(q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x2E110A62,
(q31_t)0x776C4EDB, (q31_t)0x2B1F34EB, (q31_t)0x78848413,
(q31_t)0x2826B928, (q31_t)0x798A23B1, (q31_t)0x25280C5D,
(q31_t)0x7A7D055B, (q31_t)0x2223A4C5, (q31_t)0x7B5D039D,
(q31_t)0x1F19F97B, (q31_t)0x7C29FBEE, (q31_t)0x1C0B826A,
(q31_t)0x7CE3CEB1, (q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
(q31_t)0x15E21444, (q31_t)0x7E1D93E9, (q31_t)0x12C8106E,
(q31_t)0x7E9D55FC, (q31_t)0x0FAB272B, (q31_t)0x7F0991C3,
(q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x096A9049,
(q31_t)0x7FA736B4, (q31_t)0x0647D97C, (q31_t)0x7FD8878D,
(q31_t)0x03242ABF, (q31_t)0x7FF62182, (q31_t)0x00000000,
(q31_t)0x7FFFFFFF, (q31_t)0xFCDBD541, (q31_t)0x7FF62182,
(q31_t)0xF9B82683, (q31_t)0x7FD8878D, (q31_t)0xF6956FB6,
(q31_t)0x7FA736B4, (q31_t)0xF3742CA1, (q31_t)0x7F62368F,
(q31_t)0xF054D8D4, (q31_t)0x7F0991C3, (q31_t)0xED37EF91,
(q31_t)0x7E9D55FC, (q31_t)0xEA1DEBBB, (q31_t)0x7E1D93E9,
(q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xE3F47D95,
(q31_t)0x7CE3CEB1, (q31_t)0xE0E60684, (q31_t)0x7C29FBEE,
(q31_t)0xDDDC5B3A, (q31_t)0x7B5D039D, (q31_t)0xDAD7F3A2,
(q31_t)0x7A7D055B, (q31_t)0xD7D946D7, (q31_t)0x798A23B1,
(q31_t)0xD4E0CB14, (q31_t)0x78848413, (q31_t)0xD1EEF59E,
(q31_t)0x776C4EDB, (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
(q31_t)0xCC210D78, (q31_t)0x7504D345, (q31_t)0xC945DFEC,
(q31_t)0x73B5EBD0, (q31_t)0xC67322CD, (q31_t)0x72552C84,
(q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xC0E8B648,
(q31_t)0x6F5F02B1, (q31_t)0xBE31E19B, (q31_t)0x6DCA0D14,
(q31_t)0xBB8532AF, (q31_t)0x6C242960, (q31_t)0xB8E31319,
(q31_t)0x6A6D98A4, (q31_t)0xB64BEACC, (q31_t)0x68A69E81,
(q31_t)0xB3C0200C, (q31_t)0x66CF811F, (q31_t)0xB140175B,
(q31_t)0x64E88926, (q31_t)0xAECC336B, (q31_t)0x62F201AC,
(q31_t)0xAC64D510, (q31_t)0x60EC3830, (q31_t)0xAA0A5B2D,
(q31_t)0x5ED77C89, (q31_t)0xA7BD22AB, (q31_t)0x5CB420DF,
(q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0xA34BDF20,
(q31_t)0x5842DD54, (q31_t)0xA1288376, (q31_t)0x55F5A4D2,
(q31_t)0x9F13C7D0, (q31_t)0x539B2AEF, (q31_t)0x9D0DFE53,
(q31_t)0x5133CC94, (q31_t)0x9B1776D9, (q31_t)0x4EBFE8A4,
(q31_t)0x99307EE0, (q31_t)0x4C3FDFF3, (q31_t)0x9759617E,
(q31_t)0x49B41533, (q31_t)0x9592675B, (q31_t)0x471CECE6,
(q31_t)0x93DBD69F, (q31_t)0x447ACD50, (q31_t)0x9235F2EB,
(q31_t)0x41CE1E64, (q31_t)0x90A0FD4E, (q31_t)0x3F1749B7,
(q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x8DAAD37B,
(q31_t)0x398CDD32, (q31_t)0x8C4A142F, (q31_t)0x36BA2013,
(q31_t)0x8AFB2CBA, (q31_t)0x33DEF287, (q31_t)0x89BE50C3,
(q31_t)0x30FBC54D, (q31_t)0x8893B124, (q31_t)0x2E110A62,
(q31_t)0x877B7BEC, (q31_t)0x2B1F34EB, (q31_t)0x8675DC4E,
(q31_t)0x2826B928, (q31_t)0x8582FAA4, (q31_t)0x25280C5D,
(q31_t)0x84A2FC62, (q31_t)0x2223A4C5, (q31_t)0x83D60411,
(q31_t)0x1F19F97B, (q31_t)0x831C314E, (q31_t)0x1C0B826A,
(q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x81E26C16,
(q31_t)0x15E21444, (q31_t)0x8162AA03, (q31_t)0x12C8106E,
(q31_t)0x80F66E3C, (q31_t)0x0FAB272B, (q31_t)0x809DC970,
(q31_t)0x0C8BD35E, (q31_t)0x8058C94C, (q31_t)0x096A9049,
(q31_t)0x80277872, (q31_t)0x0647D97C, (q31_t)0x8009DE7D,
(q31_t)0x03242ABF, (q31_t)0x80000000, (q31_t)0x00000000,
(q31_t)0x8009DE7D, (q31_t)0xFCDBD541, (q31_t)0x80277872,
(q31_t)0xF9B82683, (q31_t)0x8058C94C, (q31_t)0xF6956FB6,
(q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x80F66E3C,
(q31_t)0xF054D8D4, (q31_t)0x8162AA03, (q31_t)0xED37EF91,
(q31_t)0x81E26C16, (q31_t)0xEA1DEBBB, (q31_t)0x8275A0C0,
(q31_t)0xE70747C3, (q31_t)0x831C314E, (q31_t)0xE3F47D95,
(q31_t)0x83D60411, (q31_t)0xE0E60684, (q31_t)0x84A2FC62,
(q31_t)0xDDDC5B3A, (q31_t)0x8582FAA4, (q31_t)0xDAD7F3A2,
(q31_t)0x8675DC4E, (q31_t)0xD7D946D7, (q31_t)0x877B7BEC,
(q31_t)0xD4E0CB14, (q31_t)0x8893B124, (q31_t)0xD1EEF59E,
(q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8AFB2CBA,
(q31_t)0xCC210D78, (q31_t)0x8C4A142F, (q31_t)0xC945DFEC,
(q31_t)0x8DAAD37B, (q31_t)0xC67322CD, (q31_t)0x8F1D343A,
(q31_t)0xC3A9458F, (q31_t)0x90A0FD4E, (q31_t)0xC0E8B648,
(q31_t)0x9235F2EB, (q31_t)0xBE31E19B, (q31_t)0x93DBD69F,
(q31_t)0xBB8532AF, (q31_t)0x9592675B, (q31_t)0xB8E31319,
(q31_t)0x9759617E, (q31_t)0xB64BEACC, (q31_t)0x99307EE0,
(q31_t)0xB3C0200C, (q31_t)0x9B1776D9, (q31_t)0xB140175B,
(q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0x9F13C7D0,
(q31_t)0xAC64D510, (q31_t)0xA1288376, (q31_t)0xAA0A5B2D,
(q31_t)0xA34BDF20, (q31_t)0xA7BD22AB, (q31_t)0xA57D8666,
(q31_t)0xA57D8666, (q31_t)0xA7BD22AB, (q31_t)0xA34BDF20,
(q31_t)0xAA0A5B2D, (q31_t)0xA1288376, (q31_t)0xAC64D510,
(q31_t)0x9F13C7D0, (q31_t)0xAECC336B, (q31_t)0x9D0DFE53,
(q31_t)0xB140175B, (q31_t)0x9B1776D9, (q31_t)0xB3C0200C,
(q31_t)0x99307EE0, (q31_t)0xB64BEACC, (q31_t)0x9759617E,
(q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xBB8532AF,
(q31_t)0x93DBD69F, (q31_t)0xBE31E19B, (q31_t)0x9235F2EB,
(q31_t)0xC0E8B648, (q31_t)0x90A0FD4E, (q31_t)0xC3A9458F,
(q31_t)0x8F1D343A, (q31_t)0xC67322CD, (q31_t)0x8DAAD37B,
(q31_t)0xC945DFEC, (q31_t)0x8C4A142F, (q31_t)0xCC210D78,
(q31_t)0x8AFB2CBA, (q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
(q31_t)0xD1EEF59E, (q31_t)0x8893B124, (q31_t)0xD4E0CB14,
(q31_t)0x877B7BEC, (q31_t)0xD7D946D7, (q31_t)0x8675DC4E,
(q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xDDDC5B3A,
(q31_t)0x84A2FC62, (q31_t)0xE0E60684, (q31_t)0x83D60411,
(q31_t)0xE3F47D95, (q31_t)0x831C314E, (q31_t)0xE70747C3,
(q31_t)0x8275A0C0, (q31_t)0xEA1DEBBB, (q31_t)0x81E26C16,
(q31_t)0xED37EF91, (q31_t)0x8162AA03, (q31_t)0xF054D8D4,
(q31_t)0x80F66E3C, (q31_t)0xF3742CA1, (q31_t)0x809DC970,
(q31_t)0xF6956FB6, (q31_t)0x8058C94C, (q31_t)0xF9B82683,
(q31_t)0x80277872, (q31_t)0xFCDBD541, (q31_t)0x8009DE7D
};
/**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 512 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*//**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 1024 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*//**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 2048 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*//**
* \par
* Example code for Q31 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 4096 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to Q31(Fixed point 1.31):
* round(twiddleCoefQ31(i) * pow(2, 31))
*
*//*
* @brief q15 Twiddle factors Table
*/
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 16 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*/
const q15_t twiddleCoef_16_q15[24] = {
(q15_t)0x7FFF, (q15_t)0x0000,
(q15_t)0x7641, (q15_t)0x30FB,
(q15_t)0x5A82, (q15_t)0x5A82,
(q15_t)0x30FB, (q15_t)0x7641,
(q15_t)0x0000, (q15_t)0x7FFF,
(q15_t)0xCF04, (q15_t)0x7641,
(q15_t)0xA57D, (q15_t)0x5A82,
(q15_t)0x89BE, (q15_t)0x30FB,
(q15_t)0x8000, (q15_t)0x0000,
(q15_t)0x89BE, (q15_t)0xCF04,
(q15_t)0xA57D, (q15_t)0xA57D,
(q15_t)0xCF04, (q15_t)0x89BE
};
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 32 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*/
const q15_t twiddleCoef_32_q15[48] = {
(q15_t)0x7FFF, (q15_t)0x0000,
(q15_t)0x7D8A, (q15_t)0x18F8,
(q15_t)0x7641, (q15_t)0x30FB,
(q15_t)0x6A6D, (q15_t)0x471C,
(q15_t)0x5A82, (q15_t)0x5A82,
(q15_t)0x471C, (q15_t)0x6A6D,
(q15_t)0x30FB, (q15_t)0x7641,
(q15_t)0x18F8, (q15_t)0x7D8A,
(q15_t)0x0000, (q15_t)0x7FFF,
(q15_t)0xE707, (q15_t)0x7D8A,
(q15_t)0xCF04, (q15_t)0x7641,
(q15_t)0xB8E3, (q15_t)0x6A6D,
(q15_t)0xA57D, (q15_t)0x5A82,
(q15_t)0x9592, (q15_t)0x471C,
(q15_t)0x89BE, (q15_t)0x30FB,
(q15_t)0x8275, (q15_t)0x18F8,
(q15_t)0x8000, (q15_t)0x0000,
(q15_t)0x8275, (q15_t)0xE707,
(q15_t)0x89BE, (q15_t)0xCF04,
(q15_t)0x9592, (q15_t)0xB8E3,
(q15_t)0xA57D, (q15_t)0xA57D,
(q15_t)0xB8E3, (q15_t)0x9592,
(q15_t)0xCF04, (q15_t)0x89BE,
(q15_t)0xE707, (q15_t)0x8275
};
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 64 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*/
const q15_t twiddleCoef_64_q15[96] = {
(q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7F62, (q15_t)0x0C8B,
(q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7A7D, (q15_t)0x2528,
(q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x70E2, (q15_t)0x3C56,
(q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x62F2, (q15_t)0x5133,
(q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x5133, (q15_t)0x62F2,
(q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x3C56, (q15_t)0x70E2,
(q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2528, (q15_t)0x7A7D,
(q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x0C8B, (q15_t)0x7F62,
(q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xF374, (q15_t)0x7F62,
(q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xDAD7, (q15_t)0x7A7D,
(q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xC3A9, (q15_t)0x70E2,
(q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xAECC, (q15_t)0x62F2,
(q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0x9D0D, (q15_t)0x5133,
(q15_t)0x9592, (q15_t)0x471C, (q15_t)0x8F1D, (q15_t)0x3C56,
(q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x8582, (q15_t)0x2528,
(q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x809D, (q15_t)0x0C8B,
(q15_t)0x8000, (q15_t)0x0000, (q15_t)0x809D, (q15_t)0xF374,
(q15_t)0x8275, (q15_t)0xE707, (q15_t)0x8582, (q15_t)0xDAD7,
(q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8F1D, (q15_t)0xC3A9,
(q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9D0D, (q15_t)0xAECC,
(q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xAECC, (q15_t)0x9D0D,
(q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xC3A9, (q15_t)0x8F1D,
(q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xDAD7, (q15_t)0x8582,
(q15_t)0xE707, (q15_t)0x8275, (q15_t)0xF374, (q15_t)0x809D
};
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 128 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*/
const q15_t twiddleCoef_128_q15[192] = {
(q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7FD8, (q15_t)0x0647,
(q15_t)0x7F62, (q15_t)0x0C8B, (q15_t)0x7E9D, (q15_t)0x12C8,
(q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7C29, (q15_t)0x1F19,
(q15_t)0x7A7D, (q15_t)0x2528, (q15_t)0x7884, (q15_t)0x2B1F,
(q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x73B5, (q15_t)0x36BA,
(q15_t)0x70E2, (q15_t)0x3C56, (q15_t)0x6DCA, (q15_t)0x41CE,
(q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x66CF, (q15_t)0x4C3F,
(q15_t)0x62F2, (q15_t)0x5133, (q15_t)0x5ED7, (q15_t)0x55F5,
(q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x55F5, (q15_t)0x5ED7,
(q15_t)0x5133, (q15_t)0x62F2, (q15_t)0x4C3F, (q15_t)0x66CF,
(q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x41CE, (q15_t)0x6DCA,
(q15_t)0x3C56, (q15_t)0x70E2, (q15_t)0x36BA, (q15_t)0x73B5,
(q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2B1F, (q15_t)0x7884,
(q15_t)0x2528, (q15_t)0x7A7D, (q15_t)0x1F19, (q15_t)0x7C29,
(q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x12C8, (q15_t)0x7E9D,
(q15_t)0x0C8B, (q15_t)0x7F62, (q15_t)0x0647, (q15_t)0x7FD8,
(q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xF9B8, (q15_t)0x7FD8,
(q15_t)0xF374, (q15_t)0x7F62, (q15_t)0xED37, (q15_t)0x7E9D,
(q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xE0E6, (q15_t)0x7C29,
(q15_t)0xDAD7, (q15_t)0x7A7D, (q15_t)0xD4E0, (q15_t)0x7884,
(q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xC945, (q15_t)0x73B5,
(q15_t)0xC3A9, (q15_t)0x70E2, (q15_t)0xBE31, (q15_t)0x6DCA,
(q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xB3C0, (q15_t)0x66CF,
(q15_t)0xAECC, (q15_t)0x62F2, (q15_t)0xAA0A, (q15_t)0x5ED7,
(q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0xA128, (q15_t)0x55F5,
(q15_t)0x9D0D, (q15_t)0x5133, (q15_t)0x9930, (q15_t)0x4C3F,
(q15_t)0x9592, (q15_t)0x471C, (q15_t)0x9235, (q15_t)0x41CE,
(q15_t)0x8F1D, (q15_t)0x3C56, (q15_t)0x8C4A, (q15_t)0x36BA,
(q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x877B, (q15_t)0x2B1F,
(q15_t)0x8582, (q15_t)0x2528, (q15_t)0x83D6, (q15_t)0x1F19,
(q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x8162, (q15_t)0x12C8,
(q15_t)0x809D, (q15_t)0x0C8B, (q15_t)0x8027, (q15_t)0x0647,
(q15_t)0x8000, (q15_t)0x0000, (q15_t)0x8027, (q15_t)0xF9B8,
(q15_t)0x809D, (q15_t)0xF374, (q15_t)0x8162, (q15_t)0xED37,
(q15_t)0x8275, (q15_t)0xE707, (q15_t)0x83D6, (q15_t)0xE0E6,
(q15_t)0x8582, (q15_t)0xDAD7, (q15_t)0x877B, (q15_t)0xD4E0,
(q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8C4A, (q15_t)0xC945,
(q15_t)0x8F1D, (q15_t)0xC3A9, (q15_t)0x9235, (q15_t)0xBE31,
(q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9930, (q15_t)0xB3C0,
(q15_t)0x9D0D, (q15_t)0xAECC, (q15_t)0xA128, (q15_t)0xAA0A,
(q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xAA0A, (q15_t)0xA128,
(q15_t)0xAECC, (q15_t)0x9D0D, (q15_t)0xB3C0, (q15_t)0x9930,
(q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xBE31, (q15_t)0x9235,
(q15_t)0xC3A9, (q15_t)0x8F1D, (q15_t)0xC945, (q15_t)0x8C4A,
(q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xD4E0, (q15_t)0x877B,
(q15_t)0xDAD7, (q15_t)0x8582, (q15_t)0xE0E6, (q15_t)0x83D6,
(q15_t)0xE707, (q15_t)0x8275, (q15_t)0xED37, (q15_t)0x8162,
(q15_t)0xF374, (q15_t)0x809D, (q15_t)0xF9B8, (q15_t)0x8027
};
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 256 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*/
const q15_t twiddleCoef_256_q15[384] = {
(q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7FF6, (q15_t)0x0324,
(q15_t)0x7FD8, (q15_t)0x0647, (q15_t)0x7FA7, (q15_t)0x096A,
(q15_t)0x7F62, (q15_t)0x0C8B, (q15_t)0x7F09, (q15_t)0x0FAB,
(q15_t)0x7E9D, (q15_t)0x12C8, (q15_t)0x7E1D, (q15_t)0x15E2,
(q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7CE3, (q15_t)0x1C0B,
(q15_t)0x7C29, (q15_t)0x1F19, (q15_t)0x7B5D, (q15_t)0x2223,
(q15_t)0x7A7D, (q15_t)0x2528, (q15_t)0x798A, (q15_t)0x2826,
(q15_t)0x7884, (q15_t)0x2B1F, (q15_t)0x776C, (q15_t)0x2E11,
(q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x7504, (q15_t)0x33DE,
(q15_t)0x73B5, (q15_t)0x36BA, (q15_t)0x7255, (q15_t)0x398C,
(q15_t)0x70E2, (q15_t)0x3C56, (q15_t)0x6F5F, (q15_t)0x3F17,
(q15_t)0x6DCA, (q15_t)0x41CE, (q15_t)0x6C24, (q15_t)0x447A,
(q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x68A6, (q15_t)0x49B4,
(q15_t)0x66CF, (q15_t)0x4C3F, (q15_t)0x64E8, (q15_t)0x4EBF,
(q15_t)0x62F2, (q15_t)0x5133, (q15_t)0x60EC, (q15_t)0x539B,
(q15_t)0x5ED7, (q15_t)0x55F5, (q15_t)0x5CB4, (q15_t)0x5842,
(q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x5842, (q15_t)0x5CB4,
(q15_t)0x55F5, (q15_t)0x5ED7, (q15_t)0x539B, (q15_t)0x60EC,
(q15_t)0x5133, (q15_t)0x62F2, (q15_t)0x4EBF, (q15_t)0x64E8,
(q15_t)0x4C3F, (q15_t)0x66CF, (q15_t)0x49B4, (q15_t)0x68A6,
(q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x447A, (q15_t)0x6C24,
(q15_t)0x41CE, (q15_t)0x6DCA, (q15_t)0x3F17, (q15_t)0x6F5F,
(q15_t)0x3C56, (q15_t)0x70E2, (q15_t)0x398C, (q15_t)0x7255,
(q15_t)0x36BA, (q15_t)0x73B5, (q15_t)0x33DE, (q15_t)0x7504,
(q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2E11, (q15_t)0x776C,
(q15_t)0x2B1F, (q15_t)0x7884, (q15_t)0x2826, (q15_t)0x798A,
(q15_t)0x2528, (q15_t)0x7A7D, (q15_t)0x2223, (q15_t)0x7B5D,
(q15_t)0x1F19, (q15_t)0x7C29, (q15_t)0x1C0B, (q15_t)0x7CE3,
(q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x15E2, (q15_t)0x7E1D,
(q15_t)0x12C8, (q15_t)0x7E9D, (q15_t)0x0FAB, (q15_t)0x7F09,
(q15_t)0x0C8B, (q15_t)0x7F62, (q15_t)0x096A, (q15_t)0x7FA7,
(q15_t)0x0647, (q15_t)0x7FD8, (q15_t)0x0324, (q15_t)0x7FF6,
(q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xFCDB, (q15_t)0x7FF6,
(q15_t)0xF9B8, (q15_t)0x7FD8, (q15_t)0xF695, (q15_t)0x7FA7,
(q15_t)0xF374, (q15_t)0x7F62, (q15_t)0xF054, (q15_t)0x7F09,
(q15_t)0xED37, (q15_t)0x7E9D, (q15_t)0xEA1D, (q15_t)0x7E1D,
(q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xE3F4, (q15_t)0x7CE3,
(q15_t)0xE0E6, (q15_t)0x7C29, (q15_t)0xDDDC, (q15_t)0x7B5D,
(q15_t)0xDAD7, (q15_t)0x7A7D, (q15_t)0xD7D9, (q15_t)0x798A,
(q15_t)0xD4E0, (q15_t)0x7884, (q15_t)0xD1EE, (q15_t)0x776C,
(q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xCC21, (q15_t)0x7504,
(q15_t)0xC945, (q15_t)0x73B5, (q15_t)0xC673, (q15_t)0x7255,
(q15_t)0xC3A9, (q15_t)0x70E2, (q15_t)0xC0E8, (q15_t)0x6F5F,
(q15_t)0xBE31, (q15_t)0x6DCA, (q15_t)0xBB85, (q15_t)0x6C24,
(q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xB64B, (q15_t)0x68A6,
(q15_t)0xB3C0, (q15_t)0x66CF, (q15_t)0xB140, (q15_t)0x64E8,
(q15_t)0xAECC, (q15_t)0x62F2, (q15_t)0xAC64, (q15_t)0x60EC,
(q15_t)0xAA0A, (q15_t)0x5ED7, (q15_t)0xA7BD, (q15_t)0x5CB4,
(q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0xA34B, (q15_t)0x5842,
(q15_t)0xA128, (q15_t)0x55F5, (q15_t)0x9F13, (q15_t)0x539B,
(q15_t)0x9D0D, (q15_t)0x5133, (q15_t)0x9B17, (q15_t)0x4EBF,
(q15_t)0x9930, (q15_t)0x4C3F, (q15_t)0x9759, (q15_t)0x49B4,
(q15_t)0x9592, (q15_t)0x471C, (q15_t)0x93DB, (q15_t)0x447A,
(q15_t)0x9235, (q15_t)0x41CE, (q15_t)0x90A0, (q15_t)0x3F17,
(q15_t)0x8F1D, (q15_t)0x3C56, (q15_t)0x8DAA, (q15_t)0x398C,
(q15_t)0x8C4A, (q15_t)0x36BA, (q15_t)0x8AFB, (q15_t)0x33DE,
(q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x8893, (q15_t)0x2E11,
(q15_t)0x877B, (q15_t)0x2B1F, (q15_t)0x8675, (q15_t)0x2826,
(q15_t)0x8582, (q15_t)0x2528, (q15_t)0x84A2, (q15_t)0x2223,
(q15_t)0x83D6, (q15_t)0x1F19, (q15_t)0x831C, (q15_t)0x1C0B,
(q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x81E2, (q15_t)0x15E2,
(q15_t)0x8162, (q15_t)0x12C8, (q15_t)0x80F6, (q15_t)0x0FAB,
(q15_t)0x809D, (q15_t)0x0C8B, (q15_t)0x8058, (q15_t)0x096A,
(q15_t)0x8027, (q15_t)0x0647, (q15_t)0x8009, (q15_t)0x0324,
(q15_t)0x8000, (q15_t)0x0000, (q15_t)0x8009, (q15_t)0xFCDB,
(q15_t)0x8027, (q15_t)0xF9B8, (q15_t)0x8058, (q15_t)0xF695,
(q15_t)0x809D, (q15_t)0xF374, (q15_t)0x80F6, (q15_t)0xF054,
(q15_t)0x8162, (q15_t)0xED37, (q15_t)0x81E2, (q15_t)0xEA1D,
(q15_t)0x8275, (q15_t)0xE707, (q15_t)0x831C, (q15_t)0xE3F4,
(q15_t)0x83D6, (q15_t)0xE0E6, (q15_t)0x84A2, (q15_t)0xDDDC,
(q15_t)0x8582, (q15_t)0xDAD7, (q15_t)0x8675, (q15_t)0xD7D9,
(q15_t)0x877B, (q15_t)0xD4E0, (q15_t)0x8893, (q15_t)0xD1EE,
(q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8AFB, (q15_t)0xCC21,
(q15_t)0x8C4A, (q15_t)0xC945, (q15_t)0x8DAA, (q15_t)0xC673,
(q15_t)0x8F1D, (q15_t)0xC3A9, (q15_t)0x90A0, (q15_t)0xC0E8,
(q15_t)0x9235, (q15_t)0xBE31, (q15_t)0x93DB, (q15_t)0xBB85,
(q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9759, (q15_t)0xB64B,
(q15_t)0x9930, (q15_t)0xB3C0, (q15_t)0x9B17, (q15_t)0xB140,
(q15_t)0x9D0D, (q15_t)0xAECC, (q15_t)0x9F13, (q15_t)0xAC64,
(q15_t)0xA128, (q15_t)0xAA0A, (q15_t)0xA34B, (q15_t)0xA7BD,
(q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xA7BD, (q15_t)0xA34B,
(q15_t)0xAA0A, (q15_t)0xA128, (q15_t)0xAC64, (q15_t)0x9F13,
(q15_t)0xAECC, (q15_t)0x9D0D, (q15_t)0xB140, (q15_t)0x9B17,
(q15_t)0xB3C0, (q15_t)0x9930, (q15_t)0xB64B, (q15_t)0x9759,
(q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xBB85, (q15_t)0x93DB,
(q15_t)0xBE31, (q15_t)0x9235, (q15_t)0xC0E8, (q15_t)0x90A0,
(q15_t)0xC3A9, (q15_t)0x8F1D, (q15_t)0xC673, (q15_t)0x8DAA,
(q15_t)0xC945, (q15_t)0x8C4A, (q15_t)0xCC21, (q15_t)0x8AFB,
(q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xD1EE, (q15_t)0x8893,
(q15_t)0xD4E0, (q15_t)0x877B, (q15_t)0xD7D9, (q15_t)0x8675,
(q15_t)0xDAD7, (q15_t)0x8582, (q15_t)0xDDDC, (q15_t)0x84A2,
(q15_t)0xE0E6, (q15_t)0x83D6, (q15_t)0xE3F4, (q15_t)0x831C,
(q15_t)0xE707, (q15_t)0x8275, (q15_t)0xEA1D, (q15_t)0x81E2,
(q15_t)0xED37, (q15_t)0x8162, (q15_t)0xF054, (q15_t)0x80F6,
(q15_t)0xF374, (q15_t)0x809D, (q15_t)0xF695, (q15_t)0x8058,
(q15_t)0xF9B8, (q15_t)0x8027, (q15_t)0xFCDB, (q15_t)0x8009
};
/**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 512 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*//**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 1024 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*//**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 2048 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*//**
* \par
* Example code for q15 Twiddle factors Generation::
* \par
* <pre>for(i = 0; i< 3N/4; i++)
* {
* twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
* twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
* } </pre>
* \par
* where N = 4096 and PI = 3.14159265358979
* \par
* Cos and Sin values are interleaved fashion
* \par
* Convert Floating point to q15(Fixed point 1.15):
* round(twiddleCoefq15(i) * pow(2, 15))
*
*//**
* @} end of CFFT_CIFFT group
*/
/*
* @brief Q15 table for reciprocal
*/
const q15_t ALIGN4 armRecipTableQ15[64] = {
0x7F03, 0x7D13, 0x7B31, 0x795E, 0x7798, 0x75E0,
0x7434, 0x7294, 0x70FF, 0x6F76, 0x6DF6, 0x6C82,
0x6B16, 0x69B5, 0x685C, 0x670C, 0x65C4, 0x6484,
0x634C, 0x621C, 0x60F3, 0x5FD0, 0x5EB5, 0x5DA0,
0x5C91, 0x5B88, 0x5A85, 0x5988, 0x5890, 0x579E,
0x56B0, 0x55C8, 0x54E4, 0x5405, 0x532B, 0x5255,
0x5183, 0x50B6, 0x4FEC, 0x4F26, 0x4E64, 0x4DA6,
0x4CEC, 0x4C34, 0x4B81, 0x4AD0, 0x4A23, 0x4978,
0x48D1, 0x482D, 0x478C, 0x46ED, 0x4651, 0x45B8,
0x4521, 0x448D, 0x43FC, 0x436C, 0x42DF, 0x4255,
0x41CC, 0x4146, 0x40C2, 0x4040
};
/*
* @brief Q31 table for reciprocal
*/
const q31_t armRecipTableQ31[64] = {
0x7F03F03F, 0x7D137420, 0x7B31E739, 0x795E9F94, 0x7798FD29, 0x75E06928,
0x7434554D, 0x72943B4B, 0x70FF9C40, 0x6F760031, 0x6DF6F593, 0x6C8210E3,
0x6B16EC3A, 0x69B526F6, 0x685C655F, 0x670C505D, 0x65C4952D, 0x6484E519,
0x634CF53E, 0x621C7E4F, 0x60F33C61, 0x5FD0EEB3, 0x5EB55785, 0x5DA03BEB,
0x5C9163A1, 0x5B8898E6, 0x5A85A85A, 0x598860DF, 0x58909373, 0x579E1318,
0x56B0B4B8, 0x55C84F0B, 0x54E4BA80, 0x5405D124, 0x532B6E8F, 0x52556FD0,
0x5183B35A, 0x50B618F3, 0x4FEC81A2, 0x4F26CFA2, 0x4E64E64E, 0x4DA6AA1D,
0x4CEC008B, 0x4C34D010, 0x4B810016, 0x4AD078EF, 0x4A2323C4, 0x4978EA96,
0x48D1B827, 0x482D77FE, 0x478C1657, 0x46ED801D, 0x4651A2E5, 0x45B86CE2,
0x4521CCE1, 0x448DB244, 0x43FC0CFA, 0x436CCD78, 0x42DFE4B4, 0x42554426,
0x41CCDDB6, 0x4146A3C6, 0x40C28923, 0x40408102
};
const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH] =
{
/* 8x2, size 20 */
8,64, 24,72, 16,64, 40,80, 32,64, 56,88, 48,72, 88,104, 72,96, 104,112
};
const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH] =
{
/* 8x4, size 48 */
8,64, 16,128, 24,192, 32,64, 40,72, 48,136, 56,200, 64,128, 72,80, 88,208,
80,144, 96,192, 104,208, 112,152, 120,216, 136,192, 144,160, 168,208,
152,224, 176,208, 184,232, 216,240, 200,224, 232,240
};
const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH] =
{
/* radix 8, size 56 */
8,64, 16,128, 24,192, 32,256, 40,320, 48,384, 56,448, 80,136, 88,200,
96,264, 104,328, 112,392, 120,456, 152,208, 160,272, 168,336, 176,400,
184,464, 224,280, 232,344, 240,408, 248,472, 296,352, 304,416, 312,480,
368,424, 376,488, 440,496
};
const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH] =
{
/* 8x2, size 208 */
8,512, 16,64, 24,576, 32,128, 40,640, 48,192, 56,704, 64,256, 72,768,
80,320, 88,832, 96,384, 104,896, 112,448, 120,960, 128,512, 136,520,
144,768, 152,584, 160,520, 168,648, 176,200, 184,712, 192,264, 200,776,
208,328, 216,840, 224,392, 232,904, 240,456, 248,968, 264,528, 272,320,
280,592, 288,768, 296,656, 304,328, 312,720, 328,784, 344,848, 352,400,
360,912, 368,464, 376,976, 384,576, 392,536, 400,832, 408,600, 416,584,
424,664, 432,840, 440,728, 448,592, 456,792, 464,848, 472,856, 480,600,
488,920, 496,856, 504,984, 520,544, 528,576, 536,608, 552,672, 560,608,
568,736, 576,768, 584,800, 592,832, 600,864, 608,800, 616,928, 624,864,
632,992, 648,672, 656,896, 664,928, 688,904, 696,744, 704,896, 712,808,
720,912, 728,872, 736,928, 744,936, 752,920, 760,1000, 776,800, 784,832,
792,864, 808,904, 816,864, 824,920, 840,864, 856,880, 872,944, 888,1008,
904,928, 912,960, 920,992, 944,968, 952,1000, 968,992, 984,1008
};
const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH] =
{
/* 8x4, size 440 */
8,512, 16,1024, 24,1536, 32,64, 40,576, 48,1088, 56,1600, 64,128, 72,640,
80,1152, 88,1664, 96,192, 104,704, 112,1216, 120,1728, 128,256, 136,768,
144,1280, 152,1792, 160,320, 168,832, 176,1344, 184,1856, 192,384,
200,896, 208,1408, 216,1920, 224,448, 232,960, 240,1472, 248,1984,
256,512, 264,520, 272,1032, 280,1544, 288,640, 296,584, 304,1096, 312,1608,
320,768, 328,648, 336,1160, 344,1672, 352,896, 360,712, 368,1224, 376,1736,
384,520, 392,776, 400,1288, 408,1800, 416,648, 424,840, 432,1352, 440,1864,
448,776, 456,904, 464,1416, 472,1928, 480,904, 488,968, 496,1480, 504,1992,
520,528, 512,1024, 528,1040, 536,1552, 544,1152, 552,592, 560,1104,
568,1616, 576,1280, 584,656, 592,1168, 600,1680, 608,1408, 616,720,
624,1232, 632,1744, 640,1032, 648,784, 656,1296, 664,1808, 672,1160,
680,848, 688,1360, 696,1872, 704,1288, 712,912, 720,1424, 728,1936,
736,1416, 744,976, 752,1488, 760,2000, 768,1536, 776,1552, 784,1048,
792,1560, 800,1664, 808,1680, 816,1112, 824,1624, 832,1792, 840,1808,
848,1176, 856,1688, 864,1920, 872,1936, 880,1240, 888,1752, 896,1544,
904,1560, 912,1304, 920,1816, 928,1672, 936,1688, 944,1368, 952,1880,
960,1800, 968,1816, 976,1432, 984,1944, 992,1928, 1000,1944, 1008,1496,
1016,2008, 1032,1152, 1040,1056, 1048,1568, 1064,1408, 1072,1120,
1080,1632, 1088,1536, 1096,1160, 1104,1184, 1112,1696, 1120,1552,
1128,1416, 1136,1248, 1144,1760, 1160,1664, 1168,1312, 1176,1824,
1184,1544, 1192,1920, 1200,1376, 1208,1888, 1216,1568, 1224,1672,
1232,1440, 1240,1952, 1248,1560, 1256,1928, 1264,1504, 1272,2016,
1288,1312, 1296,1408, 1304,1576, 1320,1424, 1328,1416, 1336,1640,
1344,1792, 1352,1824, 1360,1920, 1368,1704, 1376,1800, 1384,1432,
1392,1928, 1400,1768, 1416,1680, 1432,1832, 1440,1576, 1448,1936,
1456,1832, 1464,1896, 1472,1808, 1480,1688, 1488,1936, 1496,1960,
1504,1816, 1512,1944, 1520,1944, 1528,2024, 1560,1584, 1592,1648,
1600,1792, 1608,1920, 1616,1800, 1624,1712, 1632,1808, 1640,1936,
1648,1816, 1656,1776, 1672,1696, 1688,1840, 1704,1952, 1712,1928,
1720,1904, 1728,1824, 1736,1952, 1744,1832, 1752,1968, 1760,1840,
1768,1960, 1776,1944, 1784,2032, 1864,1872, 1848,1944, 1872,1888,
1880,1904, 1888,1984, 1896,2000, 1912,2032, 1904,2016, 1976,2032,
1960,1968, 2008,2032, 1992,2016, 2024,2032
};
const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH] =
{
/* radix 8, size 448 */
8,512, 16,1024, 24,1536, 32,2048, 40,2560, 48,3072, 56,3584, 72,576,
80,1088, 88,1600, 96,2112, 104,2624, 112,3136, 120,3648, 136,640, 144,1152,
152,1664, 160,2176, 168,2688, 176,3200, 184,3712, 200,704, 208,1216,
216,1728, 224,2240, 232,2752, 240,3264, 248,3776, 264,768, 272,1280,
280,1792, 288,2304, 296,2816, 304,3328, 312,3840, 328,832, 336,1344,
344,1856, 352,2368, 360,2880, 368,3392, 376,3904, 392,896, 400,1408,
408,1920, 416,2432, 424,2944, 432,3456, 440,3968, 456,960, 464,1472,
472,1984, 480,2496, 488,3008, 496,3520, 504,4032, 528,1032, 536,1544,
544,2056, 552,2568, 560,3080, 568,3592, 592,1096, 600,1608, 608,2120,
616,2632, 624,3144, 632,3656, 656,1160, 664,1672, 672,2184, 680,2696,
688,3208, 696,3720, 720,1224, 728,1736, 736,2248, 744,2760, 752,3272,
760,3784, 784,1288, 792,1800, 800,2312, 808,2824, 816,3336, 824,3848,
848,1352, 856,1864, 864,2376, 872,2888, 880,3400, 888,3912, 912,1416,
920,1928, 928,2440, 936,2952, 944,3464, 952,3976, 976,1480, 984,1992,
992,2504, 1000,3016, 1008,3528, 1016,4040, 1048,1552, 1056,2064, 1064,2576,
1072,3088, 1080,3600, 1112,1616, 1120,2128, 1128,2640, 1136,3152,
1144,3664, 1176,1680, 1184,2192, 1192,2704, 1200,3216, 1208,3728,
1240,1744, 1248,2256, 1256,2768, 1264,3280, 1272,3792, 1304,1808,
1312,2320, 1320,2832, 1328,3344, 1336,3856, 1368,1872, 1376,2384,
1384,2896, 1392,3408, 1400,3920, 1432,1936, 1440,2448, 1448,2960,
1456,3472, 1464,3984, 1496,2000, 1504,2512, 1512,3024, 1520,3536,
1528,4048, 1568,2072, 1576,2584, 1584,3096, 1592,3608, 1632,2136,
1640,2648, 1648,3160, 1656,3672, 1696,2200, 1704,2712, 1712,3224,
1720,3736, 1760,2264, 1768,2776, 1776,3288, 1784,3800, 1824,2328,
1832,2840, 1840,3352, 1848,3864, 1888,2392, 1896,2904, 1904,3416,
1912,3928, 1952,2456, 1960,2968, 1968,3480, 1976,3992, 2016,2520,
2024,3032, 2032,3544, 2040,4056, 2088,2592, 2096,3104, 2104,3616,
2152,2656, 2160,3168, 2168,3680, 2216,2720, 2224,3232, 2232,3744,
2280,2784, 2288,3296, 2296,3808, 2344,2848, 2352,3360, 2360,3872,
2408,2912, 2416,3424, 2424,3936, 2472,2976, 2480,3488, 2488,4000,
2536,3040, 2544,3552, 2552,4064, 2608,3112, 2616,3624, 2672,3176,
2680,3688, 2736,3240, 2744,3752, 2800,3304, 2808,3816, 2864,3368,
2872,3880, 2928,3432, 2936,3944, 2992,3496, 3000,4008, 3056,3560,
3064,4072, 3128,3632, 3192,3696, 3256,3760, 3320,3824, 3384,3888,
3448,3952, 3512,4016, 3576,4080
};
const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH] =
{
/* 8x2, size 1800 *//* 8x2, size 3808 *//* radix 8, size 4032 *//* radix 4, size 12 */
8,64, 16,32, 24,96, 40,80, 56,112, 88,104
};
const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH] =
{
/* 4x2, size 24 */
8,128, 16,64, 24,192, 40,160, 48,96, 56,224, 72,144,
88,208, 104,176, 120,240, 152,200, 184,232
};
const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH] =
{
/* radix 4, size 56 */
8,256, 16,128, 24,384, 32,64, 40,320, 48,192, 56,448, 72,288, 80,160, 88,416, 104,352,
112,224, 120,480, 136,272, 152,400, 168,336, 176,208, 184,464, 200,304, 216,432,
232,368, 248,496, 280,392, 296,328, 312,456, 344,424, 376,488, 440,472
};
const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH] =
{
/* 4x2, size 112 */
8,512, 16,256, 24,768, 32,128, 40,640, 48,384, 56,896, 72,576, 80,320, 88,832, 96,192,
104,704, 112,448, 120,960, 136,544, 144,288, 152,800, 168,672, 176,416, 184,928, 200,608,
208,352, 216,864, 232,736, 240,480, 248,992, 264,528, 280,784, 296,656, 304,400, 312,912,
328,592, 344,848, 360,720, 368,464, 376,976, 392,560, 408,816, 424,688, 440,944, 456,624,
472,880, 488,752, 504,1008, 536,776, 552,648, 568,904, 600,840, 616,712, 632,968,
664,808, 696,936, 728,872, 760,1000, 824,920, 888,984
};
const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH] =
{
/* radix 4, size 240 */
8,1024, 16,512, 24,1536, 32,256, 40,1280, 48,768, 56,1792, 64,128, 72,1152, 80,640,
88,1664, 96,384, 104,1408, 112,896, 120,1920, 136,1088, 144,576, 152,1600, 160,320,
168,1344, 176,832, 184,1856, 200,1216, 208,704, 216,1728, 224,448, 232,1472, 240,960,
248,1984, 264,1056, 272,544, 280,1568, 296,1312, 304,800, 312,1824, 328,1184, 336,672,
344,1696, 352,416, 360,1440, 368,928, 376,1952, 392,1120, 400,608, 408,1632, 424,1376,
432,864, 440,1888, 456,1248, 464,736, 472,1760, 488,1504, 496,992, 504,2016, 520,1040,
536,1552, 552,1296, 560,784, 568,1808, 584,1168, 592,656, 600,1680, 616,1424, 624,912,
632,1936, 648,1104, 664,1616, 680,1360, 688,848, 696,1872, 712,1232, 728,1744, 744,1488,
752,976, 760,2000, 776,1072, 792,1584, 808,1328, 824,1840, 840,1200, 856,1712, 872,1456,
880,944, 888,1968, 904,1136, 920,1648, 936,1392, 952,1904, 968,1264, 984,1776, 1000,1520,
1016,2032, 1048,1544, 1064,1288, 1080,1800, 1096,1160, 1112,1672, 1128,1416, 1144,1928,
1176,1608, 1192,1352, 1208,1864, 1240,1736, 1256,1480, 1272,1992, 1304,1576, 1336,1832,
1368,1704, 1384,1448, 1400,1960, 1432,1640, 1464,1896, 1496,1768, 1528,2024, 1592,1816,
1624,1688, 1656,1944, 1720,1880, 1784,2008, 1912,1976
};
const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH] =
{
/* 4x2, size 480 */
8,2048, 16,1024, 24,3072, 32,512, 40,2560, 48,1536, 56,3584, 64,256, 72,2304, 80,1280,
88,3328, 96,768, 104,2816, 112,1792, 120,3840, 136,2176, 144,1152, 152,3200, 160,640,
168,2688, 176,1664, 184,3712, 192,384, 200,2432, 208,1408, 216,3456, 224,896, 232,2944,
240,1920, 248,3968, 264,2112, 272,1088, 280,3136, 288,576, 296,2624, 304,1600, 312,3648,
328,2368, 336,1344, 344,3392, 352,832, 360,2880, 368,1856, 376,3904, 392,2240, 400,1216,
408,3264, 416,704, 424,2752, 432,1728, 440,3776, 456,2496, 464,1472, 472,3520, 480,960,
488,3008, 496,1984, 504,4032, 520,2080, 528,1056, 536,3104, 552,2592, 560,1568, 568,3616,
584,2336, 592,1312, 600,3360, 608,800, 616,2848, 624,1824, 632,3872, 648,2208, 656,1184,
664,3232, 680,2720, 688,1696, 696,3744, 712,2464, 720,1440, 728,3488, 736,928, 744,2976,
752,1952, 760,4000, 776,2144, 784,1120, 792,3168, 808,2656, 816,1632, 824,3680, 840,2400,
848,1376, 856,3424, 872,2912, 880,1888, 888,3936, 904,2272, 912,1248, 920,3296, 936,2784,
944,1760, 952,3808, 968,2528, 976,1504, 984,3552, 1000,3040, 1008,2016, 1016,4064,
1032,2064, 1048,3088, 1064,2576, 1072,1552, 1080,3600, 1096,2320, 1104,1296, 1112,3344,
1128,2832, 1136,1808, 1144,3856, 1160,2192, 1176,3216, 1192,2704, 1200,1680, 1208,3728,
1224,2448, 1232,1424, 1240,3472, 1256,2960, 1264,1936, 1272,3984, 1288,2128, 1304,3152,
1320,2640, 1328,1616, 1336,3664, 1352,2384, 1368,3408, 1384,2896, 1392,1872, 1400,3920,
1416,2256, 1432,3280, 1448,2768, 1456,1744, 1464,3792, 1480,2512, 1496,3536, 1512,3024,
1520,2000, 1528,4048, 1544,2096, 1560,3120, 1576,2608, 1592,3632, 1608,2352, 1624,3376,
1640,2864, 1648,1840, 1656,3888, 1672,2224, 1688,3248, 1704,2736, 1720,3760, 1736,2480,
1752,3504, 1768,2992, 1776,1968, 1784,4016, 1800,2160, 1816,3184, 1832,2672, 1848,3696,
1864,2416, 1880,3440, 1896,2928, 1912,3952, 1928,2288, 1944,3312, 1960,2800, 1976,3824,
1992,2544, 2008,3568, 2024,3056, 2040,4080, 2072,3080, 2088,2568, 2104,3592, 2120,2312,
2136,3336, 2152,2824, 2168,3848, 2200,3208, 2216,2696, 2232,3720, 2248,2440, 2264,3464,
2280,2952, 2296,3976, 2328,3144, 2344,2632, 2360,3656, 2392,3400, 2408,2888, 2424,3912,
2456,3272, 2472,2760, 2488,3784, 2520,3528, 2536,3016, 2552,4040, 2584,3112, 2616,3624,
2648,3368, 2664,2856, 2680,3880, 2712,3240, 2744,3752, 2776,3496, 2792,2984, 2808,4008,
2840,3176, 2872,3688, 2904,3432, 2936,3944, 2968,3304, 3000,3816, 3032,3560, 3064,4072,
3128,3608, 3160,3352, 3192,3864, 3256,3736, 3288,3480, 3320,3992, 3384,3672, 3448,3928,
3512,3800, 3576,4056, 3704,3896, 3832,4024
};
const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH] =
{
/* radix 4, size 992 */
8,4096, 16,2048, 24,6144, 32,1024, 40,5120, 48,3072, 56,7168, 64,512, 72,4608,
80,2560, 88,6656, 96,1536, 104,5632, 112,3584, 120,7680, 128,256, 136,4352,
144,2304, 152,6400, 160,1280, 168,5376, 176,3328, 184,7424, 192,768, 200,4864,
208,2816, 216,6912, 224,1792, 232,5888, 240,3840, 248,7936, 264,4224, 272,2176,
280,6272, 288,1152, 296,5248, 304,3200, 312,7296, 320,640, 328,4736, 336,2688,
344,6784, 352,1664, 360,5760, 368,3712, 376,7808, 392,4480, 400,2432, 408,6528,
416,1408, 424,5504, 432,3456, 440,7552, 448,896, 456,4992, 464,2944, 472,7040,
480,1920, 488,6016, 496,3968, 504,8064, 520,4160, 528,2112, 536,6208, 544,1088,
552,5184, 560,3136, 568,7232, 584,4672, 592,2624, 600,6720, 608,1600, 616,5696,
624,3648, 632,7744, 648,4416, 656,2368, 664,6464, 672,1344, 680,5440, 688,3392,
696,7488, 704,832, 712,4928, 720,2880, 728,6976, 736,1856, 744,5952, 752,3904,
760,8000, 776,4288, 784,2240, 792,6336, 800,1216, 808,5312, 816,3264, 824,7360,
840,4800, 848,2752, 856,6848, 864,1728, 872,5824, 880,3776, 888,7872, 904,4544,
912,2496, 920,6592, 928,1472, 936,5568, 944,3520, 952,7616, 968,5056, 976,3008,
984,7104, 992,1984, 1000,6080, 1008,4032, 1016,8128, 1032,4128, 1040,2080,
1048,6176, 1064,5152, 1072,3104, 1080,7200, 1096,4640, 1104,2592, 1112,6688,
1120,1568, 1128,5664, 1136,3616, 1144,7712, 1160,4384, 1168,2336, 1176,6432,
1184,1312, 1192,5408, 1200,3360, 1208,7456, 1224,4896, 1232,2848, 1240,6944,
1248,1824, 1256,5920, 1264,3872, 1272,7968, 1288,4256, 1296,2208, 1304,6304,
1320,5280, 1328,3232, 1336,7328, 1352,4768, 1360,2720, 1368,6816, 1376,1696,
1384,5792, 1392,3744, 1400,7840, 1416,4512, 1424,2464, 1432,6560, 1448,5536,
1456,3488, 1464,7584, 1480,5024, 1488,2976, 1496,7072, 1504,1952, 1512,6048,
1520,4000, 1528,8096, 1544,4192, 1552,2144, 1560,6240, 1576,5216, 1584,3168,
1592,7264, 1608,4704, 1616,2656, 1624,6752, 1640,5728, 1648,3680, 1656,7776,
1672,4448, 1680,2400, 1688,6496, 1704,5472, 1712,3424, 1720,7520, 1736,4960,
1744,2912, 1752,7008, 1760,1888, 1768,5984, 1776,3936, 1784,8032, 1800,4320,
1808,2272, 1816,6368, 1832,5344, 1840,3296, 1848,7392, 1864,4832, 1872,2784,
1880,6880, 1896,5856, 1904,3808, 1912,7904, 1928,4576, 1936,2528, 1944,6624,
1960,5600, 1968,3552, 1976,7648, 1992,5088, 2000,3040, 2008,7136, 2024,6112,
2032,4064, 2040,8160, 2056,4112, 2072,6160, 2088,5136, 2096,3088, 2104,7184,
2120,4624, 2128,2576, 2136,6672, 2152,5648, 2160,3600, 2168,7696, 2184,4368,
2192,2320, 2200,6416, 2216,5392, 2224,3344, 2232,7440, 2248,4880, 2256,2832,
2264,6928, 2280,5904, 2288,3856, 2296,7952, 2312,4240, 2328,6288, 2344,5264,
2352,3216, 2360,7312, 2376,4752, 2384,2704, 2392,6800, 2408,5776, 2416,3728,
2424,7824, 2440,4496, 2456,6544, 2472,5520, 2480,3472, 2488,7568, 2504,5008,
2512,2960, 2520,7056, 2536,6032, 2544,3984, 2552,8080, 2568,4176, 2584,6224,
2600,5200, 2608,3152, 2616,7248, 2632,4688, 2648,6736, 2664,5712, 2672,3664,
2680,7760, 2696,4432, 2712,6480, 2728,5456, 2736,3408, 2744,7504, 2760,4944,
2768,2896, 2776,6992, 2792,5968, 2800,3920, 2808,8016, 2824,4304, 2840,6352,
2856,5328, 2864,3280, 2872,7376, 2888,4816, 2904,6864, 2920,5840, 2928,3792,
2936,7888, 2952,4560, 2968,6608, 2984,5584, 2992,3536, 3000,7632, 3016,5072,
3032,7120, 3048,6096, 3056,4048, 3064,8144, 3080,4144, 3096,6192, 3112,5168,
3128,7216, 3144,4656, 3160,6704, 3176,5680, 3184,3632, 3192,7728, 3208,4400,
3224,6448, 3240,5424, 3248,3376, 3256,7472, 3272,4912, 3288,6960, 3304,5936,
3312,3888, 3320,7984, 3336,4272, 3352,6320, 3368,5296, 3384,7344, 3400,4784,
3416,6832, 3432,5808, 3440,3760, 3448,7856, 3464,4528, 3480,6576, 3496,5552,
3512,7600, 3528,5040, 3544,7088, 3560,6064, 3568,4016, 3576,8112, 3592,4208,
3608,6256, 3624,5232, 3640,7280, 3656,4720, 3672,6768, 3688,5744, 3704,7792,
3720,4464, 3736,6512, 3752,5488, 3768,7536, 3784,4976, 3800,7024, 3816,6000,
3824,3952, 3832,8048, 3848,4336, 3864,6384, 3880,5360, 3896,7408, 3912,4848,
3928,6896, 3944,5872, 3960,7920, 3976,4592, 3992,6640, 4008,5616, 4024,7664,
4040,5104, 4056,7152, 4072,6128, 4088,8176, 4120,6152, 4136,5128, 4152,7176,
4168,4616, 4184,6664, 4200,5640, 4216,7688, 4232,4360, 4248,6408, 4264,5384,
4280,7432, 4296,4872, 4312,6920, 4328,5896, 4344,7944, 4376,6280, 4392,5256,
4408,7304, 4424,4744, 4440,6792, 4456,5768, 4472,7816, 4504,6536, 4520,5512,
4536,7560, 4552,5000, 4568,7048, 4584,6024, 4600,8072, 4632,6216, 4648,5192,
4664,7240, 4696,6728, 4712,5704, 4728,7752, 4760,6472, 4776,5448, 4792,7496,
4808,4936, 4824,6984, 4840,5960, 4856,8008, 4888,6344, 4904,5320, 4920,7368,
4952,6856, 4968,5832, 4984,7880, 5016,6600, 5032,5576, 5048,7624, 5080,7112,
5096,6088, 5112,8136, 5144,6184, 5176,7208, 5208,6696, 5224,5672, 5240,7720,
5272,6440, 5288,5416, 5304,7464, 5336,6952, 5352,5928, 5368,7976, 5400,6312,
5432,7336, 5464,6824, 5480,5800, 5496,7848, 5528,6568, 5560,7592, 5592,7080,
5608,6056, 5624,8104, 5656,6248, 5688,7272, 5720,6760, 5752,7784, 5784,6504,
5816,7528, 5848,7016, 5864,5992, 5880,8040, 5912,6376, 5944,7400, 5976,6888,
6008,7912, 6040,6632, 6072,7656, 6104,7144, 6136,8168, 6200,7192, 6232,6680,
6264,7704, 6296,6424, 6328,7448, 6360,6936, 6392,7960, 6456,7320, 6488,6808,
6520,7832, 6584,7576, 6616,7064, 6648,8088, 6712,7256, 6776,7768, 6840,7512,
6872,7000, 6904,8024, 6968,7384, 7032,7896, 7096,7640, 7160,8152, 7288,7736,
7352,7480, 7416,7992, 7544,7864, 7672,8120, 7928,8056
};
const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH] =
{
/* 4x2, size 1984 *//* radix 4, size 4032 *//**
* \par
* Example code for Floating-point RFFT Twiddle factors Generation:
* \par
* <pre>TW = exp(2*pi*i*[0:L/2-1]/L - pi/2*i).' </pre>
* \par
* Real and Imag values are in interleaved fashion
*//**
* \par
* Example code for the generation of the floating-point sine table:
* <pre>
* tableSize = 512;
* for(n = 0; n < (tableSize + 1); n++)
* {
* sinTable[n]=sin(2*pi*n/tableSize);
* }</pre>
* \par
* where pi value is 3.14159265358979
*/
const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1] = {
0.00000000f, 0.01227154f, 0.02454123f, 0.03680722f, 0.04906767f, 0.06132074f,
0.07356456f, 0.08579731f, 0.09801714f, 0.11022221f, 0.12241068f, 0.13458071f,
0.14673047f, 0.15885814f, 0.17096189f, 0.18303989f, 0.19509032f, 0.20711138f,
0.21910124f, 0.23105811f, 0.24298018f, 0.25486566f, 0.26671276f, 0.27851969f,
0.29028468f, 0.30200595f, 0.31368174f, 0.32531029f, 0.33688985f, 0.34841868f,
0.35989504f, 0.37131719f, 0.38268343f, 0.39399204f, 0.40524131f, 0.41642956f,
0.42755509f, 0.43861624f, 0.44961133f, 0.46053871f, 0.47139674f, 0.48218377f,
0.49289819f, 0.50353838f, 0.51410274f, 0.52458968f, 0.53499762f, 0.54532499f,
0.55557023f, 0.56573181f, 0.57580819f, 0.58579786f, 0.59569930f, 0.60551104f,
0.61523159f, 0.62485949f, 0.63439328f, 0.64383154f, 0.65317284f, 0.66241578f,
0.67155895f, 0.68060100f, 0.68954054f, 0.69837625f, 0.70710678f, 0.71573083f,
0.72424708f, 0.73265427f, 0.74095113f, 0.74913639f, 0.75720885f, 0.76516727f,
0.77301045f, 0.78073723f, 0.78834643f, 0.79583690f, 0.80320753f, 0.81045720f,
0.81758481f, 0.82458930f, 0.83146961f, 0.83822471f, 0.84485357f, 0.85135519f,
0.85772861f, 0.86397286f, 0.87008699f, 0.87607009f, 0.88192126f, 0.88763962f,
0.89322430f, 0.89867447f, 0.90398929f, 0.90916798f, 0.91420976f, 0.91911385f,
0.92387953f, 0.92850608f, 0.93299280f, 0.93733901f, 0.94154407f, 0.94560733f,
0.94952818f, 0.95330604f, 0.95694034f, 0.96043052f, 0.96377607f, 0.96697647f,
0.97003125f, 0.97293995f, 0.97570213f, 0.97831737f, 0.98078528f, 0.98310549f,
0.98527764f, 0.98730142f, 0.98917651f, 0.99090264f, 0.99247953f, 0.99390697f,
0.99518473f, 0.99631261f, 0.99729046f, 0.99811811f, 0.99879546f, 0.99932238f,
0.99969882f, 0.99992470f, 1.00000000f, 0.99992470f, 0.99969882f, 0.99932238f,
0.99879546f, 0.99811811f, 0.99729046f, 0.99631261f, 0.99518473f, 0.99390697f,
0.99247953f, 0.99090264f, 0.98917651f, 0.98730142f, 0.98527764f, 0.98310549f,
0.98078528f, 0.97831737f, 0.97570213f, 0.97293995f, 0.97003125f, 0.96697647f,
0.96377607f, 0.96043052f, 0.95694034f, 0.95330604f, 0.94952818f, 0.94560733f,
0.94154407f, 0.93733901f, 0.93299280f, 0.92850608f, 0.92387953f, 0.91911385f,
0.91420976f, 0.90916798f, 0.90398929f, 0.89867447f, 0.89322430f, 0.88763962f,
0.88192126f, 0.87607009f, 0.87008699f, 0.86397286f, 0.85772861f, 0.85135519f,
0.84485357f, 0.83822471f, 0.83146961f, 0.82458930f, 0.81758481f, 0.81045720f,
0.80320753f, 0.79583690f, 0.78834643f, 0.78073723f, 0.77301045f, 0.76516727f,
0.75720885f, 0.74913639f, 0.74095113f, 0.73265427f, 0.72424708f, 0.71573083f,
0.70710678f, 0.69837625f, 0.68954054f, 0.68060100f, 0.67155895f, 0.66241578f,
0.65317284f, 0.64383154f, 0.63439328f, 0.62485949f, 0.61523159f, 0.60551104f,
0.59569930f, 0.58579786f, 0.57580819f, 0.56573181f, 0.55557023f, 0.54532499f,
0.53499762f, 0.52458968f, 0.51410274f, 0.50353838f, 0.49289819f, 0.48218377f,
0.47139674f, 0.46053871f, 0.44961133f, 0.43861624f, 0.42755509f, 0.41642956f,
0.40524131f, 0.39399204f, 0.38268343f, 0.37131719f, 0.35989504f, 0.34841868f,
0.33688985f, 0.32531029f, 0.31368174f, 0.30200595f, 0.29028468f, 0.27851969f,
0.26671276f, 0.25486566f, 0.24298018f, 0.23105811f, 0.21910124f, 0.20711138f,
0.19509032f, 0.18303989f, 0.17096189f, 0.15885814f, 0.14673047f, 0.13458071f,
0.12241068f, 0.11022221f, 0.09801714f, 0.08579731f, 0.07356456f, 0.06132074f,
0.04906767f, 0.03680722f, 0.02454123f, 0.01227154f, 0.00000000f, -0.01227154f,
-0.02454123f, -0.03680722f, -0.04906767f, -0.06132074f, -0.07356456f,
-0.08579731f, -0.09801714f, -0.11022221f, -0.12241068f, -0.13458071f,
-0.14673047f, -0.15885814f, -0.17096189f, -0.18303989f, -0.19509032f,
-0.20711138f, -0.21910124f, -0.23105811f, -0.24298018f, -0.25486566f,
-0.26671276f, -0.27851969f, -0.29028468f, -0.30200595f, -0.31368174f,
-0.32531029f, -0.33688985f, -0.34841868f, -0.35989504f, -0.37131719f,
-0.38268343f, -0.39399204f, -0.40524131f, -0.41642956f, -0.42755509f,
-0.43861624f, -0.44961133f, -0.46053871f, -0.47139674f, -0.48218377f,
-0.49289819f, -0.50353838f, -0.51410274f, -0.52458968f, -0.53499762f,
-0.54532499f, -0.55557023f, -0.56573181f, -0.57580819f, -0.58579786f,
-0.59569930f, -0.60551104f, -0.61523159f, -0.62485949f, -0.63439328f,
-0.64383154f, -0.65317284f, -0.66241578f, -0.67155895f, -0.68060100f,
-0.68954054f, -0.69837625f, -0.70710678f, -0.71573083f, -0.72424708f,
-0.73265427f, -0.74095113f, -0.74913639f, -0.75720885f, -0.76516727f,
-0.77301045f, -0.78073723f, -0.78834643f, -0.79583690f, -0.80320753f,
-0.81045720f, -0.81758481f, -0.82458930f, -0.83146961f, -0.83822471f,
-0.84485357f, -0.85135519f, -0.85772861f, -0.86397286f, -0.87008699f,
-0.87607009f, -0.88192126f, -0.88763962f, -0.89322430f, -0.89867447f,
-0.90398929f, -0.90916798f, -0.91420976f, -0.91911385f, -0.92387953f,
-0.92850608f, -0.93299280f, -0.93733901f, -0.94154407f, -0.94560733f,
-0.94952818f, -0.95330604f, -0.95694034f, -0.96043052f, -0.96377607f,
-0.96697647f, -0.97003125f, -0.97293995f, -0.97570213f, -0.97831737f,
-0.98078528f, -0.98310549f, -0.98527764f, -0.98730142f, -0.98917651f,
-0.99090264f, -0.99247953f, -0.99390697f, -0.99518473f, -0.99631261f,
-0.99729046f, -0.99811811f, -0.99879546f, -0.99932238f, -0.99969882f,
-0.99992470f, -1.00000000f, -0.99992470f, -0.99969882f, -0.99932238f,
-0.99879546f, -0.99811811f, -0.99729046f, -0.99631261f, -0.99518473f,
-0.99390697f, -0.99247953f, -0.99090264f, -0.98917651f, -0.98730142f,
-0.98527764f, -0.98310549f, -0.98078528f, -0.97831737f, -0.97570213f,
-0.97293995f, -0.97003125f, -0.96697647f, -0.96377607f, -0.96043052f,
-0.95694034f, -0.95330604f, -0.94952818f, -0.94560733f, -0.94154407f,
-0.93733901f, -0.93299280f, -0.92850608f, -0.92387953f, -0.91911385f,
-0.91420976f, -0.90916798f, -0.90398929f, -0.89867447f, -0.89322430f,
-0.88763962f, -0.88192126f, -0.87607009f, -0.87008699f, -0.86397286f,
-0.85772861f, -0.85135519f, -0.84485357f, -0.83822471f, -0.83146961f,
-0.82458930f, -0.81758481f, -0.81045720f, -0.80320753f, -0.79583690f,
-0.78834643f, -0.78073723f, -0.77301045f, -0.76516727f, -0.75720885f,
-0.74913639f, -0.74095113f, -0.73265427f, -0.72424708f, -0.71573083f,
-0.70710678f, -0.69837625f, -0.68954054f, -0.68060100f, -0.67155895f,
-0.66241578f, -0.65317284f, -0.64383154f, -0.63439328f, -0.62485949f,
-0.61523159f, -0.60551104f, -0.59569930f, -0.58579786f, -0.57580819f,
-0.56573181f, -0.55557023f, -0.54532499f, -0.53499762f, -0.52458968f,
-0.51410274f, -0.50353838f, -0.49289819f, -0.48218377f, -0.47139674f,
-0.46053871f, -0.44961133f, -0.43861624f, -0.42755509f, -0.41642956f,
-0.40524131f, -0.39399204f, -0.38268343f, -0.37131719f, -0.35989504f,
-0.34841868f, -0.33688985f, -0.32531029f, -0.31368174f, -0.30200595f,
-0.29028468f, -0.27851969f, -0.26671276f, -0.25486566f, -0.24298018f,
-0.23105811f, -0.21910124f, -0.20711138f, -0.19509032f, -0.18303989f,
-0.17096189f, -0.15885814f, -0.14673047f, -0.13458071f, -0.12241068f,
-0.11022221f, -0.09801714f, -0.08579731f, -0.07356456f, -0.06132074f,
-0.04906767f, -0.03680722f, -0.02454123f, -0.01227154f, -0.00000000f
};
/**
* \par
* Table values are in Q31 (1.31 fixed-point format) and generation is done in
* three steps. First, generate sin values in floating point:
* <pre>
* tableSize = 512;
* for(n = 0; n < (tableSize + 1); n++)
* {
* sinTable[n]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q31 (Fixed point):
* (sinTable[i] * pow(2, 31))
* \par
* Finally, round to the nearest integer value:
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1] = {
0L, 26352928L, 52701887L, 79042909L, 105372028L, 131685278L, 157978697L,
184248325L, 210490206L, 236700388L, 262874923L, 289009871L, 315101295L,
341145265L, 367137861L, 393075166L, 418953276L, 444768294L, 470516330L,
496193509L, 521795963L, 547319836L, 572761285L, 598116479L, 623381598L,
648552838L, 673626408L, 698598533L, 723465451L, 748223418L, 772868706L,
797397602L, 821806413L, 846091463L, 870249095L, 894275671L, 918167572L,
941921200L, 965532978L, 988999351L, 1012316784L, 1035481766L, 1058490808L,
1081340445L, 1104027237L, 1126547765L, 1148898640L, 1171076495L, 1193077991L,
1214899813L, 1236538675L, 1257991320L, 1279254516L, 1300325060L, 1321199781L,
1341875533L, 1362349204L, 1382617710L, 1402678000L, 1422527051L, 1442161874L,
1461579514L, 1480777044L, 1499751576L, 1518500250L, 1537020244L, 1555308768L,
1573363068L, 1591180426L, 1608758157L, 1626093616L, 1643184191L, 1660027308L,
1676620432L, 1692961062L, 1709046739L, 1724875040L, 1740443581L, 1755750017L,
1770792044L, 1785567396L, 1800073849L, 1814309216L, 1828271356L, 1841958164L,
1855367581L, 1868497586L, 1881346202L, 1893911494L, 1906191570L, 1918184581L,
1929888720L, 1941302225L, 1952423377L, 1963250501L, 1973781967L, 1984016189L,
1993951625L, 2003586779L, 2012920201L, 2021950484L, 2030676269L, 2039096241L,
2047209133L, 2055013723L, 2062508835L, 2069693342L, 2076566160L, 2083126254L,
2089372638L, 2095304370L, 2100920556L, 2106220352L, 2111202959L, 2115867626L,
2120213651L, 2124240380L, 2127947206L, 2131333572L, 2134398966L, 2137142927L,
2139565043L, 2141664948L, 2143442326L, 2144896910L, 2146028480L, 2146836866L,
2147321946L, 2147483647L, 2147321946L, 2146836866L, 2146028480L, 2144896910L,
2143442326L, 2141664948L, 2139565043L, 2137142927L, 2134398966L, 2131333572L,
2127947206L, 2124240380L, 2120213651L, 2115867626L, 2111202959L, 2106220352L,
2100920556L, 2095304370L, 2089372638L, 2083126254L, 2076566160L, 2069693342L,
2062508835L, 2055013723L, 2047209133L, 2039096241L, 2030676269L, 2021950484L,
2012920201L, 2003586779L, 1993951625L, 1984016189L, 1973781967L, 1963250501L,
1952423377L, 1941302225L, 1929888720L, 1918184581L, 1906191570L, 1893911494L,
1881346202L, 1868497586L, 1855367581L, 1841958164L, 1828271356L, 1814309216L,
1800073849L, 1785567396L, 1770792044L, 1755750017L, 1740443581L, 1724875040L,
1709046739L, 1692961062L, 1676620432L, 1660027308L, 1643184191L, 1626093616L,
1608758157L, 1591180426L, 1573363068L, 1555308768L, 1537020244L, 1518500250L,
1499751576L, 1480777044L, 1461579514L, 1442161874L, 1422527051L, 1402678000L,
1382617710L, 1362349204L, 1341875533L, 1321199781L, 1300325060L, 1279254516L,
1257991320L, 1236538675L, 1214899813L, 1193077991L, 1171076495L, 1148898640L,
1126547765L, 1104027237L, 1081340445L, 1058490808L, 1035481766L, 1012316784L,
988999351L, 965532978L, 941921200L, 918167572L, 894275671L, 870249095L,
846091463L, 821806413L, 797397602L, 772868706L, 748223418L, 723465451L,
698598533L, 673626408L, 648552838L, 623381598L, 598116479L, 572761285L,
547319836L, 521795963L, 496193509L, 470516330L, 444768294L, 418953276L,
393075166L, 367137861L, 341145265L, 315101295L, 289009871L, 262874923L,
236700388L, 210490206L, 184248325L, 157978697L, 131685278L, 105372028L,
79042909L, 52701887L, 26352928L, 0L, -26352928L, -52701887L, -79042909L,
-105372028L, -131685278L, -157978697L, -184248325L, -210490206L, -236700388L,
-262874923L, -289009871L, -315101295L, -341145265L, -367137861L, -393075166L,
-418953276L, -444768294L, -470516330L, -496193509L, -521795963L, -547319836L,
-572761285L, -598116479L, -623381598L, -648552838L, -673626408L, -698598533L,
-723465451L, -748223418L, -772868706L, -797397602L, -821806413L, -846091463L,
-870249095L, -894275671L, -918167572L, -941921200L, -965532978L, -988999351L,
-1012316784L, -1035481766L, -1058490808L, -1081340445L, -1104027237L,
-1126547765L, -1148898640L, -1171076495L, -1193077991L, -1214899813L,
-1236538675L, -1257991320L, -1279254516L, -1300325060L, -1321199781L,
-1341875533L, -1362349204L, -1382617710L, -1402678000L, -1422527051L,
-1442161874L, -1461579514L, -1480777044L, -1499751576L, -1518500250L,
-1537020244L, -1555308768L, -1573363068L, -1591180426L, -1608758157L,
-1626093616L, -1643184191L, -1660027308L, -1676620432L, -1692961062L,
-1709046739L, -1724875040L, -1740443581L, -1755750017L, -1770792044L,
-1785567396L, -1800073849L, -1814309216L, -1828271356L, -1841958164L,
-1855367581L, -1868497586L, -1881346202L, -1893911494L, -1906191570L,
-1918184581L, -1929888720L, -1941302225L, -1952423377L, -1963250501L,
-1973781967L, -1984016189L, -1993951625L, -2003586779L, -2012920201L,
-2021950484L, -2030676269L, -2039096241L, -2047209133L, -2055013723L,
-2062508835L, -2069693342L, -2076566160L, -2083126254L, -2089372638L,
-2095304370L, -2100920556L, -2106220352L, -2111202959L, -2115867626L,
-2120213651L, -2124240380L, -2127947206L, -2131333572L, -2134398966L,
-2137142927L, -2139565043L, -2141664948L, -2143442326L, -2144896910L,
-2146028480L, -2146836866L, -2147321946L, (q31_t)0x80000000, -2147321946L,
-2146836866L, -2146028480L, -2144896910L, -2143442326L, -2141664948L,
-2139565043L, -2137142927L, -2134398966L, -2131333572L, -2127947206L,
-2124240380L, -2120213651L, -2115867626L, -2111202959L, -2106220352L,
-2100920556L, -2095304370L, -2089372638L, -2083126254L, -2076566160L,
-2069693342L, -2062508835L, -2055013723L, -2047209133L, -2039096241L,
-2030676269L, -2021950484L, -2012920201L, -2003586779L, -1993951625L,
-1984016189L, -1973781967L, -1963250501L, -1952423377L, -1941302225L,
-1929888720L, -1918184581L, -1906191570L, -1893911494L, -1881346202L,
-1868497586L, -1855367581L, -1841958164L, -1828271356L, -1814309216L,
-1800073849L, -1785567396L, -1770792044L, -1755750017L, -1740443581L,
-1724875040L, -1709046739L, -1692961062L, -1676620432L, -1660027308L,
-1643184191L, -1626093616L, -1608758157L, -1591180426L, -1573363068L,
-1555308768L, -1537020244L, -1518500250L, -1499751576L, -1480777044L,
-1461579514L, -1442161874L, -1422527051L, -1402678000L, -1382617710L,
-1362349204L, -1341875533L, -1321199781L, -1300325060L, -1279254516L,
-1257991320L, -1236538675L, -1214899813L, -1193077991L, -1171076495L,
-1148898640L, -1126547765L, -1104027237L, -1081340445L, -1058490808L,
-1035481766L, -1012316784L, -988999351L, -965532978L, -941921200L,
-918167572L, -894275671L, -870249095L, -846091463L, -821806413L, -797397602L,
-772868706L, -748223418L, -723465451L, -698598533L, -673626408L, -648552838L,
-623381598L, -598116479L, -572761285L, -547319836L, -521795963L, -496193509L,
-470516330L, -444768294L, -418953276L, -393075166L, -367137861L, -341145265L,
-315101295L, -289009871L, -262874923L, -236700388L, -210490206L, -184248325L,
-157978697L, -131685278L, -105372028L, -79042909L, -52701887L, -26352928L, 0
};
/**
* \par
* Table values are in Q15 (1.15 fixed-point format) and generation is done in
* three steps. First, generate sin values in floating point:
* <pre>
* tableSize = 512;
* for(n = 0; n < (tableSize + 1); n++)
* {
* sinTable[n]= sin(2*pi*n/tableSize);
* } </pre>
* where pi value is 3.14159265358979
* \par
* Second, convert floating-point to Q15 (Fixed point):
* (sinTable[i] * pow(2, 15))
* \par
* Finally, round to the nearest integer value:
* sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
*/
const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1] = {
0, 402, 804, 1206, 1608, 2009, 2411, 2811, 3212, 3612, 4011, 4410, 4808,
5205, 5602, 5998, 6393, 6787, 7180, 7571, 7962, 8351, 8740, 9127, 9512,
9896, 10279, 10660, 11039, 11417, 11793, 12167, 12540, 12910, 13279,
13646, 14010, 14373, 14733, 15091, 15447, 15800, 16151, 16500, 16846,
17190, 17531, 17869, 18205, 18538, 18868, 19195, 19520, 19841, 20160,
20475, 20788, 21097, 21403, 21706, 22006, 22302, 22595, 22884, 23170,
23453, 23732, 24008, 24279, 24548, 24812, 25073, 25330, 25583, 25833,
26078, 26320, 26557, 26791, 27020, 27246, 27467, 27684, 27897, 28106,
28311, 28511, 28707, 28899, 29086, 29269, 29448, 29622, 29792, 29957,
30118, 30274, 30425, 30572, 30715, 30853, 30986, 31114, 31238, 31357,
31471, 31581, 31686, 31786, 31881, 31972, 32058, 32138, 32214, 32286,
32352, 32413, 32470, 32522, 32568, 32610, 32647, 32679, 32706, 32729,
32746, 32758, 32766, 32767, 32766, 32758, 32746, 32729, 32706, 32679,
32647, 32610, 32568, 32522, 32470, 32413, 32352, 32286, 32214, 32138,
32058, 31972, 31881, 31786, 31686, 31581, 31471, 31357, 31238, 31114,
30986, 30853, 30715, 30572, 30425, 30274, 30118, 29957, 29792, 29622,
29448, 29269, 29086, 28899, 28707, 28511, 28311, 28106, 27897, 27684,
27467, 27246, 27020, 26791, 26557, 26320, 26078, 25833, 25583, 25330,
25073, 24812, 24548, 24279, 24008, 23732, 23453, 23170, 22884, 22595,
22302, 22006, 21706, 21403, 21097, 20788, 20475, 20160, 19841, 19520,
19195, 18868, 18538, 18205, 17869, 17531, 17190, 16846, 16500, 16151,
15800, 15447, 15091, 14733, 14373, 14010, 13646, 13279, 12910, 12540,
12167, 11793, 11417, 11039, 10660, 10279, 9896, 9512, 9127, 8740, 8351,
7962, 7571, 7180, 6787, 6393, 5998, 5602, 5205, 4808, 4410, 4011, 3612,
3212, 2811, 2411, 2009, 1608, 1206, 804, 402, 0, -402, -804, -1206,
-1608, -2009, -2411, -2811, -3212, -3612, -4011, -4410, -4808, -5205,
-5602, -5998, -6393, -6787, -7180, -7571, -7962, -8351, -8740, -9127,
-9512, -9896, -10279, -10660, -11039, -11417, -11793, -12167, -12540,
-12910, -13279, -13646, -14010, -14373, -14733, -15091, -15447, -15800,
-16151, -16500, -16846, -17190, -17531, -17869, -18205, -18538, -18868,
-19195, -19520, -19841, -20160, -20475, -20788, -21097, -21403, -21706,
-22006, -22302, -22595, -22884, -23170, -23453, -23732, -24008, -24279,
-24548, -24812, -25073, -25330, -25583, -25833, -26078, -26320, -26557,
-26791, -27020, -27246, -27467, -27684, -27897, -28106, -28311, -28511,
-28707, -28899, -29086, -29269, -29448, -29622, -29792, -29957, -30118,
-30274, -30425, -30572, -30715, -30853, -30986, -31114, -31238, -31357,
-31471, -31581, -31686, -31786, -31881, -31972, -32058, -32138, -32214,
-32286, -32352, -32413, -32470, -32522, -32568, -32610, -32647, -32679,
-32706, -32729, -32746, -32758, -32766, -32768, -32766, -32758, -32746,
-32729, -32706, -32679, -32647, -32610, -32568, -32522, -32470, -32413,
-32352, -32286, -32214, -32138, -32058, -31972, -31881, -31786, -31686,
-31581, -31471, -31357, -31238, -31114, -30986, -30853, -30715, -30572,
-30425, -30274, -30118, -29957, -29792, -29622, -29448, -29269, -29086,
-28899, -28707, -28511, -28311, -28106, -27897, -27684, -27467, -27246,
-27020, -26791, -26557, -26320, -26078, -25833, -25583, -25330, -25073,
-24812, -24548, -24279, -24008, -23732, -23453, -23170, -22884, -22595,
-22302, -22006, -21706, -21403, -21097, -20788, -20475, -20160, -19841,
-19520, -19195, -18868, -18538, -18205, -17869, -17531, -17190, -16846,
-16500, -16151, -15800, -15447, -15091, -14733, -14373, -14010, -13646,
-13279, -12910, -12540, -12167, -11793, -11417, -11039, -10660, -10279,
-9896, -9512, -9127, -8740, -8351, -7962, -7571, -7180, -6787, -6393,
-5998, -5602, -5205, -4808, -4410, -4011, -3612, -3212, -2811, -2411,
-2009, -1608, -1206, -804, -402, 0
};