Subversion Repositories dashGPS

Rev

Rev 2 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------
  2.  * Project:      CMSIS DSP Library
  3.  * Title:        arm_common_tables.c
  4.  * Description:  common tables like fft twiddle factors, Bitreverse, reciprocal etc
  5.  *
  6.  * $Date:        27. January 2017
  7.  * $Revision:    V.1.5.1
  8.  *
  9.  * Target Processor: Cortex-M cores
  10.  * -------------------------------------------------------------------- */
  11. /*
  12.  * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
  13.  *
  14.  * SPDX-License-Identifier: Apache-2.0
  15.  *
  16.  * Licensed under the Apache License, Version 2.0 (the License); you may
  17.  * not use this file except in compliance with the License.
  18.  * You may obtain a copy of the License at
  19.  *
  20.  * www.apache.org/licenses/LICENSE-2.0
  21.  *
  22.  * Unless required by applicable law or agreed to in writing, software
  23.  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
  24.  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  25.  * See the License for the specific language governing permissions and
  26.  * limitations under the License.
  27.  */
  28.  
  29. #include "arm_math.h"
  30. #include "arm_common_tables.h"
  31.  
  32. /**
  33.  * @ingroup ComplexFFT
  34.  */
  35.  
  36. /**
  37.  * @addtogroup CFFT_CIFFT Complex FFT Tables
  38.  * @{
  39.  */
  40.  
  41. /**
  42. * \par
  43. * Pseudo code for Generation of Bit reversal Table is
  44. * \par
  45. * <pre>for(l=1;l <= N/4;l++)
  46. * {
  47. *   for(i=0;i<logN2;i++)
  48. *   {
  49. *     a[i]=l&(1<<i);
  50. *   }
  51. *   for(j=0; j<logN2; j++)
  52. *   {
  53. *     if (a[j]!=0)
  54. *     y[l]+=(1<<((logN2-1)-j));
  55. *   }
  56. *   y[l] = y[l] >> 1;
  57. *  } </pre>
  58. * \par
  59. * where N = 4096        logN2 = 12
  60. * \par
  61. * N is the maximum FFT Size supported
  62. */
  63.  
  64. /*
  65. * @brief  Table for bit reversal process
  66. */
  67. const uint16_t armBitRevTable[1024] = {
  68.    0x400, 0x200, 0x600, 0x100, 0x500, 0x300, 0x700, 0x80, 0x480, 0x280,
  69.    0x680, 0x180, 0x580, 0x380, 0x780, 0x40, 0x440, 0x240, 0x640, 0x140,
  70.    0x540, 0x340, 0x740, 0xc0, 0x4c0, 0x2c0, 0x6c0, 0x1c0, 0x5c0, 0x3c0,
  71.    0x7c0, 0x20, 0x420, 0x220, 0x620, 0x120, 0x520, 0x320, 0x720, 0xa0,
  72.    0x4a0, 0x2a0, 0x6a0, 0x1a0, 0x5a0, 0x3a0, 0x7a0, 0x60, 0x460, 0x260,
  73.    0x660, 0x160, 0x560, 0x360, 0x760, 0xe0, 0x4e0, 0x2e0, 0x6e0, 0x1e0,
  74.    0x5e0, 0x3e0, 0x7e0, 0x10, 0x410, 0x210, 0x610, 0x110, 0x510, 0x310,
  75.    0x710, 0x90, 0x490, 0x290, 0x690, 0x190, 0x590, 0x390, 0x790, 0x50,
  76.    0x450, 0x250, 0x650, 0x150, 0x550, 0x350, 0x750, 0xd0, 0x4d0, 0x2d0,
  77.    0x6d0, 0x1d0, 0x5d0, 0x3d0, 0x7d0, 0x30, 0x430, 0x230, 0x630, 0x130,
  78.    0x530, 0x330, 0x730, 0xb0, 0x4b0, 0x2b0, 0x6b0, 0x1b0, 0x5b0, 0x3b0,
  79.    0x7b0, 0x70, 0x470, 0x270, 0x670, 0x170, 0x570, 0x370, 0x770, 0xf0,
  80.    0x4f0, 0x2f0, 0x6f0, 0x1f0, 0x5f0, 0x3f0, 0x7f0, 0x8, 0x408, 0x208,
  81.    0x608, 0x108, 0x508, 0x308, 0x708, 0x88, 0x488, 0x288, 0x688, 0x188,
  82.    0x588, 0x388, 0x788, 0x48, 0x448, 0x248, 0x648, 0x148, 0x548, 0x348,
  83.    0x748, 0xc8, 0x4c8, 0x2c8, 0x6c8, 0x1c8, 0x5c8, 0x3c8, 0x7c8, 0x28,
  84.    0x428, 0x228, 0x628, 0x128, 0x528, 0x328, 0x728, 0xa8, 0x4a8, 0x2a8,
  85.    0x6a8, 0x1a8, 0x5a8, 0x3a8, 0x7a8, 0x68, 0x468, 0x268, 0x668, 0x168,
  86.    0x568, 0x368, 0x768, 0xe8, 0x4e8, 0x2e8, 0x6e8, 0x1e8, 0x5e8, 0x3e8,
  87.    0x7e8, 0x18, 0x418, 0x218, 0x618, 0x118, 0x518, 0x318, 0x718, 0x98,
  88.    0x498, 0x298, 0x698, 0x198, 0x598, 0x398, 0x798, 0x58, 0x458, 0x258,
  89.    0x658, 0x158, 0x558, 0x358, 0x758, 0xd8, 0x4d8, 0x2d8, 0x6d8, 0x1d8,
  90.    0x5d8, 0x3d8, 0x7d8, 0x38, 0x438, 0x238, 0x638, 0x138, 0x538, 0x338,
  91.    0x738, 0xb8, 0x4b8, 0x2b8, 0x6b8, 0x1b8, 0x5b8, 0x3b8, 0x7b8, 0x78,
  92.    0x478, 0x278, 0x678, 0x178, 0x578, 0x378, 0x778, 0xf8, 0x4f8, 0x2f8,
  93.    0x6f8, 0x1f8, 0x5f8, 0x3f8, 0x7f8, 0x4, 0x404, 0x204, 0x604, 0x104,
  94.    0x504, 0x304, 0x704, 0x84, 0x484, 0x284, 0x684, 0x184, 0x584, 0x384,
  95.    0x784, 0x44, 0x444, 0x244, 0x644, 0x144, 0x544, 0x344, 0x744, 0xc4,
  96.    0x4c4, 0x2c4, 0x6c4, 0x1c4, 0x5c4, 0x3c4, 0x7c4, 0x24, 0x424, 0x224,
  97.    0x624, 0x124, 0x524, 0x324, 0x724, 0xa4, 0x4a4, 0x2a4, 0x6a4, 0x1a4,
  98.    0x5a4, 0x3a4, 0x7a4, 0x64, 0x464, 0x264, 0x664, 0x164, 0x564, 0x364,
  99.    0x764, 0xe4, 0x4e4, 0x2e4, 0x6e4, 0x1e4, 0x5e4, 0x3e4, 0x7e4, 0x14,
  100.    0x414, 0x214, 0x614, 0x114, 0x514, 0x314, 0x714, 0x94, 0x494, 0x294,
  101.    0x694, 0x194, 0x594, 0x394, 0x794, 0x54, 0x454, 0x254, 0x654, 0x154,
  102.    0x554, 0x354, 0x754, 0xd4, 0x4d4, 0x2d4, 0x6d4, 0x1d4, 0x5d4, 0x3d4,
  103.    0x7d4, 0x34, 0x434, 0x234, 0x634, 0x134, 0x534, 0x334, 0x734, 0xb4,
  104.    0x4b4, 0x2b4, 0x6b4, 0x1b4, 0x5b4, 0x3b4, 0x7b4, 0x74, 0x474, 0x274,
  105.    0x674, 0x174, 0x574, 0x374, 0x774, 0xf4, 0x4f4, 0x2f4, 0x6f4, 0x1f4,
  106.    0x5f4, 0x3f4, 0x7f4, 0xc, 0x40c, 0x20c, 0x60c, 0x10c, 0x50c, 0x30c,
  107.    0x70c, 0x8c, 0x48c, 0x28c, 0x68c, 0x18c, 0x58c, 0x38c, 0x78c, 0x4c,
  108.    0x44c, 0x24c, 0x64c, 0x14c, 0x54c, 0x34c, 0x74c, 0xcc, 0x4cc, 0x2cc,
  109.    0x6cc, 0x1cc, 0x5cc, 0x3cc, 0x7cc, 0x2c, 0x42c, 0x22c, 0x62c, 0x12c,
  110.    0x52c, 0x32c, 0x72c, 0xac, 0x4ac, 0x2ac, 0x6ac, 0x1ac, 0x5ac, 0x3ac,
  111.    0x7ac, 0x6c, 0x46c, 0x26c, 0x66c, 0x16c, 0x56c, 0x36c, 0x76c, 0xec,
  112.    0x4ec, 0x2ec, 0x6ec, 0x1ec, 0x5ec, 0x3ec, 0x7ec, 0x1c, 0x41c, 0x21c,
  113.    0x61c, 0x11c, 0x51c, 0x31c, 0x71c, 0x9c, 0x49c, 0x29c, 0x69c, 0x19c,
  114.    0x59c, 0x39c, 0x79c, 0x5c, 0x45c, 0x25c, 0x65c, 0x15c, 0x55c, 0x35c,
  115.    0x75c, 0xdc, 0x4dc, 0x2dc, 0x6dc, 0x1dc, 0x5dc, 0x3dc, 0x7dc, 0x3c,
  116.    0x43c, 0x23c, 0x63c, 0x13c, 0x53c, 0x33c, 0x73c, 0xbc, 0x4bc, 0x2bc,
  117.    0x6bc, 0x1bc, 0x5bc, 0x3bc, 0x7bc, 0x7c, 0x47c, 0x27c, 0x67c, 0x17c,
  118.    0x57c, 0x37c, 0x77c, 0xfc, 0x4fc, 0x2fc, 0x6fc, 0x1fc, 0x5fc, 0x3fc,
  119.    0x7fc, 0x2, 0x402, 0x202, 0x602, 0x102, 0x502, 0x302, 0x702, 0x82,
  120.    0x482, 0x282, 0x682, 0x182, 0x582, 0x382, 0x782, 0x42, 0x442, 0x242,
  121.    0x642, 0x142, 0x542, 0x342, 0x742, 0xc2, 0x4c2, 0x2c2, 0x6c2, 0x1c2,
  122.    0x5c2, 0x3c2, 0x7c2, 0x22, 0x422, 0x222, 0x622, 0x122, 0x522, 0x322,
  123.    0x722, 0xa2, 0x4a2, 0x2a2, 0x6a2, 0x1a2, 0x5a2, 0x3a2, 0x7a2, 0x62,
  124.    0x462, 0x262, 0x662, 0x162, 0x562, 0x362, 0x762, 0xe2, 0x4e2, 0x2e2,
  125.    0x6e2, 0x1e2, 0x5e2, 0x3e2, 0x7e2, 0x12, 0x412, 0x212, 0x612, 0x112,
  126.    0x512, 0x312, 0x712, 0x92, 0x492, 0x292, 0x692, 0x192, 0x592, 0x392,
  127.    0x792, 0x52, 0x452, 0x252, 0x652, 0x152, 0x552, 0x352, 0x752, 0xd2,
  128.    0x4d2, 0x2d2, 0x6d2, 0x1d2, 0x5d2, 0x3d2, 0x7d2, 0x32, 0x432, 0x232,
  129.    0x632, 0x132, 0x532, 0x332, 0x732, 0xb2, 0x4b2, 0x2b2, 0x6b2, 0x1b2,
  130.    0x5b2, 0x3b2, 0x7b2, 0x72, 0x472, 0x272, 0x672, 0x172, 0x572, 0x372,
  131.    0x772, 0xf2, 0x4f2, 0x2f2, 0x6f2, 0x1f2, 0x5f2, 0x3f2, 0x7f2, 0xa,
  132.    0x40a, 0x20a, 0x60a, 0x10a, 0x50a, 0x30a, 0x70a, 0x8a, 0x48a, 0x28a,
  133.    0x68a, 0x18a, 0x58a, 0x38a, 0x78a, 0x4a, 0x44a, 0x24a, 0x64a, 0x14a,
  134.    0x54a, 0x34a, 0x74a, 0xca, 0x4ca, 0x2ca, 0x6ca, 0x1ca, 0x5ca, 0x3ca,
  135.    0x7ca, 0x2a, 0x42a, 0x22a, 0x62a, 0x12a, 0x52a, 0x32a, 0x72a, 0xaa,
  136.    0x4aa, 0x2aa, 0x6aa, 0x1aa, 0x5aa, 0x3aa, 0x7aa, 0x6a, 0x46a, 0x26a,
  137.    0x66a, 0x16a, 0x56a, 0x36a, 0x76a, 0xea, 0x4ea, 0x2ea, 0x6ea, 0x1ea,
  138.    0x5ea, 0x3ea, 0x7ea, 0x1a, 0x41a, 0x21a, 0x61a, 0x11a, 0x51a, 0x31a,
  139.    0x71a, 0x9a, 0x49a, 0x29a, 0x69a, 0x19a, 0x59a, 0x39a, 0x79a, 0x5a,
  140.    0x45a, 0x25a, 0x65a, 0x15a, 0x55a, 0x35a, 0x75a, 0xda, 0x4da, 0x2da,
  141.    0x6da, 0x1da, 0x5da, 0x3da, 0x7da, 0x3a, 0x43a, 0x23a, 0x63a, 0x13a,
  142.    0x53a, 0x33a, 0x73a, 0xba, 0x4ba, 0x2ba, 0x6ba, 0x1ba, 0x5ba, 0x3ba,
  143.    0x7ba, 0x7a, 0x47a, 0x27a, 0x67a, 0x17a, 0x57a, 0x37a, 0x77a, 0xfa,
  144.    0x4fa, 0x2fa, 0x6fa, 0x1fa, 0x5fa, 0x3fa, 0x7fa, 0x6, 0x406, 0x206,
  145.    0x606, 0x106, 0x506, 0x306, 0x706, 0x86, 0x486, 0x286, 0x686, 0x186,
  146.    0x586, 0x386, 0x786, 0x46, 0x446, 0x246, 0x646, 0x146, 0x546, 0x346,
  147.    0x746, 0xc6, 0x4c6, 0x2c6, 0x6c6, 0x1c6, 0x5c6, 0x3c6, 0x7c6, 0x26,
  148.    0x426, 0x226, 0x626, 0x126, 0x526, 0x326, 0x726, 0xa6, 0x4a6, 0x2a6,
  149.    0x6a6, 0x1a6, 0x5a6, 0x3a6, 0x7a6, 0x66, 0x466, 0x266, 0x666, 0x166,
  150.    0x566, 0x366, 0x766, 0xe6, 0x4e6, 0x2e6, 0x6e6, 0x1e6, 0x5e6, 0x3e6,
  151.    0x7e6, 0x16, 0x416, 0x216, 0x616, 0x116, 0x516, 0x316, 0x716, 0x96,
  152.    0x496, 0x296, 0x696, 0x196, 0x596, 0x396, 0x796, 0x56, 0x456, 0x256,
  153.    0x656, 0x156, 0x556, 0x356, 0x756, 0xd6, 0x4d6, 0x2d6, 0x6d6, 0x1d6,
  154.    0x5d6, 0x3d6, 0x7d6, 0x36, 0x436, 0x236, 0x636, 0x136, 0x536, 0x336,
  155.    0x736, 0xb6, 0x4b6, 0x2b6, 0x6b6, 0x1b6, 0x5b6, 0x3b6, 0x7b6, 0x76,
  156.    0x476, 0x276, 0x676, 0x176, 0x576, 0x376, 0x776, 0xf6, 0x4f6, 0x2f6,
  157.    0x6f6, 0x1f6, 0x5f6, 0x3f6, 0x7f6, 0xe, 0x40e, 0x20e, 0x60e, 0x10e,
  158.    0x50e, 0x30e, 0x70e, 0x8e, 0x48e, 0x28e, 0x68e, 0x18e, 0x58e, 0x38e,
  159.    0x78e, 0x4e, 0x44e, 0x24e, 0x64e, 0x14e, 0x54e, 0x34e, 0x74e, 0xce,
  160.    0x4ce, 0x2ce, 0x6ce, 0x1ce, 0x5ce, 0x3ce, 0x7ce, 0x2e, 0x42e, 0x22e,
  161.    0x62e, 0x12e, 0x52e, 0x32e, 0x72e, 0xae, 0x4ae, 0x2ae, 0x6ae, 0x1ae,
  162.    0x5ae, 0x3ae, 0x7ae, 0x6e, 0x46e, 0x26e, 0x66e, 0x16e, 0x56e, 0x36e,
  163.    0x76e, 0xee, 0x4ee, 0x2ee, 0x6ee, 0x1ee, 0x5ee, 0x3ee, 0x7ee, 0x1e,
  164.    0x41e, 0x21e, 0x61e, 0x11e, 0x51e, 0x31e, 0x71e, 0x9e, 0x49e, 0x29e,
  165.    0x69e, 0x19e, 0x59e, 0x39e, 0x79e, 0x5e, 0x45e, 0x25e, 0x65e, 0x15e,
  166.    0x55e, 0x35e, 0x75e, 0xde, 0x4de, 0x2de, 0x6de, 0x1de, 0x5de, 0x3de,
  167.    0x7de, 0x3e, 0x43e, 0x23e, 0x63e, 0x13e, 0x53e, 0x33e, 0x73e, 0xbe,
  168.    0x4be, 0x2be, 0x6be, 0x1be, 0x5be, 0x3be, 0x7be, 0x7e, 0x47e, 0x27e,
  169.    0x67e, 0x17e, 0x57e, 0x37e, 0x77e, 0xfe, 0x4fe, 0x2fe, 0x6fe, 0x1fe,
  170.    0x5fe, 0x3fe, 0x7fe, 0x1
  171. };
  172.  
  173.  
  174. /*
  175. * @brief  Floating-point Twiddle factors Table Generation
  176. */
  177.  
  178. /**
  179. * \par
  180. * Example code for Floating-point Twiddle factors Generation:
  181. * \par
  182. * <pre>for(i = 0; i< N/; i++)
  183. * {
  184. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  185. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  186. * } </pre>
  187. * \par
  188. * where N = 16  and PI = 3.14159265358979
  189. * \par
  190. * Cos and Sin values are in interleaved fashion
  191. *
  192. */
  193. const float32_t twiddleCoef_16[32] = {
  194.     1.000000000f,  0.000000000f,
  195.     0.923879533f,  0.382683432f,
  196.     0.707106781f,  0.707106781f,
  197.     0.382683432f,  0.923879533f,
  198.     0.000000000f,  1.000000000f,
  199.    -0.382683432f,  0.923879533f,
  200.    -0.707106781f,  0.707106781f,
  201.    -0.923879533f,  0.382683432f,
  202.    -1.000000000f,  0.000000000f,
  203.    -0.923879533f, -0.382683432f,
  204.    -0.707106781f, -0.707106781f,
  205.    -0.382683432f, -0.923879533f,
  206.    -0.000000000f, -1.000000000f,
  207.     0.382683432f, -0.923879533f,
  208.     0.707106781f, -0.707106781f,
  209.     0.923879533f, -0.382683432f
  210. };
  211.  
  212. /**
  213. * \par
  214. * Example code for Floating-point Twiddle factors Generation:
  215. * \par
  216. * <pre>for(i = 0; i< N/; i++)
  217. * {
  218. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  219. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  220. * } </pre>
  221. * \par
  222. * where N = 32  and PI = 3.14159265358979
  223. * \par
  224. * Cos and Sin values are in interleaved fashion
  225. *
  226. */
  227. const float32_t twiddleCoef_32[64] = {
  228.     1.000000000f,  0.000000000f,
  229.     0.980785280f,  0.195090322f,
  230.     0.923879533f,  0.382683432f,
  231.     0.831469612f,  0.555570233f,
  232.     0.707106781f,  0.707106781f,
  233.     0.555570233f,  0.831469612f,
  234.     0.382683432f,  0.923879533f,
  235.     0.195090322f,  0.980785280f,
  236.     0.000000000f,  1.000000000f,
  237.    -0.195090322f,  0.980785280f,
  238.    -0.382683432f,  0.923879533f,
  239.    -0.555570233f,  0.831469612f,
  240.    -0.707106781f,  0.707106781f,
  241.    -0.831469612f,  0.555570233f,
  242.    -0.923879533f,  0.382683432f,
  243.    -0.980785280f,  0.195090322f,
  244.    -1.000000000f,  0.000000000f,
  245.    -0.980785280f, -0.195090322f,
  246.    -0.923879533f, -0.382683432f,
  247.    -0.831469612f, -0.555570233f,
  248.    -0.707106781f, -0.707106781f,
  249.    -0.555570233f, -0.831469612f,
  250.    -0.382683432f, -0.923879533f,
  251.    -0.195090322f, -0.980785280f,
  252.    -0.000000000f, -1.000000000f,
  253.     0.195090322f, -0.980785280f,
  254.     0.382683432f, -0.923879533f,
  255.     0.555570233f, -0.831469612f,
  256.     0.707106781f, -0.707106781f,
  257.     0.831469612f, -0.555570233f,
  258.     0.923879533f, -0.382683432f,
  259.     0.980785280f, -0.195090322f
  260. };
  261.  
  262. /**
  263. * \par
  264. * Example code for Floating-point Twiddle factors Generation:
  265. * \par
  266. * <pre>for(i = 0; i< N/; i++)
  267. * {
  268. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  269. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  270. * } </pre>
  271. * \par
  272. * where N = 64  and PI = 3.14159265358979
  273. * \par
  274. * Cos and Sin values are in interleaved fashion
  275. *
  276. */
  277. const float32_t twiddleCoef_64[128] = {
  278.     1.000000000f,  0.000000000f,
  279.     0.995184727f,  0.098017140f,
  280.     0.980785280f,  0.195090322f,
  281.     0.956940336f,  0.290284677f,
  282.     0.923879533f,  0.382683432f,
  283.     0.881921264f,  0.471396737f,
  284.     0.831469612f,  0.555570233f,
  285.     0.773010453f,  0.634393284f,
  286.     0.707106781f,  0.707106781f,
  287.     0.634393284f,  0.773010453f,
  288.     0.555570233f,  0.831469612f,
  289.     0.471396737f,  0.881921264f,
  290.     0.382683432f,  0.923879533f,
  291.     0.290284677f,  0.956940336f,
  292.     0.195090322f,  0.980785280f,
  293.     0.098017140f,  0.995184727f,
  294.     0.000000000f,  1.000000000f,
  295.    -0.098017140f,  0.995184727f,
  296.    -0.195090322f,  0.980785280f,
  297.    -0.290284677f,  0.956940336f,
  298.    -0.382683432f,  0.923879533f,
  299.    -0.471396737f,  0.881921264f,
  300.    -0.555570233f,  0.831469612f,
  301.    -0.634393284f,  0.773010453f,
  302.    -0.707106781f,  0.707106781f,
  303.    -0.773010453f,  0.634393284f,
  304.    -0.831469612f,  0.555570233f,
  305.    -0.881921264f,  0.471396737f,
  306.    -0.923879533f,  0.382683432f,
  307.    -0.956940336f,  0.290284677f,
  308.    -0.980785280f,  0.195090322f,
  309.    -0.995184727f,  0.098017140f,
  310.    -1.000000000f,  0.000000000f,
  311.    -0.995184727f, -0.098017140f,
  312.    -0.980785280f, -0.195090322f,
  313.    -0.956940336f, -0.290284677f,
  314.    -0.923879533f, -0.382683432f,
  315.    -0.881921264f, -0.471396737f,
  316.    -0.831469612f, -0.555570233f,
  317.    -0.773010453f, -0.634393284f,
  318.    -0.707106781f, -0.707106781f,
  319.    -0.634393284f, -0.773010453f,
  320.    -0.555570233f, -0.831469612f,
  321.    -0.471396737f, -0.881921264f,
  322.    -0.382683432f, -0.923879533f,
  323.    -0.290284677f, -0.956940336f,
  324.    -0.195090322f, -0.980785280f,
  325.    -0.098017140f, -0.995184727f,
  326.    -0.000000000f, -1.000000000f,
  327.     0.098017140f, -0.995184727f,
  328.     0.195090322f, -0.980785280f,
  329.     0.290284677f, -0.956940336f,
  330.     0.382683432f, -0.923879533f,
  331.     0.471396737f, -0.881921264f,
  332.     0.555570233f, -0.831469612f,
  333.     0.634393284f, -0.773010453f,
  334.     0.707106781f, -0.707106781f,
  335.     0.773010453f, -0.634393284f,
  336.     0.831469612f, -0.555570233f,
  337.     0.881921264f, -0.471396737f,
  338.     0.923879533f, -0.382683432f,
  339.     0.956940336f, -0.290284677f,
  340.     0.980785280f, -0.195090322f,
  341.     0.995184727f, -0.098017140f
  342. };
  343.  
  344. /**
  345. * \par
  346. * Example code for Floating-point Twiddle factors Generation:
  347. * \par
  348. * <pre>for(i = 0; i< N/; i++)
  349. * {
  350. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  351. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  352. * } </pre>
  353. * \par
  354. * where N = 128 and PI = 3.14159265358979
  355. * \par
  356. * Cos and Sin values are in interleaved fashion
  357. *
  358. */
  359.  
  360. const float32_t twiddleCoef_128[256] = {
  361.     1.000000000f,  0.000000000f,
  362.     0.998795456f,  0.049067674f,
  363.     0.995184727f,  0.098017140f,
  364.     0.989176510f,  0.146730474f,
  365.     0.980785280f,  0.195090322f,
  366.     0.970031253f,  0.242980180f,
  367.     0.956940336f,  0.290284677f,
  368.     0.941544065f,  0.336889853f,
  369.     0.923879533f,  0.382683432f,
  370.     0.903989293f,  0.427555093f,
  371.     0.881921264f,  0.471396737f,
  372.     0.857728610f,  0.514102744f,
  373.     0.831469612f,  0.555570233f,
  374.     0.803207531f,  0.595699304f,
  375.     0.773010453f,  0.634393284f,
  376.     0.740951125f,  0.671558955f,
  377.     0.707106781f,  0.707106781f,
  378.     0.671558955f,  0.740951125f,
  379.     0.634393284f,  0.773010453f,
  380.     0.595699304f,  0.803207531f,
  381.     0.555570233f,  0.831469612f,
  382.     0.514102744f,  0.857728610f,
  383.     0.471396737f,  0.881921264f,
  384.     0.427555093f,  0.903989293f,
  385.     0.382683432f,  0.923879533f,
  386.     0.336889853f,  0.941544065f,
  387.     0.290284677f,  0.956940336f,
  388.     0.242980180f,  0.970031253f,
  389.     0.195090322f,  0.980785280f,
  390.     0.146730474f,  0.989176510f,
  391.     0.098017140f,  0.995184727f,
  392.     0.049067674f,  0.998795456f,
  393.     0.000000000f,  1.000000000f,
  394.    -0.049067674f,  0.998795456f,
  395.    -0.098017140f,  0.995184727f,
  396.    -0.146730474f,  0.989176510f,
  397.    -0.195090322f,  0.980785280f,
  398.    -0.242980180f,  0.970031253f,
  399.    -0.290284677f,  0.956940336f,
  400.    -0.336889853f,  0.941544065f,
  401.    -0.382683432f,  0.923879533f,
  402.    -0.427555093f,  0.903989293f,
  403.    -0.471396737f,  0.881921264f,
  404.    -0.514102744f,  0.857728610f,
  405.    -0.555570233f,  0.831469612f,
  406.    -0.595699304f,  0.803207531f,
  407.    -0.634393284f,  0.773010453f,
  408.    -0.671558955f,  0.740951125f,
  409.    -0.707106781f,  0.707106781f,
  410.    -0.740951125f,  0.671558955f,
  411.    -0.773010453f,  0.634393284f,
  412.    -0.803207531f,  0.595699304f,
  413.    -0.831469612f,  0.555570233f,
  414.    -0.857728610f,  0.514102744f,
  415.    -0.881921264f,  0.471396737f,
  416.    -0.903989293f,  0.427555093f,
  417.    -0.923879533f,  0.382683432f,
  418.    -0.941544065f,  0.336889853f,
  419.    -0.956940336f,  0.290284677f,
  420.    -0.970031253f,  0.242980180f,
  421.    -0.980785280f,  0.195090322f,
  422.    -0.989176510f,  0.146730474f,
  423.    -0.995184727f,  0.098017140f,
  424.    -0.998795456f,  0.049067674f,
  425.    -1.000000000f,  0.000000000f,
  426.    -0.998795456f, -0.049067674f,
  427.    -0.995184727f, -0.098017140f,
  428.    -0.989176510f, -0.146730474f,
  429.    -0.980785280f, -0.195090322f,
  430.    -0.970031253f, -0.242980180f,
  431.    -0.956940336f, -0.290284677f,
  432.    -0.941544065f, -0.336889853f,
  433.    -0.923879533f, -0.382683432f,
  434.    -0.903989293f, -0.427555093f,
  435.    -0.881921264f, -0.471396737f,
  436.    -0.857728610f, -0.514102744f,
  437.    -0.831469612f, -0.555570233f,
  438.    -0.803207531f, -0.595699304f,
  439.    -0.773010453f, -0.634393284f,
  440.    -0.740951125f, -0.671558955f,
  441.    -0.707106781f, -0.707106781f,
  442.    -0.671558955f, -0.740951125f,
  443.    -0.634393284f, -0.773010453f,
  444.    -0.595699304f, -0.803207531f,
  445.    -0.555570233f, -0.831469612f,
  446.    -0.514102744f, -0.857728610f,
  447.    -0.471396737f, -0.881921264f,
  448.    -0.427555093f, -0.903989293f,
  449.    -0.382683432f, -0.923879533f,
  450.    -0.336889853f, -0.941544065f,
  451.    -0.290284677f, -0.956940336f,
  452.    -0.242980180f, -0.970031253f,
  453.    -0.195090322f, -0.980785280f,
  454.    -0.146730474f, -0.989176510f,
  455.    -0.098017140f, -0.995184727f,
  456.    -0.049067674f, -0.998795456f,
  457.    -0.000000000f, -1.000000000f,
  458.     0.049067674f, -0.998795456f,
  459.     0.098017140f, -0.995184727f,
  460.     0.146730474f, -0.989176510f,
  461.     0.195090322f, -0.980785280f,
  462.     0.242980180f, -0.970031253f,
  463.     0.290284677f, -0.956940336f,
  464.     0.336889853f, -0.941544065f,
  465.     0.382683432f, -0.923879533f,
  466.     0.427555093f, -0.903989293f,
  467.     0.471396737f, -0.881921264f,
  468.     0.514102744f, -0.857728610f,
  469.     0.555570233f, -0.831469612f,
  470.     0.595699304f, -0.803207531f,
  471.     0.634393284f, -0.773010453f,
  472.     0.671558955f, -0.740951125f,
  473.     0.707106781f, -0.707106781f,
  474.     0.740951125f, -0.671558955f,
  475.     0.773010453f, -0.634393284f,
  476.     0.803207531f, -0.595699304f,
  477.     0.831469612f, -0.555570233f,
  478.     0.857728610f, -0.514102744f,
  479.     0.881921264f, -0.471396737f,
  480.     0.903989293f, -0.427555093f,
  481.     0.923879533f, -0.382683432f,
  482.     0.941544065f, -0.336889853f,
  483.     0.956940336f, -0.290284677f,
  484.     0.970031253f, -0.242980180f,
  485.     0.980785280f, -0.195090322f,
  486.     0.989176510f, -0.146730474f,
  487.     0.995184727f, -0.098017140f,
  488.     0.998795456f, -0.049067674f
  489. };
  490.  
  491. /**
  492. * \par
  493. * Example code for Floating-point Twiddle factors Generation:
  494. * \par
  495. * <pre>for(i = 0; i< N/; i++)
  496. * {
  497. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  498. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  499. * } </pre>
  500. * \par
  501. * where N = 256 and PI = 3.14159265358979
  502. * \par
  503. * Cos and Sin values are in interleaved fashion
  504. *
  505. *//**
  506. * \par
  507. * Example code for Floating-point Twiddle factors Generation:
  508. * \par
  509. * <pre>for(i = 0; i< N/; i++)
  510. * {
  511. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  512. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  513. * } </pre>
  514. * \par
  515. * where N = 512 and PI = 3.14159265358979
  516. * \par
  517. * Cos and Sin values are in interleaved fashion
  518. *
  519. *//**
  520. * \par
  521. * Example code for Floating-point Twiddle factors Generation:
  522. * \par
  523. * <pre>for(i = 0; i< N/; i++)
  524. * {
  525. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  526. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  527. * } </pre>
  528. * \par
  529. * where N = 1024        and PI = 3.14159265358979
  530. * \par
  531. * Cos and Sin values are in interleaved fashion
  532. *
  533. *//**
  534. * \par
  535. * Example code for Floating-point Twiddle factors Generation:
  536. * \par
  537. * <pre>for(i = 0; i< N/; i++)
  538. * {
  539. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  540. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  541. * } </pre>
  542. * \par
  543. * where N = 2048        and PI = 3.14159265358979
  544. * \par
  545. * Cos and Sin values are in interleaved fashion
  546. *
  547. *//**
  548. * \par
  549. * Example code for Floating-point Twiddle factors Generation:
  550. * \par
  551. * <pre>for(i = 0; i< N/; i++)
  552. * {
  553. *       twiddleCoef[2*i]= cos(i * 2*PI/(float)N);
  554. *       twiddleCoef[2*i+1]= sin(i * 2*PI/(float)N);
  555. * } </pre>
  556. * \par
  557. * where N = 4096        and PI = 3.14159265358979
  558. * \par
  559. * Cos and Sin values are in interleaved fashion
  560. *
  561. *//*
  562. * @brief  Q31 Twiddle factors Table
  563. */
  564.  
  565.  
  566. /**
  567. * \par
  568. * Example code for Q31 Twiddle factors Generation::
  569. * \par
  570. * <pre>for(i = 0; i< 3N/4; i++)
  571. * {
  572. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  573. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  574. * } </pre>
  575. * \par
  576. * where N = 16  and PI = 3.14159265358979
  577. * \par
  578. * Cos and Sin values are interleaved fashion
  579. * \par
  580. * Convert Floating point to Q31(Fixed point 1.31):
  581. *       round(twiddleCoefQ31(i) * pow(2, 31))
  582. *
  583. */
  584. const q31_t twiddleCoef_16_q31[24] = {
  585.     (q31_t)0x7FFFFFFF, (q31_t)0x00000000,
  586.     (q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
  587.     (q31_t)0x5A82799A, (q31_t)0x5A82799A,
  588.     (q31_t)0x30FBC54D, (q31_t)0x7641AF3C,
  589.     (q31_t)0x00000000, (q31_t)0x7FFFFFFF,
  590.     (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
  591.     (q31_t)0xA57D8666, (q31_t)0x5A82799A,
  592.     (q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
  593.     (q31_t)0x80000000, (q31_t)0x00000000,
  594.     (q31_t)0x89BE50C3, (q31_t)0xCF043AB2,
  595.     (q31_t)0xA57D8666, (q31_t)0xA57D8666,
  596.     (q31_t)0xCF043AB2, (q31_t)0x89BE50C3
  597. };
  598.  
  599. /**
  600. * \par
  601. * Example code for Q31 Twiddle factors Generation::
  602. * \par
  603. * <pre>for(i = 0; i< 3N/4; i++)
  604. * {
  605. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  606. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  607. * } </pre>
  608. * \par
  609. * where N = 32  and PI = 3.14159265358979
  610. * \par
  611. * Cos and Sin values are interleaved fashion
  612. * \par
  613. * Convert Floating point to Q31(Fixed point 1.31):
  614. *       round(twiddleCoefQ31(i) * pow(2, 31))
  615. *
  616. */
  617. const q31_t twiddleCoef_32_q31[48] = {
  618.     (q31_t)0x7FFFFFFF, (q31_t)0x00000000,
  619.     (q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
  620.     (q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
  621.     (q31_t)0x6A6D98A4, (q31_t)0x471CECE6,
  622.     (q31_t)0x5A82799A, (q31_t)0x5A82799A,
  623.     (q31_t)0x471CECE6, (q31_t)0x6A6D98A4,
  624.     (q31_t)0x30FBC54D, (q31_t)0x7641AF3C,
  625.     (q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
  626.     (q31_t)0x00000000, (q31_t)0x7FFFFFFF,
  627.     (q31_t)0xE70747C3, (q31_t)0x7D8A5F3F,
  628.     (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
  629.     (q31_t)0xB8E31319, (q31_t)0x6A6D98A4,
  630.     (q31_t)0xA57D8666, (q31_t)0x5A82799A,
  631.     (q31_t)0x9592675B, (q31_t)0x471CECE6,
  632.     (q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
  633.     (q31_t)0x8275A0C0, (q31_t)0x18F8B83C,
  634.     (q31_t)0x80000000, (q31_t)0x00000000,
  635.     (q31_t)0x8275A0C0, (q31_t)0xE70747C3,
  636.     (q31_t)0x89BE50C3, (q31_t)0xCF043AB2,
  637.     (q31_t)0x9592675B, (q31_t)0xB8E31319,
  638.     (q31_t)0xA57D8666, (q31_t)0xA57D8666,
  639.     (q31_t)0xB8E31319, (q31_t)0x9592675B,
  640.     (q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
  641.     (q31_t)0xE70747C3, (q31_t)0x8275A0C0
  642. };
  643.  
  644. /**
  645. * \par
  646. * Example code for Q31 Twiddle factors Generation::
  647. * \par
  648. * <pre>for(i = 0; i< 3N/4; i++)
  649. * {
  650. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  651. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  652. * } </pre>
  653. * \par
  654. * where N = 64  and PI = 3.14159265358979
  655. * \par
  656. * Cos and Sin values are interleaved fashion
  657. * \par
  658. * Convert Floating point to Q31(Fixed point 1.31):
  659. *       round(twiddleCoefQ31(i) * pow(2, 31))
  660. *
  661. */
  662. const q31_t twiddleCoef_64_q31[96] = {
  663.         (q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7F62368F,
  664.         (q31_t)0x0C8BD35E, (q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
  665.         (q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x7641AF3C,
  666.         (q31_t)0x30FBC54D, (q31_t)0x70E2CBC6, (q31_t)0x3C56BA70,
  667.         (q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x62F201AC,
  668.         (q31_t)0x5133CC94, (q31_t)0x5A82799A, (q31_t)0x5A82799A,
  669.         (q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x471CECE6,
  670.         (q31_t)0x6A6D98A4, (q31_t)0x3C56BA70, (q31_t)0x70E2CBC6,
  671.         (q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x25280C5D,
  672.         (q31_t)0x7A7D055B, (q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
  673.         (q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x00000000,
  674.         (q31_t)0x7FFFFFFF, (q31_t)0xF3742CA1, (q31_t)0x7F62368F,
  675.         (q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xDAD7F3A2,
  676.         (q31_t)0x7A7D055B, (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
  677.         (q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xB8E31319,
  678.         (q31_t)0x6A6D98A4, (q31_t)0xAECC336B, (q31_t)0x62F201AC,
  679.         (q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0x9D0DFE53,
  680.         (q31_t)0x5133CC94, (q31_t)0x9592675B, (q31_t)0x471CECE6,
  681.         (q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x89BE50C3,
  682.         (q31_t)0x30FBC54D, (q31_t)0x8582FAA4, (q31_t)0x25280C5D,
  683.         (q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x809DC970,
  684.         (q31_t)0x0C8BD35E, (q31_t)0x80000000, (q31_t)0x00000000,
  685.         (q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x8275A0C0,
  686.         (q31_t)0xE70747C3, (q31_t)0x8582FAA4, (q31_t)0xDAD7F3A2,
  687.         (q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8F1D343A,
  688.         (q31_t)0xC3A9458F, (q31_t)0x9592675B, (q31_t)0xB8E31319,
  689.         (q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0xA57D8666,
  690.         (q31_t)0xA57D8666, (q31_t)0xAECC336B, (q31_t)0x9D0DFE53,
  691.         (q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xC3A9458F,
  692.         (q31_t)0x8F1D343A, (q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
  693.         (q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xE70747C3,
  694.         (q31_t)0x8275A0C0, (q31_t)0xF3742CA1, (q31_t)0x809DC970
  695. };
  696.  
  697. /**
  698. * \par
  699. * Example code for Q31 Twiddle factors Generation::
  700. * \par
  701. * <pre>for(i = 0; i< 3N/4; i++)
  702. * {
  703. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  704. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  705. * } </pre>
  706. * \par
  707. * where N = 128 and PI = 3.14159265358979
  708. * \par
  709. * Cos and Sin values are interleaved fashion
  710. * \par
  711. * Convert Floating point to Q31(Fixed point 1.31):
  712. *       round(twiddleCoefQ31(i) * pow(2, 31))
  713. *
  714. */
  715. const q31_t twiddleCoef_128_q31[192] = {
  716.         (q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7FD8878D,
  717.         (q31_t)0x0647D97C, (q31_t)0x7F62368F, (q31_t)0x0C8BD35E,
  718.         (q31_t)0x7E9D55FC, (q31_t)0x12C8106E, (q31_t)0x7D8A5F3F,
  719.         (q31_t)0x18F8B83C, (q31_t)0x7C29FBEE, (q31_t)0x1F19F97B,
  720.         (q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x78848413,
  721.         (q31_t)0x2B1F34EB, (q31_t)0x7641AF3C, (q31_t)0x30FBC54D,
  722.         (q31_t)0x73B5EBD0, (q31_t)0x36BA2013, (q31_t)0x70E2CBC6,
  723.         (q31_t)0x3C56BA70, (q31_t)0x6DCA0D14, (q31_t)0x41CE1E64,
  724.         (q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x66CF811F,
  725.         (q31_t)0x4C3FDFF3, (q31_t)0x62F201AC, (q31_t)0x5133CC94,
  726.         (q31_t)0x5ED77C89, (q31_t)0x55F5A4D2, (q31_t)0x5A82799A,
  727.         (q31_t)0x5A82799A, (q31_t)0x55F5A4D2, (q31_t)0x5ED77C89,
  728.         (q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x4C3FDFF3,
  729.         (q31_t)0x66CF811F, (q31_t)0x471CECE6, (q31_t)0x6A6D98A4,
  730.         (q31_t)0x41CE1E64, (q31_t)0x6DCA0D14, (q31_t)0x3C56BA70,
  731.         (q31_t)0x70E2CBC6, (q31_t)0x36BA2013, (q31_t)0x73B5EBD0,
  732.         (q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x2B1F34EB,
  733.         (q31_t)0x78848413, (q31_t)0x25280C5D, (q31_t)0x7A7D055B,
  734.         (q31_t)0x1F19F97B, (q31_t)0x7C29FBEE, (q31_t)0x18F8B83C,
  735.         (q31_t)0x7D8A5F3F, (q31_t)0x12C8106E, (q31_t)0x7E9D55FC,
  736.         (q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x0647D97C,
  737.         (q31_t)0x7FD8878D, (q31_t)0x00000000, (q31_t)0x7FFFFFFF,
  738.         (q31_t)0xF9B82683, (q31_t)0x7FD8878D, (q31_t)0xF3742CA1,
  739.         (q31_t)0x7F62368F, (q31_t)0xED37EF91, (q31_t)0x7E9D55FC,
  740.         (q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xE0E60684,
  741.         (q31_t)0x7C29FBEE, (q31_t)0xDAD7F3A2, (q31_t)0x7A7D055B,
  742.         (q31_t)0xD4E0CB14, (q31_t)0x78848413, (q31_t)0xCF043AB2,
  743.         (q31_t)0x7641AF3C, (q31_t)0xC945DFEC, (q31_t)0x73B5EBD0,
  744.         (q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xBE31E19B,
  745.         (q31_t)0x6DCA0D14, (q31_t)0xB8E31319, (q31_t)0x6A6D98A4,
  746.         (q31_t)0xB3C0200C, (q31_t)0x66CF811F, (q31_t)0xAECC336B,
  747.         (q31_t)0x62F201AC, (q31_t)0xAA0A5B2D, (q31_t)0x5ED77C89,
  748.         (q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0xA1288376,
  749.         (q31_t)0x55F5A4D2, (q31_t)0x9D0DFE53, (q31_t)0x5133CC94,
  750.         (q31_t)0x99307EE0, (q31_t)0x4C3FDFF3, (q31_t)0x9592675B,
  751.         (q31_t)0x471CECE6, (q31_t)0x9235F2EB, (q31_t)0x41CE1E64,
  752.         (q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x8C4A142F,
  753.         (q31_t)0x36BA2013, (q31_t)0x89BE50C3, (q31_t)0x30FBC54D,
  754.         (q31_t)0x877B7BEC, (q31_t)0x2B1F34EB, (q31_t)0x8582FAA4,
  755.         (q31_t)0x25280C5D, (q31_t)0x83D60411, (q31_t)0x1F19F97B,
  756.         (q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x8162AA03,
  757.         (q31_t)0x12C8106E, (q31_t)0x809DC970, (q31_t)0x0C8BD35E,
  758.         (q31_t)0x80277872, (q31_t)0x0647D97C, (q31_t)0x80000000,
  759.         (q31_t)0x00000000, (q31_t)0x80277872, (q31_t)0xF9B82683,
  760.         (q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x8162AA03,
  761.         (q31_t)0xED37EF91, (q31_t)0x8275A0C0, (q31_t)0xE70747C3,
  762.         (q31_t)0x83D60411, (q31_t)0xE0E60684, (q31_t)0x8582FAA4,
  763.         (q31_t)0xDAD7F3A2, (q31_t)0x877B7BEC, (q31_t)0xD4E0CB14,
  764.         (q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8C4A142F,
  765.         (q31_t)0xC945DFEC, (q31_t)0x8F1D343A, (q31_t)0xC3A9458F,
  766.         (q31_t)0x9235F2EB, (q31_t)0xBE31E19B, (q31_t)0x9592675B,
  767.         (q31_t)0xB8E31319, (q31_t)0x99307EE0, (q31_t)0xB3C0200C,
  768.         (q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0xA1288376,
  769.         (q31_t)0xAA0A5B2D, (q31_t)0xA57D8666, (q31_t)0xA57D8666,
  770.         (q31_t)0xAA0A5B2D, (q31_t)0xA1288376, (q31_t)0xAECC336B,
  771.         (q31_t)0x9D0DFE53, (q31_t)0xB3C0200C, (q31_t)0x99307EE0,
  772.         (q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xBE31E19B,
  773.         (q31_t)0x9235F2EB, (q31_t)0xC3A9458F, (q31_t)0x8F1D343A,
  774.         (q31_t)0xC945DFEC, (q31_t)0x8C4A142F, (q31_t)0xCF043AB2,
  775.         (q31_t)0x89BE50C3, (q31_t)0xD4E0CB14, (q31_t)0x877B7BEC,
  776.         (q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xE0E60684,
  777.         (q31_t)0x83D60411, (q31_t)0xE70747C3, (q31_t)0x8275A0C0,
  778.         (q31_t)0xED37EF91, (q31_t)0x8162AA03, (q31_t)0xF3742CA1,
  779.         (q31_t)0x809DC970, (q31_t)0xF9B82683, (q31_t)0x80277872
  780. };
  781.  
  782. /**
  783. * \par
  784. * Example code for Q31 Twiddle factors Generation::
  785. * \par
  786. * <pre>for(i = 0; i< 3N/4; i++)
  787. * {
  788. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  789. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  790. * } </pre>
  791. * \par
  792. * where N = 256 and PI = 3.14159265358979
  793. * \par
  794. * Cos and Sin values are interleaved fashion
  795. * \par
  796. * Convert Floating point to Q31(Fixed point 1.31):
  797. *       round(twiddleCoefQ31(i) * pow(2, 31))
  798. *
  799. */
  800. const q31_t twiddleCoef_256_q31[384] = {
  801.         (q31_t)0x7FFFFFFF, (q31_t)0x00000000, (q31_t)0x7FF62182,
  802.         (q31_t)0x03242ABF, (q31_t)0x7FD8878D, (q31_t)0x0647D97C,
  803.         (q31_t)0x7FA736B4, (q31_t)0x096A9049, (q31_t)0x7F62368F,
  804.         (q31_t)0x0C8BD35E, (q31_t)0x7F0991C3, (q31_t)0x0FAB272B,
  805.         (q31_t)0x7E9D55FC, (q31_t)0x12C8106E, (q31_t)0x7E1D93E9,
  806.         (q31_t)0x15E21444, (q31_t)0x7D8A5F3F, (q31_t)0x18F8B83C,
  807.         (q31_t)0x7CE3CEB1, (q31_t)0x1C0B826A, (q31_t)0x7C29FBEE,
  808.         (q31_t)0x1F19F97B, (q31_t)0x7B5D039D, (q31_t)0x2223A4C5,
  809.         (q31_t)0x7A7D055B, (q31_t)0x25280C5D, (q31_t)0x798A23B1,
  810.         (q31_t)0x2826B928, (q31_t)0x78848413, (q31_t)0x2B1F34EB,
  811.         (q31_t)0x776C4EDB, (q31_t)0x2E110A62, (q31_t)0x7641AF3C,
  812.         (q31_t)0x30FBC54D, (q31_t)0x7504D345, (q31_t)0x33DEF287,
  813.         (q31_t)0x73B5EBD0, (q31_t)0x36BA2013, (q31_t)0x72552C84,
  814.         (q31_t)0x398CDD32, (q31_t)0x70E2CBC6, (q31_t)0x3C56BA70,
  815.         (q31_t)0x6F5F02B1, (q31_t)0x3F1749B7, (q31_t)0x6DCA0D14,
  816.         (q31_t)0x41CE1E64, (q31_t)0x6C242960, (q31_t)0x447ACD50,
  817.         (q31_t)0x6A6D98A4, (q31_t)0x471CECE6, (q31_t)0x68A69E81,
  818.         (q31_t)0x49B41533, (q31_t)0x66CF811F, (q31_t)0x4C3FDFF3,
  819.         (q31_t)0x64E88926, (q31_t)0x4EBFE8A4, (q31_t)0x62F201AC,
  820.         (q31_t)0x5133CC94, (q31_t)0x60EC3830, (q31_t)0x539B2AEF,
  821.         (q31_t)0x5ED77C89, (q31_t)0x55F5A4D2, (q31_t)0x5CB420DF,
  822.         (q31_t)0x5842DD54, (q31_t)0x5A82799A, (q31_t)0x5A82799A,
  823.         (q31_t)0x5842DD54, (q31_t)0x5CB420DF, (q31_t)0x55F5A4D2,
  824.         (q31_t)0x5ED77C89, (q31_t)0x539B2AEF, (q31_t)0x60EC3830,
  825.         (q31_t)0x5133CC94, (q31_t)0x62F201AC, (q31_t)0x4EBFE8A4,
  826.         (q31_t)0x64E88926, (q31_t)0x4C3FDFF3, (q31_t)0x66CF811F,
  827.         (q31_t)0x49B41533, (q31_t)0x68A69E81, (q31_t)0x471CECE6,
  828.         (q31_t)0x6A6D98A4, (q31_t)0x447ACD50, (q31_t)0x6C242960,
  829.         (q31_t)0x41CE1E64, (q31_t)0x6DCA0D14, (q31_t)0x3F1749B7,
  830.         (q31_t)0x6F5F02B1, (q31_t)0x3C56BA70, (q31_t)0x70E2CBC6,
  831.         (q31_t)0x398CDD32, (q31_t)0x72552C84, (q31_t)0x36BA2013,
  832.         (q31_t)0x73B5EBD0, (q31_t)0x33DEF287, (q31_t)0x7504D345,
  833.         (q31_t)0x30FBC54D, (q31_t)0x7641AF3C, (q31_t)0x2E110A62,
  834.         (q31_t)0x776C4EDB, (q31_t)0x2B1F34EB, (q31_t)0x78848413,
  835.         (q31_t)0x2826B928, (q31_t)0x798A23B1, (q31_t)0x25280C5D,
  836.         (q31_t)0x7A7D055B, (q31_t)0x2223A4C5, (q31_t)0x7B5D039D,
  837.         (q31_t)0x1F19F97B, (q31_t)0x7C29FBEE, (q31_t)0x1C0B826A,
  838.         (q31_t)0x7CE3CEB1, (q31_t)0x18F8B83C, (q31_t)0x7D8A5F3F,
  839.         (q31_t)0x15E21444, (q31_t)0x7E1D93E9, (q31_t)0x12C8106E,
  840.         (q31_t)0x7E9D55FC, (q31_t)0x0FAB272B, (q31_t)0x7F0991C3,
  841.         (q31_t)0x0C8BD35E, (q31_t)0x7F62368F, (q31_t)0x096A9049,
  842.         (q31_t)0x7FA736B4, (q31_t)0x0647D97C, (q31_t)0x7FD8878D,
  843.         (q31_t)0x03242ABF, (q31_t)0x7FF62182, (q31_t)0x00000000,
  844.         (q31_t)0x7FFFFFFF, (q31_t)0xFCDBD541, (q31_t)0x7FF62182,
  845.         (q31_t)0xF9B82683, (q31_t)0x7FD8878D, (q31_t)0xF6956FB6,
  846.         (q31_t)0x7FA736B4, (q31_t)0xF3742CA1, (q31_t)0x7F62368F,
  847.         (q31_t)0xF054D8D4, (q31_t)0x7F0991C3, (q31_t)0xED37EF91,
  848.         (q31_t)0x7E9D55FC, (q31_t)0xEA1DEBBB, (q31_t)0x7E1D93E9,
  849.         (q31_t)0xE70747C3, (q31_t)0x7D8A5F3F, (q31_t)0xE3F47D95,
  850.         (q31_t)0x7CE3CEB1, (q31_t)0xE0E60684, (q31_t)0x7C29FBEE,
  851.         (q31_t)0xDDDC5B3A, (q31_t)0x7B5D039D, (q31_t)0xDAD7F3A2,
  852.         (q31_t)0x7A7D055B, (q31_t)0xD7D946D7, (q31_t)0x798A23B1,
  853.         (q31_t)0xD4E0CB14, (q31_t)0x78848413, (q31_t)0xD1EEF59E,
  854.         (q31_t)0x776C4EDB, (q31_t)0xCF043AB2, (q31_t)0x7641AF3C,
  855.         (q31_t)0xCC210D78, (q31_t)0x7504D345, (q31_t)0xC945DFEC,
  856.         (q31_t)0x73B5EBD0, (q31_t)0xC67322CD, (q31_t)0x72552C84,
  857.         (q31_t)0xC3A9458F, (q31_t)0x70E2CBC6, (q31_t)0xC0E8B648,
  858.         (q31_t)0x6F5F02B1, (q31_t)0xBE31E19B, (q31_t)0x6DCA0D14,
  859.         (q31_t)0xBB8532AF, (q31_t)0x6C242960, (q31_t)0xB8E31319,
  860.         (q31_t)0x6A6D98A4, (q31_t)0xB64BEACC, (q31_t)0x68A69E81,
  861.         (q31_t)0xB3C0200C, (q31_t)0x66CF811F, (q31_t)0xB140175B,
  862.         (q31_t)0x64E88926, (q31_t)0xAECC336B, (q31_t)0x62F201AC,
  863.         (q31_t)0xAC64D510, (q31_t)0x60EC3830, (q31_t)0xAA0A5B2D,
  864.         (q31_t)0x5ED77C89, (q31_t)0xA7BD22AB, (q31_t)0x5CB420DF,
  865.         (q31_t)0xA57D8666, (q31_t)0x5A82799A, (q31_t)0xA34BDF20,
  866.         (q31_t)0x5842DD54, (q31_t)0xA1288376, (q31_t)0x55F5A4D2,
  867.         (q31_t)0x9F13C7D0, (q31_t)0x539B2AEF, (q31_t)0x9D0DFE53,
  868.         (q31_t)0x5133CC94, (q31_t)0x9B1776D9, (q31_t)0x4EBFE8A4,
  869.         (q31_t)0x99307EE0, (q31_t)0x4C3FDFF3, (q31_t)0x9759617E,
  870.         (q31_t)0x49B41533, (q31_t)0x9592675B, (q31_t)0x471CECE6,
  871.         (q31_t)0x93DBD69F, (q31_t)0x447ACD50, (q31_t)0x9235F2EB,
  872.         (q31_t)0x41CE1E64, (q31_t)0x90A0FD4E, (q31_t)0x3F1749B7,
  873.         (q31_t)0x8F1D343A, (q31_t)0x3C56BA70, (q31_t)0x8DAAD37B,
  874.         (q31_t)0x398CDD32, (q31_t)0x8C4A142F, (q31_t)0x36BA2013,
  875.         (q31_t)0x8AFB2CBA, (q31_t)0x33DEF287, (q31_t)0x89BE50C3,
  876.         (q31_t)0x30FBC54D, (q31_t)0x8893B124, (q31_t)0x2E110A62,
  877.         (q31_t)0x877B7BEC, (q31_t)0x2B1F34EB, (q31_t)0x8675DC4E,
  878.         (q31_t)0x2826B928, (q31_t)0x8582FAA4, (q31_t)0x25280C5D,
  879.         (q31_t)0x84A2FC62, (q31_t)0x2223A4C5, (q31_t)0x83D60411,
  880.         (q31_t)0x1F19F97B, (q31_t)0x831C314E, (q31_t)0x1C0B826A,
  881.         (q31_t)0x8275A0C0, (q31_t)0x18F8B83C, (q31_t)0x81E26C16,
  882.         (q31_t)0x15E21444, (q31_t)0x8162AA03, (q31_t)0x12C8106E,
  883.         (q31_t)0x80F66E3C, (q31_t)0x0FAB272B, (q31_t)0x809DC970,
  884.         (q31_t)0x0C8BD35E, (q31_t)0x8058C94C, (q31_t)0x096A9049,
  885.         (q31_t)0x80277872, (q31_t)0x0647D97C, (q31_t)0x8009DE7D,
  886.         (q31_t)0x03242ABF, (q31_t)0x80000000, (q31_t)0x00000000,
  887.         (q31_t)0x8009DE7D, (q31_t)0xFCDBD541, (q31_t)0x80277872,
  888.         (q31_t)0xF9B82683, (q31_t)0x8058C94C, (q31_t)0xF6956FB6,
  889.         (q31_t)0x809DC970, (q31_t)0xF3742CA1, (q31_t)0x80F66E3C,
  890.         (q31_t)0xF054D8D4, (q31_t)0x8162AA03, (q31_t)0xED37EF91,
  891.         (q31_t)0x81E26C16, (q31_t)0xEA1DEBBB, (q31_t)0x8275A0C0,
  892.         (q31_t)0xE70747C3, (q31_t)0x831C314E, (q31_t)0xE3F47D95,
  893.         (q31_t)0x83D60411, (q31_t)0xE0E60684, (q31_t)0x84A2FC62,
  894.         (q31_t)0xDDDC5B3A, (q31_t)0x8582FAA4, (q31_t)0xDAD7F3A2,
  895.         (q31_t)0x8675DC4E, (q31_t)0xD7D946D7, (q31_t)0x877B7BEC,
  896.         (q31_t)0xD4E0CB14, (q31_t)0x8893B124, (q31_t)0xD1EEF59E,
  897.         (q31_t)0x89BE50C3, (q31_t)0xCF043AB2, (q31_t)0x8AFB2CBA,
  898.         (q31_t)0xCC210D78, (q31_t)0x8C4A142F, (q31_t)0xC945DFEC,
  899.         (q31_t)0x8DAAD37B, (q31_t)0xC67322CD, (q31_t)0x8F1D343A,
  900.         (q31_t)0xC3A9458F, (q31_t)0x90A0FD4E, (q31_t)0xC0E8B648,
  901.         (q31_t)0x9235F2EB, (q31_t)0xBE31E19B, (q31_t)0x93DBD69F,
  902.         (q31_t)0xBB8532AF, (q31_t)0x9592675B, (q31_t)0xB8E31319,
  903.         (q31_t)0x9759617E, (q31_t)0xB64BEACC, (q31_t)0x99307EE0,
  904.         (q31_t)0xB3C0200C, (q31_t)0x9B1776D9, (q31_t)0xB140175B,
  905.         (q31_t)0x9D0DFE53, (q31_t)0xAECC336B, (q31_t)0x9F13C7D0,
  906.         (q31_t)0xAC64D510, (q31_t)0xA1288376, (q31_t)0xAA0A5B2D,
  907.         (q31_t)0xA34BDF20, (q31_t)0xA7BD22AB, (q31_t)0xA57D8666,
  908.         (q31_t)0xA57D8666, (q31_t)0xA7BD22AB, (q31_t)0xA34BDF20,
  909.         (q31_t)0xAA0A5B2D, (q31_t)0xA1288376, (q31_t)0xAC64D510,
  910.         (q31_t)0x9F13C7D0, (q31_t)0xAECC336B, (q31_t)0x9D0DFE53,
  911.         (q31_t)0xB140175B, (q31_t)0x9B1776D9, (q31_t)0xB3C0200C,
  912.         (q31_t)0x99307EE0, (q31_t)0xB64BEACC, (q31_t)0x9759617E,
  913.         (q31_t)0xB8E31319, (q31_t)0x9592675B, (q31_t)0xBB8532AF,
  914.         (q31_t)0x93DBD69F, (q31_t)0xBE31E19B, (q31_t)0x9235F2EB,
  915.         (q31_t)0xC0E8B648, (q31_t)0x90A0FD4E, (q31_t)0xC3A9458F,
  916.         (q31_t)0x8F1D343A, (q31_t)0xC67322CD, (q31_t)0x8DAAD37B,
  917.         (q31_t)0xC945DFEC, (q31_t)0x8C4A142F, (q31_t)0xCC210D78,
  918.         (q31_t)0x8AFB2CBA, (q31_t)0xCF043AB2, (q31_t)0x89BE50C3,
  919.         (q31_t)0xD1EEF59E, (q31_t)0x8893B124, (q31_t)0xD4E0CB14,
  920.         (q31_t)0x877B7BEC, (q31_t)0xD7D946D7, (q31_t)0x8675DC4E,
  921.         (q31_t)0xDAD7F3A2, (q31_t)0x8582FAA4, (q31_t)0xDDDC5B3A,
  922.         (q31_t)0x84A2FC62, (q31_t)0xE0E60684, (q31_t)0x83D60411,
  923.         (q31_t)0xE3F47D95, (q31_t)0x831C314E, (q31_t)0xE70747C3,
  924.         (q31_t)0x8275A0C0, (q31_t)0xEA1DEBBB, (q31_t)0x81E26C16,
  925.         (q31_t)0xED37EF91, (q31_t)0x8162AA03, (q31_t)0xF054D8D4,
  926.         (q31_t)0x80F66E3C, (q31_t)0xF3742CA1, (q31_t)0x809DC970,
  927.         (q31_t)0xF6956FB6, (q31_t)0x8058C94C, (q31_t)0xF9B82683,
  928.         (q31_t)0x80277872, (q31_t)0xFCDBD541, (q31_t)0x8009DE7D
  929. };
  930.  
  931. /**
  932. * \par
  933. * Example code for Q31 Twiddle factors Generation::
  934. * \par
  935. * <pre>for(i = 0; i< 3N/4; i++)
  936. * {
  937. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  938. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  939. * } </pre>
  940. * \par
  941. * where N = 512 and PI = 3.14159265358979
  942. * \par
  943. * Cos and Sin values are interleaved fashion
  944. * \par
  945. * Convert Floating point to Q31(Fixed point 1.31):
  946. *       round(twiddleCoefQ31(i) * pow(2, 31))
  947. *
  948. *//**
  949. * \par
  950. * Example code for Q31 Twiddle factors Generation::
  951. * \par
  952. * <pre>for(i = 0; i< 3N/4; i++)
  953. * {
  954. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  955. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  956. * } </pre>
  957. * \par
  958. * where N = 1024        and PI = 3.14159265358979
  959. * \par
  960. * Cos and Sin values are interleaved fashion
  961. * \par
  962. * Convert Floating point to Q31(Fixed point 1.31):
  963. *       round(twiddleCoefQ31(i) * pow(2, 31))
  964. *
  965. *//**
  966. * \par
  967. * Example code for Q31 Twiddle factors Generation::
  968. * \par
  969. * <pre>for(i = 0; i< 3N/4; i++)
  970. * {
  971. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  972. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  973. * } </pre>
  974. * \par
  975. * where N = 2048        and PI = 3.14159265358979
  976. * \par
  977. * Cos and Sin values are interleaved fashion
  978. * \par
  979. * Convert Floating point to Q31(Fixed point 1.31):
  980. *       round(twiddleCoefQ31(i) * pow(2, 31))
  981. *
  982. *//**
  983. * \par
  984. * Example code for Q31 Twiddle factors Generation::
  985. * \par
  986. * <pre>for(i = 0; i< 3N/4; i++)
  987. * {
  988. *    twiddleCoefQ31[2*i]= cos(i * 2*PI/(float)N);
  989. *    twiddleCoefQ31[2*i+1]= sin(i * 2*PI/(float)N);
  990. * } </pre>
  991. * \par
  992. * where N = 4096        and PI = 3.14159265358979
  993. * \par
  994. * Cos and Sin values are interleaved fashion
  995. * \par
  996. * Convert Floating point to Q31(Fixed point 1.31):
  997. *       round(twiddleCoefQ31(i) * pow(2, 31))
  998. *
  999. *//*
  1000. * @brief  q15 Twiddle factors Table
  1001. */
  1002.  
  1003.  
  1004. /**
  1005. * \par
  1006. * Example code for q15 Twiddle factors Generation::
  1007. * \par
  1008. * <pre>for(i = 0; i< 3N/4; i++)
  1009. * {
  1010. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1011. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1012. * } </pre>
  1013. * \par
  1014. * where N = 16  and PI = 3.14159265358979
  1015. * \par
  1016. * Cos and Sin values are interleaved fashion
  1017. * \par
  1018. * Convert Floating point to q15(Fixed point 1.15):
  1019. *       round(twiddleCoefq15(i) * pow(2, 15))
  1020. *
  1021. */
  1022. const q15_t twiddleCoef_16_q15[24] = {
  1023.     (q15_t)0x7FFF, (q15_t)0x0000,
  1024.     (q15_t)0x7641, (q15_t)0x30FB,
  1025.     (q15_t)0x5A82, (q15_t)0x5A82,
  1026.     (q15_t)0x30FB, (q15_t)0x7641,
  1027.     (q15_t)0x0000, (q15_t)0x7FFF,
  1028.     (q15_t)0xCF04, (q15_t)0x7641,
  1029.     (q15_t)0xA57D, (q15_t)0x5A82,
  1030.     (q15_t)0x89BE, (q15_t)0x30FB,
  1031.     (q15_t)0x8000, (q15_t)0x0000,
  1032.     (q15_t)0x89BE, (q15_t)0xCF04,
  1033.     (q15_t)0xA57D, (q15_t)0xA57D,
  1034.     (q15_t)0xCF04, (q15_t)0x89BE
  1035. };
  1036.  
  1037. /**
  1038. * \par
  1039. * Example code for q15 Twiddle factors Generation::
  1040. * \par
  1041. * <pre>for(i = 0; i< 3N/4; i++)
  1042. * {
  1043. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1044. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1045. * } </pre>
  1046. * \par
  1047. * where N = 32  and PI = 3.14159265358979
  1048. * \par
  1049. * Cos and Sin values are interleaved fashion
  1050. * \par
  1051. * Convert Floating point to q15(Fixed point 1.15):
  1052. *       round(twiddleCoefq15(i) * pow(2, 15))
  1053. *
  1054. */
  1055. const q15_t twiddleCoef_32_q15[48] = {
  1056.     (q15_t)0x7FFF, (q15_t)0x0000,
  1057.     (q15_t)0x7D8A, (q15_t)0x18F8,
  1058.     (q15_t)0x7641, (q15_t)0x30FB,
  1059.     (q15_t)0x6A6D, (q15_t)0x471C,
  1060.     (q15_t)0x5A82, (q15_t)0x5A82,
  1061.     (q15_t)0x471C, (q15_t)0x6A6D,
  1062.     (q15_t)0x30FB, (q15_t)0x7641,
  1063.     (q15_t)0x18F8, (q15_t)0x7D8A,
  1064.     (q15_t)0x0000, (q15_t)0x7FFF,
  1065.     (q15_t)0xE707, (q15_t)0x7D8A,
  1066.     (q15_t)0xCF04, (q15_t)0x7641,
  1067.     (q15_t)0xB8E3, (q15_t)0x6A6D,
  1068.     (q15_t)0xA57D, (q15_t)0x5A82,
  1069.     (q15_t)0x9592, (q15_t)0x471C,
  1070.     (q15_t)0x89BE, (q15_t)0x30FB,
  1071.     (q15_t)0x8275, (q15_t)0x18F8,
  1072.     (q15_t)0x8000, (q15_t)0x0000,
  1073.     (q15_t)0x8275, (q15_t)0xE707,
  1074.     (q15_t)0x89BE, (q15_t)0xCF04,
  1075.     (q15_t)0x9592, (q15_t)0xB8E3,
  1076.     (q15_t)0xA57D, (q15_t)0xA57D,
  1077.     (q15_t)0xB8E3, (q15_t)0x9592,
  1078.     (q15_t)0xCF04, (q15_t)0x89BE,
  1079.     (q15_t)0xE707, (q15_t)0x8275
  1080. };
  1081.  
  1082. /**
  1083. * \par
  1084. * Example code for q15 Twiddle factors Generation::
  1085. * \par
  1086. * <pre>for(i = 0; i< 3N/4; i++)
  1087. * {
  1088. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1089. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1090. * } </pre>
  1091. * \par
  1092. * where N = 64  and PI = 3.14159265358979
  1093. * \par
  1094. * Cos and Sin values are interleaved fashion
  1095. * \par
  1096. * Convert Floating point to q15(Fixed point 1.15):
  1097. *       round(twiddleCoefq15(i) * pow(2, 15))
  1098. *
  1099. */
  1100. const q15_t twiddleCoef_64_q15[96] = {
  1101.         (q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7F62, (q15_t)0x0C8B,
  1102.         (q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7A7D, (q15_t)0x2528,
  1103.         (q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x70E2, (q15_t)0x3C56,
  1104.         (q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x62F2, (q15_t)0x5133,
  1105.         (q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x5133, (q15_t)0x62F2,
  1106.         (q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x3C56, (q15_t)0x70E2,
  1107.         (q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2528, (q15_t)0x7A7D,
  1108.         (q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x0C8B, (q15_t)0x7F62,
  1109.         (q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xF374, (q15_t)0x7F62,
  1110.         (q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xDAD7, (q15_t)0x7A7D,
  1111.         (q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xC3A9, (q15_t)0x70E2,
  1112.         (q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xAECC, (q15_t)0x62F2,
  1113.         (q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0x9D0D, (q15_t)0x5133,
  1114.         (q15_t)0x9592, (q15_t)0x471C, (q15_t)0x8F1D, (q15_t)0x3C56,
  1115.         (q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x8582, (q15_t)0x2528,
  1116.         (q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x809D, (q15_t)0x0C8B,
  1117.         (q15_t)0x8000, (q15_t)0x0000, (q15_t)0x809D, (q15_t)0xF374,
  1118.         (q15_t)0x8275, (q15_t)0xE707, (q15_t)0x8582, (q15_t)0xDAD7,
  1119.         (q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8F1D, (q15_t)0xC3A9,
  1120.         (q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9D0D, (q15_t)0xAECC,
  1121.         (q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xAECC, (q15_t)0x9D0D,
  1122.         (q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xC3A9, (q15_t)0x8F1D,
  1123.         (q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xDAD7, (q15_t)0x8582,
  1124.         (q15_t)0xE707, (q15_t)0x8275, (q15_t)0xF374, (q15_t)0x809D
  1125. };
  1126.  
  1127. /**
  1128. * \par
  1129. * Example code for q15 Twiddle factors Generation::
  1130. * \par
  1131. * <pre>for(i = 0; i< 3N/4; i++)
  1132. * {
  1133. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1134. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1135. * } </pre>
  1136. * \par
  1137. * where N = 128 and PI = 3.14159265358979
  1138. * \par
  1139. * Cos and Sin values are interleaved fashion
  1140. * \par
  1141. * Convert Floating point to q15(Fixed point 1.15):
  1142. *       round(twiddleCoefq15(i) * pow(2, 15))
  1143. *
  1144. */
  1145. const q15_t twiddleCoef_128_q15[192] = {
  1146.         (q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7FD8, (q15_t)0x0647,
  1147.         (q15_t)0x7F62, (q15_t)0x0C8B, (q15_t)0x7E9D, (q15_t)0x12C8,
  1148.         (q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7C29, (q15_t)0x1F19,
  1149.         (q15_t)0x7A7D, (q15_t)0x2528, (q15_t)0x7884, (q15_t)0x2B1F,
  1150.         (q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x73B5, (q15_t)0x36BA,
  1151.         (q15_t)0x70E2, (q15_t)0x3C56, (q15_t)0x6DCA, (q15_t)0x41CE,
  1152.         (q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x66CF, (q15_t)0x4C3F,
  1153.         (q15_t)0x62F2, (q15_t)0x5133, (q15_t)0x5ED7, (q15_t)0x55F5,
  1154.         (q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x55F5, (q15_t)0x5ED7,
  1155.         (q15_t)0x5133, (q15_t)0x62F2, (q15_t)0x4C3F, (q15_t)0x66CF,
  1156.         (q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x41CE, (q15_t)0x6DCA,
  1157.         (q15_t)0x3C56, (q15_t)0x70E2, (q15_t)0x36BA, (q15_t)0x73B5,
  1158.         (q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2B1F, (q15_t)0x7884,
  1159.         (q15_t)0x2528, (q15_t)0x7A7D, (q15_t)0x1F19, (q15_t)0x7C29,
  1160.         (q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x12C8, (q15_t)0x7E9D,
  1161.         (q15_t)0x0C8B, (q15_t)0x7F62, (q15_t)0x0647, (q15_t)0x7FD8,
  1162.         (q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xF9B8, (q15_t)0x7FD8,
  1163.         (q15_t)0xF374, (q15_t)0x7F62, (q15_t)0xED37, (q15_t)0x7E9D,
  1164.         (q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xE0E6, (q15_t)0x7C29,
  1165.         (q15_t)0xDAD7, (q15_t)0x7A7D, (q15_t)0xD4E0, (q15_t)0x7884,
  1166.         (q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xC945, (q15_t)0x73B5,
  1167.         (q15_t)0xC3A9, (q15_t)0x70E2, (q15_t)0xBE31, (q15_t)0x6DCA,
  1168.         (q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xB3C0, (q15_t)0x66CF,
  1169.         (q15_t)0xAECC, (q15_t)0x62F2, (q15_t)0xAA0A, (q15_t)0x5ED7,
  1170.         (q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0xA128, (q15_t)0x55F5,
  1171.         (q15_t)0x9D0D, (q15_t)0x5133, (q15_t)0x9930, (q15_t)0x4C3F,
  1172.         (q15_t)0x9592, (q15_t)0x471C, (q15_t)0x9235, (q15_t)0x41CE,
  1173.         (q15_t)0x8F1D, (q15_t)0x3C56, (q15_t)0x8C4A, (q15_t)0x36BA,
  1174.         (q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x877B, (q15_t)0x2B1F,
  1175.         (q15_t)0x8582, (q15_t)0x2528, (q15_t)0x83D6, (q15_t)0x1F19,
  1176.         (q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x8162, (q15_t)0x12C8,
  1177.         (q15_t)0x809D, (q15_t)0x0C8B, (q15_t)0x8027, (q15_t)0x0647,
  1178.         (q15_t)0x8000, (q15_t)0x0000, (q15_t)0x8027, (q15_t)0xF9B8,
  1179.         (q15_t)0x809D, (q15_t)0xF374, (q15_t)0x8162, (q15_t)0xED37,
  1180.         (q15_t)0x8275, (q15_t)0xE707, (q15_t)0x83D6, (q15_t)0xE0E6,
  1181.         (q15_t)0x8582, (q15_t)0xDAD7, (q15_t)0x877B, (q15_t)0xD4E0,
  1182.         (q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8C4A, (q15_t)0xC945,
  1183.         (q15_t)0x8F1D, (q15_t)0xC3A9, (q15_t)0x9235, (q15_t)0xBE31,
  1184.         (q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9930, (q15_t)0xB3C0,
  1185.         (q15_t)0x9D0D, (q15_t)0xAECC, (q15_t)0xA128, (q15_t)0xAA0A,
  1186.         (q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xAA0A, (q15_t)0xA128,
  1187.         (q15_t)0xAECC, (q15_t)0x9D0D, (q15_t)0xB3C0, (q15_t)0x9930,
  1188.         (q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xBE31, (q15_t)0x9235,
  1189.         (q15_t)0xC3A9, (q15_t)0x8F1D, (q15_t)0xC945, (q15_t)0x8C4A,
  1190.         (q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xD4E0, (q15_t)0x877B,
  1191.         (q15_t)0xDAD7, (q15_t)0x8582, (q15_t)0xE0E6, (q15_t)0x83D6,
  1192.         (q15_t)0xE707, (q15_t)0x8275, (q15_t)0xED37, (q15_t)0x8162,
  1193.         (q15_t)0xF374, (q15_t)0x809D, (q15_t)0xF9B8, (q15_t)0x8027
  1194. };
  1195.  
  1196. /**
  1197. * \par
  1198. * Example code for q15 Twiddle factors Generation::
  1199. * \par
  1200. * <pre>for(i = 0; i< 3N/4; i++)
  1201. * {
  1202. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1203. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1204. * } </pre>
  1205. * \par
  1206. * where N = 256 and PI = 3.14159265358979
  1207. * \par
  1208. * Cos and Sin values are interleaved fashion
  1209. * \par
  1210. * Convert Floating point to q15(Fixed point 1.15):
  1211. *       round(twiddleCoefq15(i) * pow(2, 15))
  1212. *
  1213. */
  1214. const q15_t twiddleCoef_256_q15[384] = {
  1215.         (q15_t)0x7FFF, (q15_t)0x0000, (q15_t)0x7FF6, (q15_t)0x0324,
  1216.         (q15_t)0x7FD8, (q15_t)0x0647, (q15_t)0x7FA7, (q15_t)0x096A,
  1217.         (q15_t)0x7F62, (q15_t)0x0C8B, (q15_t)0x7F09, (q15_t)0x0FAB,
  1218.         (q15_t)0x7E9D, (q15_t)0x12C8, (q15_t)0x7E1D, (q15_t)0x15E2,
  1219.         (q15_t)0x7D8A, (q15_t)0x18F8, (q15_t)0x7CE3, (q15_t)0x1C0B,
  1220.         (q15_t)0x7C29, (q15_t)0x1F19, (q15_t)0x7B5D, (q15_t)0x2223,
  1221.         (q15_t)0x7A7D, (q15_t)0x2528, (q15_t)0x798A, (q15_t)0x2826,
  1222.         (q15_t)0x7884, (q15_t)0x2B1F, (q15_t)0x776C, (q15_t)0x2E11,
  1223.         (q15_t)0x7641, (q15_t)0x30FB, (q15_t)0x7504, (q15_t)0x33DE,
  1224.         (q15_t)0x73B5, (q15_t)0x36BA, (q15_t)0x7255, (q15_t)0x398C,
  1225.         (q15_t)0x70E2, (q15_t)0x3C56, (q15_t)0x6F5F, (q15_t)0x3F17,
  1226.         (q15_t)0x6DCA, (q15_t)0x41CE, (q15_t)0x6C24, (q15_t)0x447A,
  1227.         (q15_t)0x6A6D, (q15_t)0x471C, (q15_t)0x68A6, (q15_t)0x49B4,
  1228.         (q15_t)0x66CF, (q15_t)0x4C3F, (q15_t)0x64E8, (q15_t)0x4EBF,
  1229.         (q15_t)0x62F2, (q15_t)0x5133, (q15_t)0x60EC, (q15_t)0x539B,
  1230.         (q15_t)0x5ED7, (q15_t)0x55F5, (q15_t)0x5CB4, (q15_t)0x5842,
  1231.         (q15_t)0x5A82, (q15_t)0x5A82, (q15_t)0x5842, (q15_t)0x5CB4,
  1232.         (q15_t)0x55F5, (q15_t)0x5ED7, (q15_t)0x539B, (q15_t)0x60EC,
  1233.         (q15_t)0x5133, (q15_t)0x62F2, (q15_t)0x4EBF, (q15_t)0x64E8,
  1234.         (q15_t)0x4C3F, (q15_t)0x66CF, (q15_t)0x49B4, (q15_t)0x68A6,
  1235.         (q15_t)0x471C, (q15_t)0x6A6D, (q15_t)0x447A, (q15_t)0x6C24,
  1236.         (q15_t)0x41CE, (q15_t)0x6DCA, (q15_t)0x3F17, (q15_t)0x6F5F,
  1237.         (q15_t)0x3C56, (q15_t)0x70E2, (q15_t)0x398C, (q15_t)0x7255,
  1238.         (q15_t)0x36BA, (q15_t)0x73B5, (q15_t)0x33DE, (q15_t)0x7504,
  1239.         (q15_t)0x30FB, (q15_t)0x7641, (q15_t)0x2E11, (q15_t)0x776C,
  1240.         (q15_t)0x2B1F, (q15_t)0x7884, (q15_t)0x2826, (q15_t)0x798A,
  1241.         (q15_t)0x2528, (q15_t)0x7A7D, (q15_t)0x2223, (q15_t)0x7B5D,
  1242.         (q15_t)0x1F19, (q15_t)0x7C29, (q15_t)0x1C0B, (q15_t)0x7CE3,
  1243.         (q15_t)0x18F8, (q15_t)0x7D8A, (q15_t)0x15E2, (q15_t)0x7E1D,
  1244.         (q15_t)0x12C8, (q15_t)0x7E9D, (q15_t)0x0FAB, (q15_t)0x7F09,
  1245.         (q15_t)0x0C8B, (q15_t)0x7F62, (q15_t)0x096A, (q15_t)0x7FA7,
  1246.         (q15_t)0x0647, (q15_t)0x7FD8, (q15_t)0x0324, (q15_t)0x7FF6,
  1247.         (q15_t)0x0000, (q15_t)0x7FFF, (q15_t)0xFCDB, (q15_t)0x7FF6,
  1248.         (q15_t)0xF9B8, (q15_t)0x7FD8, (q15_t)0xF695, (q15_t)0x7FA7,
  1249.         (q15_t)0xF374, (q15_t)0x7F62, (q15_t)0xF054, (q15_t)0x7F09,
  1250.         (q15_t)0xED37, (q15_t)0x7E9D, (q15_t)0xEA1D, (q15_t)0x7E1D,
  1251.         (q15_t)0xE707, (q15_t)0x7D8A, (q15_t)0xE3F4, (q15_t)0x7CE3,
  1252.         (q15_t)0xE0E6, (q15_t)0x7C29, (q15_t)0xDDDC, (q15_t)0x7B5D,
  1253.         (q15_t)0xDAD7, (q15_t)0x7A7D, (q15_t)0xD7D9, (q15_t)0x798A,
  1254.         (q15_t)0xD4E0, (q15_t)0x7884, (q15_t)0xD1EE, (q15_t)0x776C,
  1255.         (q15_t)0xCF04, (q15_t)0x7641, (q15_t)0xCC21, (q15_t)0x7504,
  1256.         (q15_t)0xC945, (q15_t)0x73B5, (q15_t)0xC673, (q15_t)0x7255,
  1257.         (q15_t)0xC3A9, (q15_t)0x70E2, (q15_t)0xC0E8, (q15_t)0x6F5F,
  1258.         (q15_t)0xBE31, (q15_t)0x6DCA, (q15_t)0xBB85, (q15_t)0x6C24,
  1259.         (q15_t)0xB8E3, (q15_t)0x6A6D, (q15_t)0xB64B, (q15_t)0x68A6,
  1260.         (q15_t)0xB3C0, (q15_t)0x66CF, (q15_t)0xB140, (q15_t)0x64E8,
  1261.         (q15_t)0xAECC, (q15_t)0x62F2, (q15_t)0xAC64, (q15_t)0x60EC,
  1262.         (q15_t)0xAA0A, (q15_t)0x5ED7, (q15_t)0xA7BD, (q15_t)0x5CB4,
  1263.         (q15_t)0xA57D, (q15_t)0x5A82, (q15_t)0xA34B, (q15_t)0x5842,
  1264.         (q15_t)0xA128, (q15_t)0x55F5, (q15_t)0x9F13, (q15_t)0x539B,
  1265.         (q15_t)0x9D0D, (q15_t)0x5133, (q15_t)0x9B17, (q15_t)0x4EBF,
  1266.         (q15_t)0x9930, (q15_t)0x4C3F, (q15_t)0x9759, (q15_t)0x49B4,
  1267.         (q15_t)0x9592, (q15_t)0x471C, (q15_t)0x93DB, (q15_t)0x447A,
  1268.         (q15_t)0x9235, (q15_t)0x41CE, (q15_t)0x90A0, (q15_t)0x3F17,
  1269.         (q15_t)0x8F1D, (q15_t)0x3C56, (q15_t)0x8DAA, (q15_t)0x398C,
  1270.         (q15_t)0x8C4A, (q15_t)0x36BA, (q15_t)0x8AFB, (q15_t)0x33DE,
  1271.         (q15_t)0x89BE, (q15_t)0x30FB, (q15_t)0x8893, (q15_t)0x2E11,
  1272.         (q15_t)0x877B, (q15_t)0x2B1F, (q15_t)0x8675, (q15_t)0x2826,
  1273.         (q15_t)0x8582, (q15_t)0x2528, (q15_t)0x84A2, (q15_t)0x2223,
  1274.         (q15_t)0x83D6, (q15_t)0x1F19, (q15_t)0x831C, (q15_t)0x1C0B,
  1275.         (q15_t)0x8275, (q15_t)0x18F8, (q15_t)0x81E2, (q15_t)0x15E2,
  1276.         (q15_t)0x8162, (q15_t)0x12C8, (q15_t)0x80F6, (q15_t)0x0FAB,
  1277.         (q15_t)0x809D, (q15_t)0x0C8B, (q15_t)0x8058, (q15_t)0x096A,
  1278.         (q15_t)0x8027, (q15_t)0x0647, (q15_t)0x8009, (q15_t)0x0324,
  1279.         (q15_t)0x8000, (q15_t)0x0000, (q15_t)0x8009, (q15_t)0xFCDB,
  1280.         (q15_t)0x8027, (q15_t)0xF9B8, (q15_t)0x8058, (q15_t)0xF695,
  1281.         (q15_t)0x809D, (q15_t)0xF374, (q15_t)0x80F6, (q15_t)0xF054,
  1282.         (q15_t)0x8162, (q15_t)0xED37, (q15_t)0x81E2, (q15_t)0xEA1D,
  1283.         (q15_t)0x8275, (q15_t)0xE707, (q15_t)0x831C, (q15_t)0xE3F4,
  1284.         (q15_t)0x83D6, (q15_t)0xE0E6, (q15_t)0x84A2, (q15_t)0xDDDC,
  1285.         (q15_t)0x8582, (q15_t)0xDAD7, (q15_t)0x8675, (q15_t)0xD7D9,
  1286.         (q15_t)0x877B, (q15_t)0xD4E0, (q15_t)0x8893, (q15_t)0xD1EE,
  1287.         (q15_t)0x89BE, (q15_t)0xCF04, (q15_t)0x8AFB, (q15_t)0xCC21,
  1288.         (q15_t)0x8C4A, (q15_t)0xC945, (q15_t)0x8DAA, (q15_t)0xC673,
  1289.         (q15_t)0x8F1D, (q15_t)0xC3A9, (q15_t)0x90A0, (q15_t)0xC0E8,
  1290.         (q15_t)0x9235, (q15_t)0xBE31, (q15_t)0x93DB, (q15_t)0xBB85,
  1291.         (q15_t)0x9592, (q15_t)0xB8E3, (q15_t)0x9759, (q15_t)0xB64B,
  1292.         (q15_t)0x9930, (q15_t)0xB3C0, (q15_t)0x9B17, (q15_t)0xB140,
  1293.         (q15_t)0x9D0D, (q15_t)0xAECC, (q15_t)0x9F13, (q15_t)0xAC64,
  1294.         (q15_t)0xA128, (q15_t)0xAA0A, (q15_t)0xA34B, (q15_t)0xA7BD,
  1295.         (q15_t)0xA57D, (q15_t)0xA57D, (q15_t)0xA7BD, (q15_t)0xA34B,
  1296.         (q15_t)0xAA0A, (q15_t)0xA128, (q15_t)0xAC64, (q15_t)0x9F13,
  1297.         (q15_t)0xAECC, (q15_t)0x9D0D, (q15_t)0xB140, (q15_t)0x9B17,
  1298.         (q15_t)0xB3C0, (q15_t)0x9930, (q15_t)0xB64B, (q15_t)0x9759,
  1299.         (q15_t)0xB8E3, (q15_t)0x9592, (q15_t)0xBB85, (q15_t)0x93DB,
  1300.         (q15_t)0xBE31, (q15_t)0x9235, (q15_t)0xC0E8, (q15_t)0x90A0,
  1301.         (q15_t)0xC3A9, (q15_t)0x8F1D, (q15_t)0xC673, (q15_t)0x8DAA,
  1302.         (q15_t)0xC945, (q15_t)0x8C4A, (q15_t)0xCC21, (q15_t)0x8AFB,
  1303.         (q15_t)0xCF04, (q15_t)0x89BE, (q15_t)0xD1EE, (q15_t)0x8893,
  1304.         (q15_t)0xD4E0, (q15_t)0x877B, (q15_t)0xD7D9, (q15_t)0x8675,
  1305.         (q15_t)0xDAD7, (q15_t)0x8582, (q15_t)0xDDDC, (q15_t)0x84A2,
  1306.         (q15_t)0xE0E6, (q15_t)0x83D6, (q15_t)0xE3F4, (q15_t)0x831C,
  1307.         (q15_t)0xE707, (q15_t)0x8275, (q15_t)0xEA1D, (q15_t)0x81E2,
  1308.         (q15_t)0xED37, (q15_t)0x8162, (q15_t)0xF054, (q15_t)0x80F6,
  1309.         (q15_t)0xF374, (q15_t)0x809D, (q15_t)0xF695, (q15_t)0x8058,
  1310.         (q15_t)0xF9B8, (q15_t)0x8027, (q15_t)0xFCDB, (q15_t)0x8009
  1311. };
  1312.  
  1313. /**
  1314. * \par
  1315. * Example code for q15 Twiddle factors Generation::
  1316. * \par
  1317. * <pre>for(i = 0; i< 3N/4; i++)
  1318. * {
  1319. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1320. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1321. * } </pre>
  1322. * \par
  1323. * where N = 512 and PI = 3.14159265358979
  1324. * \par
  1325. * Cos and Sin values are interleaved fashion
  1326. * \par
  1327. * Convert Floating point to q15(Fixed point 1.15):
  1328. *       round(twiddleCoefq15(i) * pow(2, 15))
  1329. *
  1330. *//**
  1331. * \par
  1332. * Example code for q15 Twiddle factors Generation::
  1333. * \par
  1334. * <pre>for(i = 0; i< 3N/4; i++)
  1335. * {
  1336. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1337. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1338. * } </pre>
  1339. * \par
  1340. * where N = 1024        and PI = 3.14159265358979
  1341. * \par
  1342. * Cos and Sin values are interleaved fashion
  1343. * \par
  1344. * Convert Floating point to q15(Fixed point 1.15):
  1345. *       round(twiddleCoefq15(i) * pow(2, 15))
  1346. *
  1347. *//**
  1348. * \par
  1349. * Example code for q15 Twiddle factors Generation::
  1350. * \par
  1351. * <pre>for(i = 0; i< 3N/4; i++)
  1352. * {
  1353. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1354. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1355. * } </pre>
  1356. * \par
  1357. * where N = 2048        and PI = 3.14159265358979
  1358. * \par
  1359. * Cos and Sin values are interleaved fashion
  1360. * \par
  1361. * Convert Floating point to q15(Fixed point 1.15):
  1362. *       round(twiddleCoefq15(i) * pow(2, 15))
  1363. *
  1364. *//**
  1365. * \par
  1366. * Example code for q15 Twiddle factors Generation::
  1367. * \par
  1368. * <pre>for(i = 0; i< 3N/4; i++)
  1369. * {
  1370. *    twiddleCoefq15[2*i]= cos(i * 2*PI/(float)N);
  1371. *    twiddleCoefq15[2*i+1]= sin(i * 2*PI/(float)N);
  1372. * } </pre>
  1373. * \par
  1374. * where N = 4096        and PI = 3.14159265358979
  1375. * \par
  1376. * Cos and Sin values are interleaved fashion
  1377. * \par
  1378. * Convert Floating point to q15(Fixed point 1.15):
  1379. *       round(twiddleCoefq15(i) * pow(2, 15))
  1380. *
  1381. *//**
  1382. * @} end of CFFT_CIFFT group
  1383. */
  1384.  
  1385. /*
  1386. * @brief  Q15 table for reciprocal
  1387. */
  1388. const q15_t ALIGN4 armRecipTableQ15[64] = {
  1389.  0x7F03, 0x7D13, 0x7B31, 0x795E, 0x7798, 0x75E0,
  1390.  0x7434, 0x7294, 0x70FF, 0x6F76, 0x6DF6, 0x6C82,
  1391.  0x6B16, 0x69B5, 0x685C, 0x670C, 0x65C4, 0x6484,
  1392.  0x634C, 0x621C, 0x60F3, 0x5FD0, 0x5EB5, 0x5DA0,
  1393.  0x5C91, 0x5B88, 0x5A85, 0x5988, 0x5890, 0x579E,
  1394.  0x56B0, 0x55C8, 0x54E4, 0x5405, 0x532B, 0x5255,
  1395.  0x5183, 0x50B6, 0x4FEC, 0x4F26, 0x4E64, 0x4DA6,
  1396.  0x4CEC, 0x4C34, 0x4B81, 0x4AD0, 0x4A23, 0x4978,
  1397.  0x48D1, 0x482D, 0x478C, 0x46ED, 0x4651, 0x45B8,
  1398.  0x4521, 0x448D, 0x43FC, 0x436C, 0x42DF, 0x4255,
  1399.  0x41CC, 0x4146, 0x40C2, 0x4040
  1400. };
  1401.  
  1402. /*
  1403. * @brief  Q31 table for reciprocal
  1404. */
  1405. const q31_t armRecipTableQ31[64] = {
  1406.   0x7F03F03F, 0x7D137420, 0x7B31E739, 0x795E9F94, 0x7798FD29, 0x75E06928,
  1407.   0x7434554D, 0x72943B4B, 0x70FF9C40, 0x6F760031, 0x6DF6F593, 0x6C8210E3,
  1408.   0x6B16EC3A, 0x69B526F6, 0x685C655F, 0x670C505D, 0x65C4952D, 0x6484E519,
  1409.   0x634CF53E, 0x621C7E4F, 0x60F33C61, 0x5FD0EEB3, 0x5EB55785, 0x5DA03BEB,
  1410.   0x5C9163A1, 0x5B8898E6, 0x5A85A85A, 0x598860DF, 0x58909373, 0x579E1318,
  1411.   0x56B0B4B8, 0x55C84F0B, 0x54E4BA80, 0x5405D124, 0x532B6E8F, 0x52556FD0,
  1412.   0x5183B35A, 0x50B618F3, 0x4FEC81A2, 0x4F26CFA2, 0x4E64E64E, 0x4DA6AA1D,
  1413.   0x4CEC008B, 0x4C34D010, 0x4B810016, 0x4AD078EF, 0x4A2323C4, 0x4978EA96,
  1414.   0x48D1B827, 0x482D77FE, 0x478C1657, 0x46ED801D, 0x4651A2E5, 0x45B86CE2,
  1415.   0x4521CCE1, 0x448DB244, 0x43FC0CFA, 0x436CCD78, 0x42DFE4B4, 0x42554426,
  1416.   0x41CCDDB6, 0x4146A3C6, 0x40C28923, 0x40408102
  1417. };
  1418.  
  1419. const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH] =
  1420. {
  1421.    /* 8x2, size 20 */
  1422.    8,64, 24,72, 16,64, 40,80, 32,64, 56,88, 48,72, 88,104, 72,96, 104,112
  1423. };
  1424.  
  1425. const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH] =
  1426. {
  1427.    /* 8x4, size 48 */
  1428.    8,64, 16,128, 24,192, 32,64, 40,72, 48,136, 56,200, 64,128, 72,80, 88,208,
  1429.    80,144, 96,192, 104,208, 112,152, 120,216, 136,192, 144,160, 168,208,
  1430.    152,224, 176,208, 184,232, 216,240, 200,224, 232,240
  1431. };
  1432.  
  1433. const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH] =
  1434. {
  1435.    /* radix 8, size 56 */
  1436.    8,64, 16,128, 24,192, 32,256, 40,320, 48,384, 56,448, 80,136, 88,200,
  1437.    96,264, 104,328, 112,392, 120,456, 152,208, 160,272, 168,336, 176,400,
  1438.    184,464, 224,280, 232,344, 240,408, 248,472, 296,352, 304,416, 312,480,
  1439.    368,424, 376,488, 440,496
  1440. };
  1441.  
  1442. const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH] =
  1443. {
  1444.    /* 8x2, size 208 */
  1445.    8,512, 16,64, 24,576, 32,128, 40,640, 48,192, 56,704, 64,256, 72,768,
  1446.    80,320, 88,832, 96,384, 104,896, 112,448, 120,960, 128,512, 136,520,
  1447.    144,768, 152,584, 160,520, 168,648, 176,200, 184,712, 192,264, 200,776,
  1448.    208,328, 216,840, 224,392, 232,904, 240,456, 248,968, 264,528, 272,320,
  1449.    280,592, 288,768, 296,656, 304,328, 312,720, 328,784, 344,848, 352,400,
  1450.    360,912, 368,464, 376,976, 384,576, 392,536, 400,832, 408,600, 416,584,
  1451.    424,664, 432,840, 440,728, 448,592, 456,792, 464,848, 472,856, 480,600,
  1452.    488,920, 496,856, 504,984, 520,544, 528,576, 536,608, 552,672, 560,608,
  1453.    568,736, 576,768, 584,800, 592,832, 600,864, 608,800, 616,928, 624,864,
  1454.    632,992, 648,672, 656,896, 664,928, 688,904, 696,744, 704,896, 712,808,
  1455.    720,912, 728,872, 736,928, 744,936, 752,920, 760,1000, 776,800, 784,832,
  1456.    792,864, 808,904, 816,864, 824,920, 840,864, 856,880, 872,944, 888,1008,
  1457.    904,928, 912,960, 920,992, 944,968, 952,1000, 968,992, 984,1008
  1458. };
  1459.  
  1460. const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH] =
  1461. {
  1462.    /* 8x4, size 440 */
  1463.    8,512, 16,1024, 24,1536, 32,64, 40,576, 48,1088, 56,1600, 64,128, 72,640,
  1464.    80,1152, 88,1664, 96,192, 104,704, 112,1216, 120,1728, 128,256, 136,768,
  1465.    144,1280, 152,1792, 160,320, 168,832, 176,1344, 184,1856, 192,384,
  1466.    200,896, 208,1408, 216,1920, 224,448, 232,960, 240,1472, 248,1984,
  1467.    256,512, 264,520, 272,1032, 280,1544, 288,640, 296,584, 304,1096, 312,1608,
  1468.    320,768, 328,648, 336,1160, 344,1672, 352,896, 360,712, 368,1224, 376,1736,
  1469.    384,520, 392,776, 400,1288, 408,1800, 416,648, 424,840, 432,1352, 440,1864,
  1470.    448,776, 456,904, 464,1416, 472,1928, 480,904, 488,968, 496,1480, 504,1992,
  1471.    520,528, 512,1024, 528,1040, 536,1552, 544,1152, 552,592, 560,1104,
  1472.    568,1616, 576,1280, 584,656, 592,1168, 600,1680, 608,1408, 616,720,
  1473.    624,1232, 632,1744, 640,1032, 648,784, 656,1296, 664,1808, 672,1160,
  1474.    680,848, 688,1360, 696,1872, 704,1288, 712,912, 720,1424, 728,1936,
  1475.    736,1416, 744,976, 752,1488, 760,2000, 768,1536, 776,1552, 784,1048,
  1476.    792,1560, 800,1664, 808,1680, 816,1112, 824,1624, 832,1792, 840,1808,
  1477.    848,1176, 856,1688, 864,1920, 872,1936, 880,1240, 888,1752, 896,1544,
  1478.    904,1560, 912,1304, 920,1816, 928,1672, 936,1688, 944,1368, 952,1880,
  1479.    960,1800, 968,1816, 976,1432, 984,1944, 992,1928, 1000,1944, 1008,1496,
  1480.    1016,2008, 1032,1152, 1040,1056, 1048,1568, 1064,1408, 1072,1120,
  1481.    1080,1632, 1088,1536, 1096,1160, 1104,1184, 1112,1696, 1120,1552,
  1482.    1128,1416, 1136,1248, 1144,1760, 1160,1664, 1168,1312, 1176,1824,
  1483.    1184,1544, 1192,1920, 1200,1376, 1208,1888, 1216,1568, 1224,1672,
  1484.    1232,1440, 1240,1952, 1248,1560, 1256,1928, 1264,1504, 1272,2016,
  1485.    1288,1312, 1296,1408, 1304,1576, 1320,1424, 1328,1416, 1336,1640,
  1486.    1344,1792, 1352,1824, 1360,1920, 1368,1704, 1376,1800, 1384,1432,
  1487.    1392,1928, 1400,1768, 1416,1680, 1432,1832, 1440,1576, 1448,1936,
  1488.    1456,1832, 1464,1896, 1472,1808, 1480,1688, 1488,1936, 1496,1960,
  1489.    1504,1816, 1512,1944, 1520,1944, 1528,2024, 1560,1584, 1592,1648,
  1490.    1600,1792, 1608,1920, 1616,1800, 1624,1712, 1632,1808, 1640,1936,
  1491.    1648,1816, 1656,1776, 1672,1696, 1688,1840, 1704,1952, 1712,1928,
  1492.    1720,1904, 1728,1824, 1736,1952, 1744,1832, 1752,1968, 1760,1840,
  1493.    1768,1960, 1776,1944, 1784,2032, 1864,1872, 1848,1944, 1872,1888,
  1494.    1880,1904, 1888,1984, 1896,2000, 1912,2032, 1904,2016, 1976,2032,
  1495.    1960,1968, 2008,2032, 1992,2016, 2024,2032
  1496. };
  1497.  
  1498. const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH] =
  1499. {
  1500.    /* radix 8, size 448 */
  1501.    8,512, 16,1024, 24,1536, 32,2048, 40,2560, 48,3072, 56,3584, 72,576,
  1502.    80,1088, 88,1600, 96,2112, 104,2624, 112,3136, 120,3648, 136,640, 144,1152,
  1503.    152,1664, 160,2176, 168,2688, 176,3200, 184,3712, 200,704, 208,1216,
  1504.    216,1728, 224,2240, 232,2752, 240,3264, 248,3776, 264,768, 272,1280,
  1505.    280,1792, 288,2304, 296,2816, 304,3328, 312,3840, 328,832, 336,1344,
  1506.    344,1856, 352,2368, 360,2880, 368,3392, 376,3904, 392,896, 400,1408,
  1507.    408,1920, 416,2432, 424,2944, 432,3456, 440,3968, 456,960, 464,1472,
  1508.    472,1984, 480,2496, 488,3008, 496,3520, 504,4032, 528,1032, 536,1544,
  1509.    544,2056, 552,2568, 560,3080, 568,3592, 592,1096, 600,1608, 608,2120,
  1510.    616,2632, 624,3144, 632,3656, 656,1160, 664,1672, 672,2184, 680,2696,
  1511.    688,3208, 696,3720, 720,1224, 728,1736, 736,2248, 744,2760, 752,3272,
  1512.    760,3784, 784,1288, 792,1800, 800,2312, 808,2824, 816,3336, 824,3848,
  1513.    848,1352, 856,1864, 864,2376, 872,2888, 880,3400, 888,3912, 912,1416,
  1514.    920,1928, 928,2440, 936,2952, 944,3464, 952,3976, 976,1480, 984,1992,
  1515.    992,2504, 1000,3016, 1008,3528, 1016,4040, 1048,1552, 1056,2064, 1064,2576,
  1516.    1072,3088, 1080,3600, 1112,1616, 1120,2128, 1128,2640, 1136,3152,
  1517.    1144,3664, 1176,1680, 1184,2192, 1192,2704, 1200,3216, 1208,3728,
  1518.    1240,1744, 1248,2256, 1256,2768, 1264,3280, 1272,3792, 1304,1808,
  1519.    1312,2320, 1320,2832, 1328,3344, 1336,3856, 1368,1872, 1376,2384,
  1520.    1384,2896, 1392,3408, 1400,3920, 1432,1936, 1440,2448, 1448,2960,
  1521.    1456,3472, 1464,3984, 1496,2000, 1504,2512, 1512,3024, 1520,3536,
  1522.    1528,4048, 1568,2072, 1576,2584, 1584,3096, 1592,3608, 1632,2136,
  1523.    1640,2648, 1648,3160, 1656,3672, 1696,2200, 1704,2712, 1712,3224,
  1524.    1720,3736, 1760,2264, 1768,2776, 1776,3288, 1784,3800, 1824,2328,
  1525.    1832,2840, 1840,3352, 1848,3864, 1888,2392, 1896,2904, 1904,3416,
  1526.    1912,3928, 1952,2456, 1960,2968, 1968,3480, 1976,3992, 2016,2520,
  1527.    2024,3032, 2032,3544, 2040,4056, 2088,2592, 2096,3104, 2104,3616,
  1528.    2152,2656, 2160,3168, 2168,3680, 2216,2720, 2224,3232, 2232,3744,
  1529.    2280,2784, 2288,3296, 2296,3808, 2344,2848, 2352,3360, 2360,3872,
  1530.    2408,2912, 2416,3424, 2424,3936, 2472,2976, 2480,3488, 2488,4000,
  1531.    2536,3040, 2544,3552, 2552,4064, 2608,3112, 2616,3624, 2672,3176,
  1532.    2680,3688, 2736,3240, 2744,3752, 2800,3304, 2808,3816, 2864,3368,
  1533.    2872,3880, 2928,3432, 2936,3944, 2992,3496, 3000,4008, 3056,3560,
  1534.    3064,4072, 3128,3632, 3192,3696, 3256,3760, 3320,3824, 3384,3888,
  1535.    3448,3952, 3512,4016, 3576,4080
  1536. };
  1537.  
  1538. const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH] =
  1539. {
  1540.    /* 8x2, size 1800 *//* 8x2, size 3808 *//* radix 8, size 4032 *//* radix 4, size 12 */
  1541.    8,64, 16,32, 24,96, 40,80, 56,112, 88,104
  1542. };
  1543.  
  1544. const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH] =
  1545. {
  1546.    /* 4x2, size 24 */
  1547.    8,128, 16,64, 24,192, 40,160, 48,96, 56,224, 72,144,
  1548.    88,208, 104,176, 120,240, 152,200, 184,232
  1549. };
  1550.  
  1551. const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH] =
  1552. {
  1553.    /* radix 4, size 56 */
  1554.    8,256, 16,128, 24,384, 32,64, 40,320, 48,192, 56,448, 72,288, 80,160, 88,416, 104,352,
  1555.    112,224, 120,480, 136,272, 152,400, 168,336, 176,208, 184,464, 200,304, 216,432,
  1556.    232,368, 248,496, 280,392, 296,328, 312,456, 344,424, 376,488, 440,472
  1557. };
  1558.  
  1559. const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH] =
  1560. {
  1561.    /* 4x2, size 112 */
  1562.    8,512, 16,256, 24,768, 32,128, 40,640, 48,384, 56,896, 72,576, 80,320, 88,832, 96,192,
  1563.    104,704, 112,448, 120,960, 136,544, 144,288, 152,800, 168,672, 176,416, 184,928, 200,608,
  1564.    208,352, 216,864, 232,736, 240,480, 248,992, 264,528, 280,784, 296,656, 304,400, 312,912,
  1565.    328,592, 344,848, 360,720, 368,464, 376,976, 392,560, 408,816, 424,688, 440,944, 456,624,
  1566.    472,880, 488,752, 504,1008, 536,776, 552,648, 568,904, 600,840, 616,712, 632,968,
  1567.    664,808, 696,936, 728,872, 760,1000, 824,920, 888,984
  1568. };
  1569.  
  1570. const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH] =
  1571. {
  1572.    /* radix 4, size 240 */
  1573.    8,1024, 16,512, 24,1536, 32,256, 40,1280, 48,768, 56,1792, 64,128, 72,1152, 80,640,
  1574.    88,1664, 96,384, 104,1408, 112,896, 120,1920, 136,1088, 144,576, 152,1600, 160,320,
  1575.    168,1344, 176,832, 184,1856, 200,1216, 208,704, 216,1728, 224,448, 232,1472, 240,960,
  1576.    248,1984, 264,1056, 272,544, 280,1568, 296,1312, 304,800, 312,1824, 328,1184, 336,672,
  1577.    344,1696, 352,416, 360,1440, 368,928, 376,1952, 392,1120, 400,608, 408,1632, 424,1376,
  1578.    432,864, 440,1888, 456,1248, 464,736, 472,1760, 488,1504, 496,992, 504,2016, 520,1040,
  1579.    536,1552, 552,1296, 560,784, 568,1808, 584,1168, 592,656, 600,1680, 616,1424, 624,912,
  1580.    632,1936, 648,1104, 664,1616, 680,1360, 688,848, 696,1872, 712,1232, 728,1744, 744,1488,
  1581.    752,976, 760,2000, 776,1072, 792,1584, 808,1328, 824,1840, 840,1200, 856,1712, 872,1456,
  1582.    880,944, 888,1968, 904,1136, 920,1648, 936,1392, 952,1904, 968,1264, 984,1776, 1000,1520,
  1583.    1016,2032, 1048,1544, 1064,1288, 1080,1800, 1096,1160, 1112,1672, 1128,1416, 1144,1928,
  1584.    1176,1608, 1192,1352, 1208,1864, 1240,1736, 1256,1480, 1272,1992, 1304,1576, 1336,1832,
  1585.    1368,1704, 1384,1448, 1400,1960, 1432,1640, 1464,1896, 1496,1768, 1528,2024, 1592,1816,
  1586.    1624,1688, 1656,1944, 1720,1880, 1784,2008, 1912,1976
  1587. };
  1588.  
  1589. const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH] =
  1590. {
  1591.    /* 4x2, size 480 */
  1592.    8,2048, 16,1024, 24,3072, 32,512, 40,2560, 48,1536, 56,3584, 64,256, 72,2304, 80,1280,
  1593.    88,3328, 96,768, 104,2816, 112,1792, 120,3840, 136,2176, 144,1152, 152,3200, 160,640,
  1594.    168,2688, 176,1664, 184,3712, 192,384, 200,2432, 208,1408, 216,3456, 224,896, 232,2944,
  1595.    240,1920, 248,3968, 264,2112, 272,1088, 280,3136, 288,576, 296,2624, 304,1600, 312,3648,
  1596.    328,2368, 336,1344, 344,3392, 352,832, 360,2880, 368,1856, 376,3904, 392,2240, 400,1216,
  1597.    408,3264, 416,704, 424,2752, 432,1728, 440,3776, 456,2496, 464,1472, 472,3520, 480,960,
  1598.    488,3008, 496,1984, 504,4032, 520,2080, 528,1056, 536,3104, 552,2592, 560,1568, 568,3616,
  1599.    584,2336, 592,1312, 600,3360, 608,800, 616,2848, 624,1824, 632,3872, 648,2208, 656,1184,
  1600.    664,3232, 680,2720, 688,1696, 696,3744, 712,2464, 720,1440, 728,3488, 736,928, 744,2976,
  1601.    752,1952, 760,4000, 776,2144, 784,1120, 792,3168, 808,2656, 816,1632, 824,3680, 840,2400,
  1602.    848,1376, 856,3424, 872,2912, 880,1888, 888,3936, 904,2272, 912,1248, 920,3296, 936,2784,
  1603.    944,1760, 952,3808, 968,2528, 976,1504, 984,3552, 1000,3040, 1008,2016, 1016,4064,
  1604.    1032,2064, 1048,3088, 1064,2576, 1072,1552, 1080,3600, 1096,2320, 1104,1296, 1112,3344,
  1605.    1128,2832, 1136,1808, 1144,3856, 1160,2192, 1176,3216, 1192,2704, 1200,1680, 1208,3728,
  1606.    1224,2448, 1232,1424, 1240,3472, 1256,2960, 1264,1936, 1272,3984, 1288,2128, 1304,3152,
  1607.    1320,2640, 1328,1616, 1336,3664, 1352,2384, 1368,3408, 1384,2896, 1392,1872, 1400,3920,
  1608.    1416,2256, 1432,3280, 1448,2768, 1456,1744, 1464,3792, 1480,2512, 1496,3536, 1512,3024,
  1609.    1520,2000, 1528,4048, 1544,2096, 1560,3120, 1576,2608, 1592,3632, 1608,2352, 1624,3376,
  1610.    1640,2864, 1648,1840, 1656,3888, 1672,2224, 1688,3248, 1704,2736, 1720,3760, 1736,2480,
  1611.    1752,3504, 1768,2992, 1776,1968, 1784,4016, 1800,2160, 1816,3184, 1832,2672, 1848,3696,
  1612.    1864,2416, 1880,3440, 1896,2928, 1912,3952, 1928,2288, 1944,3312, 1960,2800, 1976,3824,
  1613.    1992,2544, 2008,3568, 2024,3056, 2040,4080, 2072,3080, 2088,2568, 2104,3592, 2120,2312,
  1614.    2136,3336, 2152,2824, 2168,3848, 2200,3208, 2216,2696, 2232,3720, 2248,2440, 2264,3464,
  1615.    2280,2952, 2296,3976, 2328,3144, 2344,2632, 2360,3656, 2392,3400, 2408,2888, 2424,3912,
  1616.    2456,3272, 2472,2760, 2488,3784, 2520,3528, 2536,3016, 2552,4040, 2584,3112, 2616,3624,
  1617.    2648,3368, 2664,2856, 2680,3880, 2712,3240, 2744,3752, 2776,3496, 2792,2984, 2808,4008,
  1618.    2840,3176, 2872,3688, 2904,3432, 2936,3944, 2968,3304, 3000,3816, 3032,3560, 3064,4072,
  1619.    3128,3608, 3160,3352, 3192,3864, 3256,3736, 3288,3480, 3320,3992, 3384,3672, 3448,3928,
  1620.    3512,3800, 3576,4056, 3704,3896, 3832,4024
  1621. };
  1622.  
  1623. const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH] =
  1624. {
  1625.     /* radix 4, size 992 */
  1626.     8,4096, 16,2048, 24,6144, 32,1024, 40,5120, 48,3072, 56,7168, 64,512, 72,4608,
  1627.     80,2560, 88,6656, 96,1536, 104,5632, 112,3584, 120,7680, 128,256, 136,4352,
  1628.     144,2304, 152,6400, 160,1280, 168,5376, 176,3328, 184,7424, 192,768, 200,4864,
  1629.     208,2816, 216,6912, 224,1792, 232,5888, 240,3840, 248,7936, 264,4224, 272,2176,
  1630.     280,6272, 288,1152, 296,5248, 304,3200, 312,7296, 320,640, 328,4736, 336,2688,
  1631.     344,6784, 352,1664, 360,5760, 368,3712, 376,7808, 392,4480, 400,2432, 408,6528,
  1632.     416,1408, 424,5504, 432,3456, 440,7552, 448,896, 456,4992, 464,2944, 472,7040,
  1633.     480,1920, 488,6016, 496,3968, 504,8064, 520,4160, 528,2112, 536,6208, 544,1088,
  1634.     552,5184, 560,3136, 568,7232, 584,4672, 592,2624, 600,6720, 608,1600, 616,5696,
  1635.     624,3648, 632,7744, 648,4416, 656,2368, 664,6464, 672,1344, 680,5440, 688,3392,
  1636.     696,7488, 704,832, 712,4928, 720,2880, 728,6976, 736,1856, 744,5952, 752,3904,
  1637.     760,8000, 776,4288, 784,2240, 792,6336, 800,1216, 808,5312, 816,3264, 824,7360,
  1638.     840,4800, 848,2752, 856,6848, 864,1728, 872,5824, 880,3776, 888,7872, 904,4544,
  1639.     912,2496, 920,6592, 928,1472, 936,5568, 944,3520, 952,7616, 968,5056, 976,3008,
  1640.     984,7104, 992,1984, 1000,6080, 1008,4032, 1016,8128, 1032,4128, 1040,2080,
  1641.     1048,6176, 1064,5152, 1072,3104, 1080,7200, 1096,4640, 1104,2592, 1112,6688,
  1642.     1120,1568, 1128,5664, 1136,3616, 1144,7712, 1160,4384, 1168,2336, 1176,6432,
  1643.     1184,1312, 1192,5408, 1200,3360, 1208,7456, 1224,4896, 1232,2848, 1240,6944,
  1644.     1248,1824, 1256,5920, 1264,3872, 1272,7968, 1288,4256, 1296,2208, 1304,6304,
  1645.     1320,5280, 1328,3232, 1336,7328, 1352,4768, 1360,2720, 1368,6816, 1376,1696,
  1646.     1384,5792, 1392,3744, 1400,7840, 1416,4512, 1424,2464, 1432,6560, 1448,5536,
  1647.     1456,3488, 1464,7584, 1480,5024, 1488,2976, 1496,7072, 1504,1952, 1512,6048,
  1648.     1520,4000, 1528,8096, 1544,4192, 1552,2144, 1560,6240, 1576,5216, 1584,3168,
  1649.     1592,7264, 1608,4704, 1616,2656, 1624,6752, 1640,5728, 1648,3680, 1656,7776,
  1650.     1672,4448, 1680,2400, 1688,6496, 1704,5472, 1712,3424, 1720,7520, 1736,4960,
  1651.     1744,2912, 1752,7008, 1760,1888, 1768,5984, 1776,3936, 1784,8032, 1800,4320,
  1652.     1808,2272, 1816,6368, 1832,5344, 1840,3296, 1848,7392, 1864,4832, 1872,2784,
  1653.     1880,6880, 1896,5856, 1904,3808, 1912,7904, 1928,4576, 1936,2528, 1944,6624,
  1654.     1960,5600, 1968,3552, 1976,7648, 1992,5088, 2000,3040, 2008,7136, 2024,6112,
  1655.     2032,4064, 2040,8160, 2056,4112, 2072,6160, 2088,5136, 2096,3088, 2104,7184,
  1656.     2120,4624, 2128,2576, 2136,6672, 2152,5648, 2160,3600, 2168,7696, 2184,4368,
  1657.     2192,2320, 2200,6416, 2216,5392, 2224,3344, 2232,7440, 2248,4880, 2256,2832,
  1658.     2264,6928, 2280,5904, 2288,3856, 2296,7952, 2312,4240, 2328,6288, 2344,5264,
  1659.     2352,3216, 2360,7312, 2376,4752, 2384,2704, 2392,6800, 2408,5776, 2416,3728,
  1660.     2424,7824, 2440,4496, 2456,6544, 2472,5520, 2480,3472, 2488,7568, 2504,5008,
  1661.     2512,2960, 2520,7056, 2536,6032, 2544,3984, 2552,8080, 2568,4176, 2584,6224,
  1662.     2600,5200, 2608,3152, 2616,7248, 2632,4688, 2648,6736, 2664,5712, 2672,3664,
  1663.     2680,7760, 2696,4432, 2712,6480, 2728,5456, 2736,3408, 2744,7504, 2760,4944,
  1664.     2768,2896, 2776,6992, 2792,5968, 2800,3920, 2808,8016, 2824,4304, 2840,6352,
  1665.     2856,5328, 2864,3280, 2872,7376, 2888,4816, 2904,6864, 2920,5840, 2928,3792,
  1666.     2936,7888, 2952,4560, 2968,6608, 2984,5584, 2992,3536, 3000,7632, 3016,5072,
  1667.     3032,7120, 3048,6096, 3056,4048, 3064,8144, 3080,4144, 3096,6192, 3112,5168,
  1668.     3128,7216, 3144,4656, 3160,6704, 3176,5680, 3184,3632, 3192,7728, 3208,4400,
  1669.     3224,6448, 3240,5424, 3248,3376, 3256,7472, 3272,4912, 3288,6960, 3304,5936,
  1670.     3312,3888, 3320,7984, 3336,4272, 3352,6320, 3368,5296, 3384,7344, 3400,4784,
  1671.     3416,6832, 3432,5808, 3440,3760, 3448,7856, 3464,4528, 3480,6576, 3496,5552,
  1672.     3512,7600, 3528,5040, 3544,7088, 3560,6064, 3568,4016, 3576,8112, 3592,4208,
  1673.     3608,6256, 3624,5232, 3640,7280, 3656,4720, 3672,6768, 3688,5744, 3704,7792,
  1674.     3720,4464, 3736,6512, 3752,5488, 3768,7536, 3784,4976, 3800,7024, 3816,6000,
  1675.     3824,3952, 3832,8048, 3848,4336, 3864,6384, 3880,5360, 3896,7408, 3912,4848,
  1676.     3928,6896, 3944,5872, 3960,7920, 3976,4592, 3992,6640, 4008,5616, 4024,7664,
  1677.     4040,5104, 4056,7152, 4072,6128, 4088,8176, 4120,6152, 4136,5128, 4152,7176,
  1678.     4168,4616, 4184,6664, 4200,5640, 4216,7688, 4232,4360, 4248,6408, 4264,5384,
  1679.     4280,7432, 4296,4872, 4312,6920, 4328,5896, 4344,7944, 4376,6280, 4392,5256,
  1680.     4408,7304, 4424,4744, 4440,6792, 4456,5768, 4472,7816, 4504,6536, 4520,5512,
  1681.     4536,7560, 4552,5000, 4568,7048, 4584,6024, 4600,8072, 4632,6216, 4648,5192,
  1682.     4664,7240, 4696,6728, 4712,5704, 4728,7752, 4760,6472, 4776,5448, 4792,7496,
  1683.     4808,4936, 4824,6984, 4840,5960, 4856,8008, 4888,6344, 4904,5320, 4920,7368,
  1684.     4952,6856, 4968,5832, 4984,7880, 5016,6600, 5032,5576, 5048,7624, 5080,7112,
  1685.     5096,6088, 5112,8136, 5144,6184, 5176,7208, 5208,6696, 5224,5672, 5240,7720,
  1686.     5272,6440, 5288,5416, 5304,7464, 5336,6952, 5352,5928, 5368,7976, 5400,6312,
  1687.     5432,7336, 5464,6824, 5480,5800, 5496,7848, 5528,6568, 5560,7592, 5592,7080,
  1688.     5608,6056, 5624,8104, 5656,6248, 5688,7272, 5720,6760, 5752,7784, 5784,6504,
  1689.     5816,7528, 5848,7016, 5864,5992, 5880,8040, 5912,6376, 5944,7400, 5976,6888,
  1690.     6008,7912, 6040,6632, 6072,7656, 6104,7144, 6136,8168, 6200,7192, 6232,6680,
  1691.     6264,7704, 6296,6424, 6328,7448, 6360,6936, 6392,7960, 6456,7320, 6488,6808,
  1692.     6520,7832, 6584,7576, 6616,7064, 6648,8088, 6712,7256, 6776,7768, 6840,7512,
  1693.     6872,7000, 6904,8024, 6968,7384, 7032,7896, 7096,7640, 7160,8152, 7288,7736,
  1694.     7352,7480, 7416,7992, 7544,7864, 7672,8120, 7928,8056
  1695. };
  1696.  
  1697. const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH] =
  1698. {
  1699.     /* 4x2, size 1984 *//* radix 4, size 4032 *//**
  1700. * \par
  1701. * Example code for Floating-point RFFT Twiddle factors Generation:
  1702. * \par
  1703. * <pre>TW = exp(2*pi*i*[0:L/2-1]/L - pi/2*i).' </pre>
  1704. * \par
  1705. * Real and Imag values are in interleaved fashion
  1706. *//**
  1707.  * \par
  1708.  * Example code for the generation of the floating-point sine table:
  1709.  * <pre>
  1710.  * tableSize = 512;
  1711.  * for(n = 0; n < (tableSize + 1); n++)
  1712.  * {
  1713.  *      sinTable[n]=sin(2*pi*n/tableSize);
  1714.  * }</pre>
  1715.  * \par
  1716.  * where pi value is  3.14159265358979
  1717.  */
  1718.  
  1719. const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1] = {
  1720.    0.00000000f, 0.01227154f, 0.02454123f, 0.03680722f, 0.04906767f, 0.06132074f,
  1721.    0.07356456f, 0.08579731f, 0.09801714f, 0.11022221f, 0.12241068f, 0.13458071f,
  1722.    0.14673047f, 0.15885814f, 0.17096189f, 0.18303989f, 0.19509032f, 0.20711138f,
  1723.    0.21910124f, 0.23105811f, 0.24298018f, 0.25486566f, 0.26671276f, 0.27851969f,
  1724.    0.29028468f, 0.30200595f, 0.31368174f, 0.32531029f, 0.33688985f, 0.34841868f,
  1725.    0.35989504f, 0.37131719f, 0.38268343f, 0.39399204f, 0.40524131f, 0.41642956f,
  1726.    0.42755509f, 0.43861624f, 0.44961133f, 0.46053871f, 0.47139674f, 0.48218377f,
  1727.    0.49289819f, 0.50353838f, 0.51410274f, 0.52458968f, 0.53499762f, 0.54532499f,
  1728.    0.55557023f, 0.56573181f, 0.57580819f, 0.58579786f, 0.59569930f, 0.60551104f,
  1729.    0.61523159f, 0.62485949f, 0.63439328f, 0.64383154f, 0.65317284f, 0.66241578f,
  1730.    0.67155895f, 0.68060100f, 0.68954054f, 0.69837625f, 0.70710678f, 0.71573083f,
  1731.    0.72424708f, 0.73265427f, 0.74095113f, 0.74913639f, 0.75720885f, 0.76516727f,
  1732.    0.77301045f, 0.78073723f, 0.78834643f, 0.79583690f, 0.80320753f, 0.81045720f,
  1733.    0.81758481f, 0.82458930f, 0.83146961f, 0.83822471f, 0.84485357f, 0.85135519f,
  1734.    0.85772861f, 0.86397286f, 0.87008699f, 0.87607009f, 0.88192126f, 0.88763962f,
  1735.    0.89322430f, 0.89867447f, 0.90398929f, 0.90916798f, 0.91420976f, 0.91911385f,
  1736.    0.92387953f, 0.92850608f, 0.93299280f, 0.93733901f, 0.94154407f, 0.94560733f,
  1737.    0.94952818f, 0.95330604f, 0.95694034f, 0.96043052f, 0.96377607f, 0.96697647f,
  1738.    0.97003125f, 0.97293995f, 0.97570213f, 0.97831737f, 0.98078528f, 0.98310549f,
  1739.    0.98527764f, 0.98730142f, 0.98917651f, 0.99090264f, 0.99247953f, 0.99390697f,
  1740.    0.99518473f, 0.99631261f, 0.99729046f, 0.99811811f, 0.99879546f, 0.99932238f,
  1741.    0.99969882f, 0.99992470f, 1.00000000f, 0.99992470f, 0.99969882f, 0.99932238f,
  1742.    0.99879546f, 0.99811811f, 0.99729046f, 0.99631261f, 0.99518473f, 0.99390697f,
  1743.    0.99247953f, 0.99090264f, 0.98917651f, 0.98730142f, 0.98527764f, 0.98310549f,
  1744.    0.98078528f, 0.97831737f, 0.97570213f, 0.97293995f, 0.97003125f, 0.96697647f,
  1745.    0.96377607f, 0.96043052f, 0.95694034f, 0.95330604f, 0.94952818f, 0.94560733f,
  1746.    0.94154407f, 0.93733901f, 0.93299280f, 0.92850608f, 0.92387953f, 0.91911385f,
  1747.    0.91420976f, 0.90916798f, 0.90398929f, 0.89867447f, 0.89322430f, 0.88763962f,
  1748.    0.88192126f, 0.87607009f, 0.87008699f, 0.86397286f, 0.85772861f, 0.85135519f,
  1749.    0.84485357f, 0.83822471f, 0.83146961f, 0.82458930f, 0.81758481f, 0.81045720f,
  1750.    0.80320753f, 0.79583690f, 0.78834643f, 0.78073723f, 0.77301045f, 0.76516727f,
  1751.    0.75720885f, 0.74913639f, 0.74095113f, 0.73265427f, 0.72424708f, 0.71573083f,
  1752.    0.70710678f, 0.69837625f, 0.68954054f, 0.68060100f, 0.67155895f, 0.66241578f,
  1753.    0.65317284f, 0.64383154f, 0.63439328f, 0.62485949f, 0.61523159f, 0.60551104f,
  1754.    0.59569930f, 0.58579786f, 0.57580819f, 0.56573181f, 0.55557023f, 0.54532499f,
  1755.    0.53499762f, 0.52458968f, 0.51410274f, 0.50353838f, 0.49289819f, 0.48218377f,
  1756.    0.47139674f, 0.46053871f, 0.44961133f, 0.43861624f, 0.42755509f, 0.41642956f,
  1757.    0.40524131f, 0.39399204f, 0.38268343f, 0.37131719f, 0.35989504f, 0.34841868f,
  1758.    0.33688985f, 0.32531029f, 0.31368174f, 0.30200595f, 0.29028468f, 0.27851969f,
  1759.    0.26671276f, 0.25486566f, 0.24298018f, 0.23105811f, 0.21910124f, 0.20711138f,
  1760.    0.19509032f, 0.18303989f, 0.17096189f, 0.15885814f, 0.14673047f, 0.13458071f,
  1761.    0.12241068f, 0.11022221f, 0.09801714f, 0.08579731f, 0.07356456f, 0.06132074f,
  1762.    0.04906767f, 0.03680722f, 0.02454123f, 0.01227154f, 0.00000000f, -0.01227154f,
  1763.    -0.02454123f, -0.03680722f, -0.04906767f, -0.06132074f, -0.07356456f,
  1764.    -0.08579731f, -0.09801714f, -0.11022221f, -0.12241068f, -0.13458071f,
  1765.    -0.14673047f, -0.15885814f, -0.17096189f, -0.18303989f, -0.19509032f,
  1766.    -0.20711138f, -0.21910124f, -0.23105811f, -0.24298018f, -0.25486566f,
  1767.    -0.26671276f, -0.27851969f, -0.29028468f, -0.30200595f, -0.31368174f,
  1768.    -0.32531029f, -0.33688985f, -0.34841868f, -0.35989504f, -0.37131719f,
  1769.    -0.38268343f, -0.39399204f, -0.40524131f, -0.41642956f, -0.42755509f,
  1770.    -0.43861624f, -0.44961133f, -0.46053871f, -0.47139674f, -0.48218377f,
  1771.    -0.49289819f, -0.50353838f, -0.51410274f, -0.52458968f, -0.53499762f,
  1772.    -0.54532499f, -0.55557023f, -0.56573181f, -0.57580819f, -0.58579786f,
  1773.    -0.59569930f, -0.60551104f, -0.61523159f, -0.62485949f, -0.63439328f,
  1774.    -0.64383154f, -0.65317284f, -0.66241578f, -0.67155895f, -0.68060100f,
  1775.    -0.68954054f, -0.69837625f, -0.70710678f, -0.71573083f, -0.72424708f,
  1776.    -0.73265427f, -0.74095113f, -0.74913639f, -0.75720885f, -0.76516727f,
  1777.    -0.77301045f, -0.78073723f, -0.78834643f, -0.79583690f, -0.80320753f,
  1778.    -0.81045720f, -0.81758481f, -0.82458930f, -0.83146961f, -0.83822471f,
  1779.    -0.84485357f, -0.85135519f, -0.85772861f, -0.86397286f, -0.87008699f,
  1780.    -0.87607009f, -0.88192126f, -0.88763962f, -0.89322430f, -0.89867447f,
  1781.    -0.90398929f, -0.90916798f, -0.91420976f, -0.91911385f, -0.92387953f,
  1782.    -0.92850608f, -0.93299280f, -0.93733901f, -0.94154407f, -0.94560733f,
  1783.    -0.94952818f, -0.95330604f, -0.95694034f, -0.96043052f, -0.96377607f,
  1784.    -0.96697647f, -0.97003125f, -0.97293995f, -0.97570213f, -0.97831737f,
  1785.    -0.98078528f, -0.98310549f, -0.98527764f, -0.98730142f, -0.98917651f,
  1786.    -0.99090264f, -0.99247953f, -0.99390697f, -0.99518473f, -0.99631261f,
  1787.    -0.99729046f, -0.99811811f, -0.99879546f, -0.99932238f, -0.99969882f,
  1788.    -0.99992470f, -1.00000000f, -0.99992470f, -0.99969882f, -0.99932238f,
  1789.    -0.99879546f, -0.99811811f, -0.99729046f, -0.99631261f, -0.99518473f,
  1790.    -0.99390697f, -0.99247953f, -0.99090264f, -0.98917651f, -0.98730142f,
  1791.    -0.98527764f, -0.98310549f, -0.98078528f, -0.97831737f, -0.97570213f,
  1792.    -0.97293995f, -0.97003125f, -0.96697647f, -0.96377607f, -0.96043052f,
  1793.    -0.95694034f, -0.95330604f, -0.94952818f, -0.94560733f, -0.94154407f,
  1794.    -0.93733901f, -0.93299280f, -0.92850608f, -0.92387953f, -0.91911385f,
  1795.    -0.91420976f, -0.90916798f, -0.90398929f, -0.89867447f, -0.89322430f,
  1796.    -0.88763962f, -0.88192126f, -0.87607009f, -0.87008699f, -0.86397286f,
  1797.    -0.85772861f, -0.85135519f, -0.84485357f, -0.83822471f, -0.83146961f,
  1798.    -0.82458930f, -0.81758481f, -0.81045720f, -0.80320753f, -0.79583690f,
  1799.    -0.78834643f, -0.78073723f, -0.77301045f, -0.76516727f, -0.75720885f,
  1800.    -0.74913639f, -0.74095113f, -0.73265427f, -0.72424708f, -0.71573083f,
  1801.    -0.70710678f, -0.69837625f, -0.68954054f, -0.68060100f, -0.67155895f,
  1802.    -0.66241578f, -0.65317284f, -0.64383154f, -0.63439328f, -0.62485949f,
  1803.    -0.61523159f, -0.60551104f, -0.59569930f, -0.58579786f, -0.57580819f,
  1804.    -0.56573181f, -0.55557023f, -0.54532499f, -0.53499762f, -0.52458968f,
  1805.    -0.51410274f, -0.50353838f, -0.49289819f, -0.48218377f, -0.47139674f,
  1806.    -0.46053871f, -0.44961133f, -0.43861624f, -0.42755509f, -0.41642956f,
  1807.    -0.40524131f, -0.39399204f, -0.38268343f, -0.37131719f, -0.35989504f,
  1808.    -0.34841868f, -0.33688985f, -0.32531029f, -0.31368174f, -0.30200595f,
  1809.    -0.29028468f, -0.27851969f, -0.26671276f, -0.25486566f, -0.24298018f,
  1810.    -0.23105811f, -0.21910124f, -0.20711138f, -0.19509032f, -0.18303989f,
  1811.    -0.17096189f, -0.15885814f, -0.14673047f, -0.13458071f, -0.12241068f,
  1812.    -0.11022221f, -0.09801714f, -0.08579731f, -0.07356456f, -0.06132074f,
  1813.    -0.04906767f, -0.03680722f, -0.02454123f, -0.01227154f, -0.00000000f
  1814. };
  1815.  
  1816. /**
  1817.  * \par
  1818.  * Table values are in Q31 (1.31 fixed-point format) and generation is done in
  1819.  * three steps.  First,  generate sin values in floating point:
  1820.  * <pre>
  1821.  * tableSize = 512;
  1822.  * for(n = 0; n < (tableSize + 1); n++)
  1823.  * {
  1824.  *      sinTable[n]= sin(2*pi*n/tableSize);
  1825.  * } </pre>
  1826.  * where pi value is  3.14159265358979
  1827.  * \par
  1828.  * Second, convert floating-point to Q31 (Fixed point):
  1829.  *      (sinTable[i] * pow(2, 31))
  1830.  * \par
  1831.  * Finally, round to the nearest integer value:
  1832.  *      sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
  1833.  */
  1834. const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1] = {
  1835.         0L, 26352928L, 52701887L, 79042909L, 105372028L, 131685278L, 157978697L,
  1836.         184248325L, 210490206L, 236700388L, 262874923L, 289009871L, 315101295L,
  1837.         341145265L, 367137861L, 393075166L, 418953276L, 444768294L, 470516330L,
  1838.         496193509L, 521795963L, 547319836L, 572761285L, 598116479L, 623381598L,
  1839.         648552838L, 673626408L, 698598533L, 723465451L, 748223418L, 772868706L,
  1840.         797397602L, 821806413L, 846091463L, 870249095L, 894275671L, 918167572L,
  1841.         941921200L, 965532978L, 988999351L, 1012316784L, 1035481766L, 1058490808L,
  1842.         1081340445L, 1104027237L, 1126547765L, 1148898640L, 1171076495L, 1193077991L,
  1843.         1214899813L, 1236538675L, 1257991320L, 1279254516L, 1300325060L, 1321199781L,
  1844.         1341875533L, 1362349204L, 1382617710L, 1402678000L, 1422527051L, 1442161874L,
  1845.         1461579514L, 1480777044L, 1499751576L, 1518500250L, 1537020244L, 1555308768L,
  1846.         1573363068L, 1591180426L, 1608758157L, 1626093616L, 1643184191L, 1660027308L,
  1847.         1676620432L, 1692961062L, 1709046739L, 1724875040L, 1740443581L, 1755750017L,
  1848.         1770792044L, 1785567396L, 1800073849L, 1814309216L, 1828271356L, 1841958164L,
  1849.         1855367581L, 1868497586L, 1881346202L, 1893911494L, 1906191570L, 1918184581L,
  1850.         1929888720L, 1941302225L, 1952423377L, 1963250501L, 1973781967L, 1984016189L,
  1851.         1993951625L, 2003586779L, 2012920201L, 2021950484L, 2030676269L, 2039096241L,
  1852.         2047209133L, 2055013723L, 2062508835L, 2069693342L, 2076566160L, 2083126254L,
  1853.         2089372638L, 2095304370L, 2100920556L, 2106220352L, 2111202959L, 2115867626L,
  1854.         2120213651L, 2124240380L, 2127947206L, 2131333572L, 2134398966L, 2137142927L,
  1855.         2139565043L, 2141664948L, 2143442326L, 2144896910L, 2146028480L, 2146836866L,
  1856.         2147321946L, 2147483647L, 2147321946L, 2146836866L, 2146028480L, 2144896910L,
  1857.         2143442326L, 2141664948L, 2139565043L, 2137142927L, 2134398966L, 2131333572L,
  1858.         2127947206L, 2124240380L, 2120213651L, 2115867626L, 2111202959L, 2106220352L,
  1859.         2100920556L, 2095304370L, 2089372638L, 2083126254L, 2076566160L, 2069693342L,
  1860.         2062508835L, 2055013723L, 2047209133L, 2039096241L, 2030676269L, 2021950484L,
  1861.         2012920201L, 2003586779L, 1993951625L, 1984016189L, 1973781967L, 1963250501L,
  1862.         1952423377L, 1941302225L, 1929888720L, 1918184581L, 1906191570L, 1893911494L,
  1863.         1881346202L, 1868497586L, 1855367581L, 1841958164L, 1828271356L, 1814309216L,
  1864.         1800073849L, 1785567396L, 1770792044L, 1755750017L, 1740443581L, 1724875040L,
  1865.         1709046739L, 1692961062L, 1676620432L, 1660027308L, 1643184191L, 1626093616L,
  1866.         1608758157L, 1591180426L, 1573363068L, 1555308768L, 1537020244L, 1518500250L,
  1867.         1499751576L, 1480777044L, 1461579514L, 1442161874L, 1422527051L, 1402678000L,
  1868.         1382617710L, 1362349204L, 1341875533L, 1321199781L, 1300325060L, 1279254516L,
  1869.         1257991320L, 1236538675L, 1214899813L, 1193077991L, 1171076495L, 1148898640L,
  1870.         1126547765L, 1104027237L, 1081340445L, 1058490808L, 1035481766L, 1012316784L,
  1871.         988999351L, 965532978L, 941921200L, 918167572L, 894275671L, 870249095L,
  1872.         846091463L, 821806413L, 797397602L, 772868706L, 748223418L, 723465451L,
  1873.         698598533L, 673626408L, 648552838L, 623381598L, 598116479L, 572761285L,
  1874.         547319836L, 521795963L, 496193509L, 470516330L, 444768294L, 418953276L,
  1875.         393075166L, 367137861L, 341145265L, 315101295L, 289009871L, 262874923L,
  1876.         236700388L, 210490206L, 184248325L, 157978697L, 131685278L, 105372028L,
  1877.         79042909L, 52701887L, 26352928L, 0L, -26352928L, -52701887L, -79042909L,
  1878.         -105372028L, -131685278L, -157978697L, -184248325L, -210490206L, -236700388L,
  1879.         -262874923L, -289009871L, -315101295L, -341145265L, -367137861L, -393075166L,
  1880.         -418953276L, -444768294L, -470516330L, -496193509L, -521795963L, -547319836L,
  1881.         -572761285L, -598116479L, -623381598L, -648552838L, -673626408L, -698598533L,
  1882.         -723465451L, -748223418L, -772868706L, -797397602L, -821806413L, -846091463L,
  1883.         -870249095L, -894275671L, -918167572L, -941921200L, -965532978L, -988999351L,
  1884.         -1012316784L, -1035481766L, -1058490808L, -1081340445L, -1104027237L,
  1885.         -1126547765L, -1148898640L, -1171076495L, -1193077991L, -1214899813L,
  1886.         -1236538675L, -1257991320L, -1279254516L, -1300325060L, -1321199781L,
  1887.         -1341875533L, -1362349204L, -1382617710L, -1402678000L, -1422527051L,
  1888.         -1442161874L, -1461579514L, -1480777044L, -1499751576L, -1518500250L,
  1889.         -1537020244L, -1555308768L, -1573363068L, -1591180426L, -1608758157L,
  1890.         -1626093616L, -1643184191L, -1660027308L, -1676620432L, -1692961062L,
  1891.         -1709046739L, -1724875040L, -1740443581L, -1755750017L, -1770792044L,
  1892.         -1785567396L, -1800073849L, -1814309216L, -1828271356L, -1841958164L,
  1893.         -1855367581L, -1868497586L, -1881346202L, -1893911494L, -1906191570L,
  1894.         -1918184581L, -1929888720L, -1941302225L, -1952423377L, -1963250501L,
  1895.         -1973781967L, -1984016189L, -1993951625L, -2003586779L, -2012920201L,
  1896.         -2021950484L, -2030676269L, -2039096241L, -2047209133L, -2055013723L,
  1897.         -2062508835L, -2069693342L, -2076566160L, -2083126254L, -2089372638L,
  1898.         -2095304370L, -2100920556L, -2106220352L, -2111202959L, -2115867626L,
  1899.         -2120213651L, -2124240380L, -2127947206L, -2131333572L, -2134398966L,
  1900.         -2137142927L, -2139565043L, -2141664948L, -2143442326L, -2144896910L,
  1901.         -2146028480L, -2146836866L, -2147321946L, (q31_t)0x80000000, -2147321946L,
  1902.         -2146836866L, -2146028480L, -2144896910L, -2143442326L, -2141664948L,
  1903.         -2139565043L, -2137142927L, -2134398966L, -2131333572L, -2127947206L,
  1904.         -2124240380L, -2120213651L, -2115867626L, -2111202959L, -2106220352L,
  1905.         -2100920556L, -2095304370L, -2089372638L, -2083126254L, -2076566160L,
  1906.         -2069693342L, -2062508835L, -2055013723L, -2047209133L, -2039096241L,
  1907.         -2030676269L, -2021950484L, -2012920201L, -2003586779L, -1993951625L,
  1908.         -1984016189L, -1973781967L, -1963250501L, -1952423377L, -1941302225L,
  1909.         -1929888720L, -1918184581L, -1906191570L, -1893911494L, -1881346202L,
  1910.         -1868497586L, -1855367581L, -1841958164L, -1828271356L, -1814309216L,
  1911.         -1800073849L, -1785567396L, -1770792044L, -1755750017L, -1740443581L,
  1912.         -1724875040L, -1709046739L, -1692961062L, -1676620432L, -1660027308L,
  1913.         -1643184191L, -1626093616L, -1608758157L, -1591180426L, -1573363068L,
  1914.         -1555308768L, -1537020244L, -1518500250L, -1499751576L, -1480777044L,
  1915.         -1461579514L, -1442161874L, -1422527051L, -1402678000L, -1382617710L,
  1916.         -1362349204L, -1341875533L, -1321199781L, -1300325060L, -1279254516L,
  1917.         -1257991320L, -1236538675L, -1214899813L, -1193077991L, -1171076495L,
  1918.         -1148898640L, -1126547765L, -1104027237L, -1081340445L, -1058490808L,
  1919.         -1035481766L, -1012316784L, -988999351L, -965532978L, -941921200L,
  1920.         -918167572L, -894275671L, -870249095L, -846091463L, -821806413L, -797397602L,
  1921.         -772868706L, -748223418L, -723465451L, -698598533L, -673626408L, -648552838L,
  1922.         -623381598L, -598116479L, -572761285L, -547319836L, -521795963L, -496193509L,
  1923.         -470516330L, -444768294L, -418953276L, -393075166L, -367137861L, -341145265L,
  1924.         -315101295L, -289009871L, -262874923L, -236700388L, -210490206L, -184248325L,
  1925.         -157978697L, -131685278L, -105372028L, -79042909L, -52701887L, -26352928L, 0
  1926. };
  1927.  
  1928. /**
  1929.  * \par
  1930.  * Table values are in Q15 (1.15 fixed-point format) and generation is done in
  1931.  * three steps.  First,  generate sin values in floating point:
  1932.  * <pre>
  1933.  * tableSize = 512;
  1934.  * for(n = 0; n < (tableSize + 1); n++)
  1935.  * {
  1936.  *      sinTable[n]= sin(2*pi*n/tableSize);
  1937.  * } </pre>
  1938.  * where pi value is  3.14159265358979
  1939.  * \par
  1940.  * Second, convert floating-point to Q15 (Fixed point):
  1941.  *      (sinTable[i] * pow(2, 15))
  1942.  * \par
  1943.  * Finally, round to the nearest integer value:
  1944.  *      sinTable[i] += (sinTable[i] > 0 ? 0.5 :-0.5);
  1945.  */
  1946. const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1] = {
  1947.         0, 402, 804, 1206, 1608, 2009, 2411, 2811, 3212, 3612, 4011, 4410, 4808,
  1948.         5205, 5602, 5998, 6393, 6787, 7180, 7571, 7962, 8351, 8740, 9127, 9512,
  1949.         9896, 10279, 10660, 11039, 11417, 11793, 12167, 12540, 12910, 13279,
  1950.         13646, 14010, 14373, 14733, 15091, 15447, 15800, 16151, 16500, 16846,
  1951.         17190, 17531, 17869, 18205, 18538, 18868, 19195, 19520, 19841, 20160,
  1952.         20475, 20788, 21097, 21403, 21706, 22006, 22302, 22595, 22884, 23170,
  1953.         23453, 23732, 24008, 24279, 24548, 24812, 25073, 25330, 25583, 25833,
  1954.         26078, 26320, 26557, 26791, 27020, 27246, 27467, 27684, 27897, 28106,
  1955.         28311, 28511, 28707, 28899, 29086, 29269, 29448, 29622, 29792, 29957,
  1956.         30118, 30274, 30425, 30572, 30715, 30853, 30986, 31114, 31238, 31357,
  1957.         31471, 31581, 31686, 31786, 31881, 31972, 32058, 32138, 32214, 32286,
  1958.         32352, 32413, 32470, 32522, 32568, 32610, 32647, 32679, 32706, 32729,
  1959.         32746, 32758, 32766, 32767, 32766, 32758, 32746, 32729, 32706, 32679,
  1960.         32647, 32610, 32568, 32522, 32470, 32413, 32352, 32286, 32214, 32138,
  1961.         32058, 31972, 31881, 31786, 31686, 31581, 31471, 31357, 31238, 31114,
  1962.         30986, 30853, 30715, 30572, 30425, 30274, 30118, 29957, 29792, 29622,
  1963.         29448, 29269, 29086, 28899, 28707, 28511, 28311, 28106, 27897, 27684,
  1964.         27467, 27246, 27020, 26791, 26557, 26320, 26078, 25833, 25583, 25330,
  1965.         25073, 24812, 24548, 24279, 24008, 23732, 23453, 23170, 22884, 22595,
  1966.         22302, 22006, 21706, 21403, 21097, 20788, 20475, 20160, 19841, 19520,
  1967.         19195, 18868, 18538, 18205, 17869, 17531, 17190, 16846, 16500, 16151,
  1968.         15800, 15447, 15091, 14733, 14373, 14010, 13646, 13279, 12910, 12540,
  1969.         12167, 11793, 11417, 11039, 10660, 10279, 9896, 9512, 9127, 8740, 8351,
  1970.         7962, 7571, 7180, 6787, 6393, 5998, 5602, 5205, 4808, 4410, 4011, 3612,
  1971.         3212, 2811, 2411, 2009, 1608, 1206, 804, 402, 0, -402, -804, -1206,
  1972.         -1608, -2009, -2411, -2811, -3212, -3612, -4011, -4410, -4808, -5205,
  1973.         -5602, -5998, -6393, -6787, -7180, -7571, -7962, -8351, -8740, -9127,
  1974.         -9512, -9896, -10279, -10660, -11039, -11417, -11793, -12167, -12540,
  1975.         -12910, -13279, -13646, -14010, -14373, -14733, -15091, -15447, -15800,
  1976.         -16151, -16500, -16846, -17190, -17531, -17869, -18205, -18538, -18868,
  1977.         -19195, -19520, -19841, -20160, -20475, -20788, -21097, -21403, -21706,
  1978.         -22006, -22302, -22595, -22884, -23170, -23453, -23732, -24008, -24279,
  1979.         -24548, -24812, -25073, -25330, -25583, -25833, -26078, -26320, -26557,
  1980.         -26791, -27020, -27246, -27467, -27684, -27897, -28106, -28311, -28511,
  1981.         -28707, -28899, -29086, -29269, -29448, -29622, -29792, -29957, -30118,
  1982.         -30274, -30425, -30572, -30715, -30853, -30986, -31114, -31238, -31357,
  1983.         -31471, -31581, -31686, -31786, -31881, -31972, -32058, -32138, -32214,
  1984.         -32286, -32352, -32413, -32470, -32522, -32568, -32610, -32647, -32679,
  1985.         -32706, -32729, -32746, -32758, -32766, -32768, -32766, -32758, -32746,
  1986.         -32729, -32706, -32679, -32647, -32610, -32568, -32522, -32470, -32413,
  1987.         -32352, -32286, -32214, -32138, -32058, -31972, -31881, -31786, -31686,
  1988.         -31581, -31471, -31357, -31238, -31114, -30986, -30853, -30715, -30572,
  1989.         -30425, -30274, -30118, -29957, -29792, -29622, -29448, -29269, -29086,
  1990.         -28899, -28707, -28511, -28311, -28106, -27897, -27684, -27467, -27246,
  1991.         -27020, -26791, -26557, -26320, -26078, -25833, -25583, -25330, -25073,
  1992.         -24812, -24548, -24279, -24008, -23732, -23453, -23170, -22884, -22595,
  1993.         -22302, -22006, -21706, -21403, -21097, -20788, -20475, -20160, -19841,
  1994.         -19520, -19195, -18868, -18538, -18205, -17869, -17531, -17190, -16846,
  1995.         -16500, -16151, -15800, -15447, -15091, -14733, -14373, -14010, -13646,
  1996.         -13279, -12910, -12540, -12167, -11793, -11417, -11039, -10660, -10279,
  1997.         -9896, -9512, -9127, -8740, -8351, -7962, -7571, -7180, -6787, -6393,
  1998.         -5998, -5602, -5205, -4808, -4410, -4011, -3612, -3212, -2811, -2411,
  1999.         -2009, -1608, -1206, -804, -402, 0
  2000. };
  2001.