Subversion Repositories DashDisplay

Rev

Rev 63 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include<string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50.  I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. /* timeout when the ignition is switched off */
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. // 500mS per logger period.
  72. #define LOGGER_INTERVAL 500UL
  73.  
  74. const int DialTimeout = 10000; // about 10 seconds after twiddle, save the dial position.
  75.  
  76. nvram_info_t dial_nvram[MAX_DISPLAYS] __attribute__((section(".NVRAM_Data")));
  77.  
  78. info_t Info[MAXRDG];
  79.  
  80. /// \brief storage for incoming data
  81. data_t Data;
  82.  
  83. int PLXItems;
  84.  
  85. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  86.  
  87. // location for GPS data
  88. Location loc;
  89.  
  90. /* USER CODE END PV */
  91.  
  92. /* Private function prototypes -----------------------------------------------*/
  93. void SystemClock_Config(void);
  94. static void MX_GPIO_Init(void);
  95. static void MX_SPI1_Init(void);
  96. static void MX_USART1_UART_Init(void);
  97. static void MX_USART2_UART_Init(void);
  98. static void MX_USART3_UART_Init(void);
  99. static void MX_TIM3_Init(void);
  100. static void MX_TIM9_Init(void);
  101. static void MX_TIM2_Init(void);
  102. static void MX_UART4_Init(void);
  103. static void MX_I2C1_Init(void);
  104. /* USER CODE BEGIN PFP */
  105.  
  106. // the dial is the switch number we are using.
  107. // suppress is the ItemIndex we wish to suppress on this display
  108. int DisplayCurrent(int dial, int suppress)
  109. {
  110.   if (contexts[dial].knobPos < 0)
  111.     return -1;
  112.   return cc_display(dial, suppress);
  113. }
  114.  
  115. /// \note this code doesnt work so it leaves speed as 9600.
  116. /// \brief Setup Bluetooth module
  117. void initModule(usart_ctl *ctl, uint32_t baudRate)
  118. {
  119.   char initBuf[30];
  120.   // switch to command mode
  121.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_RESET);
  122.   HAL_Delay(500);
  123.   int initLen = small_sprintf(initBuf, "AT+UART=%lu,1,2\n", baudRate);
  124.   setBaud(ctl, 38400);
  125.   sendString(ctl, initBuf, initLen);
  126.   TxWaitEmpty(ctl);
  127.   // switch back to normal comms at new baud rate
  128.  
  129.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
  130.   setBaud(ctl, baudRate);
  131.   HAL_Delay(100);
  132. }
  133.  
  134. // workspace for RMC data read from GPS module.
  135. uint8_t rmc_buff[80];
  136. volatile uint16_t rmc_length;
  137.  
  138. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  139. {
  140.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  141.   memcpy(rmc_buff, data, length);
  142.   return 0;
  143. }
  144.  
  145.  
  146. // check if bluetooth connected
  147. uint8_t btConnected()
  148. {
  149.   return  HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  150. }
  151.  
  152. /* USER CODE END PFP */
  153.  
  154. /* Private user code ---------------------------------------------------------*/
  155. /* USER CODE BEGIN 0 */
  156.  
  157. /* USER CODE END 0 */
  158.  
  159. /**
  160.   * @brief  The application entry point.
  161.   * @retval int
  162.   */
  163. int main(void)
  164. {
  165.   /* USER CODE BEGIN 1 */
  166.   __HAL_RCC_SPI1_CLK_ENABLE();
  167.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  168.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  169.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  170.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  171.  
  172.   __HAL_RCC_TIM3_CLK_ENABLE();
  173.  
  174.   __HAL_RCC_TIM9_CLK_ENABLE();
  175.  
  176.   /* USER CODE END 1 */
  177.  
  178.   /* MCU Configuration--------------------------------------------------------*/
  179.  
  180.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  181.   HAL_Init();
  182.  
  183.   /* USER CODE BEGIN Init */
  184.  
  185.   /* USER CODE END Init */
  186.  
  187.   /* Configure the system clock */
  188.   SystemClock_Config();
  189.  
  190.   /* USER CODE BEGIN SysInit */
  191.   // Switch handler called on sysTick interrupt.
  192.   InitSwitches();
  193.  
  194.   /* USER CODE END SysInit */
  195.  
  196.   /* Initialize all configured peripherals */
  197.   MX_GPIO_Init();
  198.   MX_SPI1_Init();
  199.   MX_USART1_UART_Init();
  200.   MX_USART2_UART_Init();
  201.   MX_USART3_UART_Init();
  202.   MX_TIM3_Init();
  203.   MX_TIM9_Init();
  204.   MX_TIM2_Init();
  205.   MX_UART4_Init();
  206.   MX_I2C1_Init();
  207.   /* USER CODE BEGIN 2 */
  208.  
  209.   /* Turn on USART1 IRQ */
  210.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  211.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  212.  
  213.   /* Turn on USART2 IRQ  */
  214.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  215.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  216.  
  217.   /* turn on USART3 IRQ */
  218.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  219.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  220.  
  221.   /* turn on UART4 IRQ */
  222.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  223.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  224.  
  225.   /* setup the USART control blocks */
  226.   init_usart_ctl(&uc1, &huart1);
  227.   init_usart_ctl(&uc2, &huart2);
  228.   init_usart_ctl(&uc3, &huart3);
  229.   init_usart_ctl(&uc4, &huart4);
  230.  
  231.   EnableSerialRxInterrupt(&uc1);
  232.   EnableSerialRxInterrupt(&uc2);
  233.   EnableSerialRxInterrupt(&uc3);
  234.   EnableSerialRxInterrupt(&uc4);
  235.  
  236.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  237.  
  238.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  239.  
  240.   initModule(&uc3, 9600);
  241.  
  242.   // Initialise UART for 4800 baud NMEA
  243.   setBaud(&uc2, 4800);
  244.  
  245.   // Initialuse UART4 for 4800 baud NMEA.
  246.   setBaud(&uc4, 4800);
  247.  
  248.   cc_init();
  249.  
  250.   int i;
  251.   for (i = 0; i < 2; i++)
  252.   {
  253.     dial_pos[i] = 0; // default to items 0 and 1
  254.     contexts[i].knobPos = -1;
  255.   }
  256.  
  257.   /* reset the display timeout, latch on power from accessories */
  258.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  259.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  260.  
  261.   setRmcCallback(&rmc_callback);
  262.  
  263.   /* USER CODE END 2 */
  264.  
  265.   /* Infinite loop */
  266.   /* USER CODE BEGIN WHILE */
  267.   while (1)
  268.   {
  269.  
  270.     /* while ignition is on, keep resetting power latch timer */
  271.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  272.     {
  273.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  274.     }
  275.     else
  276.     {
  277.       /* if the ignition has been off for a while, then turn off power */
  278.       if (HAL_GetTick() > Latch_Timer)
  279.       {
  280.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  281.                           GPIO_PIN_RESET);
  282.       }
  283.     }
  284.  
  285.     uint32_t timeout = 0; //
  286.  
  287.     uint32_t nextTick = 0;
  288.     uint8_t log = 0;
  289.     uint8_t logCount = 1000 / LOGGER_INTERVAL;
  290.     // PLX decoder protocols
  291.     char PLXPacket = 0;
  292.     for (i = 0; i < MAXRDG; i++)
  293.     {
  294.       Info[i].Max = 0;
  295.       Info[i].Min = 0xFFF; // 12 bit max value
  296.       Info[i].sum = 0; //
  297.       Info[i].count=0;
  298.     }
  299.  
  300.     int PLXPtr = 0;
  301.  
  302.     while (1)
  303.     {
  304.  
  305.       // poll GPS Position/time on UART4
  306.       (void)updateLocation(&loc, &uc4);
  307.       if (loc.valid == 'V')
  308.         memset(loc.time, '-', 6);
  309.  
  310.       // if permitted, log data from RMC packet
  311.       if (rmc_length && btConnected())
  312.       {
  313.         sendString(&uc3, rmc_buff, rmc_length);
  314.         rmc_length = 0;
  315.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  316.         logCount = 0;
  317.         log = 1;
  318.       }
  319.    
  320.       // time several counted logger intervals after RMC recieved, enable logger each timeout.
  321.       if (logCount < ((1000 / LOGGER_INTERVAL)-1) && HAL_GetTick() > nextTick)
  322.       {
  323.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  324.         ++logCount;
  325.         log = 1;
  326.       }
  327.  
  328.       // Handle the bluetooth pairing / reset function by pressing both buttons.
  329.       if ((push_pos[0] == 1) && (push_pos[1] == 1))
  330.       {
  331.         HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  332.                           GPIO_PIN_RESET);
  333.       }
  334.       else
  335.       {
  336.         HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  337.                           GPIO_PIN_SET);
  338.       }
  339.  
  340.       uint16_t cc = SerialCharsReceived(&uc1);
  341.       int chr;
  342.       if (cc == 0)
  343.       {
  344.         timeout++;
  345.         if (timeout % 1000 == 0)
  346.         {
  347.           const char msg[] = "Timeout\r\n";
  348.           sendString(&uc3, msg, sizeof(msg));
  349.         }
  350.  
  351.         if (timeout > 60000)
  352.         {
  353.  
  354.           // do turn off screen
  355.         }
  356.       }
  357.  
  358.  
  359.       for (chr = 0; chr < cc; chr++)
  360.       {
  361.         char c = GetCharSerial(&uc1);
  362.  
  363.         if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  364.         {
  365.           PLXPtr = 0; // reset the pointer
  366.           PLXPacket = 1;
  367.           timeout = 0; // Reset the timer
  368.         }
  369.         else if (c == PLX_Stop)
  370.         {
  371.           if (PLXPacket)
  372.           {
  373.             // we can now decode the selected parameter
  374.             PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
  375.             // saturate the rotary switch position
  376.  
  377.             // process min/max
  378.             for (i = 0; i < PLXItems; i++)
  379.             {
  380.               Info[i].observation = ConvPLX(Data.Sensor[i].AddrH,
  381.                                             Data.Sensor[i].AddrL);
  382.               Info[i].instance = Data.Sensor[i].Instance;
  383.               Info[i].data = ConvPLX(Data.Sensor[i].ReadingH,
  384.                                      Data.Sensor[i].ReadingL);
  385.               if (Info[i].data > Info[i].Max)
  386.               {
  387.                 Info[i].Max = Info[i].data;
  388.               }
  389.               if (Info[i].data < Info[i].Min)
  390.               {
  391.                 Info[i].Min = Info[i].data;
  392.               }
  393.   // take an avarage
  394.               Info[i].sum += Info[i].data;
  395.               Info[i].count ++;
  396.  
  397.               // Send items  to BT if it is in connected state
  398.               if (log && btConnected())
  399.               {
  400.  
  401.                 char outbuff[100];
  402.  
  403.                 int cnt = small_sprintf(outbuff,
  404.                                         "$PLLOG,%d,%d,%d,%ld",
  405.                                         logCount,
  406.                                         Info[i].observation,
  407.                                         Info[i].instance,
  408.                                         Info[i].count==0? 0: Info[i].sum/Info[i].count);
  409.  
  410.                 // NMEA style checksum
  411.                 int ck;
  412.                 int sum = 0;
  413.                 for (ck = 1; ck < cnt; ck++)
  414.                   sum += outbuff[ck];
  415.                 cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  416.                                      sum & 0xFF);
  417.                 sendString(&uc3, outbuff, cnt);
  418.               }
  419.             }
  420.             log = 0;
  421.              // now to display the information
  422.             int suppress = DisplayCurrent(0, -1);
  423.             DisplayCurrent(1, suppress);
  424.           }
  425.           PLXPtr = 0;
  426.           PLXPacket = 0;
  427.         }
  428.         else if (c > PLX_Stop) // illegal char, restart reading
  429.         {
  430.           PLXPacket = 0;
  431.           PLXPtr = 0;
  432.         }
  433.         else if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  434.         {
  435.           Data.Bytes[PLXPtr++] = c;
  436.         }
  437.       }
  438.  
  439.       HAL_Delay(1);
  440.  
  441.       for (i = 0; i < MAX_DISPLAYS; i++)
  442.       {
  443.         if (dial_pos[i] < 0)
  444.           dial_pos[i] = PLXItems - 1;
  445.         if (dial_pos[i] >= PLXItems)
  446.           dial_pos[i] = 0;
  447.  
  448.         int prevPos = contexts[i].knobPos;
  449.         if (contexts[i].knobPos >= 0)
  450.           contexts[i].knobPos = dial_pos[i];
  451.         // if the dial position was changed then reset timer
  452.         if (prevPos != contexts[i].knobPos)
  453.           contexts[i].dial_timer = DialTimeout;
  454.  
  455.         cc_check_nvram(i);
  456.         if (contexts[i].knobPos >= 0)
  457.           dial_pos[i] = contexts[i].knobPos;
  458.       }
  459.     }
  460.     /* USER CODE END WHILE */
  461.  
  462.     /* USER CODE BEGIN 3 */
  463.   }
  464.   /* USER CODE END 3 */
  465. }
  466.  
  467. /**
  468.   * @brief System Clock Configuration
  469.   * @retval None
  470.   */
  471. void SystemClock_Config(void)
  472. {
  473.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  474.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  475.  
  476.   /** Configure the main internal regulator output voltage
  477.   */
  478.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  479.  
  480.   /** Initializes the RCC Oscillators according to the specified parameters
  481.   * in the RCC_OscInitTypeDef structure.
  482.   */
  483.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  484.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  485.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  486.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  487.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  488.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  489.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  490.   {
  491.     Error_Handler();
  492.   }
  493.  
  494.   /** Initializes the CPU, AHB and APB buses clocks
  495.   */
  496.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
  497.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  498.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  499.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  500.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  501.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  502.  
  503.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  504.   {
  505.     Error_Handler();
  506.   }
  507. }
  508.  
  509. /**
  510.   * @brief I2C1 Initialization Function
  511.   * @param None
  512.   * @retval None
  513.   */
  514. static void MX_I2C1_Init(void)
  515. {
  516.  
  517.   /* USER CODE BEGIN I2C1_Init 0 */
  518.  
  519.   /* USER CODE END I2C1_Init 0 */
  520.  
  521.   /* USER CODE BEGIN I2C1_Init 1 */
  522.  
  523.   /* USER CODE END I2C1_Init 1 */
  524.   hi2c1.Instance = I2C1;
  525.   hi2c1.Init.ClockSpeed = 100000;
  526.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  527.   hi2c1.Init.OwnAddress1 = 0;
  528.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  529.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  530.   hi2c1.Init.OwnAddress2 = 0;
  531.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  532.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  533.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  534.   {
  535.     Error_Handler();
  536.   }
  537.   /* USER CODE BEGIN I2C1_Init 2 */
  538.  
  539.   /* USER CODE END I2C1_Init 2 */
  540.  
  541. }
  542.  
  543. /**
  544.   * @brief SPI1 Initialization Function
  545.   * @param None
  546.   * @retval None
  547.   */
  548. static void MX_SPI1_Init(void)
  549. {
  550.  
  551.   /* USER CODE BEGIN SPI1_Init 0 */
  552.  
  553.   /* USER CODE END SPI1_Init 0 */
  554.  
  555.   /* USER CODE BEGIN SPI1_Init 1 */
  556.  
  557.   /* USER CODE END SPI1_Init 1 */
  558.   /* SPI1 parameter configuration*/
  559.   hspi1.Instance = SPI1;
  560.   hspi1.Init.Mode = SPI_MODE_MASTER;
  561.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  562.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  563.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  564.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  565.   hspi1.Init.NSS = SPI_NSS_SOFT;
  566.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  567.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  568.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  569.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  570.   hspi1.Init.CRCPolynomial = 10;
  571.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  572.   {
  573.     Error_Handler();
  574.   }
  575.   /* USER CODE BEGIN SPI1_Init 2 */
  576.  
  577.   /* USER CODE END SPI1_Init 2 */
  578.  
  579. }
  580.  
  581. /**
  582.   * @brief TIM2 Initialization Function
  583.   * @param None
  584.   * @retval None
  585.   */
  586. static void MX_TIM2_Init(void)
  587. {
  588.  
  589.   /* USER CODE BEGIN TIM2_Init 0 */
  590.  
  591.   /* USER CODE END TIM2_Init 0 */
  592.  
  593.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  594.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  595.  
  596.   /* USER CODE BEGIN TIM2_Init 1 */
  597.  
  598.   /* USER CODE END TIM2_Init 1 */
  599.   htim2.Instance = TIM2;
  600.   htim2.Init.Prescaler = 0;
  601.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  602.   htim2.Init.Period = 65535;
  603.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  604.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  605.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  606.   {
  607.     Error_Handler();
  608.   }
  609.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  610.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  611.   {
  612.     Error_Handler();
  613.   }
  614.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  615.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  616.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  617.   {
  618.     Error_Handler();
  619.   }
  620.   /* USER CODE BEGIN TIM2_Init 2 */
  621.  
  622.   /* USER CODE END TIM2_Init 2 */
  623.  
  624. }
  625.  
  626. /**
  627.   * @brief TIM3 Initialization Function
  628.   * @param None
  629.   * @retval None
  630.   */
  631. static void MX_TIM3_Init(void)
  632. {
  633.  
  634.   /* USER CODE BEGIN TIM3_Init 0 */
  635.  
  636.   /* USER CODE END TIM3_Init 0 */
  637.  
  638.   TIM_Encoder_InitTypeDef sConfig = {0};
  639.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  640.  
  641.   /* USER CODE BEGIN TIM3_Init 1 */
  642.  
  643.   /* USER CODE END TIM3_Init 1 */
  644.   htim3.Instance = TIM3;
  645.   htim3.Init.Prescaler = 0;
  646.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  647.   htim3.Init.Period = 65535;
  648.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  649.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  650.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  651.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  652.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  653.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  654.   sConfig.IC1Filter = 15;
  655.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  656.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  657.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  658.   sConfig.IC2Filter = 15;
  659.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  660.   {
  661.     Error_Handler();
  662.   }
  663.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  664.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  665.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  666.   {
  667.     Error_Handler();
  668.   }
  669.   /* USER CODE BEGIN TIM3_Init 2 */
  670.  
  671.   /* USER CODE END TIM3_Init 2 */
  672.  
  673. }
  674.  
  675. /**
  676.   * @brief TIM9 Initialization Function
  677.   * @param None
  678.   * @retval None
  679.   */
  680. static void MX_TIM9_Init(void)
  681. {
  682.  
  683.   /* USER CODE BEGIN TIM9_Init 0 */
  684.  
  685.   /* USER CODE END TIM9_Init 0 */
  686.  
  687.   TIM_Encoder_InitTypeDef sConfig = {0};
  688.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  689.  
  690.   /* USER CODE BEGIN TIM9_Init 1 */
  691.  
  692.   /* USER CODE END TIM9_Init 1 */
  693.   htim9.Instance = TIM9;
  694.   htim9.Init.Prescaler = 0;
  695.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  696.   htim9.Init.Period = 65535;
  697.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  698.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  699.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  700.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  701.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  702.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  703.   sConfig.IC1Filter = 15;
  704.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  705.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  706.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  707.   sConfig.IC2Filter = 0;
  708.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  709.   {
  710.     Error_Handler();
  711.   }
  712.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  713.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  714.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  715.   {
  716.     Error_Handler();
  717.   }
  718.   /* USER CODE BEGIN TIM9_Init 2 */
  719.  
  720.   /* USER CODE END TIM9_Init 2 */
  721.  
  722. }
  723.  
  724. /**
  725.   * @brief UART4 Initialization Function
  726.   * @param None
  727.   * @retval None
  728.   */
  729. static void MX_UART4_Init(void)
  730. {
  731.  
  732.   /* USER CODE BEGIN UART4_Init 0 */
  733.  
  734.   /* USER CODE END UART4_Init 0 */
  735.  
  736.   /* USER CODE BEGIN UART4_Init 1 */
  737.  
  738.   /* USER CODE END UART4_Init 1 */
  739.   huart4.Instance = UART4;
  740.   huart4.Init.BaudRate = 4800;
  741.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  742.   huart4.Init.StopBits = UART_STOPBITS_1;
  743.   huart4.Init.Parity = UART_PARITY_NONE;
  744.   huart4.Init.Mode = UART_MODE_TX_RX;
  745.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  746.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  747.   if (HAL_UART_Init(&huart4) != HAL_OK)
  748.   {
  749.     Error_Handler();
  750.   }
  751.   /* USER CODE BEGIN UART4_Init 2 */
  752.  
  753.   /* USER CODE END UART4_Init 2 */
  754.  
  755. }
  756.  
  757. /**
  758.   * @brief USART1 Initialization Function
  759.   * @param None
  760.   * @retval None
  761.   */
  762. static void MX_USART1_UART_Init(void)
  763. {
  764.  
  765.   /* USER CODE BEGIN USART1_Init 0 */
  766.  
  767.   /* USER CODE END USART1_Init 0 */
  768.  
  769.   /* USER CODE BEGIN USART1_Init 1 */
  770.  
  771.   /* USER CODE END USART1_Init 1 */
  772.   huart1.Instance = USART1;
  773.   huart1.Init.BaudRate = 19200;
  774.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  775.   huart1.Init.StopBits = UART_STOPBITS_1;
  776.   huart1.Init.Parity = UART_PARITY_NONE;
  777.   huart1.Init.Mode = UART_MODE_TX_RX;
  778.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  779.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  780.   if (HAL_UART_Init(&huart1) != HAL_OK)
  781.   {
  782.     Error_Handler();
  783.   }
  784.   /* USER CODE BEGIN USART1_Init 2 */
  785.  
  786.   /* USER CODE END USART1_Init 2 */
  787.  
  788. }
  789.  
  790. /**
  791.   * @brief USART2 Initialization Function
  792.   * @param None
  793.   * @retval None
  794.   */
  795. static void MX_USART2_UART_Init(void)
  796. {
  797.  
  798.   /* USER CODE BEGIN USART2_Init 0 */
  799.  
  800.   /* USER CODE END USART2_Init 0 */
  801.  
  802.   /* USER CODE BEGIN USART2_Init 1 */
  803.  
  804.   /* USER CODE END USART2_Init 1 */
  805.   huart2.Instance = USART2;
  806.   huart2.Init.BaudRate = 115200;
  807.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  808.   huart2.Init.StopBits = UART_STOPBITS_1;
  809.   huart2.Init.Parity = UART_PARITY_NONE;
  810.   huart2.Init.Mode = UART_MODE_TX_RX;
  811.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  812.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  813.   if (HAL_UART_Init(&huart2) != HAL_OK)
  814.   {
  815.     Error_Handler();
  816.   }
  817.   /* USER CODE BEGIN USART2_Init 2 */
  818.  
  819.   /* USER CODE END USART2_Init 2 */
  820.  
  821. }
  822.  
  823. /**
  824.   * @brief USART3 Initialization Function
  825.   * @param None
  826.   * @retval None
  827.   */
  828. static void MX_USART3_UART_Init(void)
  829. {
  830.  
  831.   /* USER CODE BEGIN USART3_Init 0 */
  832.  
  833.   /* USER CODE END USART3_Init 0 */
  834.  
  835.   /* USER CODE BEGIN USART3_Init 1 */
  836.  
  837.   /* USER CODE END USART3_Init 1 */
  838.   huart3.Instance = USART3;
  839.   huart3.Init.BaudRate = 19200;
  840.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  841.   huart3.Init.StopBits = UART_STOPBITS_1;
  842.   huart3.Init.Parity = UART_PARITY_NONE;
  843.   huart3.Init.Mode = UART_MODE_TX_RX;
  844.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  845.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  846.   if (HAL_UART_Init(&huart3) != HAL_OK)
  847.   {
  848.     Error_Handler();
  849.   }
  850.   /* USER CODE BEGIN USART3_Init 2 */
  851.  
  852.   /* USER CODE END USART3_Init 2 */
  853.  
  854. }
  855.  
  856. /**
  857.   * @brief GPIO Initialization Function
  858.   * @param None
  859.   * @retval None
  860.   */
  861. static void MX_GPIO_Init(void)
  862. {
  863.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  864.  
  865.   /* GPIO Ports Clock Enable */
  866.   __HAL_RCC_GPIOH_CLK_ENABLE();
  867.   __HAL_RCC_GPIOA_CLK_ENABLE();
  868.   __HAL_RCC_GPIOC_CLK_ENABLE();
  869.   __HAL_RCC_GPIOB_CLK_ENABLE();
  870.  
  871.   /*Configure GPIO pin Output Level */
  872.   HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
  873.  
  874.   /*Configure GPIO pin Output Level */
  875.   HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin|BT_BUTTON_Pin, GPIO_PIN_RESET);
  876.  
  877.   /*Configure GPIO pin Output Level */
  878.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin|POWER_LATCH_Pin|USB_PWR_Pin, GPIO_PIN_RESET);
  879.  
  880.   /*Configure GPIO pin Output Level */
  881.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  882.  
  883.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  884.   GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI_CD_Pin;
  885.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  886.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  887.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  888.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  889.  
  890.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  891.   GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NSS2_Pin|POWER_LATCH_Pin|USB_PWR_Pin;
  892.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  893.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  894.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  895.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  896.  
  897.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  898.   GPIO_InitStruct.Pin = BT_STATE_Pin|SW1_PUSH_Pin|SW2_PUSH_Pin;
  899.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  900.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  901.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  902.  
  903.   /*Configure GPIO pin : IGNITION_Pin */
  904.   GPIO_InitStruct.Pin = IGNITION_Pin;
  905.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  906.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  907.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  908.  
  909.   /*Configure GPIO pin : BT_BUTTON_Pin */
  910.   GPIO_InitStruct.Pin = BT_BUTTON_Pin;
  911.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  912.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  913.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  914.   HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
  915.  
  916. }
  917.  
  918. /* USER CODE BEGIN 4 */
  919.  
  920. /* USER CODE END 4 */
  921.  
  922. /**
  923.   * @brief  This function is executed in case of error occurrence.
  924.   * @retval None
  925.   */
  926. void Error_Handler(void)
  927. {
  928.   /* USER CODE BEGIN Error_Handler_Debug */
  929.   /* User can add his own implementation to report the HAL error return state */
  930.  
  931.   /* USER CODE END Error_Handler_Debug */
  932. }
  933.  
  934. #ifdef  USE_FULL_ASSERT
  935. /**
  936.   * @brief  Reports the name of the source file and the source line number
  937.   *         where the assert_param error has occurred.
  938.   * @param  file: pointer to the source file name
  939.   * @param  line: assert_param error line source number
  940.   * @retval None
  941.   */
  942. void assert_failed(uint8_t *file, uint32_t line)
  943. {
  944.   /* USER CODE BEGIN 6 */
  945.   /* User can add his own implementation to report the file name and line number,
  946.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  947.   /* USER CODE END 6 */
  948. }
  949. #endif /* USE_FULL_ASSERT */
  950.