/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "libPLX/plx.h"
#include "libSerial/serial.H"
#include "libSmallPrintf/small_printf.h"
#include "libNMEA/nmea.h"
#include "switches.h"
#include<string.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim9;
UART_HandleTypeDef huart4;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
context_t contexts[MAX_DISPLAYS];
/* timeout when the ignition is switched off */
#define IGNITION_OFF_TIMEOUT 30000UL
// 500mS per logger period.
#define LOGGER_INTERVAL 500UL
const int DialTimeout = 10000; // about 10 seconds after twiddle, save the dial position.
nvram_info_t dial_nvram[MAX_DISPLAYS] __attribute__((section(".NVRAM_Data")));
info_t Info[MAXRDG];
/// \brief storage for incoming data
data_t Data;
int PLXItems;
uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
// location for GPS data
Location loc;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM9_Init(void);
static void MX_TIM2_Init(void);
static void MX_UART4_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
// the dial is the switch number we are using.
// suppress is the ItemIndex we wish to suppress on this display
int DisplayCurrent(int dial, int suppress)
{
if (contexts[dial].knobPos < 0)
return -1;
return cc_display(dial, suppress);
}
/// \note this code doesnt work so it leaves speed as 9600.
/// \brief Setup Bluetooth module
void initModule(usart_ctl *ctl, uint32_t baudRate)
{
char initBuf[30];
// switch to command mode
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_RESET);
HAL_Delay(500);
int initLen = small_sprintf(initBuf, "AT+UART=%lu,1,2\n", baudRate);
setBaud(ctl, 38400);
sendString(ctl, initBuf, initLen);
TxWaitEmpty(ctl);
// switch back to normal comms at new baud rate
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
setBaud(ctl, baudRate);
HAL_Delay(100);
}
// workspace for RMC data read from GPS module.
uint8_t rmc_buff[80];
volatile uint16_t rmc_length;
uint8_t rmc_callback(uint8_t *data, uint16_t length)
{
rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
memcpy(rmc_buff
, data
, length
);
return 0;
}
// check if bluetooth connected
uint8_t btConnected()
{
return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
__HAL_RCC_USART2_CLK_ENABLE(); // debug port
__HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
__HAL_RCC_UART4_CLK_ENABLE(); // NMEA0183 port
__HAL_RCC_TIM3_CLK_ENABLE();
__HAL_RCC_TIM9_CLK_ENABLE();
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
// Switch handler called on sysTick interrupt.
InitSwitches();
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM3_Init();
MX_TIM9_Init();
MX_TIM2_Init();
MX_UART4_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* turn on USART3 IRQ */
HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
/* turn on UART4 IRQ */
HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(UART4_IRQn);
/* setup the USART control blocks */
init_usart_ctl(&uc1, &huart1);
init_usart_ctl(&uc2, &huart2);
init_usart_ctl(&uc3, &huart3);
init_usart_ctl(&uc4, &huart4);
EnableSerialRxInterrupt(&uc1);
EnableSerialRxInterrupt(&uc2);
EnableSerialRxInterrupt(&uc3);
EnableSerialRxInterrupt(&uc4);
HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
initModule(&uc3, 9600);
// Initialise UART for 4800 baud NMEA
setBaud(&uc2, 4800);
// Initialuse UART4 for 4800 baud NMEA.
setBaud(&uc4, 4800);
cc_init();
int i;
for (i = 0; i < 2; i++)
{
dial_pos[i] = 0; // default to items 0 and 1
contexts[i].knobPos = -1;
}
/* reset the display timeout, latch on power from accessories */
Latch_Timer = IGNITION_OFF_TIMEOUT;
HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
setRmcCallback(&rmc_callback);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* while ignition is on, keep resetting power latch timer */
if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
{
Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
}
else
{
/* if the ignition has been off for a while, then turn off power */
if (HAL_GetTick() > Latch_Timer)
{
HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
GPIO_PIN_RESET);
}
}
uint32_t timeout = 0; //
uint32_t nextTick = 0;
uint8_t logCount = 1000 / LOGGER_INTERVAL;
// PLX decoder protocols
char PLXPacket = 0;
for (i = 0; i < MAXRDG; i++)
{
Info[i].Max = 0;
Info[i].Min = 0xFFF; // 12 bit max value
Info[i].sum = 0; //
Info[i].count=0;
}
int PLXPtr = 0;
while (1)
{
// poll GPS Position/time on UART4
(void)updateLocation(&loc, &uc4);
if (loc.valid == 'V')
// if permitted, log data from RMC packet
if (rmc_length && btConnected())
{
sendString(&uc3, rmc_buff, rmc_length);
rmc_length = 0;
nextTick = HAL_GetTick() + LOGGER_INTERVAL;
logCount = 0;
}
// time several counted logger intervals after RMC recieved, enable logger each timeout.
if (logCount < ((1000 / LOGGER_INTERVAL)-1) && HAL_GetTick() > nextTick)
{
nextTick = HAL_GetTick() + LOGGER_INTERVAL;
++logCount;
}
// Handle the bluetooth pairing / reset function by pressing both buttons.
if ((push_pos[0] == 1) && (push_pos[1] == 1))
{
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_SET);
}
uint16_t cc = SerialCharsReceived(&uc1);
int chr;
if (cc == 0)
{
timeout++;
if (timeout % 1000 == 0)
{
const char msg[] = "Timeout\r\n";
sendString(&uc3, msg, sizeof(msg));
}
if (timeout > 60000)
{
// do turn off screen
}
}
for (chr = 0; chr < cc; chr++)
{
char c = GetCharSerial(&uc1);
if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
{
PLXPtr = 0; // reset the pointer
PLXPacket = 1;
timeout = 0; // Reset the timer
}
else if (c == PLX_Stop)
{
if (PLXPacket)
{
// we can now decode the selected parameter
PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
// saturate the rotary switch position
// process min/max
for (i = 0; i < PLXItems; i++)
{
Info[i].observation = ConvPLX(Data.Sensor[i].AddrH,
Data.Sensor[i].AddrL);
Info[i].instance = Data.Sensor[i].Instance;
Info[i].data = ConvPLX(Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
if (Info[i].data > Info[i].Max)
{
Info[i].Max = Info[i].data;
}
if (Info[i].data < Info[i].Min)
{
Info[i].Min = Info[i].data;
}
// take an avarage
Info[i].sum += Info[i].data;
Info[i].count ++;
// Send items to BT if it is in connected state
if (log && btConnected
())
{
char outbuff[100];
int cnt = small_sprintf(outbuff,
"$PLLOG,%d,%d,%d,%ld",
logCount,
Info[i].observation,
Info[i].instance,
Info[i].count==0? 0: Info[i].sum/Info[i].count);
// NMEA style checksum
int ck;
int sum = 0;
for (ck = 1; ck < cnt; ck++)
sum += outbuff[ck];
cnt += small_sprintf(outbuff + cnt, "*%02X\n",
sum & 0xFF);
sendString(&uc3, outbuff, cnt);
}
}
// now to display the information
int suppress = DisplayCurrent(0, -1);
DisplayCurrent(1, suppress);
}
PLXPtr = 0;
PLXPacket = 0;
}
else if (c > PLX_Stop) // illegal char, restart reading
{
PLXPacket = 0;
PLXPtr = 0;
}
else if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
{
Data.Bytes[PLXPtr++] = c;
}
}
HAL_Delay(1);
for (i = 0; i < MAX_DISPLAYS; i++)
{
if (dial_pos[i] < 0)
dial_pos[i] = PLXItems - 1;
if (dial_pos[i] >= PLXItems)
dial_pos[i] = 0;
int prevPos = contexts[i].knobPos;
if (contexts[i].knobPos >= 0)
contexts[i].knobPos = dial_pos[i];
// if the dial position was changed then reset timer
if (prevPos != contexts[i].knobPos)
contexts[i].dial_timer = DialTimeout;
cc_check_nvram(i);
if (contexts[i].knobPos >= 0)
dial_pos[i] = contexts[i].knobPos;
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 15;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM9 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM9_Init(void)
{
/* USER CODE BEGIN TIM9_Init 0 */
/* USER CODE END TIM9_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM9_Init 1 */
/* USER CODE END TIM9_Init 1 */
htim9.Instance = TIM9;
htim9.Init.Prescaler = 0;
htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
htim9.Init.Period = 65535;
htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM9_Init 2 */
/* USER CODE END TIM9_Init 2 */
}
/**
* @brief UART4 Initialization Function
* @param None
* @retval None
*/
static void MX_UART4_Init(void)
{
/* USER CODE BEGIN UART4_Init 0 */
/* USER CODE END UART4_Init 0 */
/* USER CODE BEGIN UART4_Init 1 */
/* USER CODE END UART4_Init 1 */
huart4.Instance = UART4;
huart4.Init.BaudRate = 4800;
huart4.Init.WordLength = UART_WORDLENGTH_8B;
huart4.Init.StopBits = UART_STOPBITS_1;
huart4.Init.Parity = UART_PARITY_NONE;
huart4.Init.Mode = UART_MODE_TX_RX;
huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart4.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART4_Init 2 */
/* USER CODE END UART4_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 19200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin|BT_BUTTON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin|POWER_LATCH_Pin|USB_PWR_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI_CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NSS2_Pin|POWER_LATCH_Pin|USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = BT_STATE_Pin|SW1_PUSH_Pin|SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : IGNITION_Pin */
GPIO_InitStruct.Pin = IGNITION_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BT_BUTTON_Pin */
GPIO_InitStruct.Pin = BT_BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */