Subversion Repositories DashDisplay

Rev

Rev 71 | Rev 73 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include <string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. ///@brief  timeout when the ignition is switched off
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. /// @brief 1000mS per logger period, print average per period
  72. #define LOGGER_INTERVAL 1000UL
  73.  
  74. /// @brief  about 10 seconds after twiddle, save the dial position.
  75. const int DialTimeout = 100;
  76.  
  77. /// @brief Data storage for readings
  78. info_t Info[MAXRDG];
  79.  
  80. /// @brief Define a null item
  81. const info_t nullInfo = {.Max = 0,
  82.                          .Min = 0xFFF,
  83.                          .sum = 0,
  84.                          .count = 0,
  85.                          .updated = 0,
  86.                          .lastUpdated = 0,
  87.                          .observation = PLX_MAX_OBS,
  88.                          .instance = PLX_MAX_INST};
  89.  
  90. /// \brief storage for incoming data
  91. data_t Data;
  92.  
  93. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  94.  
  95. // location for GPS data
  96. Location loc;
  97.  
  98. /* USER CODE END PV */
  99.  
  100. /* Private function prototypes -----------------------------------------------*/
  101. void SystemClock_Config(void);
  102. static void MX_GPIO_Init(void);
  103. static void MX_SPI1_Init(void);
  104. static void MX_USART1_UART_Init(void);
  105. static void MX_USART2_UART_Init(void);
  106. static void MX_USART3_UART_Init(void);
  107. static void MX_TIM3_Init(void);
  108. static void MX_TIM9_Init(void);
  109. static void MX_TIM2_Init(void);
  110. static void MX_UART4_Init(void);
  111. static void MX_I2C1_Init(void);
  112. /* USER CODE BEGIN PFP */
  113.  
  114. // the dial is the switch number we are using.
  115. // suppress is the ItemIndex we wish to suppress on this display
  116. int DisplayCurrent(int dial, int suppress)
  117. {
  118.   return cc_display(dial, suppress);
  119. }
  120.  
  121. /// \note  HC-05 only accepts : 9600,19200,38400,57600,115200,230400,460800 baud
  122. /// \brief Setup Bluetooth module
  123. void initModule(usart_ctl *ctl, uint32_t baudRate)
  124. {
  125.   char initBuf[30];
  126.   // switch to command mode
  127.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET);
  128.   HAL_Delay(500);
  129.   setBaud(ctl, 38400);
  130.   int initLen = small_sprintf(initBuf, "AT+UART=%lu,0,0\n", baudRate);
  131.   const char buf[] = "AT+RESET\n";
  132.   sendString(ctl, initBuf, initLen);
  133.   HAL_Delay(500);
  134.   initLen = small_sprintf(initBuf, buf);
  135.   sendString(ctl, initBuf, initLen);
  136.  
  137.   TxWaitEmpty(ctl);
  138.  
  139.   // clear the button press
  140.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET);
  141.  
  142.   // switch back to normal comms at new baud rate
  143.   setBaud(ctl, baudRate);
  144.   HAL_Delay(100);
  145. }
  146.  
  147. // workspace for RMC data read from GPS module.
  148. uint8_t rmc_buff[80];
  149. volatile uint16_t rmc_length;
  150.  
  151. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  152. {
  153.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  154.   memcpy(rmc_buff, data, length);
  155.   return 0;
  156. }
  157.  
  158. // check if bluetooth connected
  159. uint8_t btConnected()
  160. {
  161.   return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  162. }
  163.  
  164. /// @brief return true if this slot is unused
  165. /// @param ptr pointer to the slot to
  166. uint8_t isUnused(int index)
  167. {
  168.   if (index < 0 || index > MAXRDG)
  169.     return false;
  170.  
  171.   return Info[index].instance == PLX_MAX_INST && Info[index].observation == PLX_MAX_OBS;
  172. }
  173.  
  174. /// @brief Determine if an entry is currently valid
  175. /// @param index the number of the array entry to display
  176. /// @return true if the entry contains data which is fresh
  177. uint8_t isValid(int index)
  178. {
  179.   if (index < 0 || index > MAXRDG)
  180.     return false;
  181.   if (isUnused(index))
  182.     return false;
  183.  
  184.   uint32_t age = HAL_GetTick() - Info[index].lastUpdated;
  185.  
  186.   if (age > 300)
  187.     return false;
  188.  
  189.   return true;
  190. }
  191.  
  192. /* USER CODE END PFP */
  193.  
  194. /* Private user code ---------------------------------------------------------*/
  195. /* USER CODE BEGIN 0 */
  196.  
  197. /* USER CODE END 0 */
  198.  
  199. /**
  200.  * @brief  The application entry point.
  201.  * @retval int
  202.  */
  203. int main(void)
  204. {
  205.   /* USER CODE BEGIN 1 */
  206.   __HAL_RCC_SPI1_CLK_ENABLE();
  207.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  208.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  209.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  210.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  211.  
  212.   __HAL_RCC_TIM3_CLK_ENABLE();
  213.  
  214.   __HAL_RCC_TIM9_CLK_ENABLE();
  215.  
  216.   /* USER CODE END 1 */
  217.  
  218.   /* MCU Configuration--------------------------------------------------------*/
  219.  
  220.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  221.   HAL_Init();
  222.  
  223.   /* USER CODE BEGIN Init */
  224.  
  225.   /* USER CODE END Init */
  226.  
  227.   /* Configure the system clock */
  228.   SystemClock_Config();
  229.  
  230.   /* USER CODE BEGIN SysInit */
  231.   // Switch handler called on sysTick interrupt.
  232.   InitSwitches();
  233.  
  234.   /* USER CODE END SysInit */
  235.  
  236.   /* Initialize all configured peripherals */
  237.   MX_GPIO_Init();
  238.   MX_SPI1_Init();
  239.   MX_USART1_UART_Init();
  240.   MX_USART2_UART_Init();
  241.   MX_USART3_UART_Init();
  242.   MX_TIM3_Init();
  243.   MX_TIM9_Init();
  244.   MX_TIM2_Init();
  245.   MX_UART4_Init();
  246.   MX_I2C1_Init();
  247.   /* USER CODE BEGIN 2 */
  248.  
  249.   /* Turn on USART1 IRQ */
  250.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  251.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  252.  
  253.   /* Turn on USART2 IRQ  */
  254.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  255.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  256.  
  257.   /* turn on USART3 IRQ */
  258.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  259.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  260.  
  261.   /* turn on UART4 IRQ */
  262.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  263.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  264.  
  265.   /* setup the USART control blocks */
  266.   init_usart_ctl(&uc1, &huart1);
  267.   init_usart_ctl(&uc2, &huart2);
  268.   init_usart_ctl(&uc3, &huart3);
  269.   init_usart_ctl(&uc4, &huart4);
  270.  
  271.   EnableSerialRxInterrupt(&uc1);
  272.   EnableSerialRxInterrupt(&uc2);
  273.   EnableSerialRxInterrupt(&uc3);
  274.   EnableSerialRxInterrupt(&uc4);
  275.  
  276.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  277.  
  278.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  279.  
  280.   initModule(&uc3, 38400);
  281.  
  282.   // Initialise UART for 4800 baud NMEA
  283.   setBaud(&uc2, 4800);
  284.  
  285.   // Initialuse UART4 for 4800 baud NMEA.
  286.   setBaud(&uc4, 4800);
  287.  
  288.   cc_init();
  289.  
  290.   int i;
  291.   for (i = 0; i < 2; i++)
  292.   {
  293.     contexts[i].knobPos = -1;   // set the knob position
  294.   }
  295.  
  296.   /* reset the display timeout, latch on power from accessories */
  297.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  298.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  299.  
  300.   setRmcCallback(&rmc_callback);
  301.  
  302.   // data timeout
  303.   uint32_t timeout = 0; //
  304.  
  305.   uint32_t nextTick = 0;
  306.   uint8_t log = 0;
  307.   // PLX decoder protocols
  308.   char PLXPacket = 0;
  309.  
  310.   for (i = 0; i < MAXRDG; i++)
  311.   {
  312.     Info[i] = nullInfo;
  313.   }
  314.  
  315.   int PLXPtr = 0;
  316.   int logCount = 0;
  317.  
  318.   uint32_t resetCounter = 0 ; // record time at which both reset buttons were first pressed.
  319.  
  320.   /* USER CODE END 2 */
  321.  
  322.   /* Infinite loop */
  323.   /* USER CODE BEGIN WHILE */
  324.   while (1)
  325.   {
  326.  
  327.     /* while ignition is on, keep resetting power latch timer */
  328.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  329.     {
  330.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  331.     }
  332.     else
  333.     {
  334.       /* if the ignition has been off for a while, then turn off power */
  335.       if (HAL_GetTick() > Latch_Timer)
  336.       {
  337.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  338.                           GPIO_PIN_RESET);
  339.       }
  340.     }
  341.  
  342.     // Handle the bluetooth pairing / reset function by pressing both buttons.
  343.     if ((push_pos[0] == 1) && (push_pos[1] == 1))
  344.     {
  345.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  346.                         GPIO_PIN_RESET);
  347.       if (resetCounter == 0)
  348.         resetCounter = HAL_GetTick();
  349.     }
  350.     else
  351.     {
  352.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  353.                         GPIO_PIN_SET);
  354.  
  355.       if (resetCounter != 0)
  356.       {
  357.         // Held down reset button for 10 seconds, clear NVRAM.
  358.         if ((HAL_GetTick() - resetCounter) > 10000)
  359.         {
  360.           for (i = 0; i < 2; i++)
  361.           {
  362.             contexts[i].knobPos = -1;   // set the knob position
  363.             contexts[i].dial_timer = 1; // timeout immediately when decremented
  364.           }
  365.           erase_nvram();
  366.         }
  367.         resetCounter = 0;
  368.       }
  369.     }
  370.  
  371.     // poll GPS Position/time on UART4
  372.     (void)updateLocation(&loc, &uc4);
  373.     if (loc.valid == 'V')
  374.       memset(loc.time, '-', 6);
  375.  
  376.     // if permitted, log data from RMC packet
  377.     if (btConnected())
  378.     {
  379.       // Any RMC data, send it, reset the logger timeout
  380.       if (rmc_length)
  381.       {
  382.         sendString(&uc3, (const char *)rmc_buff, rmc_length);
  383.         rmc_length = 0;
  384.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  385.         log = 1;      // send out associated data over Bluetooth because triggered by recieving RMC
  386.         logCount = 0; // first sample set this second numbered 0
  387.       }
  388.  
  389.       // Timeout for data logging regularly
  390.       if (HAL_GetTick() > nextTick)
  391.       {
  392.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  393.         logCount++;
  394.         if (logCount > (1000 / LOGGER_INTERVAL))
  395.           logCount = 0;
  396.         log = 1;
  397.       }
  398.  
  399.       if (log)
  400.       {
  401.         log = 0;
  402.         // Send items  to BT if it is in connected state
  403.         for (int i = 0; i < MAXRDG; ++i)
  404.         {
  405.           if (!isValid(i))
  406.             continue;
  407.           char outbuff[100];
  408.  
  409.           int cnt = small_sprintf(outbuff,
  410.                                   "$PLLOG,%d,%d,%d,%ld",
  411.                                   logCount,
  412.                                   Info[i].observation,
  413.                                   Info[i].instance,
  414.                                   Info[i].count == 0 ? 0 : Info[i].sum / Info[i].count);
  415.  
  416.           // NMEA style checksum
  417.           int ck;
  418.           int sum = 0;
  419.           for (ck = 1; ck < cnt; ck++)
  420.             sum += outbuff[ck];
  421.           cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  422.                                sum & 0xFF);
  423.           sendString(&uc3, outbuff, cnt);
  424.         }
  425.       }
  426.     }
  427.  
  428.     // determine if we are getting any data from the interface
  429.     uint16_t cc = SerialCharsReceived(&uc1);
  430.     int chr;
  431.     if (cc == 0)
  432.     {
  433.       timeout++;
  434.       if (btConnected() && (timeout % 1000 == 0))
  435.       {
  436.         const char msg[] = "Timeout\r\n";
  437.         sendString(&uc3, msg, sizeof(msg));
  438.       }
  439.  
  440.       if (timeout > 60000)
  441.       {
  442.  
  443.         // do turn off screen
  444.       }
  445.       // wait for a bit if nothing came in.
  446.       HAL_Delay(10);
  447.     }
  448.  
  449.     /// process the observation list
  450.     for (chr = 0; chr < cc; chr++)
  451.     {
  452.       char c = GetCharSerial(&uc1);
  453.  
  454.       if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  455.       {
  456.         PLXPtr = 0; // reset the pointer
  457.         PLXPacket = 1;
  458.         timeout = 0; // Reset the timer
  459.         continue;
  460.       }
  461.       if (c == PLX_Stop)
  462.       {
  463.         if (PLXPacket)
  464.         {
  465.           // we can now decode the selected parameter
  466.           int PLXNewItems = PLXPtr / sizeof(PLX_SensorInfo); // total items in last reading batch
  467.  
  468.           // process items
  469.           for (i = 0; i < PLXNewItems; i++)
  470.           {
  471.             // search to see if the item already has a slot in the Info[] array
  472.             // match the observation and instance: if found, update entry
  473.             enum PLX_Observations observation = ConvPLX(Data.Sensor[i].AddrH,
  474.                                                         Data.Sensor[i].AddrL);
  475.  
  476.             char instance = Data.Sensor[i].Instance;
  477.  
  478.             // validate the current item, discard out of range
  479.  
  480.             if ((instance > PLX_MAX_INST) || (observation > PLX_MAX_OBS))
  481.               continue;
  482.  
  483.             // search for the item in the list
  484.             int j;
  485.             for (j = 0; j < MAXRDG; ++j)
  486.             {
  487.               if ((Info[j].observation == observation) && (Info[j].instance == instance))
  488.                 break;
  489.             }
  490.             // fallen off the end of the list of existing items without a match, so j points at next new item
  491.             //
  492.             // Find an unused slot
  493.  
  494.             if (j == MAXRDG)
  495.             {
  496.               int k;
  497.               {
  498.                 for (k = 0; k < MAXRDG; ++k)
  499.                   if (!isValid(k))
  500.                   {
  501.                     j = k; // found a spare slot
  502.                     break;
  503.                   }
  504.               }
  505.               if (k == MAXRDG)
  506.                 continue; // abandon this iteration
  507.             }
  508.  
  509.             // give up if we are going to fall off the end of the array
  510.             if (j > MAXRDG)
  511.               break;
  512.  
  513.             Info[j].observation = observation;
  514.  
  515.             Info[j].instance = instance;
  516.             Info[j].data = ConvPLX(Data.Sensor[j].ReadingH,
  517.                                    Data.Sensor[j].ReadingL);
  518.             if (Info[j].data > Info[j].Max)
  519.             {
  520.               Info[j].Max = Info[j].data;
  521.             }
  522.             if (Info[j].data < Info[j].Min)
  523.             {
  524.               Info[j].Min = Info[j].data;
  525.             }
  526.             // take an average
  527.             Info[j].sum += Info[j].data;
  528.             Info[j].count++;
  529.             // note the last update time
  530.             Info[j].lastUpdated = HAL_GetTick();
  531.             Info[j].updated = 1; // it has been updated
  532.           }
  533.           PLXPtr = 0;
  534.           PLXPacket = 0;
  535.  
  536.           // scan through and invalidate all old items
  537.           for (int i = 0; i < MAXRDG; ++i)
  538.           {
  539.             if (!isValid(i))
  540.               Info[i] = nullInfo;
  541.           }
  542.  
  543.           break; // something to process
  544.         }
  545.       }
  546.       if (c > PLX_Stop) // illegal char, restart reading
  547.       {
  548.         PLXPacket = 0;
  549.         PLXPtr = 0;
  550.         continue;
  551.       }
  552.       if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  553.       {
  554.         Data.Bytes[PLXPtr++] = c;
  555.       }
  556.     }
  557.  
  558.     // handle switch rotation
  559.     for (i = 0; i < MAX_DIALS; ++i)
  560.     {
  561.       int delta = get_dial_diff(i);
  562.       int pos = contexts[i].knobPos;
  563.       if(pos < 0)
  564.         break; // dont process until we have read NVRAM for the first time .
  565.       int start = pos;
  566.       // move in positive direction
  567.       while (delta > 0)
  568.       {
  569.         // skip invalid items, dont count
  570.         if(pos<MAXRDG-1)
  571.           pos++;
  572.         else
  573.           pos=0;
  574.  
  575.         if (isValid(pos))
  576.           delta--; // count a valid item
  577.        
  578.         // wrap
  579.         if (pos == start)
  580.           break;
  581.       }
  582.  
  583.       // move in negative direction
  584.       while (delta < 0)
  585.      
  586.       {
  587.         // skip invalid items, dont count
  588.         if(pos>0)
  589.           pos--;
  590.         else
  591.           pos=MAXRDG-1;
  592.  
  593.         if (isValid(pos))
  594.           delta++; // count a valid item
  595.        
  596.         // wrap
  597.         if (pos == start)
  598.           break;
  599.       }
  600.      
  601.       contexts[i].knobPos = pos;
  602.       if (pos != start)
  603.         contexts[i].dial_timer = DialTimeout;
  604.     }
  605.  
  606.     int suppress = -1;
  607.     for (i = 0; i < MAX_DISPLAYS; i++)
  608.     { // now to display the information
  609.       suppress = DisplayCurrent(i, suppress);
  610.  
  611.       cc_check_nvram(i);
  612.     }
  613.   }
  614. }
  615. /* USER CODE END WHILE */
  616.  
  617. /* USER CODE BEGIN 3 */
  618.  
  619. /* USER CODE END 3 */
  620.  
  621. /**
  622.  * @brief System Clock Configuration
  623.  * @retval None
  624.  */
  625. void SystemClock_Config(void)
  626. {
  627.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  628.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  629.  
  630.   /** Configure the main internal regulator output voltage
  631.    */
  632.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  633.  
  634.   /** Initializes the RCC Oscillators according to the specified parameters
  635.    * in the RCC_OscInitTypeDef structure.
  636.    */
  637.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  638.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  639.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  640.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  641.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  642.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  643.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  644.   {
  645.     Error_Handler();
  646.   }
  647.  
  648.   /** Initializes the CPU, AHB and APB buses clocks
  649.    */
  650.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  651.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  652.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  653.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  654.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  655.  
  656.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  657.   {
  658.     Error_Handler();
  659.   }
  660. }
  661.  
  662. /**
  663.  * @brief I2C1 Initialization Function
  664.  * @param None
  665.  * @retval None
  666.  */
  667. static void MX_I2C1_Init(void)
  668. {
  669.  
  670.   /* USER CODE BEGIN I2C1_Init 0 */
  671.  
  672.   /* USER CODE END I2C1_Init 0 */
  673.  
  674.   /* USER CODE BEGIN I2C1_Init 1 */
  675.  
  676.   /* USER CODE END I2C1_Init 1 */
  677.   hi2c1.Instance = I2C1;
  678.   hi2c1.Init.ClockSpeed = 100000;
  679.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  680.   hi2c1.Init.OwnAddress1 = 0;
  681.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  682.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  683.   hi2c1.Init.OwnAddress2 = 0;
  684.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  685.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  686.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  687.   {
  688.     Error_Handler();
  689.   }
  690.   /* USER CODE BEGIN I2C1_Init 2 */
  691.  
  692.   /* USER CODE END I2C1_Init 2 */
  693. }
  694.  
  695. /**
  696.  * @brief SPI1 Initialization Function
  697.  * @param None
  698.  * @retval None
  699.  */
  700. static void MX_SPI1_Init(void)
  701. {
  702.  
  703.   /* USER CODE BEGIN SPI1_Init 0 */
  704.  
  705.   /* USER CODE END SPI1_Init 0 */
  706.  
  707.   /* USER CODE BEGIN SPI1_Init 1 */
  708.  
  709.   /* USER CODE END SPI1_Init 1 */
  710.   /* SPI1 parameter configuration*/
  711.   hspi1.Instance = SPI1;
  712.   hspi1.Init.Mode = SPI_MODE_MASTER;
  713.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  714.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  715.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  716.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  717.   hspi1.Init.NSS = SPI_NSS_SOFT;
  718.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  719.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  720.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  721.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  722.   hspi1.Init.CRCPolynomial = 10;
  723.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  724.   {
  725.     Error_Handler();
  726.   }
  727.   /* USER CODE BEGIN SPI1_Init 2 */
  728.  
  729.   /* USER CODE END SPI1_Init 2 */
  730. }
  731.  
  732. /**
  733.  * @brief TIM2 Initialization Function
  734.  * @param None
  735.  * @retval None
  736.  */
  737. static void MX_TIM2_Init(void)
  738. {
  739.  
  740.   /* USER CODE BEGIN TIM2_Init 0 */
  741.  
  742.   /* USER CODE END TIM2_Init 0 */
  743.  
  744.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  745.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  746.  
  747.   /* USER CODE BEGIN TIM2_Init 1 */
  748.  
  749.   /* USER CODE END TIM2_Init 1 */
  750.   htim2.Instance = TIM2;
  751.   htim2.Init.Prescaler = 0;
  752.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  753.   htim2.Init.Period = 65535;
  754.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  755.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  756.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  757.   {
  758.     Error_Handler();
  759.   }
  760.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  761.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  762.   {
  763.     Error_Handler();
  764.   }
  765.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  766.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  767.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  768.   {
  769.     Error_Handler();
  770.   }
  771.   /* USER CODE BEGIN TIM2_Init 2 */
  772.  
  773.   /* USER CODE END TIM2_Init 2 */
  774. }
  775.  
  776. /**
  777.  * @brief TIM3 Initialization Function
  778.  * @param None
  779.  * @retval None
  780.  */
  781. static void MX_TIM3_Init(void)
  782. {
  783.  
  784.   /* USER CODE BEGIN TIM3_Init 0 */
  785.  
  786.   /* USER CODE END TIM3_Init 0 */
  787.  
  788.   TIM_Encoder_InitTypeDef sConfig = {0};
  789.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  790.  
  791.   /* USER CODE BEGIN TIM3_Init 1 */
  792.  
  793.   /* USER CODE END TIM3_Init 1 */
  794.   htim3.Instance = TIM3;
  795.   htim3.Init.Prescaler = 0;
  796.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  797.   htim3.Init.Period = 65535;
  798.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  799.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  800.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  801.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  802.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  803.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  804.   sConfig.IC1Filter = 15;
  805.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  806.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  807.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  808.   sConfig.IC2Filter = 15;
  809.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  810.   {
  811.     Error_Handler();
  812.   }
  813.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  814.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  815.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  816.   {
  817.     Error_Handler();
  818.   }
  819.   /* USER CODE BEGIN TIM3_Init 2 */
  820.  
  821.   /* USER CODE END TIM3_Init 2 */
  822. }
  823.  
  824. /**
  825.  * @brief TIM9 Initialization Function
  826.  * @param None
  827.  * @retval None
  828.  */
  829. static void MX_TIM9_Init(void)
  830. {
  831.  
  832.   /* USER CODE BEGIN TIM9_Init 0 */
  833.  
  834.   /* USER CODE END TIM9_Init 0 */
  835.  
  836.   TIM_Encoder_InitTypeDef sConfig = {0};
  837.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  838.  
  839.   /* USER CODE BEGIN TIM9_Init 1 */
  840.  
  841.   /* USER CODE END TIM9_Init 1 */
  842.   htim9.Instance = TIM9;
  843.   htim9.Init.Prescaler = 0;
  844.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  845.   htim9.Init.Period = 65535;
  846.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  847.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  848.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  849.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  850.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  851.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  852.   sConfig.IC1Filter = 15;
  853.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  854.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  855.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  856.   sConfig.IC2Filter = 0;
  857.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  858.   {
  859.     Error_Handler();
  860.   }
  861.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  862.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  863.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  864.   {
  865.     Error_Handler();
  866.   }
  867.   /* USER CODE BEGIN TIM9_Init 2 */
  868.  
  869.   /* USER CODE END TIM9_Init 2 */
  870. }
  871.  
  872. /**
  873.  * @brief UART4 Initialization Function
  874.  * @param None
  875.  * @retval None
  876.  */
  877. static void MX_UART4_Init(void)
  878. {
  879.  
  880.   /* USER CODE BEGIN UART4_Init 0 */
  881.  
  882.   /* USER CODE END UART4_Init 0 */
  883.  
  884.   /* USER CODE BEGIN UART4_Init 1 */
  885.  
  886.   /* USER CODE END UART4_Init 1 */
  887.   huart4.Instance = UART4;
  888.   huart4.Init.BaudRate = 4800;
  889.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  890.   huart4.Init.StopBits = UART_STOPBITS_1;
  891.   huart4.Init.Parity = UART_PARITY_NONE;
  892.   huart4.Init.Mode = UART_MODE_TX_RX;
  893.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  894.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  895.   if (HAL_UART_Init(&huart4) != HAL_OK)
  896.   {
  897.     Error_Handler();
  898.   }
  899.   /* USER CODE BEGIN UART4_Init 2 */
  900.  
  901.   /* USER CODE END UART4_Init 2 */
  902. }
  903.  
  904. /**
  905.  * @brief USART1 Initialization Function
  906.  * @param None
  907.  * @retval None
  908.  */
  909. static void MX_USART1_UART_Init(void)
  910. {
  911.  
  912.   /* USER CODE BEGIN USART1_Init 0 */
  913.  
  914.   /* USER CODE END USART1_Init 0 */
  915.  
  916.   /* USER CODE BEGIN USART1_Init 1 */
  917.  
  918.   /* USER CODE END USART1_Init 1 */
  919.   huart1.Instance = USART1;
  920.   huart1.Init.BaudRate = 19200;
  921.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  922.   huart1.Init.StopBits = UART_STOPBITS_1;
  923.   huart1.Init.Parity = UART_PARITY_NONE;
  924.   huart1.Init.Mode = UART_MODE_TX_RX;
  925.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  926.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  927.   if (HAL_UART_Init(&huart1) != HAL_OK)
  928.   {
  929.     Error_Handler();
  930.   }
  931.   /* USER CODE BEGIN USART1_Init 2 */
  932.  
  933.   /* USER CODE END USART1_Init 2 */
  934. }
  935.  
  936. /**
  937.  * @brief USART2 Initialization Function
  938.  * @param None
  939.  * @retval None
  940.  */
  941. static void MX_USART2_UART_Init(void)
  942. {
  943.  
  944.   /* USER CODE BEGIN USART2_Init 0 */
  945.  
  946.   /* USER CODE END USART2_Init 0 */
  947.  
  948.   /* USER CODE BEGIN USART2_Init 1 */
  949.  
  950.   /* USER CODE END USART2_Init 1 */
  951.   huart2.Instance = USART2;
  952.   huart2.Init.BaudRate = 115200;
  953.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  954.   huart2.Init.StopBits = UART_STOPBITS_1;
  955.   huart2.Init.Parity = UART_PARITY_NONE;
  956.   huart2.Init.Mode = UART_MODE_TX_RX;
  957.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  958.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  959.   if (HAL_UART_Init(&huart2) != HAL_OK)
  960.   {
  961.     Error_Handler();
  962.   }
  963.   /* USER CODE BEGIN USART2_Init 2 */
  964.  
  965.   /* USER CODE END USART2_Init 2 */
  966. }
  967.  
  968. /**
  969.  * @brief USART3 Initialization Function
  970.  * @param None
  971.  * @retval None
  972.  */
  973. static void MX_USART3_UART_Init(void)
  974. {
  975.  
  976.   /* USER CODE BEGIN USART3_Init 0 */
  977.  
  978.   /* USER CODE END USART3_Init 0 */
  979.  
  980.   /* USER CODE BEGIN USART3_Init 1 */
  981.  
  982.   /* USER CODE END USART3_Init 1 */
  983.   huart3.Instance = USART3;
  984.   huart3.Init.BaudRate = 19200;
  985.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  986.   huart3.Init.StopBits = UART_STOPBITS_1;
  987.   huart3.Init.Parity = UART_PARITY_NONE;
  988.   huart3.Init.Mode = UART_MODE_TX_RX;
  989.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  990.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  991.   if (HAL_UART_Init(&huart3) != HAL_OK)
  992.   {
  993.     Error_Handler();
  994.   }
  995.   /* USER CODE BEGIN USART3_Init 2 */
  996.  
  997.   /* USER CODE END USART3_Init 2 */
  998. }
  999.  
  1000. /**
  1001.  * @brief GPIO Initialization Function
  1002.  * @param None
  1003.  * @retval None
  1004.  */
  1005. static void MX_GPIO_Init(void)
  1006. {
  1007.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  1008.  
  1009.   /* GPIO Ports Clock Enable */
  1010.   __HAL_RCC_GPIOH_CLK_ENABLE();
  1011.   __HAL_RCC_GPIOA_CLK_ENABLE();
  1012.   __HAL_RCC_GPIOC_CLK_ENABLE();
  1013.   __HAL_RCC_GPIOB_CLK_ENABLE();
  1014.  
  1015.   /*Configure GPIO pin Output Level */
  1016.   HAL_GPIO_WritePin(GPIOA, SPI_NSS1_Pin | BT_RESET_Pin, GPIO_PIN_SET);
  1017.  
  1018.   /*Configure GPIO pin Output Level */
  1019.   HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
  1020.  
  1021.   /*Configure GPIO pin Output Level */
  1022.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
  1023.  
  1024.   /*Configure GPIO pin Output Level */
  1025.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  1026.  
  1027.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  1028.   GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
  1029.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1030.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1031.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1032.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1033.  
  1034.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  1035.   GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
  1036.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1037.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1038.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1039.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1040.  
  1041.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  1042.   GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
  1043.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1044.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  1045.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1046.  
  1047.   /*Configure GPIO pin : IGNITION_Pin */
  1048.   GPIO_InitStruct.Pin = IGNITION_Pin;
  1049.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1050.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1051.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  1052.  
  1053.   /*Configure GPIO pins : BT_BUTTON_Pin BT_RESET_Pin */
  1054.   GPIO_InitStruct.Pin = BT_BUTTON_Pin | BT_RESET_Pin;
  1055.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  1056.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1057.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1058.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1059. }
  1060.  
  1061. /* USER CODE BEGIN 4 */
  1062.  
  1063. /* USER CODE END 4 */
  1064.  
  1065. /**
  1066.  * @brief  This function is executed in case of error occurrence.
  1067.  * @retval None
  1068.  */
  1069. void Error_Handler(void)
  1070. {
  1071.   /* USER CODE BEGIN Error_Handler_Debug */
  1072.   /* User can add his own implementation to report the HAL error return state */
  1073.  
  1074.   /* USER CODE END Error_Handler_Debug */
  1075. }
  1076.  
  1077. #ifdef USE_FULL_ASSERT
  1078. /**
  1079.  * @brief  Reports the name of the source file and the source line number
  1080.  *         where the assert_param error has occurred.
  1081.  * @param  file: pointer to the source file name
  1082.  * @param  line: assert_param error line source number
  1083.  * @retval None
  1084.  */
  1085. void assert_failed(uint8_t *file, uint32_t line)
  1086. {
  1087.   /* USER CODE BEGIN 6 */
  1088.   /* User can add his own implementation to report the file name and line number,
  1089.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1090.   /* USER CODE END 6 */
  1091. }
  1092. #endif /* USE_FULL_ASSERT */
  1093.