Subversion Repositories DashDisplay

Rev

Rev 70 | Rev 72 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include <string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. ///@brief  timeout when the ignition is switched off
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. /// @brief 1000mS per logger period, print average per period
  72. #define LOGGER_INTERVAL 1000UL
  73.  
  74. /// @brief  about 10 seconds after twiddle, save the dial position.
  75. const int DialTimeout = 100;
  76.  
  77. /// @brief Data storage for readings
  78. info_t Info[MAXRDG];
  79.  
  80. /// @brief Define a null item
  81. const info_t nullInfo = {.Max = 0,
  82.                          .Min = 0xFFF,
  83.                          .sum = 0,
  84.                          .count = 0,
  85.                          .updated = 0,
  86.                          .lastUpdated = 0,
  87.                          .observation = PLX_MAX_OBS,
  88.                          .instance = PLX_MAX_INST};
  89.  
  90. /// \brief storage for incoming data
  91. data_t Data;
  92.  
  93. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  94.  
  95. // location for GPS data
  96. Location loc;
  97.  
  98. /* USER CODE END PV */
  99.  
  100. /* Private function prototypes -----------------------------------------------*/
  101. void SystemClock_Config(void);
  102. static void MX_GPIO_Init(void);
  103. static void MX_SPI1_Init(void);
  104. static void MX_USART1_UART_Init(void);
  105. static void MX_USART2_UART_Init(void);
  106. static void MX_USART3_UART_Init(void);
  107. static void MX_TIM3_Init(void);
  108. static void MX_TIM9_Init(void);
  109. static void MX_TIM2_Init(void);
  110. static void MX_UART4_Init(void);
  111. static void MX_I2C1_Init(void);
  112. /* USER CODE BEGIN PFP */
  113.  
  114. // the dial is the switch number we are using.
  115. // suppress is the ItemIndex we wish to suppress on this display
  116. int DisplayCurrent(int dial, int suppress)
  117. {
  118.   if (contexts[dial].knobPos < 0)
  119.     return -1;
  120.   return cc_display(dial, suppress);
  121. }
  122.  
  123. /// \note  HC-05 only accepts : 9600,19200,38400,57600,115200,230400,460800 baud
  124. /// \brief Setup Bluetooth module
  125. void initModule(usart_ctl *ctl, uint32_t baudRate)
  126. {
  127.   char initBuf[30];
  128.   // switch to command mode
  129.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET);
  130.   HAL_Delay(500);
  131.   setBaud(ctl, 38400);
  132.   int initLen = small_sprintf(initBuf, "AT+UART=%lu,0,0\n", baudRate);
  133.   const char buf[] = "AT+RESET\n";
  134.   sendString(ctl, initBuf, initLen);
  135.   HAL_Delay(500);
  136.   initLen = small_sprintf(initBuf, buf);
  137.   sendString(ctl, initBuf, initLen);
  138.  
  139.   TxWaitEmpty(ctl);
  140.  
  141.   // clear the button press
  142.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET);
  143.  
  144.   // switch back to normal comms at new baud rate
  145.   setBaud(ctl, baudRate);
  146.   HAL_Delay(100);
  147. }
  148.  
  149. // workspace for RMC data read from GPS module.
  150. uint8_t rmc_buff[80];
  151. volatile uint16_t rmc_length;
  152.  
  153. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  154. {
  155.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  156.   memcpy(rmc_buff, data, length);
  157.   return 0;
  158. }
  159.  
  160. // check if bluetooth connected
  161. uint8_t btConnected()
  162. {
  163.   return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  164. }
  165.  
  166. /// @brief return true if this slot is unused
  167. /// @param ptr pointer to the slot to
  168. uint8_t isUnused(int index)
  169. {
  170.   if (index < 0 || index > MAXRDG)
  171.     return false;
  172.  
  173.   return Info[index].instance == PLX_MAX_INST && Info[index].observation == PLX_MAX_OBS;
  174. }
  175.  
  176. /// @brief Determine if an entry is currently valid
  177. /// @param index the number of the array entry to display
  178. /// @return true if the entry contains data which is fresh
  179. uint8_t isValid(int index)
  180. {
  181.   if (index < 0 || index > MAXRDG)
  182.     return false;
  183.   if (isUnused(index))
  184.     return false;
  185.  
  186.   uint32_t age = HAL_GetTick() - Info[index].lastUpdated;
  187.  
  188.   if (age > 300)
  189.     return false;
  190.  
  191.   return true;
  192. }
  193.  
  194. /* USER CODE END PFP */
  195.  
  196. /* Private user code ---------------------------------------------------------*/
  197. /* USER CODE BEGIN 0 */
  198.  
  199. /* USER CODE END 0 */
  200.  
  201. /**
  202.  * @brief  The application entry point.
  203.  * @retval int
  204.  */
  205. int main(void)
  206. {
  207.   /* USER CODE BEGIN 1 */
  208.   __HAL_RCC_SPI1_CLK_ENABLE();
  209.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  210.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  211.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  212.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  213.  
  214.   __HAL_RCC_TIM3_CLK_ENABLE();
  215.  
  216.   __HAL_RCC_TIM9_CLK_ENABLE();
  217.  
  218.   /* USER CODE END 1 */
  219.  
  220.   /* MCU Configuration--------------------------------------------------------*/
  221.  
  222.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  223.   HAL_Init();
  224.  
  225.   /* USER CODE BEGIN Init */
  226.  
  227.   /* USER CODE END Init */
  228.  
  229.   /* Configure the system clock */
  230.   SystemClock_Config();
  231.  
  232.   /* USER CODE BEGIN SysInit */
  233.   // Switch handler called on sysTick interrupt.
  234.   InitSwitches();
  235.  
  236.   /* USER CODE END SysInit */
  237.  
  238.   /* Initialize all configured peripherals */
  239.   MX_GPIO_Init();
  240.   MX_SPI1_Init();
  241.   MX_USART1_UART_Init();
  242.   MX_USART2_UART_Init();
  243.   MX_USART3_UART_Init();
  244.   MX_TIM3_Init();
  245.   MX_TIM9_Init();
  246.   MX_TIM2_Init();
  247.   MX_UART4_Init();
  248.   MX_I2C1_Init();
  249.   /* USER CODE BEGIN 2 */
  250.  
  251.   /* Turn on USART1 IRQ */
  252.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  253.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  254.  
  255.   /* Turn on USART2 IRQ  */
  256.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  257.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  258.  
  259.   /* turn on USART3 IRQ */
  260.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  261.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  262.  
  263.   /* turn on UART4 IRQ */
  264.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  265.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  266.  
  267.   /* setup the USART control blocks */
  268.   init_usart_ctl(&uc1, &huart1);
  269.   init_usart_ctl(&uc2, &huart2);
  270.   init_usart_ctl(&uc3, &huart3);
  271.   init_usart_ctl(&uc4, &huart4);
  272.  
  273.   EnableSerialRxInterrupt(&uc1);
  274.   EnableSerialRxInterrupt(&uc2);
  275.   EnableSerialRxInterrupt(&uc3);
  276.   EnableSerialRxInterrupt(&uc4);
  277.  
  278.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  279.  
  280.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  281.  
  282.   initModule(&uc3, 38400);
  283.  
  284.   // Initialise UART for 4800 baud NMEA
  285.   setBaud(&uc2, 4800);
  286.  
  287.   // Initialuse UART4 for 4800 baud NMEA.
  288.   setBaud(&uc4, 4800);
  289.  
  290.   cc_init();
  291.  
  292.   int i;
  293.   for (i = 0; i < 2; i++)
  294.   {
  295.     contexts[i].knobPos = -1;   // set the knob position
  296.   }
  297.  
  298.   /* reset the display timeout, latch on power from accessories */
  299.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  300.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  301.  
  302.   setRmcCallback(&rmc_callback);
  303.  
  304.   // data timeout
  305.   uint32_t timeout = 0; //
  306.  
  307.   uint32_t nextTick = 0;
  308.   uint8_t log = 0;
  309.   // PLX decoder protocols
  310.   char PLXPacket = 0;
  311.  
  312.   for (i = 0; i < MAXRDG; i++)
  313.   {
  314.     Info[i] = nullInfo;
  315.   }
  316.  
  317.   int PLXPtr = 0;
  318.   int logCount = 0;
  319.  
  320.   uint32_t resetCounter = 0 ; // record time at which both reset buttons were first pressed.
  321.  
  322.   /* USER CODE END 2 */
  323.  
  324.   /* Infinite loop */
  325.   /* USER CODE BEGIN WHILE */
  326.   while (1)
  327.   {
  328.  
  329.     /* while ignition is on, keep resetting power latch timer */
  330.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  331.     {
  332.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  333.     }
  334.     else
  335.     {
  336.       /* if the ignition has been off for a while, then turn off power */
  337.       if (HAL_GetTick() > Latch_Timer)
  338.       {
  339.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  340.                           GPIO_PIN_RESET);
  341.       }
  342.     }
  343.  
  344.     // Handle the bluetooth pairing / reset function by pressing both buttons.
  345.     if ((push_pos[0] == 1) && (push_pos[1] == 1))
  346.     {
  347.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  348.                         GPIO_PIN_RESET);
  349.       if (resetCounter == 0)
  350.         resetCounter = HAL_GetTick();
  351.     }
  352.     else
  353.     {
  354.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  355.                         GPIO_PIN_SET);
  356.  
  357.       if (resetCounter != 0)
  358.       {
  359.         // Held down reset button for 10 seconds, clear NVRAM.
  360.         if ((HAL_GetTick() - resetCounter) > 10000)
  361.         {
  362.           for (i = 0; i < 2; i++)
  363.           {
  364.             contexts[i].knobPos = -1;   // set the knob position
  365.             contexts[i].dial_timer = 1; // timeout immediately when decremented
  366.           }
  367.           erase_nvram();
  368.         }
  369.         resetCounter = 0;
  370.       }
  371.     }
  372.  
  373.     // poll GPS Position/time on UART4
  374.     (void)updateLocation(&loc, &uc4);
  375.     if (loc.valid == 'V')
  376.       memset(loc.time, '-', 6);
  377.  
  378.     // if permitted, log data from RMC packet
  379.     if (btConnected())
  380.     {
  381.       // Any RMC data, send it, reset the logger timeout
  382.       if (rmc_length)
  383.       {
  384.         sendString(&uc3, (const char *)rmc_buff, rmc_length);
  385.         rmc_length = 0;
  386.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  387.         log = 1;      // send out associated data over Bluetooth because triggered by recieving RMC
  388.         logCount = 0; // first sample set this second numbered 0
  389.       }
  390.  
  391.       // Timeout for data logging regularly
  392.       if (HAL_GetTick() > nextTick)
  393.       {
  394.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  395.         logCount++;
  396.         if (logCount > (1000 / LOGGER_INTERVAL))
  397.           logCount = 0;
  398.         log = 1;
  399.       }
  400.  
  401.       if (log)
  402.       {
  403.         log = 0;
  404.         // Send items  to BT if it is in connected state
  405.         for (int i = 0; i < MAXRDG; ++i)
  406.         {
  407.           if (!isValid(i))
  408.             continue;
  409.           char outbuff[100];
  410.  
  411.           int cnt = small_sprintf(outbuff,
  412.                                   "$PLLOG,%d,%d,%d,%ld",
  413.                                   logCount,
  414.                                   Info[i].observation,
  415.                                   Info[i].instance,
  416.                                   Info[i].count == 0 ? 0 : Info[i].sum / Info[i].count);
  417.  
  418.           // NMEA style checksum
  419.           int ck;
  420.           int sum = 0;
  421.           for (ck = 1; ck < cnt; ck++)
  422.             sum += outbuff[ck];
  423.           cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  424.                                sum & 0xFF);
  425.           sendString(&uc3, outbuff, cnt);
  426.         }
  427.       }
  428.     }
  429.  
  430.     // determine if we are getting any data from the interface
  431.     uint16_t cc = SerialCharsReceived(&uc1);
  432.     int chr;
  433.     if (cc == 0)
  434.     {
  435.       timeout++;
  436.       if (btConnected() && (timeout % 1000 == 0))
  437.       {
  438.         const char msg[] = "Timeout\r\n";
  439.         sendString(&uc3, msg, sizeof(msg));
  440.       }
  441.  
  442.       if (timeout > 60000)
  443.       {
  444.  
  445.         // do turn off screen
  446.       }
  447.       // wait for a bit if nothing came in.
  448.       HAL_Delay(10);
  449.     }
  450.  
  451.     /// process the observation list
  452.     for (chr = 0; chr < cc; chr++)
  453.     {
  454.       char c = GetCharSerial(&uc1);
  455.  
  456.       if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  457.       {
  458.         PLXPtr = 0; // reset the pointer
  459.         PLXPacket = 1;
  460.         timeout = 0; // Reset the timer
  461.         continue;
  462.       }
  463.       if (c == PLX_Stop)
  464.       {
  465.         if (PLXPacket)
  466.         {
  467.           // we can now decode the selected parameter
  468.           int PLXNewItems = PLXPtr / sizeof(PLX_SensorInfo); // total items in last reading batch
  469.  
  470.           // process items
  471.           for (i = 0; i < PLXNewItems; i++)
  472.           {
  473.             // search to see if the item already has a slot in the Info[] array
  474.             // match the observation and instance: if found, update entry
  475.             enum PLX_Observations observation = ConvPLX(Data.Sensor[i].AddrH,
  476.                                                         Data.Sensor[i].AddrL);
  477.  
  478.             char instance = Data.Sensor[i].Instance;
  479.  
  480.             // validate the current item, discard out of range
  481.  
  482.             if ((instance > PLX_MAX_INST) || (observation > PLX_MAX_OBS))
  483.               continue;
  484.  
  485.             // search for the item in the list
  486.             int j;
  487.             for (j = 0; j < MAXRDG; ++j)
  488.             {
  489.               if ((Info[j].observation == observation) && (Info[j].instance == instance))
  490.                 break;
  491.             }
  492.             // fallen off the end of the list of existing items without a match, so j points at next new item
  493.             //
  494.             // Find an unused slot
  495.  
  496.             if (j == MAXRDG)
  497.             {
  498.               int k;
  499.               {
  500.                 for (k = 0; k < MAXRDG; ++k)
  501.                   if (!isValid(k))
  502.                   {
  503.                     j = k; // found a spare slot
  504.                     break;
  505.                   }
  506.               }
  507.               if (k == MAXRDG)
  508.                 continue; // abandon this iteration
  509.             }
  510.  
  511.             // give up if we are going to fall off the end of the array
  512.             if (j > MAXRDG)
  513.               break;
  514.  
  515.             Info[j].observation = observation;
  516.  
  517.             Info[j].instance = instance;
  518.             Info[j].data = ConvPLX(Data.Sensor[j].ReadingH,
  519.                                    Data.Sensor[j].ReadingL);
  520.             if (Info[j].data > Info[j].Max)
  521.             {
  522.               Info[j].Max = Info[j].data;
  523.             }
  524.             if (Info[j].data < Info[j].Min)
  525.             {
  526.               Info[j].Min = Info[j].data;
  527.             }
  528.             // take an average
  529.             Info[j].sum += Info[j].data;
  530.             Info[j].count++;
  531.             // note the last update time
  532.             Info[j].lastUpdated = HAL_GetTick();
  533.             Info[j].updated = 1; // it has been updated
  534.           }
  535.           PLXPtr = 0;
  536.           PLXPacket = 0;
  537.  
  538.           // scan through and invalidate all old items
  539.           for (int i = 0; i < MAXRDG; ++i)
  540.           {
  541.             if (!isValid(i))
  542.               Info[i] = nullInfo;
  543.           }
  544.  
  545.           break; // something to process
  546.         }
  547.       }
  548.       if (c > PLX_Stop) // illegal char, restart reading
  549.       {
  550.         PLXPacket = 0;
  551.         PLXPtr = 0;
  552.         continue;
  553.       }
  554.       if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  555.       {
  556.         Data.Bytes[PLXPtr++] = c;
  557.       }
  558.     }
  559.  
  560.     // handle switch rotation
  561.     for (i = 0; i < MAX_DIALS; ++i)
  562.     {
  563.       int delta = get_dial_diff(i);
  564.       int pos = contexts[i].knobPos;
  565.       if(pos < 0)
  566.         break; // dont process until we have read NVRAM for the first time .
  567.       int start = pos;
  568.       // move in positive direction
  569.       while (delta > 0)
  570.       {
  571.         // skip invalid items, dont count
  572.         if(pos<MAXRDG-1)
  573.           pos++;
  574.         else
  575.           pos=0;
  576.  
  577.         if (isValid(pos))
  578.           delta--; // count a valid item
  579.        
  580.         // wrap
  581.         if (pos == start)
  582.           break;
  583.       }
  584.  
  585.       // move in negative direction
  586.       while (delta < 0)
  587.      
  588.       {
  589.         // skip invalid items, dont count
  590.         if(pos>0)
  591.           pos--;
  592.         else
  593.           pos=MAXRDG-1;
  594.  
  595.         if (isValid(pos))
  596.           delta++; // count a valid item
  597.        
  598.         // wrap
  599.         if (pos == start)
  600.           break;
  601.       }
  602.      
  603.       contexts[i].knobPos = pos;
  604.       if (pos != start)
  605.         contexts[i].dial_timer = DialTimeout;
  606.     }
  607.  
  608.     int suppress = -1;
  609.     for (i = 0; i < MAX_DISPLAYS; i++)
  610.     { // now to display the information
  611.       suppress = DisplayCurrent(i, suppress);
  612.  
  613.       cc_check_nvram(i);
  614.     }
  615.   }
  616. }
  617. /* USER CODE END WHILE */
  618.  
  619. /* USER CODE BEGIN 3 */
  620.  
  621. /* USER CODE END 3 */
  622.  
  623. /**
  624.  * @brief System Clock Configuration
  625.  * @retval None
  626.  */
  627. void SystemClock_Config(void)
  628. {
  629.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  630.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  631.  
  632.   /** Configure the main internal regulator output voltage
  633.    */
  634.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  635.  
  636.   /** Initializes the RCC Oscillators according to the specified parameters
  637.    * in the RCC_OscInitTypeDef structure.
  638.    */
  639.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  640.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  641.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  642.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  643.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  644.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  645.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  646.   {
  647.     Error_Handler();
  648.   }
  649.  
  650.   /** Initializes the CPU, AHB and APB buses clocks
  651.    */
  652.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  653.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  654.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  655.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  656.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  657.  
  658.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  659.   {
  660.     Error_Handler();
  661.   }
  662. }
  663.  
  664. /**
  665.  * @brief I2C1 Initialization Function
  666.  * @param None
  667.  * @retval None
  668.  */
  669. static void MX_I2C1_Init(void)
  670. {
  671.  
  672.   /* USER CODE BEGIN I2C1_Init 0 */
  673.  
  674.   /* USER CODE END I2C1_Init 0 */
  675.  
  676.   /* USER CODE BEGIN I2C1_Init 1 */
  677.  
  678.   /* USER CODE END I2C1_Init 1 */
  679.   hi2c1.Instance = I2C1;
  680.   hi2c1.Init.ClockSpeed = 100000;
  681.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  682.   hi2c1.Init.OwnAddress1 = 0;
  683.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  684.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  685.   hi2c1.Init.OwnAddress2 = 0;
  686.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  687.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  688.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  689.   {
  690.     Error_Handler();
  691.   }
  692.   /* USER CODE BEGIN I2C1_Init 2 */
  693.  
  694.   /* USER CODE END I2C1_Init 2 */
  695. }
  696.  
  697. /**
  698.  * @brief SPI1 Initialization Function
  699.  * @param None
  700.  * @retval None
  701.  */
  702. static void MX_SPI1_Init(void)
  703. {
  704.  
  705.   /* USER CODE BEGIN SPI1_Init 0 */
  706.  
  707.   /* USER CODE END SPI1_Init 0 */
  708.  
  709.   /* USER CODE BEGIN SPI1_Init 1 */
  710.  
  711.   /* USER CODE END SPI1_Init 1 */
  712.   /* SPI1 parameter configuration*/
  713.   hspi1.Instance = SPI1;
  714.   hspi1.Init.Mode = SPI_MODE_MASTER;
  715.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  716.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  717.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  718.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  719.   hspi1.Init.NSS = SPI_NSS_SOFT;
  720.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  721.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  722.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  723.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  724.   hspi1.Init.CRCPolynomial = 10;
  725.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  726.   {
  727.     Error_Handler();
  728.   }
  729.   /* USER CODE BEGIN SPI1_Init 2 */
  730.  
  731.   /* USER CODE END SPI1_Init 2 */
  732. }
  733.  
  734. /**
  735.  * @brief TIM2 Initialization Function
  736.  * @param None
  737.  * @retval None
  738.  */
  739. static void MX_TIM2_Init(void)
  740. {
  741.  
  742.   /* USER CODE BEGIN TIM2_Init 0 */
  743.  
  744.   /* USER CODE END TIM2_Init 0 */
  745.  
  746.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  747.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  748.  
  749.   /* USER CODE BEGIN TIM2_Init 1 */
  750.  
  751.   /* USER CODE END TIM2_Init 1 */
  752.   htim2.Instance = TIM2;
  753.   htim2.Init.Prescaler = 0;
  754.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  755.   htim2.Init.Period = 65535;
  756.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  757.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  758.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  759.   {
  760.     Error_Handler();
  761.   }
  762.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  763.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  764.   {
  765.     Error_Handler();
  766.   }
  767.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  768.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  769.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  770.   {
  771.     Error_Handler();
  772.   }
  773.   /* USER CODE BEGIN TIM2_Init 2 */
  774.  
  775.   /* USER CODE END TIM2_Init 2 */
  776. }
  777.  
  778. /**
  779.  * @brief TIM3 Initialization Function
  780.  * @param None
  781.  * @retval None
  782.  */
  783. static void MX_TIM3_Init(void)
  784. {
  785.  
  786.   /* USER CODE BEGIN TIM3_Init 0 */
  787.  
  788.   /* USER CODE END TIM3_Init 0 */
  789.  
  790.   TIM_Encoder_InitTypeDef sConfig = {0};
  791.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  792.  
  793.   /* USER CODE BEGIN TIM3_Init 1 */
  794.  
  795.   /* USER CODE END TIM3_Init 1 */
  796.   htim3.Instance = TIM3;
  797.   htim3.Init.Prescaler = 0;
  798.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  799.   htim3.Init.Period = 65535;
  800.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  801.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  802.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  803.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  804.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  805.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  806.   sConfig.IC1Filter = 15;
  807.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  808.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  809.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  810.   sConfig.IC2Filter = 15;
  811.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  812.   {
  813.     Error_Handler();
  814.   }
  815.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  816.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  817.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  818.   {
  819.     Error_Handler();
  820.   }
  821.   /* USER CODE BEGIN TIM3_Init 2 */
  822.  
  823.   /* USER CODE END TIM3_Init 2 */
  824. }
  825.  
  826. /**
  827.  * @brief TIM9 Initialization Function
  828.  * @param None
  829.  * @retval None
  830.  */
  831. static void MX_TIM9_Init(void)
  832. {
  833.  
  834.   /* USER CODE BEGIN TIM9_Init 0 */
  835.  
  836.   /* USER CODE END TIM9_Init 0 */
  837.  
  838.   TIM_Encoder_InitTypeDef sConfig = {0};
  839.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  840.  
  841.   /* USER CODE BEGIN TIM9_Init 1 */
  842.  
  843.   /* USER CODE END TIM9_Init 1 */
  844.   htim9.Instance = TIM9;
  845.   htim9.Init.Prescaler = 0;
  846.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  847.   htim9.Init.Period = 65535;
  848.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  849.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  850.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  851.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  852.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  853.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  854.   sConfig.IC1Filter = 15;
  855.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  856.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  857.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  858.   sConfig.IC2Filter = 0;
  859.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  860.   {
  861.     Error_Handler();
  862.   }
  863.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  864.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  865.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  866.   {
  867.     Error_Handler();
  868.   }
  869.   /* USER CODE BEGIN TIM9_Init 2 */
  870.  
  871.   /* USER CODE END TIM9_Init 2 */
  872. }
  873.  
  874. /**
  875.  * @brief UART4 Initialization Function
  876.  * @param None
  877.  * @retval None
  878.  */
  879. static void MX_UART4_Init(void)
  880. {
  881.  
  882.   /* USER CODE BEGIN UART4_Init 0 */
  883.  
  884.   /* USER CODE END UART4_Init 0 */
  885.  
  886.   /* USER CODE BEGIN UART4_Init 1 */
  887.  
  888.   /* USER CODE END UART4_Init 1 */
  889.   huart4.Instance = UART4;
  890.   huart4.Init.BaudRate = 4800;
  891.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  892.   huart4.Init.StopBits = UART_STOPBITS_1;
  893.   huart4.Init.Parity = UART_PARITY_NONE;
  894.   huart4.Init.Mode = UART_MODE_TX_RX;
  895.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  896.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  897.   if (HAL_UART_Init(&huart4) != HAL_OK)
  898.   {
  899.     Error_Handler();
  900.   }
  901.   /* USER CODE BEGIN UART4_Init 2 */
  902.  
  903.   /* USER CODE END UART4_Init 2 */
  904. }
  905.  
  906. /**
  907.  * @brief USART1 Initialization Function
  908.  * @param None
  909.  * @retval None
  910.  */
  911. static void MX_USART1_UART_Init(void)
  912. {
  913.  
  914.   /* USER CODE BEGIN USART1_Init 0 */
  915.  
  916.   /* USER CODE END USART1_Init 0 */
  917.  
  918.   /* USER CODE BEGIN USART1_Init 1 */
  919.  
  920.   /* USER CODE END USART1_Init 1 */
  921.   huart1.Instance = USART1;
  922.   huart1.Init.BaudRate = 19200;
  923.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  924.   huart1.Init.StopBits = UART_STOPBITS_1;
  925.   huart1.Init.Parity = UART_PARITY_NONE;
  926.   huart1.Init.Mode = UART_MODE_TX_RX;
  927.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  928.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  929.   if (HAL_UART_Init(&huart1) != HAL_OK)
  930.   {
  931.     Error_Handler();
  932.   }
  933.   /* USER CODE BEGIN USART1_Init 2 */
  934.  
  935.   /* USER CODE END USART1_Init 2 */
  936. }
  937.  
  938. /**
  939.  * @brief USART2 Initialization Function
  940.  * @param None
  941.  * @retval None
  942.  */
  943. static void MX_USART2_UART_Init(void)
  944. {
  945.  
  946.   /* USER CODE BEGIN USART2_Init 0 */
  947.  
  948.   /* USER CODE END USART2_Init 0 */
  949.  
  950.   /* USER CODE BEGIN USART2_Init 1 */
  951.  
  952.   /* USER CODE END USART2_Init 1 */
  953.   huart2.Instance = USART2;
  954.   huart2.Init.BaudRate = 115200;
  955.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  956.   huart2.Init.StopBits = UART_STOPBITS_1;
  957.   huart2.Init.Parity = UART_PARITY_NONE;
  958.   huart2.Init.Mode = UART_MODE_TX_RX;
  959.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  960.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  961.   if (HAL_UART_Init(&huart2) != HAL_OK)
  962.   {
  963.     Error_Handler();
  964.   }
  965.   /* USER CODE BEGIN USART2_Init 2 */
  966.  
  967.   /* USER CODE END USART2_Init 2 */
  968. }
  969.  
  970. /**
  971.  * @brief USART3 Initialization Function
  972.  * @param None
  973.  * @retval None
  974.  */
  975. static void MX_USART3_UART_Init(void)
  976. {
  977.  
  978.   /* USER CODE BEGIN USART3_Init 0 */
  979.  
  980.   /* USER CODE END USART3_Init 0 */
  981.  
  982.   /* USER CODE BEGIN USART3_Init 1 */
  983.  
  984.   /* USER CODE END USART3_Init 1 */
  985.   huart3.Instance = USART3;
  986.   huart3.Init.BaudRate = 19200;
  987.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  988.   huart3.Init.StopBits = UART_STOPBITS_1;
  989.   huart3.Init.Parity = UART_PARITY_NONE;
  990.   huart3.Init.Mode = UART_MODE_TX_RX;
  991.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  992.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  993.   if (HAL_UART_Init(&huart3) != HAL_OK)
  994.   {
  995.     Error_Handler();
  996.   }
  997.   /* USER CODE BEGIN USART3_Init 2 */
  998.  
  999.   /* USER CODE END USART3_Init 2 */
  1000. }
  1001.  
  1002. /**
  1003.  * @brief GPIO Initialization Function
  1004.  * @param None
  1005.  * @retval None
  1006.  */
  1007. static void MX_GPIO_Init(void)
  1008. {
  1009.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  1010.  
  1011.   /* GPIO Ports Clock Enable */
  1012.   __HAL_RCC_GPIOH_CLK_ENABLE();
  1013.   __HAL_RCC_GPIOA_CLK_ENABLE();
  1014.   __HAL_RCC_GPIOC_CLK_ENABLE();
  1015.   __HAL_RCC_GPIOB_CLK_ENABLE();
  1016.  
  1017.   /*Configure GPIO pin Output Level */
  1018.   HAL_GPIO_WritePin(GPIOA, SPI_NSS1_Pin | BT_RESET_Pin, GPIO_PIN_SET);
  1019.  
  1020.   /*Configure GPIO pin Output Level */
  1021.   HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
  1022.  
  1023.   /*Configure GPIO pin Output Level */
  1024.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
  1025.  
  1026.   /*Configure GPIO pin Output Level */
  1027.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  1028.  
  1029.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  1030.   GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
  1031.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1032.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1033.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1034.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1035.  
  1036.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  1037.   GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
  1038.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1039.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1040.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1041.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1042.  
  1043.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  1044.   GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
  1045.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1046.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  1047.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1048.  
  1049.   /*Configure GPIO pin : IGNITION_Pin */
  1050.   GPIO_InitStruct.Pin = IGNITION_Pin;
  1051.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1052.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1053.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  1054.  
  1055.   /*Configure GPIO pins : BT_BUTTON_Pin BT_RESET_Pin */
  1056.   GPIO_InitStruct.Pin = BT_BUTTON_Pin | BT_RESET_Pin;
  1057.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  1058.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1059.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1060.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1061. }
  1062.  
  1063. /* USER CODE BEGIN 4 */
  1064.  
  1065. /* USER CODE END 4 */
  1066.  
  1067. /**
  1068.  * @brief  This function is executed in case of error occurrence.
  1069.  * @retval None
  1070.  */
  1071. void Error_Handler(void)
  1072. {
  1073.   /* USER CODE BEGIN Error_Handler_Debug */
  1074.   /* User can add his own implementation to report the HAL error return state */
  1075.  
  1076.   /* USER CODE END Error_Handler_Debug */
  1077. }
  1078.  
  1079. #ifdef USE_FULL_ASSERT
  1080. /**
  1081.  * @brief  Reports the name of the source file and the source line number
  1082.  *         where the assert_param error has occurred.
  1083.  * @param  file: pointer to the source file name
  1084.  * @param  line: assert_param error line source number
  1085.  * @retval None
  1086.  */
  1087. void assert_failed(uint8_t *file, uint32_t line)
  1088. {
  1089.   /* USER CODE BEGIN 6 */
  1090.   /* User can add his own implementation to report the file name and line number,
  1091.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1092.   /* USER CODE END 6 */
  1093. }
  1094. #endif /* USE_FULL_ASSERT */
  1095.