/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <math.h>
#include "libPLX/plx.h"
#include "libPLX/displayinfo.h"
#include "libPLX/commsLib.h"
#include "libSerial/serialUtils.H"
#include "libSmallPrintf/small_printf.h"
#include "libNMEA/nmea.h"
#include "switches.h"
#include <string.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim9;
UART_HandleTypeDef huart4;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
///@brief timeout when the ignition is switched off
uint32_t const IGNITION_OFF_TIMEOUT = 30000UL;
/// @brief 1000mS per logger period, print average per period
uint32_t const LOGGER_INTERVAL = 250UL;
/// @brief about 10 seconds after twiddle, save the dial position.
const int DialTimeout = 100;
/// @brief Unused Observation
uniqueObs_t const nullObs = {PLX_MAX_OBS,
PLX_MAX_INST};
/// @brief Null context
context_t const nullContext = {.knobPos = -1,
.dial_timer = 0,
.dial0 = -1,
.dial1 = -1,
.OldObservation = nullObs};
/// @brief Define a null item
info_t const nullInfo = {.Max = 0,
.Min = 0xFFF,
.sum = 0,
.count = 0,
.updated = 0,
.lastUpdated = 0,
.observation = nullObs};
context_t contexts[MAX_DISPLAYS];
/// @brief Data storage for readings
info_t Info[INFO_SIZE];
uint32_t Latch_Timer;
// location for GPS data
Location loc;
/// @brief Time when the logged data will be sent
uint32_t nextTickReload;
// data timeout
uint32_t dataTimeout = 0; //
// USART buffers
uint8_t uc1_tx_buffer[TX_USART_BUFF_SIZ];
uint8_t uc1_rx_buffer[RX_USART_BUFF_SIZ];
uint8_t uc2_tx_buffer[TX_USART_BUFF_SIZ];
uint8_t uc2_rx_buffer[RX_USART_BUFF_SIZ];
uint8_t uc3_tx_buffer[TX_USART_BUFF_SIZ];
uint8_t uc3_rx_buffer[RX_USART_BUFF_SIZ];
uint8_t uc4_tx_buffer[TX_USART_BUFF_SIZ];
uint8_t uc4_rx_buffer[RX_USART_BUFF_SIZ];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM9_Init(void);
static void MX_TIM2_Init(void);
static void MX_UART4_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
// the dial is the switch number we are using.
// suppress is the ItemIndex we wish to suppress on this display
int DisplayCurrent(int dial, int suppress)
{
return cc_display(dial, suppress);
}
/// \note HC-05 only accepts : 9600,19200,38400,57600,115200,230400,460800 baud
/// \brief Setup Bluetooth module
void initModule(struct usart_ctl *ctl, uint32_t baudRate)
{
char initBuf[60];
// switch to command mode
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET);
HAL_Delay(500);
// clear the button press
HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(500);
setBaud(ctl, 38400);
int initLen = small_sprintf(initBuf, "AT\nAT+UART?\nAT+UART=%ld,0,0\n", baudRate);
const char buf[] = "AT+RESET\n";
sendString(ctl, initBuf, initLen);
HAL_Delay(500);
initLen = small_sprintf(initBuf, buf);
sendString(ctl, initBuf, initLen);
TxWaitEmpty(ctl);
// switch back to normal comms at new baud rate
setBaud(ctl, baudRate);
HAL_Delay(100);
}
// workspace for RMC data read from GPS module.
volatile uint16_t rmc_length;
uint8_t rmc_callback(uint8_t *data, uint16_t length)
{
// send it back out
rmc_length = length;
sendString(&uc3, (const char *)data, length);
nextTickReload = HAL_GetTick() + LOGGER_INTERVAL;
return 0;
}
// check if bluetooth connected
uint8_t btConnected()
{
return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
}
/// @brief return true if this slot is unused
/// @param ptr pointer to the slot to
uint8_t isUnused(int index)
{
if (index < 0 || index > PLX_MAX_OBS)
return false;
return Info[index].observation.Instance == PLX_MAX_INST && Info[index].observation.Obs == PLX_MAX_OBS;
}
/// @brief Determine if an entry is currently valid
/// @param index the number of the array entry to display
/// @return true if the entry contains data which is fresh
uint8_t isValid(int index)
{
if (index < 0 || index > INFO_SIZE)
return false;
if (isUnused(index))
return false;
uint32_t age = HAL_GetTick() - Info[index].lastUpdated;
if (age > 300)
return false;
return true;
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
unsigned mapToIndex(unsigned instance, unsigned item)
{
return instance + item * PLX_MAX_INST_LIMIT;
}
void libPLXcallbackSendUserData(struct usart_ctl *instance)
{
(void)instance;
}
void libPLXcallbackRecievedData(PLX_SensorInfo *info)
{
// received some data , timeout is reset
dataTimeout = 0;
// search to see if the item already has a slot in the Info[] array
// match the observation and instance: if found, update entry
enum PLX_Observations observation = ConvPLX(info->AddrH,
info->AddrL);
char instance = info->Instance;
// validate the current item, discard out of range
if ((instance > PLX_MAX_INST_LIMIT) || (observation > PLX_MAX_OBS))
return;
unsigned currentSlot = mapToIndex(instance ,observation);
int16_t data = ConvPLX(info->ReadingH,
info->ReadingL);
Info[currentSlot].observation.Obs = observation;
Info[currentSlot].observation.Instance = instance;
Info[currentSlot].data = data;
if (data > Info[currentSlot].Max)
{
Info[currentSlot].Max = data;
}
if (data < Info[currentSlot].Min)
{
Info[currentSlot].Min = data;
}
// take an average
Info[currentSlot].sum += data;
Info[currentSlot].count++;
// note the last update time
Info[currentSlot].lastUpdated = HAL_GetTick();
Info[currentSlot].updated = 1; // it has been updated
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
__HAL_RCC_USART2_CLK_ENABLE(); // debug port
__HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
__HAL_RCC_UART4_CLK_ENABLE(); // NMEA0183 port
__HAL_RCC_TIM3_CLK_ENABLE();
__HAL_RCC_TIM9_CLK_ENABLE();
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
// Switch handler called on sysTick interrupt.
InitSwitches();
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM3_Init();
MX_TIM9_Init();
MX_TIM2_Init();
MX_UART4_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* turn on USART3 IRQ */
HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
/* turn on UART4 IRQ */
HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(UART4_IRQn);
/* setup the USART control blocks */
init_usart_ctl(&uc1, &huart1, uc1_tx_buffer,
uc1_rx_buffer,
TX_USART_BUFF_SIZ,
TX_USART_BUFF_SIZ);
init_usart_ctl(&uc2, &huart2, uc2_tx_buffer,
uc2_rx_buffer,
TX_USART_BUFF_SIZ,
TX_USART_BUFF_SIZ);
init_usart_ctl(&uc3, &huart3, uc3_tx_buffer,
uc3_rx_buffer,
TX_USART_BUFF_SIZ,
TX_USART_BUFF_SIZ);
init_usart_ctl(&uc4, &huart4, uc4_tx_buffer,
uc4_rx_buffer,
TX_USART_BUFF_SIZ,
TX_USART_BUFF_SIZ);
EnableSerialRxInterrupt(&uc1);
EnableSerialRxInterrupt(&uc2);
EnableSerialRxInterrupt(&uc3);
EnableSerialRxInterrupt(&uc4);
HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
initModule(&uc3, 38400);
// Initialise UART for 4800 baud NMEA
setBaud(&uc2, 4800);
// Initialuse UART4 for 4800 baud NMEA.
setBaud(&uc4, 4800);
cc_init();
for (int i = 0; i < MAX_DISPLAYS; ++i)
{
contexts[i] = nullContext; // set the knob position
}
/* reset the display timeout, latch on power from accessories */
Latch_Timer = IGNITION_OFF_TIMEOUT;
HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
/// @brief Time when the logged data will be sent
setRmcCallback(&rmc_callback);
// used in NMEA style logging
uint32_t nextTick = 0; ///< time to send next
nextTickReload = 0;
uint32_t offsetTicks = 0; ///< time to print as offset in mS for each loop
for (int i = 0; i < INFO_SIZE; ++i)
{
Info[i] = nullInfo;
}
uint32_t resetCounter = 0; // record time at which both reset buttons were first pressed.
resetPLX();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* while ignition is on, keep resetting power latch timer */
if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
{
Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
}
else
{
/* if the ignition has been off for a while, then turn off power */
if (HAL_GetTick() > Latch_Timer)
{
HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
GPIO_PIN_RESET);
}
}
// Handle the bluetooth pairing / reset function by pressing both buttons.
if ((push_pos[0] == 1) && (push_pos[1] == 1))
{
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_RESET);
if (resetCounter == 0)
resetCounter = HAL_GetTick();
}
else
{
HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_SET);
if (resetCounter != 0)
{
// Held down reset button for 10 seconds, clear NVRAM.
if ((HAL_GetTick() - resetCounter) > 10000)
{
for (int i = 0; i < MAX_DISPLAYS; i++)
{
contexts[i] = nullContext;
contexts[i].dial_timer = 1; // timeout immediately when decremented
}
erase_nvram();
}
resetCounter = 0;
}
}
// poll GPS Position/time on UART4
(void)updateLocation(&loc, &uc4);
if (loc.valid == 'V')
// if permitted, log data from RMC packet
if (btConnected())
{
// Timeout for data logging regularly
if (HAL_GetTick() > nextTick)
{
nextTick = nextTickReload;
nextTickReload += LOGGER_INTERVAL;
// Send items to BT if it is in connected state
// print timestamp as a $PLTIM record.
char linebuff[20];
strftime(linebuff
, sizeof(linebuff
), "%H%M%S", &loc.
tv);
char outbuff[100];
int cnt = small_sprintf(outbuff, "$PLTIM,%s.%03lu\n", linebuff, offsetTicks);
sendString(&uc3, outbuff, cnt);
offsetTicks += LOGGER_INTERVAL;
// increment timer
if (offsetTicks >= (1000))
{
offsetTicks -= 1000;
loc.tv.tm_sec++;
if (loc.tv.tm_sec >= 60)
{
loc.tv.tm_sec = 0;
loc.tv.tm_min++;
if (loc.tv.tm_min >= 60)
{
loc.tv.tm_hour++;
if (loc.tv.tm_hour >= 24)
loc.tv.tm_hour = 0;
}
}
}
for (int i = 0; i < INFO_SIZE; ++i)
{
if (!isValid(i))
continue;
// format output
// avoid division by zero for items with no sample data this iteration
if (Info[i].count == 0)
continue;
double average = (double)Info[i].sum / Info[i].count;
enum PLX_Observations Observation = Info[i].observation.Obs;
double cur_rdg = ConveriMFDRaw2Data((enum PLX_Observations)Observation, DisplayInfo[Observation].Units,
average);
int cnt;
int intPart;
// depending on digits after the decimal point,
// choose how to format data
switch (DisplayInfo[Observation].DP)
{
default:
case 0:
cnt = small_sprintf(outbuff,
"$PLLOG,%s,%d,%d",
DisplayInfo[Info[i].observation.Obs].name,
Info[i].observation.Instance,
(int)cur_rdg);
break;
case 1:
intPart = (int)(cur_rdg * 10);
cnt = small_sprintf(outbuff,
"$PLLOG,%s,%d,%d.%1d",
DisplayInfo[Info[i].observation.Obs].name,
Info[i].observation.Instance,
intPart
/ 10, abs(intPart
) % 10);
break;
case 2:
intPart = (int)(cur_rdg * 100);
cnt = small_sprintf(outbuff,
"$PLLOG,%s,%d,%d.%02d",
DisplayInfo[Info[i].observation.Obs].name,
Info[i].observation.Instance,
intPart
/ 100, abs(intPart
) % 100);
break;
}
Info[i].count = 0;
Info[i].sum = 0;
// NMEA style checksum
int ck;
int sum = 0;
for (ck = 1; ck < cnt; ck++)
sum += outbuff[ck];
cnt += small_sprintf(outbuff + cnt, "*%02X\n",
sum & 0xFF);
sendString(&uc3, outbuff, cnt);
}
}
}
// poll data into libPLX
libPLXpollData(&uc1);
// determine if we are getting any data from the interface
dataTimeout++;
if (btConnected() && (dataTimeout % 1000 == 0))
{
const char msg[] = "Timeout\r\n";
sendString(&uc3, msg, sizeof(msg));
}
if (dataTimeout > 60000)
{
// do turn off screen
}
// handle switch rotation
for (int i = 0; i < MAX_DIALS; ++i)
{
int delta = get_dial_diff(i);
int pos = contexts[i].knobPos;
if (pos < 0)
break; // dont process until we have read NVRAM for the first time .
int start = pos;
// move in positive direction
while (delta > 0)
{
// skip invalid items, dont count
if (pos < INFO_SIZE - 1)
pos++;
else
pos = 0;
if (isValid(pos))
delta--; // count a valid item
// wrap
if (pos == start)
break;
}
// move in negative direction
while (delta < 0)
{
// skip invalid items, dont count
if (pos > 0)
pos--;
else
pos = INFO_SIZE - 1;
if (isValid(pos))
delta++; // count a valid item
// wrap
if (pos == start)
break;
}
contexts[i].knobPos = pos;
if (pos != start)
contexts[i].dial_timer = DialTimeout;
}
int suppress = -1;
for (int i = 0; i < MAX_DISPLAYS; ++i)
{ // now to display the information
suppress = DisplayCurrent(i, suppress);
cc_check_nvram(i);
}
HAL_Delay(1);
/* USER CODE END WHILE */
}
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 15;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM9 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM9_Init(void)
{
/* USER CODE BEGIN TIM9_Init 0 */
/* USER CODE END TIM9_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM9_Init 1 */
/* USER CODE END TIM9_Init 1 */
htim9.Instance = TIM9;
htim9.Init.Prescaler = 0;
htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
htim9.Init.Period = 65535;
htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM9_Init 2 */
/* USER CODE END TIM9_Init 2 */
}
/**
* @brief UART4 Initialization Function
* @param None
* @retval None
*/
static void MX_UART4_Init(void)
{
/* USER CODE BEGIN UART4_Init 0 */
/* USER CODE END UART4_Init 0 */
/* USER CODE BEGIN UART4_Init 1 */
/* USER CODE END UART4_Init 1 */
huart4.Instance = UART4;
huart4.Init.BaudRate = 4800;
huart4.Init.WordLength = UART_WORDLENGTH_8B;
huart4.Init.StopBits = UART_STOPBITS_1;
huart4.Init.Parity = UART_PARITY_NONE;
huart4.Init.Mode = UART_MODE_TX_RX;
huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart4.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART4_Init 2 */
/* USER CODE END UART4_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 19200;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, SPI_NSS1_Pin | BT_BUTTON_Pin | BT_RESET_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : IGNITION_Pin */
GPIO_InitStruct.Pin = IGNITION_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BT_BUTTON_Pin */
GPIO_InitStruct.Pin = BT_BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BT_RESET_Pin */
GPIO_InitStruct.Pin = BT_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(BT_RESET_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */