Subversion Repositories DashDisplay

Rev

Rev 72 | Rev 74 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include <string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. ///@brief  timeout when the ignition is switched off
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. /// @brief 1000mS per logger period, print average per period
  72. #define LOGGER_INTERVAL 500UL
  73.  
  74. /// @brief  about 10 seconds after twiddle, save the dial position.
  75. const int DialTimeout = 100;
  76.  
  77. /// @brief Data storage for readings
  78. info_t Info[MAXRDG];
  79.  
  80. /// @brief Define a null item
  81. const info_t nullInfo = {.Max = 0,
  82.                          .Min = 0xFFF,
  83.                          .sum = 0,
  84.                          .count = 0,
  85.                          .updated = 0,
  86.                          .lastUpdated = 0,
  87.                          .observation = PLX_MAX_OBS,
  88.                          .instance = PLX_MAX_INST};
  89.  
  90. /// \brief storage for incoming data
  91. data_t Data;
  92.  
  93. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  94.  
  95. // location for GPS data
  96. Location loc;
  97.  
  98. /* USER CODE END PV */
  99.  
  100. /* Private function prototypes -----------------------------------------------*/
  101. void SystemClock_Config(void);
  102. static void MX_GPIO_Init(void);
  103. static void MX_SPI1_Init(void);
  104. static void MX_USART1_UART_Init(void);
  105. static void MX_USART2_UART_Init(void);
  106. static void MX_USART3_UART_Init(void);
  107. static void MX_TIM3_Init(void);
  108. static void MX_TIM9_Init(void);
  109. static void MX_TIM2_Init(void);
  110. static void MX_UART4_Init(void);
  111. static void MX_I2C1_Init(void);
  112. /* USER CODE BEGIN PFP */
  113.  
  114. // the dial is the switch number we are using.
  115. // suppress is the ItemIndex we wish to suppress on this display
  116. int DisplayCurrent(int dial, int suppress)
  117. {
  118.   return cc_display(dial, suppress);
  119. }
  120.  
  121. /// \note  HC-05 only accepts : 9600,19200,38400,57600,115200,230400,460800 baud
  122. /// \brief Setup Bluetooth module
  123. void initModule(usart_ctl *ctl, uint32_t baudRate)
  124. {
  125.   char initBuf[60];
  126.   // switch to command mode
  127.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_SET);
  128.   HAL_Delay(500);
  129.   // clear the button press
  130.   HAL_GPIO_WritePin(BT_RESET_GPIO_Port, BT_RESET_Pin, GPIO_PIN_RESET);
  131.   HAL_Delay(500);
  132.   setBaud(ctl, 38400);
  133.   int initLen = small_sprintf(initBuf, "AT\nAT+UART?\nAT+UART=%ld,0,0\n", baudRate);
  134.   const char buf[] = "AT+RESET\n";
  135.   sendString(ctl, initBuf, initLen);
  136.   HAL_Delay(500);
  137.   initLen = small_sprintf(initBuf, buf);
  138.   sendString(ctl, initBuf, initLen);
  139.  
  140.   TxWaitEmpty(ctl);
  141.  
  142.   // switch back to normal comms at new baud rate
  143.   setBaud(ctl, baudRate);
  144.   HAL_Delay(100);
  145. }
  146.  
  147. // workspace for RMC data read from GPS module.
  148. uint8_t rmc_buff[80];
  149. volatile uint16_t rmc_length;
  150.  
  151. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  152. {
  153.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  154.   memcpy(rmc_buff, data, length);
  155.   return 0;
  156. }
  157.  
  158. // check if bluetooth connected
  159. uint8_t btConnected()
  160. {
  161.   return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  162. }
  163.  
  164. /// @brief return true if this slot is unused
  165. /// @param ptr pointer to the slot to
  166. uint8_t isUnused(int index)
  167. {
  168.   if (index < 0 || index > MAXRDG)
  169.     return false;
  170.  
  171.   return Info[index].instance == PLX_MAX_INST && Info[index].observation == PLX_MAX_OBS;
  172. }
  173.  
  174. /// @brief Determine if an entry is currently valid
  175. /// @param index the number of the array entry to display
  176. /// @return true if the entry contains data which is fresh
  177. uint8_t isValid(int index)
  178. {
  179.   if (index < 0 || index > MAXRDG)
  180.     return false;
  181.   if (isUnused(index))
  182.     return false;
  183.  
  184.   uint32_t age = HAL_GetTick() - Info[index].lastUpdated;
  185.  
  186.   if (age > 300)
  187.     return false;
  188.  
  189.   return true;
  190. }
  191.  
  192. /* USER CODE END PFP */
  193.  
  194. /* Private user code ---------------------------------------------------------*/
  195. /* USER CODE BEGIN 0 */
  196.  
  197. /* USER CODE END 0 */
  198.  
  199. /**
  200.  * @brief  The application entry point.
  201.  * @retval int
  202.  */
  203. int main(void)
  204. {
  205.   /* USER CODE BEGIN 1 */
  206.   __HAL_RCC_SPI1_CLK_ENABLE();
  207.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  208.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  209.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  210.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  211.  
  212.   __HAL_RCC_TIM3_CLK_ENABLE();
  213.  
  214.   __HAL_RCC_TIM9_CLK_ENABLE();
  215.  
  216.   /* USER CODE END 1 */
  217.  
  218.   /* MCU Configuration--------------------------------------------------------*/
  219.  
  220.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  221.   HAL_Init();
  222.  
  223.   /* USER CODE BEGIN Init */
  224.  
  225.   /* USER CODE END Init */
  226.  
  227.   /* Configure the system clock */
  228.   SystemClock_Config();
  229.  
  230.   /* USER CODE BEGIN SysInit */
  231.   // Switch handler called on sysTick interrupt.
  232.   InitSwitches();
  233.  
  234.   /* USER CODE END SysInit */
  235.  
  236.   /* Initialize all configured peripherals */
  237.   MX_GPIO_Init();
  238.   MX_SPI1_Init();
  239.   MX_USART1_UART_Init();
  240.   MX_USART2_UART_Init();
  241.   MX_USART3_UART_Init();
  242.   MX_TIM3_Init();
  243.   MX_TIM9_Init();
  244.   MX_TIM2_Init();
  245.   MX_UART4_Init();
  246.   MX_I2C1_Init();
  247.   /* USER CODE BEGIN 2 */
  248.  
  249.   /* Turn on USART1 IRQ */
  250.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  251.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  252.  
  253.   /* Turn on USART2 IRQ  */
  254.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  255.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  256.  
  257.   /* turn on USART3 IRQ */
  258.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  259.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  260.  
  261.   /* turn on UART4 IRQ */
  262.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  263.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  264.  
  265.   /* setup the USART control blocks */
  266.   init_usart_ctl(&uc1, &huart1);
  267.   init_usart_ctl(&uc2, &huart2);
  268.   init_usart_ctl(&uc3, &huart3);
  269.   init_usart_ctl(&uc4, &huart4);
  270.  
  271.   EnableSerialRxInterrupt(&uc1);
  272.   EnableSerialRxInterrupt(&uc2);
  273.   EnableSerialRxInterrupt(&uc3);
  274.   EnableSerialRxInterrupt(&uc4);
  275.  
  276.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  277.  
  278.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  279.  
  280.   initModule(&uc3, 38400);
  281.  
  282.   // Initialise UART for 4800 baud NMEA
  283.   setBaud(&uc2, 4800);
  284.  
  285.   // Initialuse UART4 for 4800 baud NMEA.
  286.   setBaud(&uc4, 4800);
  287.  
  288.   cc_init();
  289.  
  290.   int i;
  291.   for (i = 0; i < 2; i++)
  292.   {
  293.     contexts[i].knobPos = -1; // set the knob position
  294.   }
  295.  
  296.   /* reset the display timeout, latch on power from accessories */
  297.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  298.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  299.  
  300.   setRmcCallback(&rmc_callback);
  301.  
  302.   // data timeout
  303.   uint32_t timeout = 0; //
  304.  
  305.   // used in NMEA style logging
  306.   uint32_t nextTick = 0;    ///< time to send next
  307.   uint32_t offsetTicks = 0; ///< time to print as offset in mS for each loop
  308.   //
  309.   uint8_t log = 0;
  310.   // PLX decoder protocols
  311.   char PLXPacket = 0;
  312.  
  313.   for (i = 0; i < MAXRDG; i++)
  314.   {
  315.     Info[i] = nullInfo;
  316.   }
  317.  
  318.   int PLXPtr = 0;
  319.  
  320.   uint32_t resetCounter = 0; // record time at which both reset buttons were first pressed.
  321.  
  322.   /* USER CODE END 2 */
  323.  
  324.   /* Infinite loop */
  325.   /* USER CODE BEGIN WHILE */
  326.   while (1)
  327.   {
  328.  
  329.     /* while ignition is on, keep resetting power latch timer */
  330.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  331.     {
  332.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  333.     }
  334.     else
  335.     {
  336.       /* if the ignition has been off for a while, then turn off power */
  337.       if (HAL_GetTick() > Latch_Timer)
  338.       {
  339.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  340.                           GPIO_PIN_RESET);
  341.       }
  342.     }
  343.  
  344.     // Handle the bluetooth pairing / reset function by pressing both buttons.
  345.     if ((push_pos[0] == 1) && (push_pos[1] == 1))
  346.     {
  347.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  348.                         GPIO_PIN_RESET);
  349.       if (resetCounter == 0)
  350.         resetCounter = HAL_GetTick();
  351.     }
  352.     else
  353.     {
  354.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  355.                         GPIO_PIN_SET);
  356.  
  357.       if (resetCounter != 0)
  358.       {
  359.         // Held down reset button for 10 seconds, clear NVRAM.
  360.         if ((HAL_GetTick() - resetCounter) > 10000)
  361.         {
  362.           for (i = 0; i < 2; i++)
  363.           {
  364.             contexts[i].knobPos = -1;   // set the knob position
  365.             contexts[i].dial_timer = 1; // timeout immediately when decremented
  366.           }
  367.           erase_nvram();
  368.         }
  369.         resetCounter = 0;
  370.       }
  371.     }
  372.  
  373.     // poll GPS Position/time on UART4
  374.     (void)updateLocation(&loc, &uc4);
  375.     if (loc.valid == 'V')
  376.       memset(loc.time, '-', 6);
  377.  
  378.     // if permitted, log data from RMC packet
  379.     if (btConnected())
  380.     {
  381.       // Any RMC data, send it, reset the logger timeout
  382.       if (rmc_length)
  383.       {
  384.         sendString(&uc3, (const char *)rmc_buff, rmc_length);
  385.         rmc_length = 0;
  386.         offsetTicks = 0;
  387.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  388.         log = 1;
  389.       }
  390.  
  391.       // Timeout for data logging regularly
  392.       if (HAL_GetTick() > nextTick)
  393.       {
  394.         offsetTicks += LOGGER_INTERVAL;
  395.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  396.         if (offsetTicks < (1000))
  397.           log = 1;
  398.       }
  399.  
  400.       if (log)
  401.       {
  402.         log = 0;
  403.         // Send items  to BT if it is in connected state
  404.  
  405.         char linebuff[20];
  406.         strftime(linebuff, sizeof(linebuff), "%H%M%S", &loc.tv);
  407.         for (int i = 0; i < MAXRDG; ++i)
  408.         {
  409.           if (!isValid(i))
  410.             continue;
  411.           char outbuff[100];
  412.  
  413.           int cnt = small_sprintf(outbuff,
  414.                                   "$PLLOG,%s.%03lu,%d,%d,%ld",
  415.                                   linebuff,
  416.                                   offsetTicks,
  417.                                   Info[i].observation,
  418.                                   Info[i].instance,
  419.                                   Info[i].count == 0 ? 0 : Info[i].sum / Info[i].count);
  420.  
  421.           // NMEA style checksum
  422.           int ck;
  423.           int sum = 0;
  424.           for (ck = 1; ck < cnt; ck++)
  425.             sum += outbuff[ck];
  426.           cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  427.                                sum & 0xFF);
  428.           sendString(&uc3, outbuff, cnt);
  429.         }
  430.       }
  431.     }
  432.  
  433.     // determine if we are getting any data from the interface
  434.     uint16_t cc = SerialCharsReceived(&uc1);
  435.     int chr;
  436.     if (cc == 0)
  437.     {
  438.       timeout++;
  439.       if (btConnected() && (timeout % 1000 == 0))
  440.       {
  441.         const char msg[] = "Timeout\r\n";
  442.         sendString(&uc3, msg, sizeof(msg));
  443.       }
  444.  
  445.       if (timeout > 60000)
  446.       {
  447.  
  448.         // do turn off screen
  449.       }
  450.       // wait for a bit if nothing came in.
  451.       HAL_Delay(10);
  452.     }
  453.  
  454.     /// process the observation list
  455.     for (chr = 0; chr < cc; chr++)
  456.     {
  457.       char c = GetCharSerial(&uc1);
  458.  
  459.       if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  460.       {
  461.         PLXPtr = 0; // reset the pointer
  462.         PLXPacket = 1;
  463.         timeout = 0; // Reset the timer
  464.         continue;
  465.       }
  466.       if (c == PLX_Stop)
  467.       {
  468.         if (PLXPacket)
  469.         {
  470.           // we can now decode the selected parameter
  471.           int PLXNewItems = PLXPtr / sizeof(PLX_SensorInfo); // total items in last reading batch
  472.  
  473.           // process items
  474.           for (i = 0; i < PLXNewItems; i++)
  475.           {
  476.             // search to see if the item already has a slot in the Info[] array
  477.             // match the observation and instance: if found, update entry
  478.             enum PLX_Observations observation = ConvPLX(Data.Sensor[i].AddrH,
  479.                                                         Data.Sensor[i].AddrL);
  480.  
  481.             char instance = Data.Sensor[i].Instance;
  482.  
  483.             // validate the current item, discard out of range
  484.  
  485.             if ((instance > PLX_MAX_INST) || (observation > PLX_MAX_OBS))
  486.               continue;
  487.  
  488.             // search for the item in the list
  489.             int j;
  490.             for (j = 0; j < MAXRDG; ++j)
  491.             {
  492.               if ((Info[j].observation == observation) && (Info[j].instance == instance))
  493.                 break;
  494.             }
  495.             // fallen off the end of the list of existing items without a match, so j points at next new item
  496.             //
  497.             // Find an unused slot
  498.  
  499.             if (j == MAXRDG)
  500.             {
  501.               int k;
  502.               {
  503.                 for (k = 0; k < MAXRDG; ++k)
  504.                   if (!isValid(k))
  505.                   {
  506.                     j = k; // found a spare slot
  507.                     break;
  508.                   }
  509.               }
  510.               if (k == MAXRDG)
  511.                 continue; // abandon this iteration
  512.             }
  513.  
  514.             // give up if we are going to fall off the end of the array
  515.             if (j > MAXRDG)
  516.               break;
  517.  
  518.             Info[j].observation = observation;
  519.  
  520.             Info[j].instance = instance;
  521.             Info[j].data = ConvPLX(Data.Sensor[j].ReadingH,
  522.                                    Data.Sensor[j].ReadingL);
  523.             if (Info[j].data > Info[j].Max)
  524.             {
  525.               Info[j].Max = Info[j].data;
  526.             }
  527.             if (Info[j].data < Info[j].Min)
  528.             {
  529.               Info[j].Min = Info[j].data;
  530.             }
  531.             // take an average
  532.             Info[j].sum += Info[j].data;
  533.             Info[j].count++;
  534.             // note the last update time
  535.             Info[j].lastUpdated = HAL_GetTick();
  536.             Info[j].updated = 1; // it has been updated
  537.           }
  538.           PLXPtr = 0;
  539.           PLXPacket = 0;
  540.  
  541.           // scan through and invalidate all old items
  542.           for (int i = 0; i < MAXRDG; ++i)
  543.           {
  544.             if (!isValid(i))
  545.               Info[i] = nullInfo;
  546.           }
  547.  
  548.           break; // something to process
  549.         }
  550.       }
  551.       if (c > PLX_Stop) // illegal char, restart reading
  552.       {
  553.         PLXPacket = 0;
  554.         PLXPtr = 0;
  555.         continue;
  556.       }
  557.       if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  558.       {
  559.         Data.Bytes[PLXPtr++] = c;
  560.       }
  561.     }
  562.  
  563.     // handle switch rotation
  564.     for (i = 0; i < MAX_DIALS; ++i)
  565.     {
  566.       int delta = get_dial_diff(i);
  567.       int pos = contexts[i].knobPos;
  568.       if (pos < 0)
  569.         break; // dont process until we have read NVRAM for the first time .
  570.       int start = pos;
  571.       // move in positive direction
  572.       while (delta > 0)
  573.       {
  574.         // skip invalid items, dont count
  575.         if (pos < MAXRDG - 1)
  576.           pos++;
  577.         else
  578.           pos = 0;
  579.  
  580.         if (isValid(pos))
  581.           delta--; // count a valid item
  582.  
  583.         // wrap
  584.         if (pos == start)
  585.           break;
  586.       }
  587.  
  588.       // move in negative direction
  589.       while (delta < 0)
  590.  
  591.       {
  592.         // skip invalid items, dont count
  593.         if (pos > 0)
  594.           pos--;
  595.         else
  596.           pos = MAXRDG - 1;
  597.  
  598.         if (isValid(pos))
  599.           delta++; // count a valid item
  600.  
  601.         // wrap
  602.         if (pos == start)
  603.           break;
  604.       }
  605.  
  606.       contexts[i].knobPos = pos;
  607.       if (pos != start)
  608.         contexts[i].dial_timer = DialTimeout;
  609.     }
  610.  
  611.     int suppress = -1;
  612.     for (i = 0; i < MAX_DISPLAYS; i++)
  613.     { // now to display the information
  614.       suppress = DisplayCurrent(i, suppress);
  615.  
  616.       cc_check_nvram(i);
  617.     }
  618.     /* USER CODE END WHILE */
  619.   }
  620.   /* USER CODE BEGIN 3 */
  621.  
  622.   /* USER CODE END 3 */
  623. }
  624.  
  625. /**
  626.  * @brief System Clock Configuration
  627.  * @retval None
  628.  */
  629. void SystemClock_Config(void)
  630. {
  631.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  632.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  633.  
  634.   /** Configure the main internal regulator output voltage
  635.    */
  636.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  637.  
  638.   /** Initializes the RCC Oscillators according to the specified parameters
  639.    * in the RCC_OscInitTypeDef structure.
  640.    */
  641.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  642.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  643.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  644.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  645.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  646.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  647.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  648.   {
  649.     Error_Handler();
  650.   }
  651.  
  652.   /** Initializes the CPU, AHB and APB buses clocks
  653.    */
  654.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  655.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  656.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  657.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  658.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  659.  
  660.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  661.   {
  662.     Error_Handler();
  663.   }
  664. }
  665.  
  666. /**
  667.  * @brief I2C1 Initialization Function
  668.  * @param None
  669.  * @retval None
  670.  */
  671. static void MX_I2C1_Init(void)
  672. {
  673.  
  674.   /* USER CODE BEGIN I2C1_Init 0 */
  675.  
  676.   /* USER CODE END I2C1_Init 0 */
  677.  
  678.   /* USER CODE BEGIN I2C1_Init 1 */
  679.  
  680.   /* USER CODE END I2C1_Init 1 */
  681.   hi2c1.Instance = I2C1;
  682.   hi2c1.Init.ClockSpeed = 100000;
  683.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  684.   hi2c1.Init.OwnAddress1 = 0;
  685.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  686.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  687.   hi2c1.Init.OwnAddress2 = 0;
  688.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  689.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  690.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  691.   {
  692.     Error_Handler();
  693.   }
  694.   /* USER CODE BEGIN I2C1_Init 2 */
  695.  
  696.   /* USER CODE END I2C1_Init 2 */
  697. }
  698.  
  699. /**
  700.  * @brief SPI1 Initialization Function
  701.  * @param None
  702.  * @retval None
  703.  */
  704. static void MX_SPI1_Init(void)
  705. {
  706.  
  707.   /* USER CODE BEGIN SPI1_Init 0 */
  708.  
  709.   /* USER CODE END SPI1_Init 0 */
  710.  
  711.   /* USER CODE BEGIN SPI1_Init 1 */
  712.  
  713.   /* USER CODE END SPI1_Init 1 */
  714.   /* SPI1 parameter configuration*/
  715.   hspi1.Instance = SPI1;
  716.   hspi1.Init.Mode = SPI_MODE_MASTER;
  717.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  718.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  719.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  720.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  721.   hspi1.Init.NSS = SPI_NSS_SOFT;
  722.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  723.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  724.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  725.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  726.   hspi1.Init.CRCPolynomial = 10;
  727.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  728.   {
  729.     Error_Handler();
  730.   }
  731.   /* USER CODE BEGIN SPI1_Init 2 */
  732.  
  733.   /* USER CODE END SPI1_Init 2 */
  734. }
  735.  
  736. /**
  737.  * @brief TIM2 Initialization Function
  738.  * @param None
  739.  * @retval None
  740.  */
  741. static void MX_TIM2_Init(void)
  742. {
  743.  
  744.   /* USER CODE BEGIN TIM2_Init 0 */
  745.  
  746.   /* USER CODE END TIM2_Init 0 */
  747.  
  748.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  749.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  750.  
  751.   /* USER CODE BEGIN TIM2_Init 1 */
  752.  
  753.   /* USER CODE END TIM2_Init 1 */
  754.   htim2.Instance = TIM2;
  755.   htim2.Init.Prescaler = 0;
  756.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  757.   htim2.Init.Period = 65535;
  758.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  759.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  760.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  761.   {
  762.     Error_Handler();
  763.   }
  764.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  765.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  766.   {
  767.     Error_Handler();
  768.   }
  769.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  770.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  771.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  772.   {
  773.     Error_Handler();
  774.   }
  775.   /* USER CODE BEGIN TIM2_Init 2 */
  776.  
  777.   /* USER CODE END TIM2_Init 2 */
  778. }
  779.  
  780. /**
  781.  * @brief TIM3 Initialization Function
  782.  * @param None
  783.  * @retval None
  784.  */
  785. static void MX_TIM3_Init(void)
  786. {
  787.  
  788.   /* USER CODE BEGIN TIM3_Init 0 */
  789.  
  790.   /* USER CODE END TIM3_Init 0 */
  791.  
  792.   TIM_Encoder_InitTypeDef sConfig = {0};
  793.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  794.  
  795.   /* USER CODE BEGIN TIM3_Init 1 */
  796.  
  797.   /* USER CODE END TIM3_Init 1 */
  798.   htim3.Instance = TIM3;
  799.   htim3.Init.Prescaler = 0;
  800.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  801.   htim3.Init.Period = 65535;
  802.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  803.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  804.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  805.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  806.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  807.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  808.   sConfig.IC1Filter = 15;
  809.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  810.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  811.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  812.   sConfig.IC2Filter = 15;
  813.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  814.   {
  815.     Error_Handler();
  816.   }
  817.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  818.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  819.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  820.   {
  821.     Error_Handler();
  822.   }
  823.   /* USER CODE BEGIN TIM3_Init 2 */
  824.  
  825.   /* USER CODE END TIM3_Init 2 */
  826. }
  827.  
  828. /**
  829.  * @brief TIM9 Initialization Function
  830.  * @param None
  831.  * @retval None
  832.  */
  833. static void MX_TIM9_Init(void)
  834. {
  835.  
  836.   /* USER CODE BEGIN TIM9_Init 0 */
  837.  
  838.   /* USER CODE END TIM9_Init 0 */
  839.  
  840.   TIM_Encoder_InitTypeDef sConfig = {0};
  841.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  842.  
  843.   /* USER CODE BEGIN TIM9_Init 1 */
  844.  
  845.   /* USER CODE END TIM9_Init 1 */
  846.   htim9.Instance = TIM9;
  847.   htim9.Init.Prescaler = 0;
  848.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  849.   htim9.Init.Period = 65535;
  850.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  851.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  852.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  853.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  854.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  855.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  856.   sConfig.IC1Filter = 15;
  857.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  858.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  859.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  860.   sConfig.IC2Filter = 0;
  861.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  862.   {
  863.     Error_Handler();
  864.   }
  865.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  866.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  867.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  868.   {
  869.     Error_Handler();
  870.   }
  871.   /* USER CODE BEGIN TIM9_Init 2 */
  872.  
  873.   /* USER CODE END TIM9_Init 2 */
  874. }
  875.  
  876. /**
  877.  * @brief UART4 Initialization Function
  878.  * @param None
  879.  * @retval None
  880.  */
  881. static void MX_UART4_Init(void)
  882. {
  883.  
  884.   /* USER CODE BEGIN UART4_Init 0 */
  885.  
  886.   /* USER CODE END UART4_Init 0 */
  887.  
  888.   /* USER CODE BEGIN UART4_Init 1 */
  889.  
  890.   /* USER CODE END UART4_Init 1 */
  891.   huart4.Instance = UART4;
  892.   huart4.Init.BaudRate = 4800;
  893.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  894.   huart4.Init.StopBits = UART_STOPBITS_1;
  895.   huart4.Init.Parity = UART_PARITY_NONE;
  896.   huart4.Init.Mode = UART_MODE_TX_RX;
  897.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  898.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  899.   if (HAL_UART_Init(&huart4) != HAL_OK)
  900.   {
  901.     Error_Handler();
  902.   }
  903.   /* USER CODE BEGIN UART4_Init 2 */
  904.  
  905.   /* USER CODE END UART4_Init 2 */
  906. }
  907.  
  908. /**
  909.  * @brief USART1 Initialization Function
  910.  * @param None
  911.  * @retval None
  912.  */
  913. static void MX_USART1_UART_Init(void)
  914. {
  915.  
  916.   /* USER CODE BEGIN USART1_Init 0 */
  917.  
  918.   /* USER CODE END USART1_Init 0 */
  919.  
  920.   /* USER CODE BEGIN USART1_Init 1 */
  921.  
  922.   /* USER CODE END USART1_Init 1 */
  923.   huart1.Instance = USART1;
  924.   huart1.Init.BaudRate = 19200;
  925.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  926.   huart1.Init.StopBits = UART_STOPBITS_1;
  927.   huart1.Init.Parity = UART_PARITY_NONE;
  928.   huart1.Init.Mode = UART_MODE_TX_RX;
  929.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  930.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  931.   if (HAL_UART_Init(&huart1) != HAL_OK)
  932.   {
  933.     Error_Handler();
  934.   }
  935.   /* USER CODE BEGIN USART1_Init 2 */
  936.  
  937.   /* USER CODE END USART1_Init 2 */
  938. }
  939.  
  940. /**
  941.  * @brief USART2 Initialization Function
  942.  * @param None
  943.  * @retval None
  944.  */
  945. static void MX_USART2_UART_Init(void)
  946. {
  947.  
  948.   /* USER CODE BEGIN USART2_Init 0 */
  949.  
  950.   /* USER CODE END USART2_Init 0 */
  951.  
  952.   /* USER CODE BEGIN USART2_Init 1 */
  953.  
  954.   /* USER CODE END USART2_Init 1 */
  955.   huart2.Instance = USART2;
  956.   huart2.Init.BaudRate = 115200;
  957.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  958.   huart2.Init.StopBits = UART_STOPBITS_1;
  959.   huart2.Init.Parity = UART_PARITY_NONE;
  960.   huart2.Init.Mode = UART_MODE_TX_RX;
  961.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  962.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  963.   if (HAL_UART_Init(&huart2) != HAL_OK)
  964.   {
  965.     Error_Handler();
  966.   }
  967.   /* USER CODE BEGIN USART2_Init 2 */
  968.  
  969.   /* USER CODE END USART2_Init 2 */
  970. }
  971.  
  972. /**
  973.  * @brief USART3 Initialization Function
  974.  * @param None
  975.  * @retval None
  976.  */
  977. static void MX_USART3_UART_Init(void)
  978. {
  979.  
  980.   /* USER CODE BEGIN USART3_Init 0 */
  981.  
  982.   /* USER CODE END USART3_Init 0 */
  983.  
  984.   /* USER CODE BEGIN USART3_Init 1 */
  985.  
  986.   /* USER CODE END USART3_Init 1 */
  987.   huart3.Instance = USART3;
  988.   huart3.Init.BaudRate = 19200;
  989.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  990.   huart3.Init.StopBits = UART_STOPBITS_1;
  991.   huart3.Init.Parity = UART_PARITY_NONE;
  992.   huart3.Init.Mode = UART_MODE_TX_RX;
  993.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  994.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  995.   if (HAL_UART_Init(&huart3) != HAL_OK)
  996.   {
  997.     Error_Handler();
  998.   }
  999.   /* USER CODE BEGIN USART3_Init 2 */
  1000.  
  1001.   /* USER CODE END USART3_Init 2 */
  1002. }
  1003.  
  1004. /**
  1005.  * @brief GPIO Initialization Function
  1006.  * @param None
  1007.  * @retval None
  1008.  */
  1009. static void MX_GPIO_Init(void)
  1010. {
  1011.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  1012.  
  1013.   /* GPIO Ports Clock Enable */
  1014.   __HAL_RCC_GPIOH_CLK_ENABLE();
  1015.   __HAL_RCC_GPIOA_CLK_ENABLE();
  1016.   __HAL_RCC_GPIOC_CLK_ENABLE();
  1017.   __HAL_RCC_GPIOB_CLK_ENABLE();
  1018.  
  1019.   /*Configure GPIO pin Output Level */
  1020.   HAL_GPIO_WritePin(GPIOA, SPI_NSS1_Pin | BT_BUTTON_Pin | BT_RESET_Pin, GPIO_PIN_SET);
  1021.  
  1022.   /*Configure GPIO pin Output Level */
  1023.   HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_RESET);
  1024.  
  1025.   /*Configure GPIO pin Output Level */
  1026.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
  1027.  
  1028.   /*Configure GPIO pin Output Level */
  1029.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  1030.  
  1031.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  1032.   GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
  1033.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1034.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1035.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1036.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  1037.  
  1038.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  1039.   GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
  1040.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1041.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1042.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1043.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  1044.  
  1045.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  1046.   GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
  1047.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1048.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  1049.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  1050.  
  1051.   /*Configure GPIO pin : IGNITION_Pin */
  1052.   GPIO_InitStruct.Pin = IGNITION_Pin;
  1053.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  1054.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1055.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  1056.  
  1057.   /*Configure GPIO pin : BT_BUTTON_Pin */
  1058.   GPIO_InitStruct.Pin = BT_BUTTON_Pin;
  1059.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  1060.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  1061.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  1062.   HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
  1063.  
  1064.   /*Configure GPIO pin : BT_RESET_Pin */
  1065.   GPIO_InitStruct.Pin = BT_RESET_Pin;
  1066.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  1067.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  1068.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  1069.   HAL_GPIO_Init(BT_RESET_GPIO_Port, &GPIO_InitStruct);
  1070. }
  1071.  
  1072. /* USER CODE BEGIN 4 */
  1073.  
  1074. /* USER CODE END 4 */
  1075.  
  1076. /**
  1077.  * @brief  This function is executed in case of error occurrence.
  1078.  * @retval None
  1079.  */
  1080. void Error_Handler(void)
  1081. {
  1082.   /* USER CODE BEGIN Error_Handler_Debug */
  1083.   /* User can add his own implementation to report the HAL error return state */
  1084.  
  1085.   /* USER CODE END Error_Handler_Debug */
  1086. }
  1087.  
  1088. #ifdef USE_FULL_ASSERT
  1089. /**
  1090.  * @brief  Reports the name of the source file and the source line number
  1091.  *         where the assert_param error has occurred.
  1092.  * @param  file: pointer to the source file name
  1093.  * @param  line: assert_param error line source number
  1094.  * @retval None
  1095.  */
  1096. void assert_failed(uint8_t *file, uint32_t line)
  1097. {
  1098.   /* USER CODE BEGIN 6 */
  1099.   /* User can add his own implementation to report the file name and line number,
  1100.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  1101.   /* USER CODE END 6 */
  1102. }
  1103. #endif /* USE_FULL_ASSERT */
  1104.