/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "libPLX/plx.h"
#include "libSerial/serial.H"
#include "libSmallPrintf/small_printf.h"
#include "switches.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim9;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
context_t contexts[MAX_DISPLAYS];
/* timeout when the ignition is switched off */
#define IGNITION_OFF_TIMEOUT 30000UL
#define LOGGER_INTERVAL 500UL
const int DialTimeout = 50; // about 20 seconds after twiddle, save the dial position.
uint16_t dial_nvram[MAX_DISPLAYS] __attribute__((section(".NVRAM_Data")));
data_t Data;
int Max[MAXRDG];
int Min[MAXRDG];
int PLXItems;
uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void
SystemClock_Config (void);
static void
MX_GPIO_Init (void);
static void
MX_SPI1_Init (void);
static void
MX_USART1_UART_Init (void);
static void
MX_USART2_UART_Init (void);
static void
MX_USART3_UART_Init (void);
static void
MX_TIM3_Init (void);
static void
MX_TIM9_Init (void);
static void
MX_TIM2_Init (void);
/* USER CODE BEGIN PFP */
// the dial is the switch number we are using.
// suppress is the ItemIndex we wish to suppress on this display
int
DisplayCurrent (int dial, int suppress)
{
if (PLXItems == 0)
return -1;
int itemIndex = dial_pos[dial] % PLXItems;
return cc_display (dial, itemIndex, suppress);
}
void
setBaud (usart_ctl *ctl, uint32_t baud)
{
ctl->handle->Init.BaudRate = baud;
__disable_irq ();
HAL_UART_Init (ctl->handle);
__enable_irq ();
}
void
sendString (usart_ctl *ctl, char *string, int length)
{
int i;
for (i = 0; i < length; i++)
PutCharSerial (ctl, string[i]);
}
// this code doesnt work so it leaves speed as 9600.
void
initModule (usart_ctl *ctl, uint32_t baudRate)
{
char initBuf[30];
// switch to command mode
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_RESET);
HAL_Delay (500);
int initLen = small_sprintf (initBuf, "AT+UART=%d,1,2\n", baudRate);
setBaud (ctl, 38400);
sendString (ctl, initBuf, initLen);
TxWaitEmpty (ctl);
// switch back to normal comms at new baud rate
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
setBaud (ctl, baudRate);
HAL_Delay (100);
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int
main (void)
{
/* USER CODE BEGIN 1 */
__HAL_RCC_SPI1_CLK_ENABLE()
;
__HAL_RCC_USART1_CLK_ENABLE()
; // PLX main port
__HAL_RCC_USART2_CLK_ENABLE()
; // debug port
__HAL_RCC_USART3_CLK_ENABLE ()
; // Bluetooth port
__HAL_RCC_TIM3_CLK_ENABLE();
__HAL_RCC_TIM9_CLK_ENABLE();
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init ();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config ();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init ();
MX_SPI1_Init ();
MX_USART1_UART_Init ();
MX_USART2_UART_Init ();
MX_USART3_UART_Init ();
MX_TIM3_Init ();
MX_TIM9_Init ();
MX_TIM2_Init ();
/* USER CODE BEGIN 2 */
/* Turn on USART1 IRQ */
HAL_NVIC_SetPriority (USART1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ (USART1_IRQn);
/* Turn on USART2 IRQ */
HAL_NVIC_SetPriority (USART2_IRQn, 4, 0);
HAL_NVIC_EnableIRQ (USART2_IRQn);
/* turn on USART3 IRQ */
HAL_NVIC_SetPriority (USART3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ (USART3_IRQn);
/* setup the USART control blocks */
init_usart_ctl (&uc1, &huart1);
init_usart_ctl (&uc2, &huart2);
init_usart_ctl (&uc3, &huart3);
EnableSerialRxInterrupt (&uc1);
EnableSerialRxInterrupt (&uc2);
EnableSerialRxInterrupt (&uc3);
HAL_TIM_Encoder_Start (&htim3, TIM_CHANNEL_ALL);
HAL_TIM_Encoder_Start (&htim9, TIM_CHANNEL_ALL);
// Switch handler called on sysTick interrupt.
InitSwitches ();
initModule(&uc3,9600);
cc_init ();
int i;
for (i = 0; i < 2; i++)
{
dial_pos[i] = dial_nvram[i];
}
/* reset the display timeout, latch on power from accessories */
Latch_Timer = IGNITION_OFF_TIMEOUT;
HAL_GPIO_WritePin (POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* while ignition is on, keep resetting power latch timer */
if (HAL_GPIO_ReadPin (IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
{
Latch_Timer = HAL_GetTick () + IGNITION_OFF_TIMEOUT;
}
else
{
/* if the ignition has been off for a while, then turn off power */
if (HAL_GetTick () > Latch_Timer)
{
HAL_GPIO_WritePin (POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
GPIO_PIN_RESET);
}
}
uint32_t timeout = 0; //
uint32_t nextTick = HAL_GetTick () + LOGGER_INTERVAL;
// PLX decoder protocols
char PLXPacket = 0;
for (i = 0; i < MAXRDG; i++)
{
Max[i] = 0;
Min[i] = 0xFFF; // 12 bit max value
}
int PLXPtr = 0;
while (1)
{
// Handle the bluetooth pairing / reset function by pressing both buttons.
if ((push_pos[0] == 1) && (push_pos[1] == 1))
{
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin (BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
GPIO_PIN_SET);
}
uint16_t cc = SerialCharsReceived (&uc1);
int chr;
if (cc == 0)
{
timeout++;
if (timeout % 1000 == 0)
{
const char msg[] = "Timeout\r\n";
sendString (&uc3, msg, sizeof(msg));
}
if (timeout > 60000)
{
// do turn off screen
}
}
for (chr = 0; chr < cc; chr++)
{
char c = GetCharSerial (&uc1);
if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
{
PLXPtr = 0; // reset the pointer
PLXPacket = 1;
timeout = 0; // Reset the timer
if (HAL_GetTick () > nextTick)
{
nextTick = HAL_GetTick () + LOGGER_INTERVAL;
}
else
}
else if (c == PLX_Stop)
{
if (PLXPacket)
{
// we can now decode the selected parameter
PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
// saturate the rotary switch position
int DataVal;
// process min/max
for (i = 0; i < PLXItems; i++)
{
{
// Send item to BT
uint16_t addr = ConvPLX (Data.Sensor[i].AddrH,
Data.Sensor[i].AddrL);
uint8_t inst = Data.Sensor[i].Instance;
uint16_t reading = ConvPLX (
Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
char outbuff[100];
int cnt = small_sprintf (outbuff, "$LOG,%d,%d,%d",
addr, inst, reading);
//checksum
int ck;
int sum = 0;
for (ck = 1; ck < cnt; ck++)
sum += outbuff[ck];
cnt += small_sprintf (outbuff + cnt, "*%02X\n",
sum & 0xFF);
sendString (&uc3, outbuff, cnt);
}
DataVal = ConvPLX (Data.Sensor[i].ReadingH,
Data.Sensor[i].ReadingL);
if (DataVal > Max[i])
{
Max[i] = DataVal;
}
if (DataVal < Min[i])
{
Min[i] = DataVal;
}
}
// now to display the information
int suppress = DisplayCurrent (0, -1);
DisplayCurrent (1, suppress);
}
PLXPtr = 0;
PLXPacket = 0;
}
else if (c > PLX_Stop) // illegal char, restart reading
{
PLXPacket = 0;
PLXPtr = 0;
}
else if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
{
Data.Bytes[PLXPtr++] = c;
}
}
HAL_Delay (1);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void
SystemClock_Config (void)
{
RCC_OscInitTypeDef RCC_OscInitStruct =
{ 0 };
RCC_ClkInitTypeDef RCC_ClkInitStruct =
{ 0 };
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
if (HAL_RCC_OscConfig (&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler ();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig (&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler ();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void
MX_SPI1_Init (void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_1LINE;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init (&hspi1) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void
MX_TIM2_Init (void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig =
{ 0 };
TIM_MasterConfigTypeDef sMasterConfig =
{ 0 };
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init (&htim2) != HAL_OK)
{
Error_Handler ();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource (&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler ();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization (&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void
MX_TIM3_Init (void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig =
{ 0 };
TIM_MasterConfigTypeDef sMasterConfig =
{ 0 };
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 15;
if (HAL_TIM_Encoder_Init (&htim3, &sConfig) != HAL_OK)
{
Error_Handler ();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization (&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM9 Initialization Function
* @param None
* @retval None
*/
static void
MX_TIM9_Init (void)
{
/* USER CODE BEGIN TIM9_Init 0 */
/* USER CODE END TIM9_Init 0 */
TIM_Encoder_InitTypeDef sConfig =
{ 0 };
TIM_MasterConfigTypeDef sMasterConfig =
{ 0 };
/* USER CODE BEGIN TIM9_Init 1 */
/* USER CODE END TIM9_Init 1 */
htim9.Instance = TIM9;
htim9.Init.Prescaler = 0;
htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
htim9.Init.Period = 65535;
htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init (&htim9, &sConfig) != HAL_OK)
{
Error_Handler ();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization (&htim9, &sMasterConfig) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN TIM9_Init 2 */
/* USER CODE END TIM9_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void
MX_USART1_UART_Init (void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 19200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart1) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void
MX_USART2_UART_Init (void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart2) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void
MX_USART3_UART_Init (void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init (&huart3) != HAL_OK)
{
Error_Handler ();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void
MX_GPIO_Init (void)
{
GPIO_InitTypeDef GPIO_InitStruct =
{ 0 };
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (GPIOA, SPI_CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin (SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin
| USB_PWR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : SW1_PUSH_Pin SW2_PUSH_Pin */
GPIO_InitStruct.Pin = SW1_PUSH_Pin | SW2_PUSH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init (GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : IGNITION_Pin */
GPIO_InitStruct.Pin = IGNITION_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init (IGNITION_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BT_BUTTON_Pin */
GPIO_InitStruct.Pin = BT_BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void
Error_Handler (void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/