Subversion Repositories DashDisplay

Rev

Rev 65 | Rev 67 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include <string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. /* timeout when the ignition is switched off */
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. // 500mS per logger period.
  72. #define LOGGER_INTERVAL 500UL
  73.  
  74. const int DialTimeout = 10000; // about 10 seconds after twiddle, save the dial position.
  75.  
  76. nvram_info_t dial_nvram[MAX_DISPLAYS] __attribute__((section(".NVRAM_Data")));
  77.  
  78. info_t Info[MAXRDG];
  79.  
  80. /// \brief storage for incoming data
  81. data_t Data;
  82.  
  83. int PLXItems;
  84.  
  85. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  86.  
  87. // location for GPS data
  88. Location loc;
  89.  
  90. /* USER CODE END PV */
  91.  
  92. /* Private function prototypes -----------------------------------------------*/
  93. void SystemClock_Config(void);
  94. static void MX_GPIO_Init(void);
  95. static void MX_SPI1_Init(void);
  96. static void MX_USART1_UART_Init(void);
  97. static void MX_USART2_UART_Init(void);
  98. static void MX_USART3_UART_Init(void);
  99. static void MX_TIM3_Init(void);
  100. static void MX_TIM9_Init(void);
  101. static void MX_TIM2_Init(void);
  102. static void MX_UART4_Init(void);
  103. static void MX_I2C1_Init(void);
  104. /* USER CODE BEGIN PFP */
  105.  
  106. // the dial is the switch number we are using.
  107. // suppress is the ItemIndex we wish to suppress on this display
  108. int DisplayCurrent(int dial, int suppress)
  109. {
  110.   if (contexts[dial].knobPos < 0)
  111.     return -1;
  112.   return cc_display(dial, suppress);
  113. }
  114.  
  115. /// \note this code doesnt work so it leaves speed as 9600.
  116. /// \brief Setup Bluetooth module
  117. void initModule(usart_ctl *ctl, uint32_t baudRate)
  118. {
  119.   char initBuf[30];
  120.   // switch to command mode
  121.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_RESET);
  122.   HAL_Delay(500);
  123.   int initLen = small_sprintf(initBuf, "AT+UART=%lu,1,2\n", baudRate);
  124.   setBaud(ctl, 38400);
  125.   sendString(ctl, initBuf, initLen);
  126.   TxWaitEmpty(ctl);
  127.   // switch back to normal comms at new baud rate
  128.  
  129.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
  130.   setBaud(ctl, baudRate);
  131.   HAL_Delay(100);
  132. }
  133.  
  134. // workspace for RMC data read from GPS module.
  135. uint8_t rmc_buff[80];
  136. volatile uint16_t rmc_length;
  137.  
  138. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  139. {
  140.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  141.   memcpy(rmc_buff, data, length);
  142.   return 0;
  143. }
  144.  
  145. // check if bluetooth connected
  146. uint8_t btConnected()
  147. {
  148.   return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  149. }
  150.  
  151. /* USER CODE END PFP */
  152.  
  153. /* Private user code ---------------------------------------------------------*/
  154. /* USER CODE BEGIN 0 */
  155.  
  156. /* USER CODE END 0 */
  157.  
  158. /**
  159.  * @brief  The application entry point.
  160.  * @retval int
  161.  */
  162. int main(void)
  163. {
  164.   /* USER CODE BEGIN 1 */
  165.   __HAL_RCC_SPI1_CLK_ENABLE();
  166.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  167.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  168.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  169.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  170.  
  171.   __HAL_RCC_TIM3_CLK_ENABLE();
  172.  
  173.   __HAL_RCC_TIM9_CLK_ENABLE();
  174.  
  175.   /* USER CODE END 1 */
  176.  
  177.   /* MCU Configuration--------------------------------------------------------*/
  178.  
  179.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  180.   HAL_Init();
  181.  
  182.   /* USER CODE BEGIN Init */
  183.  
  184.   /* USER CODE END Init */
  185.  
  186.   /* Configure the system clock */
  187.   SystemClock_Config();
  188.  
  189.   /* USER CODE BEGIN SysInit */
  190.   // Switch handler called on sysTick interrupt.
  191.   InitSwitches();
  192.  
  193.   /* USER CODE END SysInit */
  194.  
  195.   /* Initialize all configured peripherals */
  196.   MX_GPIO_Init();
  197.   MX_SPI1_Init();
  198.   MX_USART1_UART_Init();
  199.   MX_USART2_UART_Init();
  200.   MX_USART3_UART_Init();
  201.   MX_TIM3_Init();
  202.   MX_TIM9_Init();
  203.   MX_TIM2_Init();
  204.   MX_UART4_Init();
  205.   MX_I2C1_Init();
  206.   /* USER CODE BEGIN 2 */
  207.  
  208.   /* Turn on USART1 IRQ */
  209.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  210.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  211.  
  212.   /* Turn on USART2 IRQ  */
  213.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  214.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  215.  
  216.   /* turn on USART3 IRQ */
  217.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  218.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  219.  
  220.   /* turn on UART4 IRQ */
  221.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  222.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  223.  
  224.   /* setup the USART control blocks */
  225.   init_usart_ctl(&uc1, &huart1);
  226.   init_usart_ctl(&uc2, &huart2);
  227.   init_usart_ctl(&uc3, &huart3);
  228.   init_usart_ctl(&uc4, &huart4);
  229.  
  230.   EnableSerialRxInterrupt(&uc1);
  231.   EnableSerialRxInterrupt(&uc2);
  232.   EnableSerialRxInterrupt(&uc3);
  233.   EnableSerialRxInterrupt(&uc4);
  234.  
  235.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  236.  
  237.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  238.  
  239.   initModule(&uc3, 9600);
  240.  
  241.   // Initialise UART for 4800 baud NMEA
  242.   setBaud(&uc2, 4800);
  243.  
  244.   // Initialuse UART4 for 4800 baud NMEA.
  245.   setBaud(&uc4, 4800);
  246.  
  247.   cc_init();
  248.  
  249.   int i;
  250.   for (i = 0; i < 2; i++)
  251.   {
  252.     dial_pos[i] = 0;            // default to items 0 and 1
  253.     contexts[i].knobPos = -1;   // set the knob position
  254.     contexts[i].dial_timer = 1; // timeout immediately
  255.   }
  256.  
  257.   /* reset the display timeout, latch on power from accessories */
  258.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  259.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  260.  
  261.   setRmcCallback(&rmc_callback);
  262.  
  263.   // data timeout
  264.   uint32_t timeout = 0; //
  265.  
  266.   uint32_t nextTick = 0;
  267.   uint8_t log = 0;
  268.   // PLX decoder protocols
  269.   char PLXPacket = 0;
  270.   for (i = 0; i < MAXRDG; i++)
  271.   {
  272.     Info[i].Max = 0;
  273.     Info[i].Min = 0xFFF;
  274.     Info[i].sum = 0;  
  275.     Info[i].count = 0;
  276.     Info[i].updated = 0;
  277.     Info[i].lastUpdated = 0;
  278.   }
  279.  
  280.   int PLXPtr = 0;
  281.   int logCount = 0;
  282.  
  283.   /* USER CODE END 2 */
  284.  
  285.   /* Infinite loop */
  286.   /* USER CODE BEGIN WHILE */
  287.   while (1)
  288.   {
  289.  
  290.     /* while ignition is on, keep resetting power latch timer */
  291.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  292.     {
  293.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  294.     }
  295.     else
  296.     {
  297.       /* if the ignition has been off for a while, then turn off power */
  298.       if (HAL_GetTick() > Latch_Timer)
  299.       {
  300.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  301.                           GPIO_PIN_RESET);
  302.       }
  303.     }
  304.  
  305.     // Handle the bluetooth pairing / reset function by pressing both buttons.
  306.     if ((push_pos[0] == 1) && (push_pos[1] == 1))
  307.     {
  308.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  309.                         GPIO_PIN_RESET);
  310.     }
  311.     else
  312.     {
  313.       HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  314.                         GPIO_PIN_SET);
  315.     }
  316.  
  317.     // poll GPS Position/time on UART4
  318.     (void)updateLocation(&loc, &uc4);
  319.     if (loc.valid == 'V')
  320.       memset(loc.time, '-', 6);
  321.  
  322.     // if permitted, log data from RMC packet
  323.     if (btConnected())
  324.     {
  325.       // Any RMC data, send it, reset the logger timeout
  326.       if (rmc_length)
  327.       {
  328.         sendString(&uc3, (const char *)rmc_buff, rmc_length);
  329.         rmc_length = 0;
  330.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  331.         log = 1;      // send out associated data over Bluetooth because triggered by recieving RMC
  332.         logCount = 0; // first sample set this second numbered 0
  333.       }
  334.  
  335.       // Timeout for data logging regularly
  336.       if (HAL_GetTick() > nextTick)
  337.       {
  338.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  339.         logCount++;
  340.         if (logCount > (1000 / LOGGER_INTERVAL))
  341.           logCount = 0;
  342.         log = 1;
  343.       }
  344.  
  345.       if (log)
  346.       {
  347.         log = 0;
  348.         // Send items  to BT if it is in connected state
  349.         for (int i = 0; i < PLXItems; ++i)
  350.         {
  351.           char outbuff[100];
  352.  
  353.           int cnt = small_sprintf(outbuff,
  354.                                   "$PLLOG,%d,%d,%d,%ld",
  355.                                   logCount,
  356.                                   Info[i].observation,
  357.                                   Info[i].instance,
  358.                                   Info[i].count == 0 ? 0 : Info[i].sum / Info[i].count);
  359.  
  360.           // NMEA style checksum
  361.           int ck;
  362.           int sum = 0;
  363.           for (ck = 1; ck < cnt; ck++)
  364.             sum += outbuff[ck];
  365.           cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  366.                                sum & 0xFF);
  367.           sendString(&uc3, outbuff, cnt);
  368.         }
  369.       }
  370.     }
  371.  
  372.     // determine if we are getting any data from the interface
  373.     uint16_t cc = SerialCharsReceived(&uc1);
  374.     int chr;
  375.     if (cc == 0)
  376.     {
  377.       timeout++;
  378.       if (btConnected() && (timeout % 1000 == 0))
  379.       {
  380.         const char msg[] = "Timeout\r\n";
  381.         sendString(&uc3, msg, sizeof(msg));
  382.       }
  383.  
  384.       if (timeout > 60000)
  385.       {
  386.  
  387.         // do turn off screen
  388.       }
  389.       // wait for a bit if nothing came in.
  390.       HAL_Delay(10);
  391.     }
  392.  
  393.     /// process the observation list
  394.     for (chr = 0; chr < cc; chr++)
  395.     {
  396.       char c = GetCharSerial(&uc1);
  397.  
  398.       if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  399.       {
  400.         PLXPtr = 0; // reset the pointer
  401.         PLXPacket = 1;
  402.         timeout = 0; // Reset the timer
  403.       }
  404.       else if (c == PLX_Stop)
  405.       {
  406.         if (PLXPacket)
  407.         {
  408.           // we can now decode the selected parameter
  409.           PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
  410.           // saturate the rotary switch position
  411.  
  412.           // process min/max
  413.           for (i = 0; i < PLXItems; i++)
  414.           {
  415.             Info[i].observation = ConvPLX(Data.Sensor[i].AddrH,
  416.                                           Data.Sensor[i].AddrL);
  417.  
  418.             Info[i].instance = Data.Sensor[i].Instance;
  419.             Info[i].data = ConvPLX(Data.Sensor[i].ReadingH,
  420.                                    Data.Sensor[i].ReadingL);
  421.             if (Info[i].data > Info[i].Max)
  422.             {
  423.               Info[i].Max = Info[i].data;
  424.             }
  425.             if (Info[i].data < Info[i].Min)
  426.             {
  427.               Info[i].Min = Info[i].data;
  428.             }
  429.             // take an average
  430.             Info[i].sum += Info[i].data;
  431.             Info[i].count++;
  432.             // note the last update time
  433.             Info[i].lastUpdated = HAL_GetTick();
  434.             Info[i].updated = 1; // it has been updated
  435.           }
  436.           PLXPtr = 0;
  437.           PLXPacket = 0;
  438.         }
  439.         else if (c > PLX_Stop) // illegal char, restart reading
  440.         {
  441.           PLXPacket = 0;
  442.           PLXPtr = 0;
  443.         }
  444.         else if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  445.         {
  446.           Data.Bytes[PLXPtr++] = c;
  447.         }
  448.       }
  449.  
  450.       int suppress = -1;
  451.       for (i = 0; i < MAX_DISPLAYS; i++)
  452.       { // now to display the information
  453.         DisplayCurrent(i, suppress);
  454.  
  455.         if (dial_pos[i] < 0)
  456.           dial_pos[i] = PLXItems - 1;
  457.         if (dial_pos[i] >= PLXItems)
  458.           dial_pos[i] = 0;
  459.  
  460.         int prevPos = contexts[i].knobPos;
  461.         if (contexts[i].knobPos >= 0)
  462.           contexts[i].knobPos = dial_pos[i];
  463.         // if the dial position was changed then reset timer
  464.         if (prevPos != contexts[i].knobPos)
  465.           contexts[i].dial_timer = DialTimeout;
  466.  
  467.         cc_check_nvram(i);
  468.         if (contexts[i].knobPos >= 0)
  469.           dial_pos[i] = contexts[i].knobPos;
  470.       }
  471.     }
  472.   }
  473.   /* USER CODE END WHILE */
  474.  
  475.   /* USER CODE BEGIN 3 */
  476.  
  477.   /* USER CODE END 3 */
  478. }
  479. /**
  480.  * @brief System Clock Configuration
  481.  * @retval None
  482.  */
  483. void SystemClock_Config(void)
  484. {
  485.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  486.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  487.  
  488.   /** Configure the main internal regulator output voltage
  489.    */
  490.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  491.  
  492.   /** Initializes the RCC Oscillators according to the specified parameters
  493.    * in the RCC_OscInitTypeDef structure.
  494.    */
  495.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  496.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  497.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  498.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  499.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  500.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  501.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  502.   {
  503.     Error_Handler();
  504.   }
  505.  
  506.   /** Initializes the CPU, AHB and APB buses clocks
  507.    */
  508.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  509.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  510.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  511.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  512.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  513.  
  514.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  515.   {
  516.     Error_Handler();
  517.   }
  518. }
  519.  
  520. /**
  521.  * @brief I2C1 Initialization Function
  522.  * @param None
  523.  * @retval None
  524.  */
  525. static void MX_I2C1_Init(void)
  526. {
  527.  
  528.   /* USER CODE BEGIN I2C1_Init 0 */
  529.  
  530.   /* USER CODE END I2C1_Init 0 */
  531.  
  532.   /* USER CODE BEGIN I2C1_Init 1 */
  533.  
  534.   /* USER CODE END I2C1_Init 1 */
  535.   hi2c1.Instance = I2C1;
  536.   hi2c1.Init.ClockSpeed = 100000;
  537.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  538.   hi2c1.Init.OwnAddress1 = 0;
  539.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  540.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  541.   hi2c1.Init.OwnAddress2 = 0;
  542.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  543.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  544.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  545.   {
  546.     Error_Handler();
  547.   }
  548.   /* USER CODE BEGIN I2C1_Init 2 */
  549.  
  550.   /* USER CODE END I2C1_Init 2 */
  551. }
  552.  
  553. /**
  554.  * @brief SPI1 Initialization Function
  555.  * @param None
  556.  * @retval None
  557.  */
  558. static void MX_SPI1_Init(void)
  559. {
  560.  
  561.   /* USER CODE BEGIN SPI1_Init 0 */
  562.  
  563.   /* USER CODE END SPI1_Init 0 */
  564.  
  565.   /* USER CODE BEGIN SPI1_Init 1 */
  566.  
  567.   /* USER CODE END SPI1_Init 1 */
  568.   /* SPI1 parameter configuration*/
  569.   hspi1.Instance = SPI1;
  570.   hspi1.Init.Mode = SPI_MODE_MASTER;
  571.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  572.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  573.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  574.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  575.   hspi1.Init.NSS = SPI_NSS_SOFT;
  576.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  577.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  578.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  579.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  580.   hspi1.Init.CRCPolynomial = 10;
  581.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  582.   {
  583.     Error_Handler();
  584.   }
  585.   /* USER CODE BEGIN SPI1_Init 2 */
  586.  
  587.   /* USER CODE END SPI1_Init 2 */
  588. }
  589.  
  590. /**
  591.  * @brief TIM2 Initialization Function
  592.  * @param None
  593.  * @retval None
  594.  */
  595. static void MX_TIM2_Init(void)
  596. {
  597.  
  598.   /* USER CODE BEGIN TIM2_Init 0 */
  599.  
  600.   /* USER CODE END TIM2_Init 0 */
  601.  
  602.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  603.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  604.  
  605.   /* USER CODE BEGIN TIM2_Init 1 */
  606.  
  607.   /* USER CODE END TIM2_Init 1 */
  608.   htim2.Instance = TIM2;
  609.   htim2.Init.Prescaler = 0;
  610.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  611.   htim2.Init.Period = 65535;
  612.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  613.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  614.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  615.   {
  616.     Error_Handler();
  617.   }
  618.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  619.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  620.   {
  621.     Error_Handler();
  622.   }
  623.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  624.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  625.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  626.   {
  627.     Error_Handler();
  628.   }
  629.   /* USER CODE BEGIN TIM2_Init 2 */
  630.  
  631.   /* USER CODE END TIM2_Init 2 */
  632. }
  633.  
  634. /**
  635.  * @brief TIM3 Initialization Function
  636.  * @param None
  637.  * @retval None
  638.  */
  639. static void MX_TIM3_Init(void)
  640. {
  641.  
  642.   /* USER CODE BEGIN TIM3_Init 0 */
  643.  
  644.   /* USER CODE END TIM3_Init 0 */
  645.  
  646.   TIM_Encoder_InitTypeDef sConfig = {0};
  647.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  648.  
  649.   /* USER CODE BEGIN TIM3_Init 1 */
  650.  
  651.   /* USER CODE END TIM3_Init 1 */
  652.   htim3.Instance = TIM3;
  653.   htim3.Init.Prescaler = 0;
  654.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  655.   htim3.Init.Period = 65535;
  656.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  657.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  658.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  659.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  660.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  661.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  662.   sConfig.IC1Filter = 15;
  663.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  664.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  665.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  666.   sConfig.IC2Filter = 15;
  667.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  668.   {
  669.     Error_Handler();
  670.   }
  671.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  672.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  673.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  674.   {
  675.     Error_Handler();
  676.   }
  677.   /* USER CODE BEGIN TIM3_Init 2 */
  678.  
  679.   /* USER CODE END TIM3_Init 2 */
  680. }
  681.  
  682. /**
  683.  * @brief TIM9 Initialization Function
  684.  * @param None
  685.  * @retval None
  686.  */
  687. static void MX_TIM9_Init(void)
  688. {
  689.  
  690.   /* USER CODE BEGIN TIM9_Init 0 */
  691.  
  692.   /* USER CODE END TIM9_Init 0 */
  693.  
  694.   TIM_Encoder_InitTypeDef sConfig = {0};
  695.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  696.  
  697.   /* USER CODE BEGIN TIM9_Init 1 */
  698.  
  699.   /* USER CODE END TIM9_Init 1 */
  700.   htim9.Instance = TIM9;
  701.   htim9.Init.Prescaler = 0;
  702.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  703.   htim9.Init.Period = 65535;
  704.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  705.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  706.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  707.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  708.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  709.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  710.   sConfig.IC1Filter = 15;
  711.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  712.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  713.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  714.   sConfig.IC2Filter = 0;
  715.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  716.   {
  717.     Error_Handler();
  718.   }
  719.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  720.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  721.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  722.   {
  723.     Error_Handler();
  724.   }
  725.   /* USER CODE BEGIN TIM9_Init 2 */
  726.  
  727.   /* USER CODE END TIM9_Init 2 */
  728. }
  729.  
  730. /**
  731.  * @brief UART4 Initialization Function
  732.  * @param None
  733.  * @retval None
  734.  */
  735. static void MX_UART4_Init(void)
  736. {
  737.  
  738.   /* USER CODE BEGIN UART4_Init 0 */
  739.  
  740.   /* USER CODE END UART4_Init 0 */
  741.  
  742.   /* USER CODE BEGIN UART4_Init 1 */
  743.  
  744.   /* USER CODE END UART4_Init 1 */
  745.   huart4.Instance = UART4;
  746.   huart4.Init.BaudRate = 4800;
  747.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  748.   huart4.Init.StopBits = UART_STOPBITS_1;
  749.   huart4.Init.Parity = UART_PARITY_NONE;
  750.   huart4.Init.Mode = UART_MODE_TX_RX;
  751.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  752.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  753.   if (HAL_UART_Init(&huart4) != HAL_OK)
  754.   {
  755.     Error_Handler();
  756.   }
  757.   /* USER CODE BEGIN UART4_Init 2 */
  758.  
  759.   /* USER CODE END UART4_Init 2 */
  760. }
  761.  
  762. /**
  763.  * @brief USART1 Initialization Function
  764.  * @param None
  765.  * @retval None
  766.  */
  767. static void MX_USART1_UART_Init(void)
  768. {
  769.  
  770.   /* USER CODE BEGIN USART1_Init 0 */
  771.  
  772.   /* USER CODE END USART1_Init 0 */
  773.  
  774.   /* USER CODE BEGIN USART1_Init 1 */
  775.  
  776.   /* USER CODE END USART1_Init 1 */
  777.   huart1.Instance = USART1;
  778.   huart1.Init.BaudRate = 19200;
  779.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  780.   huart1.Init.StopBits = UART_STOPBITS_1;
  781.   huart1.Init.Parity = UART_PARITY_NONE;
  782.   huart1.Init.Mode = UART_MODE_TX_RX;
  783.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  784.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  785.   if (HAL_UART_Init(&huart1) != HAL_OK)
  786.   {
  787.     Error_Handler();
  788.   }
  789.   /* USER CODE BEGIN USART1_Init 2 */
  790.  
  791.   /* USER CODE END USART1_Init 2 */
  792. }
  793.  
  794. /**
  795.  * @brief USART2 Initialization Function
  796.  * @param None
  797.  * @retval None
  798.  */
  799. static void MX_USART2_UART_Init(void)
  800. {
  801.  
  802.   /* USER CODE BEGIN USART2_Init 0 */
  803.  
  804.   /* USER CODE END USART2_Init 0 */
  805.  
  806.   /* USER CODE BEGIN USART2_Init 1 */
  807.  
  808.   /* USER CODE END USART2_Init 1 */
  809.   huart2.Instance = USART2;
  810.   huart2.Init.BaudRate = 115200;
  811.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  812.   huart2.Init.StopBits = UART_STOPBITS_1;
  813.   huart2.Init.Parity = UART_PARITY_NONE;
  814.   huart2.Init.Mode = UART_MODE_TX_RX;
  815.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  816.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  817.   if (HAL_UART_Init(&huart2) != HAL_OK)
  818.   {
  819.     Error_Handler();
  820.   }
  821.   /* USER CODE BEGIN USART2_Init 2 */
  822.  
  823.   /* USER CODE END USART2_Init 2 */
  824. }
  825.  
  826. /**
  827.  * @brief USART3 Initialization Function
  828.  * @param None
  829.  * @retval None
  830.  */
  831. static void MX_USART3_UART_Init(void)
  832. {
  833.  
  834.   /* USER CODE BEGIN USART3_Init 0 */
  835.  
  836.   /* USER CODE END USART3_Init 0 */
  837.  
  838.   /* USER CODE BEGIN USART3_Init 1 */
  839.  
  840.   /* USER CODE END USART3_Init 1 */
  841.   huart3.Instance = USART3;
  842.   huart3.Init.BaudRate = 19200;
  843.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  844.   huart3.Init.StopBits = UART_STOPBITS_1;
  845.   huart3.Init.Parity = UART_PARITY_NONE;
  846.   huart3.Init.Mode = UART_MODE_TX_RX;
  847.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  848.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  849.   if (HAL_UART_Init(&huart3) != HAL_OK)
  850.   {
  851.     Error_Handler();
  852.   }
  853.   /* USER CODE BEGIN USART3_Init 2 */
  854.  
  855.   /* USER CODE END USART3_Init 2 */
  856. }
  857.  
  858. /**
  859.  * @brief GPIO Initialization Function
  860.  * @param None
  861.  * @retval None
  862.  */
  863. static void MX_GPIO_Init(void)
  864. {
  865.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  866.  
  867.   /* GPIO Ports Clock Enable */
  868.   __HAL_RCC_GPIOH_CLK_ENABLE();
  869.   __HAL_RCC_GPIOA_CLK_ENABLE();
  870.   __HAL_RCC_GPIOC_CLK_ENABLE();
  871.   __HAL_RCC_GPIOB_CLK_ENABLE();
  872.  
  873.   /*Configure GPIO pin Output Level */
  874.   HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
  875.  
  876.   /*Configure GPIO pin Output Level */
  877.   HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
  878.  
  879.   /*Configure GPIO pin Output Level */
  880.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
  881.  
  882.   /*Configure GPIO pin Output Level */
  883.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  884.  
  885.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  886.   GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
  887.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  888.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  889.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  890.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  891.  
  892.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  893.   GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
  894.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  895.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  896.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  897.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  898.  
  899.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  900.   GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
  901.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  902.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  903.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  904.  
  905.   /*Configure GPIO pin : IGNITION_Pin */
  906.   GPIO_InitStruct.Pin = IGNITION_Pin;
  907.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  908.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  909.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  910.  
  911.   /*Configure GPIO pin : BT_BUTTON_Pin */
  912.   GPIO_InitStruct.Pin = BT_BUTTON_Pin;
  913.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  914.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  915.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  916.   HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
  917. }
  918.  
  919. /* USER CODE BEGIN 4 */
  920.  
  921. /* USER CODE END 4 */
  922.  
  923. /**
  924.  * @brief  This function is executed in case of error occurrence.
  925.  * @retval None
  926.  */
  927. void Error_Handler(void)
  928. {
  929.   /* USER CODE BEGIN Error_Handler_Debug */
  930.   /* User can add his own implementation to report the HAL error return state */
  931.  
  932.   /* USER CODE END Error_Handler_Debug */
  933. }
  934.  
  935. #ifdef USE_FULL_ASSERT
  936. /**
  937.  * @brief  Reports the name of the source file and the source line number
  938.  *         where the assert_param error has occurred.
  939.  * @param  file: pointer to the source file name
  940.  * @param  line: assert_param error line source number
  941.  * @retval None
  942.  */
  943. void assert_failed(uint8_t *file, uint32_t line)
  944. {
  945.   /* USER CODE BEGIN 6 */
  946.   /* User can add his own implementation to report the file name and line number,
  947.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  948.   /* USER CODE END 6 */
  949. }
  950. #endif /* USE_FULL_ASSERT */
  951.