Subversion Repositories DashDisplay

Rev

Rev 63 | Rev 66 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* USER CODE BEGIN Header */
  2. /**
  3.  ******************************************************************************
  4.  * @file           : main.c
  5.  * @brief          : Main program body
  6.  ******************************************************************************
  7.  * @attention
  8.  *
  9.  * <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
  10.  * All rights reserved.</center></h2>
  11.  *
  12.  * This software component is licensed by ST under BSD 3-Clause license,
  13.  * the "License"; You may not use this file except in compliance with the
  14.  * License. You may obtain a copy of the License at:
  15.  *                        opensource.org/licenses/BSD-3-Clause
  16.  *
  17.  ******************************************************************************
  18.  */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "main.h"
  22.  
  23. /* Private includes ----------------------------------------------------------*/
  24. /* USER CODE BEGIN Includes */
  25.  
  26. #include "libPLX/plx.h"
  27. #include "libSerial/serial.H"
  28. #include "libSmallPrintf/small_printf.h"
  29. #include "libNMEA/nmea.h"
  30. #include "switches.h"
  31. #include <string.h>
  32.  
  33. /* USER CODE END Includes */
  34.  
  35. /* Private typedef -----------------------------------------------------------*/
  36. /* USER CODE BEGIN PTD */
  37.  
  38. /* USER CODE END PTD */
  39.  
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. /* USER CODE END PD */
  43.  
  44. /* Private macro -------------------------------------------------------------*/
  45. /* USER CODE BEGIN PM */
  46.  
  47. /* USER CODE END PM */
  48.  
  49. /* Private variables ---------------------------------------------------------*/
  50. I2C_HandleTypeDef hi2c1;
  51.  
  52. SPI_HandleTypeDef hspi1;
  53.  
  54. TIM_HandleTypeDef htim2;
  55. TIM_HandleTypeDef htim3;
  56. TIM_HandleTypeDef htim9;
  57.  
  58. UART_HandleTypeDef huart4;
  59. UART_HandleTypeDef huart1;
  60. UART_HandleTypeDef huart2;
  61. UART_HandleTypeDef huart3;
  62.  
  63. /* USER CODE BEGIN PV */
  64. /* Private variables ---------------------------------------------------------*/
  65.  
  66. context_t contexts[MAX_DISPLAYS];
  67.  
  68. /* timeout when the ignition is switched off */
  69. #define IGNITION_OFF_TIMEOUT 30000UL
  70.  
  71. // 500mS per logger period.
  72. #define LOGGER_INTERVAL 500UL
  73.  
  74. const int DialTimeout = 10000; // about 10 seconds after twiddle, save the dial position.
  75.  
  76. nvram_info_t dial_nvram[MAX_DISPLAYS] __attribute__((section(".NVRAM_Data")));
  77.  
  78. info_t Info[MAXRDG];
  79.  
  80. /// \brief storage for incoming data
  81. data_t Data;
  82.  
  83. int PLXItems;
  84.  
  85. uint32_t Latch_Timer = IGNITION_OFF_TIMEOUT;
  86.  
  87. // location for GPS data
  88. Location loc;
  89.  
  90. /* USER CODE END PV */
  91.  
  92. /* Private function prototypes -----------------------------------------------*/
  93. void SystemClock_Config(void);
  94. static void MX_GPIO_Init(void);
  95. static void MX_SPI1_Init(void);
  96. static void MX_USART1_UART_Init(void);
  97. static void MX_USART2_UART_Init(void);
  98. static void MX_USART3_UART_Init(void);
  99. static void MX_TIM3_Init(void);
  100. static void MX_TIM9_Init(void);
  101. static void MX_TIM2_Init(void);
  102. static void MX_UART4_Init(void);
  103. static void MX_I2C1_Init(void);
  104. /* USER CODE BEGIN PFP */
  105.  
  106. // the dial is the switch number we are using.
  107. // suppress is the ItemIndex we wish to suppress on this display
  108. int DisplayCurrent(int dial, int suppress)
  109. {
  110.   if (contexts[dial].knobPos < 0)
  111.     return -1;
  112.   return cc_display(dial, suppress);
  113. }
  114.  
  115. /// \note this code doesnt work so it leaves speed as 9600.
  116. /// \brief Setup Bluetooth module
  117. void initModule(usart_ctl *ctl, uint32_t baudRate)
  118. {
  119.   char initBuf[30];
  120.   // switch to command mode
  121.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_RESET);
  122.   HAL_Delay(500);
  123.   int initLen = small_sprintf(initBuf, "AT+UART=%lu,1,2\n", baudRate);
  124.   setBaud(ctl, 38400);
  125.   sendString(ctl, initBuf, initLen);
  126.   TxWaitEmpty(ctl);
  127.   // switch back to normal comms at new baud rate
  128.  
  129.   HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin, GPIO_PIN_SET);
  130.   setBaud(ctl, baudRate);
  131.   HAL_Delay(100);
  132. }
  133.  
  134. // workspace for RMC data read from GPS module.
  135. uint8_t rmc_buff[80];
  136. volatile uint16_t rmc_length;
  137.  
  138. uint8_t rmc_callback(uint8_t *data, uint16_t length)
  139. {
  140.   rmc_length = length < sizeof(rmc_buff) ? length : sizeof(rmc_buff);
  141.   memcpy(rmc_buff, data, length);
  142.   return 0;
  143. }
  144.  
  145. // check if bluetooth connected
  146. uint8_t btConnected()
  147. {
  148.   return HAL_GPIO_ReadPin(BT_STATE_GPIO_Port, BT_STATE_Pin) == GPIO_PIN_SET;
  149. }
  150.  
  151. /* USER CODE END PFP */
  152.  
  153. /* Private user code ---------------------------------------------------------*/
  154. /* USER CODE BEGIN 0 */
  155.  
  156. /* USER CODE END 0 */
  157.  
  158. /**
  159.  * @brief  The application entry point.
  160.  * @retval int
  161.  */
  162. int main(void)
  163. {
  164.   /* USER CODE BEGIN 1 */
  165.   __HAL_RCC_SPI1_CLK_ENABLE();
  166.   __HAL_RCC_USART1_CLK_ENABLE(); // PLX main port
  167.   __HAL_RCC_USART2_CLK_ENABLE(); // debug port
  168.   __HAL_RCC_USART3_CLK_ENABLE(); // Bluetooth port
  169.   __HAL_RCC_UART4_CLK_ENABLE();  // NMEA0183 port
  170.  
  171.   __HAL_RCC_TIM3_CLK_ENABLE();
  172.  
  173.   __HAL_RCC_TIM9_CLK_ENABLE();
  174.  
  175.   /* USER CODE END 1 */
  176.  
  177.   /* MCU Configuration--------------------------------------------------------*/
  178.  
  179.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  180.   HAL_Init();
  181.  
  182.   /* USER CODE BEGIN Init */
  183.  
  184.   /* USER CODE END Init */
  185.  
  186.   /* Configure the system clock */
  187.   SystemClock_Config();
  188.  
  189.   /* USER CODE BEGIN SysInit */
  190.   // Switch handler called on sysTick interrupt.
  191.   InitSwitches();
  192.  
  193.   /* USER CODE END SysInit */
  194.  
  195.   /* Initialize all configured peripherals */
  196.   MX_GPIO_Init();
  197.   MX_SPI1_Init();
  198.   MX_USART1_UART_Init();
  199.   MX_USART2_UART_Init();
  200.   MX_USART3_UART_Init();
  201.   MX_TIM3_Init();
  202.   MX_TIM9_Init();
  203.   MX_TIM2_Init();
  204.   MX_UART4_Init();
  205.   MX_I2C1_Init();
  206.   /* USER CODE BEGIN 2 */
  207.  
  208.   /* Turn on USART1 IRQ */
  209.   HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);
  210.   HAL_NVIC_EnableIRQ(USART1_IRQn);
  211.  
  212.   /* Turn on USART2 IRQ  */
  213.   HAL_NVIC_SetPriority(USART2_IRQn, 4, 0);
  214.   HAL_NVIC_EnableIRQ(USART2_IRQn);
  215.  
  216.   /* turn on USART3 IRQ */
  217.   HAL_NVIC_SetPriority(USART3_IRQn, 4, 0);
  218.   HAL_NVIC_EnableIRQ(USART3_IRQn);
  219.  
  220.   /* turn on UART4 IRQ */
  221.   HAL_NVIC_SetPriority(UART4_IRQn, 4, 0);
  222.   HAL_NVIC_EnableIRQ(UART4_IRQn);
  223.  
  224.   /* setup the USART control blocks */
  225.   init_usart_ctl(&uc1, &huart1);
  226.   init_usart_ctl(&uc2, &huart2);
  227.   init_usart_ctl(&uc3, &huart3);
  228.   init_usart_ctl(&uc4, &huart4);
  229.  
  230.   EnableSerialRxInterrupt(&uc1);
  231.   EnableSerialRxInterrupt(&uc2);
  232.   EnableSerialRxInterrupt(&uc3);
  233.   EnableSerialRxInterrupt(&uc4);
  234.  
  235.   HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL);
  236.  
  237.   HAL_TIM_Encoder_Start(&htim9, TIM_CHANNEL_ALL);
  238.  
  239.   initModule(&uc3, 9600);
  240.  
  241.   // Initialise UART for 4800 baud NMEA
  242.   setBaud(&uc2, 4800);
  243.  
  244.   // Initialuse UART4 for 4800 baud NMEA.
  245.   setBaud(&uc4, 4800);
  246.  
  247.   cc_init();
  248.  
  249.   int i;
  250.   for (i = 0; i < 2; i++)
  251.   {
  252.     dial_pos[i] = 0;            // default to items 0 and 1
  253.     contexts[i].knobPos = -1;   // set the knob position
  254.     contexts[i].dial_timer = 1; // timeout immediately
  255.   }
  256.  
  257.   /* reset the display timeout, latch on power from accessories */
  258.   Latch_Timer = IGNITION_OFF_TIMEOUT;
  259.   HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin, GPIO_PIN_RESET);
  260.  
  261.   setRmcCallback(&rmc_callback);
  262.  
  263.   /* USER CODE END 2 */
  264.  
  265.   /* Infinite loop */
  266.   /* USER CODE BEGIN WHILE */
  267.   while (1)
  268.   {
  269.  
  270.     /* while ignition is on, keep resetting power latch timer */
  271.     if (HAL_GPIO_ReadPin(IGNITION_GPIO_Port, IGNITION_Pin) == GPIO_PIN_RESET)
  272.     {
  273.       Latch_Timer = HAL_GetTick() + IGNITION_OFF_TIMEOUT;
  274.     }
  275.     else
  276.     {
  277.       /* if the ignition has been off for a while, then turn off power */
  278.       if (HAL_GetTick() > Latch_Timer)
  279.       {
  280.         HAL_GPIO_WritePin(POWER_LATCH_GPIO_Port, POWER_LATCH_Pin,
  281.                           GPIO_PIN_RESET);
  282.       }
  283.     }
  284.  
  285.     uint32_t timeout = 0; //
  286.  
  287.     uint32_t nextTick = 0;
  288.     uint8_t log = 0;
  289.     uint8_t logCount = 1000 / LOGGER_INTERVAL;
  290.     // PLX decoder protocols
  291.     char PLXPacket = 0;
  292.     for (i = 0; i < MAXRDG; i++)
  293.     {
  294.       Info[i].Max = 0;
  295.       Info[i].Min = 0xFFF; // 12 bit max value
  296.       Info[i].sum = 0;     //
  297.       Info[i].count = 0;
  298.     }
  299.  
  300.     int PLXPtr = 0;
  301.  
  302.     while (1)
  303.     {
  304.  
  305.       // poll GPS Position/time on UART4
  306.       (void)updateLocation(&loc, &uc4);
  307.       if (loc.valid == 'V')
  308.         memset(loc.time, '-', 6);
  309.  
  310.       // if permitted, log data from RMC packet
  311.       if (rmc_length && btConnected())
  312.       {
  313.         sendString(&uc3, rmc_buff, rmc_length);
  314.         rmc_length = 0;
  315.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  316.         logCount = 0;
  317.         log = 1;
  318.       }
  319.  
  320.       // time several counted logger intervals after RMC recieved, enable logger each timeout.
  321.       if (logCount < ((1000 / LOGGER_INTERVAL) - 1) && HAL_GetTick() > nextTick)
  322.       {
  323.         nextTick = HAL_GetTick() + LOGGER_INTERVAL;
  324.         ++logCount;
  325.         log = 1;
  326.       }
  327.  
  328.       // Handle the bluetooth pairing / reset function by pressing both buttons.
  329.       if ((push_pos[0] == 1) && (push_pos[1] == 1))
  330.       {
  331.         HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  332.                           GPIO_PIN_RESET);
  333.       }
  334.       else
  335.       {
  336.         HAL_GPIO_WritePin(BT_BUTTON_GPIO_Port, BT_BUTTON_Pin,
  337.                           GPIO_PIN_SET);
  338.       }
  339.  
  340.       uint16_t cc = SerialCharsReceived(&uc1);
  341.       int chr;
  342.       if (cc == 0)
  343.       {
  344.         timeout++;
  345.         if (timeout % 1000 == 0)
  346.         {
  347.           const char msg[] = "Timeout\r\n";
  348.           sendString(&uc3, msg, sizeof(msg));
  349.         }
  350.  
  351.         if (timeout > 60000)
  352.         {
  353.  
  354.           // do turn off screen
  355.         }
  356.       }
  357.  
  358.       for (chr = 0; chr < cc; chr++)
  359.       {
  360.         char c = GetCharSerial(&uc1);
  361.  
  362.         if (c == PLX_Start) // at any time if the start byte appears, reset the pointers
  363.         {
  364.           PLXPtr = 0; // reset the pointer
  365.           PLXPacket = 1;
  366.           timeout = 0; // Reset the timer
  367.         }
  368.         else if (c == PLX_Stop)
  369.         {
  370.           if (PLXPacket)
  371.           {
  372.             // we can now decode the selected parameter
  373.             PLXItems = PLXPtr / sizeof(PLX_SensorInfo); // total
  374.             // saturate the rotary switch position
  375.  
  376.             // process min/max
  377.             for (i = 0; i < PLXItems; i++)
  378.             {
  379.               Info[i].observation = ConvPLX(Data.Sensor[i].AddrH,
  380.                                             Data.Sensor[i].AddrL);
  381.               Info[i].instance = Data.Sensor[i].Instance;
  382.               Info[i].data = ConvPLX(Data.Sensor[i].ReadingH,
  383.                                      Data.Sensor[i].ReadingL);
  384.               if (Info[i].data > Info[i].Max)
  385.               {
  386.                 Info[i].Max = Info[i].data;
  387.               }
  388.               if (Info[i].data < Info[i].Min)
  389.               {
  390.                 Info[i].Min = Info[i].data;
  391.               }
  392.               // take an avarage
  393.               Info[i].sum += Info[i].data;
  394.               Info[i].count++;
  395.  
  396.               // Send items  to BT if it is in connected state
  397.               if (log && btConnected())
  398.               {
  399.  
  400.                 char outbuff[100];
  401.  
  402.                 int cnt = small_sprintf(outbuff,
  403.                                         "$PLLOG,%d,%d,%d,%ld",
  404.                                         logCount,
  405.                                         Info[i].observation,
  406.                                         Info[i].instance,
  407.                                         Info[i].count == 0 ? 0 : Info[i].sum / Info[i].count);
  408.  
  409.                 // NMEA style checksum
  410.                 int ck;
  411.                 int sum = 0;
  412.                 for (ck = 1; ck < cnt; ck++)
  413.                   sum += outbuff[ck];
  414.                 cnt += small_sprintf(outbuff + cnt, "*%02X\n",
  415.                                      sum & 0xFF);
  416.                 sendString(&uc3, outbuff, cnt);
  417.               }
  418.             }
  419.             log = 0;
  420.             // now to display the information
  421.             int suppress = DisplayCurrent(0, -1);
  422.             DisplayCurrent(1, suppress);
  423.           }
  424.           PLXPtr = 0;
  425.           PLXPacket = 0;
  426.         }
  427.         else if (c > PLX_Stop) // illegal char, restart reading
  428.         {
  429.           PLXPacket = 0;
  430.           PLXPtr = 0;
  431.         }
  432.         else if (PLXPacket && PLXPtr < sizeof(Data.Bytes))
  433.         {
  434.           Data.Bytes[PLXPtr++] = c;
  435.         }
  436.       }
  437.  
  438.       HAL_Delay(1);
  439.  
  440.       for (i = 0; i < MAX_DISPLAYS; i++)
  441.       {
  442.         if (dial_pos[i] < 0)
  443.           dial_pos[i] = PLXItems - 1;
  444.         if (dial_pos[i] >= PLXItems)
  445.           dial_pos[i] = 0;
  446.  
  447.         int prevPos = contexts[i].knobPos;
  448.         if (contexts[i].knobPos >= 0)
  449.           contexts[i].knobPos = dial_pos[i];
  450.         // if the dial position was changed then reset timer
  451.         if (prevPos != contexts[i].knobPos)
  452.           contexts[i].dial_timer = DialTimeout;
  453.  
  454.         cc_check_nvram(i);
  455.         if (contexts[i].knobPos >= 0)
  456.           dial_pos[i] = contexts[i].knobPos;
  457.       }
  458.     }
  459.     /* USER CODE END WHILE */
  460.  
  461.     /* USER CODE BEGIN 3 */
  462.   }
  463.   /* USER CODE END 3 */
  464. }
  465.  
  466. /**
  467.  * @brief System Clock Configuration
  468.  * @retval None
  469.  */
  470. void SystemClock_Config(void)
  471. {
  472.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  473.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  474.  
  475.   /** Configure the main internal regulator output voltage
  476.    */
  477.   __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  478.  
  479.   /** Initializes the RCC Oscillators according to the specified parameters
  480.    * in the RCC_OscInitTypeDef structure.
  481.    */
  482.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  483.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  484.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  485.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  486.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  487.   RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  488.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  489.   {
  490.     Error_Handler();
  491.   }
  492.  
  493.   /** Initializes the CPU, AHB and APB buses clocks
  494.    */
  495.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  496.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  497.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  498.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  499.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  500.  
  501.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  502.   {
  503.     Error_Handler();
  504.   }
  505. }
  506.  
  507. /**
  508.  * @brief I2C1 Initialization Function
  509.  * @param None
  510.  * @retval None
  511.  */
  512. static void MX_I2C1_Init(void)
  513. {
  514.  
  515.   /* USER CODE BEGIN I2C1_Init 0 */
  516.  
  517.   /* USER CODE END I2C1_Init 0 */
  518.  
  519.   /* USER CODE BEGIN I2C1_Init 1 */
  520.  
  521.   /* USER CODE END I2C1_Init 1 */
  522.   hi2c1.Instance = I2C1;
  523.   hi2c1.Init.ClockSpeed = 100000;
  524.   hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
  525.   hi2c1.Init.OwnAddress1 = 0;
  526.   hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  527.   hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  528.   hi2c1.Init.OwnAddress2 = 0;
  529.   hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  530.   hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  531.   if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  532.   {
  533.     Error_Handler();
  534.   }
  535.   /* USER CODE BEGIN I2C1_Init 2 */
  536.  
  537.   /* USER CODE END I2C1_Init 2 */
  538. }
  539.  
  540. /**
  541.  * @brief SPI1 Initialization Function
  542.  * @param None
  543.  * @retval None
  544.  */
  545. static void MX_SPI1_Init(void)
  546. {
  547.  
  548.   /* USER CODE BEGIN SPI1_Init 0 */
  549.  
  550.   /* USER CODE END SPI1_Init 0 */
  551.  
  552.   /* USER CODE BEGIN SPI1_Init 1 */
  553.  
  554.   /* USER CODE END SPI1_Init 1 */
  555.   /* SPI1 parameter configuration*/
  556.   hspi1.Instance = SPI1;
  557.   hspi1.Init.Mode = SPI_MODE_MASTER;
  558.   hspi1.Init.Direction = SPI_DIRECTION_1LINE;
  559.   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  560.   hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH;
  561.   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  562.   hspi1.Init.NSS = SPI_NSS_SOFT;
  563.   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  564.   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  565.   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  566.   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  567.   hspi1.Init.CRCPolynomial = 10;
  568.   if (HAL_SPI_Init(&hspi1) != HAL_OK)
  569.   {
  570.     Error_Handler();
  571.   }
  572.   /* USER CODE BEGIN SPI1_Init 2 */
  573.  
  574.   /* USER CODE END SPI1_Init 2 */
  575. }
  576.  
  577. /**
  578.  * @brief TIM2 Initialization Function
  579.  * @param None
  580.  * @retval None
  581.  */
  582. static void MX_TIM2_Init(void)
  583. {
  584.  
  585.   /* USER CODE BEGIN TIM2_Init 0 */
  586.  
  587.   /* USER CODE END TIM2_Init 0 */
  588.  
  589.   TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  590.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  591.  
  592.   /* USER CODE BEGIN TIM2_Init 1 */
  593.  
  594.   /* USER CODE END TIM2_Init 1 */
  595.   htim2.Instance = TIM2;
  596.   htim2.Init.Prescaler = 0;
  597.   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  598.   htim2.Init.Period = 65535;
  599.   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  600.   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  601.   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  602.   {
  603.     Error_Handler();
  604.   }
  605.   sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  606.   if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  607.   {
  608.     Error_Handler();
  609.   }
  610.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  611.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  612.   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  613.   {
  614.     Error_Handler();
  615.   }
  616.   /* USER CODE BEGIN TIM2_Init 2 */
  617.  
  618.   /* USER CODE END TIM2_Init 2 */
  619. }
  620.  
  621. /**
  622.  * @brief TIM3 Initialization Function
  623.  * @param None
  624.  * @retval None
  625.  */
  626. static void MX_TIM3_Init(void)
  627. {
  628.  
  629.   /* USER CODE BEGIN TIM3_Init 0 */
  630.  
  631.   /* USER CODE END TIM3_Init 0 */
  632.  
  633.   TIM_Encoder_InitTypeDef sConfig = {0};
  634.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  635.  
  636.   /* USER CODE BEGIN TIM3_Init 1 */
  637.  
  638.   /* USER CODE END TIM3_Init 1 */
  639.   htim3.Instance = TIM3;
  640.   htim3.Init.Prescaler = 0;
  641.   htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  642.   htim3.Init.Period = 65535;
  643.   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  644.   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  645.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  646.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  647.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  648.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  649.   sConfig.IC1Filter = 15;
  650.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  651.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  652.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  653.   sConfig.IC2Filter = 15;
  654.   if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
  655.   {
  656.     Error_Handler();
  657.   }
  658.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  659.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  660.   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  661.   {
  662.     Error_Handler();
  663.   }
  664.   /* USER CODE BEGIN TIM3_Init 2 */
  665.  
  666.   /* USER CODE END TIM3_Init 2 */
  667. }
  668.  
  669. /**
  670.  * @brief TIM9 Initialization Function
  671.  * @param None
  672.  * @retval None
  673.  */
  674. static void MX_TIM9_Init(void)
  675. {
  676.  
  677.   /* USER CODE BEGIN TIM9_Init 0 */
  678.  
  679.   /* USER CODE END TIM9_Init 0 */
  680.  
  681.   TIM_Encoder_InitTypeDef sConfig = {0};
  682.   TIM_MasterConfigTypeDef sMasterConfig = {0};
  683.  
  684.   /* USER CODE BEGIN TIM9_Init 1 */
  685.  
  686.   /* USER CODE END TIM9_Init 1 */
  687.   htim9.Instance = TIM9;
  688.   htim9.Init.Prescaler = 0;
  689.   htim9.Init.CounterMode = TIM_COUNTERMODE_UP;
  690.   htim9.Init.Period = 65535;
  691.   htim9.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  692.   htim9.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  693.   sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
  694.   sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
  695.   sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
  696.   sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
  697.   sConfig.IC1Filter = 15;
  698.   sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
  699.   sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
  700.   sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
  701.   sConfig.IC2Filter = 0;
  702.   if (HAL_TIM_Encoder_Init(&htim9, &sConfig) != HAL_OK)
  703.   {
  704.     Error_Handler();
  705.   }
  706.   sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  707.   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  708.   if (HAL_TIMEx_MasterConfigSynchronization(&htim9, &sMasterConfig) != HAL_OK)
  709.   {
  710.     Error_Handler();
  711.   }
  712.   /* USER CODE BEGIN TIM9_Init 2 */
  713.  
  714.   /* USER CODE END TIM9_Init 2 */
  715. }
  716.  
  717. /**
  718.  * @brief UART4 Initialization Function
  719.  * @param None
  720.  * @retval None
  721.  */
  722. static void MX_UART4_Init(void)
  723. {
  724.  
  725.   /* USER CODE BEGIN UART4_Init 0 */
  726.  
  727.   /* USER CODE END UART4_Init 0 */
  728.  
  729.   /* USER CODE BEGIN UART4_Init 1 */
  730.  
  731.   /* USER CODE END UART4_Init 1 */
  732.   huart4.Instance = UART4;
  733.   huart4.Init.BaudRate = 4800;
  734.   huart4.Init.WordLength = UART_WORDLENGTH_8B;
  735.   huart4.Init.StopBits = UART_STOPBITS_1;
  736.   huart4.Init.Parity = UART_PARITY_NONE;
  737.   huart4.Init.Mode = UART_MODE_TX_RX;
  738.   huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  739.   huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  740.   if (HAL_UART_Init(&huart4) != HAL_OK)
  741.   {
  742.     Error_Handler();
  743.   }
  744.   /* USER CODE BEGIN UART4_Init 2 */
  745.  
  746.   /* USER CODE END UART4_Init 2 */
  747. }
  748.  
  749. /**
  750.  * @brief USART1 Initialization Function
  751.  * @param None
  752.  * @retval None
  753.  */
  754. static void MX_USART1_UART_Init(void)
  755. {
  756.  
  757.   /* USER CODE BEGIN USART1_Init 0 */
  758.  
  759.   /* USER CODE END USART1_Init 0 */
  760.  
  761.   /* USER CODE BEGIN USART1_Init 1 */
  762.  
  763.   /* USER CODE END USART1_Init 1 */
  764.   huart1.Instance = USART1;
  765.   huart1.Init.BaudRate = 19200;
  766.   huart1.Init.WordLength = UART_WORDLENGTH_8B;
  767.   huart1.Init.StopBits = UART_STOPBITS_1;
  768.   huart1.Init.Parity = UART_PARITY_NONE;
  769.   huart1.Init.Mode = UART_MODE_TX_RX;
  770.   huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  771.   huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  772.   if (HAL_UART_Init(&huart1) != HAL_OK)
  773.   {
  774.     Error_Handler();
  775.   }
  776.   /* USER CODE BEGIN USART1_Init 2 */
  777.  
  778.   /* USER CODE END USART1_Init 2 */
  779. }
  780.  
  781. /**
  782.  * @brief USART2 Initialization Function
  783.  * @param None
  784.  * @retval None
  785.  */
  786. static void MX_USART2_UART_Init(void)
  787. {
  788.  
  789.   /* USER CODE BEGIN USART2_Init 0 */
  790.  
  791.   /* USER CODE END USART2_Init 0 */
  792.  
  793.   /* USER CODE BEGIN USART2_Init 1 */
  794.  
  795.   /* USER CODE END USART2_Init 1 */
  796.   huart2.Instance = USART2;
  797.   huart2.Init.BaudRate = 115200;
  798.   huart2.Init.WordLength = UART_WORDLENGTH_8B;
  799.   huart2.Init.StopBits = UART_STOPBITS_1;
  800.   huart2.Init.Parity = UART_PARITY_NONE;
  801.   huart2.Init.Mode = UART_MODE_TX_RX;
  802.   huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  803.   huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  804.   if (HAL_UART_Init(&huart2) != HAL_OK)
  805.   {
  806.     Error_Handler();
  807.   }
  808.   /* USER CODE BEGIN USART2_Init 2 */
  809.  
  810.   /* USER CODE END USART2_Init 2 */
  811. }
  812.  
  813. /**
  814.  * @brief USART3 Initialization Function
  815.  * @param None
  816.  * @retval None
  817.  */
  818. static void MX_USART3_UART_Init(void)
  819. {
  820.  
  821.   /* USER CODE BEGIN USART3_Init 0 */
  822.  
  823.   /* USER CODE END USART3_Init 0 */
  824.  
  825.   /* USER CODE BEGIN USART3_Init 1 */
  826.  
  827.   /* USER CODE END USART3_Init 1 */
  828.   huart3.Instance = USART3;
  829.   huart3.Init.BaudRate = 19200;
  830.   huart3.Init.WordLength = UART_WORDLENGTH_8B;
  831.   huart3.Init.StopBits = UART_STOPBITS_1;
  832.   huart3.Init.Parity = UART_PARITY_NONE;
  833.   huart3.Init.Mode = UART_MODE_TX_RX;
  834.   huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  835.   huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  836.   if (HAL_UART_Init(&huart3) != HAL_OK)
  837.   {
  838.     Error_Handler();
  839.   }
  840.   /* USER CODE BEGIN USART3_Init 2 */
  841.  
  842.   /* USER CODE END USART3_Init 2 */
  843. }
  844.  
  845. /**
  846.  * @brief GPIO Initialization Function
  847.  * @param None
  848.  * @retval None
  849.  */
  850. static void MX_GPIO_Init(void)
  851. {
  852.   GPIO_InitTypeDef GPIO_InitStruct = {0};
  853.  
  854.   /* GPIO Ports Clock Enable */
  855.   __HAL_RCC_GPIOH_CLK_ENABLE();
  856.   __HAL_RCC_GPIOA_CLK_ENABLE();
  857.   __HAL_RCC_GPIOC_CLK_ENABLE();
  858.   __HAL_RCC_GPIOB_CLK_ENABLE();
  859.  
  860.   /*Configure GPIO pin Output Level */
  861.   HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
  862.  
  863.   /*Configure GPIO pin Output Level */
  864.   HAL_GPIO_WritePin(GPIOA, SPI_CD_Pin | BT_BUTTON_Pin, GPIO_PIN_RESET);
  865.  
  866.   /*Configure GPIO pin Output Level */
  867.   HAL_GPIO_WritePin(GPIOC, SPI_RESET_Pin | POWER_LATCH_Pin | USB_PWR_Pin, GPIO_PIN_RESET);
  868.  
  869.   /*Configure GPIO pin Output Level */
  870.   HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET);
  871.  
  872.   /*Configure GPIO pins : SPI_NSS1_Pin SPI_CD_Pin */
  873.   GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI_CD_Pin;
  874.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  875.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  876.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  877.   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  878.  
  879.   /*Configure GPIO pins : SPI_RESET_Pin SPI_NSS2_Pin POWER_LATCH_Pin USB_PWR_Pin */
  880.   GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NSS2_Pin | POWER_LATCH_Pin | USB_PWR_Pin;
  881.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  882.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  883.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  884.   HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  885.  
  886.   /*Configure GPIO pins : BT_STATE_Pin SW1_PUSH_Pin SW2_PUSH_Pin */
  887.   GPIO_InitStruct.Pin = BT_STATE_Pin | SW1_PUSH_Pin | SW2_PUSH_Pin;
  888.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  889.   GPIO_InitStruct.Pull = GPIO_PULLUP;
  890.   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  891.  
  892.   /*Configure GPIO pin : IGNITION_Pin */
  893.   GPIO_InitStruct.Pin = IGNITION_Pin;
  894.   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  895.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  896.   HAL_GPIO_Init(IGNITION_GPIO_Port, &GPIO_InitStruct);
  897.  
  898.   /*Configure GPIO pin : BT_BUTTON_Pin */
  899.   GPIO_InitStruct.Pin = BT_BUTTON_Pin;
  900.   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  901.   GPIO_InitStruct.Pull = GPIO_NOPULL;
  902.   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  903.   HAL_GPIO_Init(BT_BUTTON_GPIO_Port, &GPIO_InitStruct);
  904. }
  905.  
  906. /* USER CODE BEGIN 4 */
  907.  
  908. /* USER CODE END 4 */
  909.  
  910. /**
  911.  * @brief  This function is executed in case of error occurrence.
  912.  * @retval None
  913.  */
  914. void Error_Handler(void)
  915. {
  916.   /* USER CODE BEGIN Error_Handler_Debug */
  917.   /* User can add his own implementation to report the HAL error return state */
  918.  
  919.   /* USER CODE END Error_Handler_Debug */
  920. }
  921.  
  922. #ifdef USE_FULL_ASSERT
  923. /**
  924.  * @brief  Reports the name of the source file and the source line number
  925.  *         where the assert_param error has occurred.
  926.  * @param  file: pointer to the source file name
  927.  * @param  line: assert_param error line source number
  928.  * @retval None
  929.  */
  930. void assert_failed(uint8_t *file, uint32_t line)
  931. {
  932.   /* USER CODE BEGIN 6 */
  933.   /* User can add his own implementation to report the file name and line number,
  934.      tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  935.   /* USER CODE END 6 */
  936. }
  937. #endif /* USE_FULL_ASSERT */
  938.