Subversion Repositories DashDisplay

Rev

Rev 2 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /* ----------------------------------------------------------------------    
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
  3. *    
  4. * $Date:        19. March 2015
  5. * $Revision:    V.1.4.5
  6. *    
  7. * Project:          CMSIS DSP Library    
  8. * Title:            arm_mat_mult_q31.c    
  9. *    
  10. * Description:   Q31 matrix multiplication.    
  11. *    
  12. * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
  13. *  
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. *   - Redistributions of source code must retain the above copyright
  18. *     notice, this list of conditions and the following disclaimer.
  19. *   - Redistributions in binary form must reproduce the above copyright
  20. *     notice, this list of conditions and the following disclaimer in
  21. *     the documentation and/or other materials provided with the
  22. *     distribution.
  23. *   - Neither the name of ARM LIMITED nor the names of its contributors
  24. *     may be used to endorse or promote products derived from this
  25. *     software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.  
  39. * -------------------------------------------------------------------- */
  40.  
  41. #include "arm_math.h"
  42.  
  43. /**    
  44.  * @ingroup groupMatrix    
  45.  */
  46.  
  47. /**    
  48.  * @addtogroup MatrixMult    
  49.  * @{    
  50.  */
  51.  
  52. /**    
  53.  * @brief Q31 matrix multiplication    
  54.  * @param[in]       *pSrcA points to the first input matrix structure    
  55.  * @param[in]       *pSrcB points to the second input matrix structure    
  56.  * @param[out]      *pDst points to output matrix structure    
  57.  * @return              The function returns either    
  58.  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
  59.  *    
  60.  * @details    
  61.  * <b>Scaling and Overflow Behavior:</b>    
  62.  *    
  63.  * \par    
  64.  * The function is implemented using an internal 64-bit accumulator.    
  65.  * The accumulator has a 2.62 format and maintains full precision of the intermediate    
  66.  * multiplication results but provides only a single guard bit. There is no saturation    
  67.  * on intermediate additions. Thus, if the accumulator overflows it wraps around and    
  68.  * distorts the result. The input signals should be scaled down to avoid intermediate    
  69.  * overflows. The input is thus scaled down by log2(numColsA) bits    
  70.  * to avoid overflows, as a total of numColsA additions are performed internally.    
  71.  * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.    
  72.  *    
  73.  * \par    
  74.  * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.    
  75.  *    
  76.  */
  77.  
  78. arm_status arm_mat_mult_q31(
  79.   const arm_matrix_instance_q31 * pSrcA,
  80.   const arm_matrix_instance_q31 * pSrcB,
  81.   arm_matrix_instance_q31 * pDst)
  82. {
  83.   q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
  84.   q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
  85.   q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
  86.   q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
  87.   q31_t *px;                                     /* Temporary output data matrix pointer */
  88.   q63_t sum;                                     /* Accumulator */
  89.   uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
  90.   uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  91.   uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
  92.  
  93. #ifndef ARM_MATH_CM0_FAMILY
  94.  
  95.   /* Run the below code for Cortex-M4 and Cortex-M3 */
  96.  
  97.   uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
  98.   arm_status status;                             /* status of matrix multiplication */
  99.   q31_t a0, a1, a2, a3, b0, b1, b2, b3;
  100.  
  101. #ifdef ARM_MATH_MATRIX_CHECK
  102.  
  103.  
  104.   /* Check for matrix mismatch condition */
  105.   if((pSrcA->numCols != pSrcB->numRows) ||
  106.      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  107.   {
  108.     /* Set status as ARM_MATH_SIZE_MISMATCH */
  109.     status = ARM_MATH_SIZE_MISMATCH;
  110.   }
  111.   else
  112. #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
  113.  
  114.   {
  115.     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
  116.     /* row loop */
  117.     do
  118.     {
  119.       /* Output pointer is set to starting address of the row being processed */
  120.       px = pOut + i;
  121.  
  122.       /* For every row wise process, the column loop counter is to be initiated */
  123.       col = numColsB;
  124.  
  125.       /* For every row wise process, the pIn2 pointer is set    
  126.        ** to the starting address of the pSrcB data */
  127.       pIn2 = pSrcB->pData;
  128.  
  129.       j = 0u;
  130.  
  131.       /* column loop */
  132.       do
  133.       {
  134.         /* Set the variable sum, that acts as accumulator, to zero */
  135.         sum = 0;
  136.  
  137.         /* Initiate the pointer pIn1 to point to the starting address of pInA */
  138.         pIn1 = pInA;
  139.  
  140.         /* Apply loop unrolling and compute 4 MACs simultaneously. */
  141.         colCnt = numColsA >> 2;
  142.  
  143.  
  144.         /* matrix multiplication */
  145.         while(colCnt > 0u)
  146.         {
  147.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  148.           /* Perform the multiply-accumulates */
  149.           b0 = *pIn2;
  150.           pIn2 += numColsB;
  151.  
  152.           a0 = *pIn1++;
  153.           a1 = *pIn1++;
  154.  
  155.           b1 = *pIn2;
  156.           pIn2 += numColsB;
  157.           b2 = *pIn2;
  158.           pIn2 += numColsB;
  159.  
  160.           sum += (q63_t) a0 *b0;
  161.           sum += (q63_t) a1 *b1;
  162.  
  163.           a2 = *pIn1++;
  164.           a3 = *pIn1++;
  165.  
  166.           b3 = *pIn2;
  167.           pIn2 += numColsB;
  168.  
  169.           sum += (q63_t) a2 *b2;
  170.           sum += (q63_t) a3 *b3;
  171.  
  172.           /* Decrement the loop counter */
  173.           colCnt--;
  174.         }
  175.  
  176.         /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
  177.          ** No loop unrolling is used. */
  178.         colCnt = numColsA % 0x4u;
  179.  
  180.         while(colCnt > 0u)
  181.         {
  182.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  183.           /* Perform the multiply-accumulates */
  184.           sum += (q63_t) * pIn1++ * *pIn2;
  185.           pIn2 += numColsB;
  186.  
  187.           /* Decrement the loop counter */
  188.           colCnt--;
  189.         }
  190.  
  191.         /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
  192.         *px++ = (q31_t) (sum >> 31);
  193.  
  194.         /* Update the pointer pIn2 to point to the  starting address of the next column */
  195.         j++;
  196.         pIn2 = (pSrcB->pData) + j;
  197.  
  198.         /* Decrement the column loop counter */
  199.         col--;
  200.  
  201.       } while(col > 0u);
  202.  
  203. #else
  204.  
  205.   /* Run the below code for Cortex-M0 */
  206.  
  207.   q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
  208.   uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
  209.   arm_status status;                             /* status of matrix multiplication */
  210.  
  211.  
  212. #ifdef ARM_MATH_MATRIX_CHECK
  213.  
  214.   /* Check for matrix mismatch condition */
  215.   if((pSrcA->numCols != pSrcB->numRows) ||
  216.      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  217.   {
  218.     /* Set status as ARM_MATH_SIZE_MISMATCH */
  219.     status = ARM_MATH_SIZE_MISMATCH;
  220.   }
  221.   else
  222. #endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
  223.  
  224.   {
  225.     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
  226.     /* row loop */
  227.     do
  228.     {
  229.       /* Output pointer is set to starting address of the row being processed */
  230.       px = pOut + i;
  231.  
  232.       /* For every row wise process, the column loop counter is to be initiated */
  233.       col = numColsB;
  234.  
  235.       /* For every row wise process, the pIn2 pointer is set          
  236.        ** to the starting address of the pSrcB data */
  237.       pIn2 = pSrcB->pData;
  238.  
  239.       /* column loop */
  240.       do
  241.       {
  242.         /* Set the variable sum, that acts as accumulator, to zero */
  243.         sum = 0;
  244.  
  245.         /* Initiate the pointer pIn1 to point to the starting address of pInA */
  246.         pIn1 = pInA;
  247.  
  248.         /* Matrix A columns number of MAC operations are to be performed */
  249.         colCnt = numColsA;
  250.  
  251.         /* matrix multiplication */
  252.         while(colCnt > 0u)
  253.         {
  254.           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
  255.           /* Perform the multiply-accumulates */
  256.           sum += (q63_t) * pIn1++ * *pIn2;
  257.           pIn2 += numColsB;
  258.  
  259.           /* Decrement the loop counter */
  260.           colCnt--;
  261.         }
  262.  
  263.         /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
  264.         *px++ = (q31_t) clip_q63_to_q31(sum >> 31);
  265.  
  266.         /* Decrement the column loop counter */
  267.         col--;
  268.  
  269.         /* Update the pointer pIn2 to point to the  starting address of the next column */
  270.         pIn2 = pInB + (numColsB - col);
  271.  
  272.       } while(col > 0u);
  273.  
  274. #endif
  275.  
  276.       /* Update the pointer pInA to point to the  starting address of the next row */
  277.       i = i + numColsB;
  278.       pInA = pInA + numColsA;
  279.  
  280.       /* Decrement the row loop counter */
  281.       row--;
  282.  
  283.     } while(row > 0u);
  284.  
  285.     /* set status as ARM_MATH_SUCCESS */
  286.     status = ARM_MATH_SUCCESS;
  287.   }
  288.   /* Return to application */
  289.   return (status);
  290. }
  291.  
  292. /**    
  293.  * @} end of MatrixMult group    
  294.  */
  295.