Rev 2 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 2 | Rev 18 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | /** |
1 | /** |
2 | ****************************************************************************** |
2 | ****************************************************************************** |
3 | * @file stm32f1xx_hal_uart.c |
3 | * @file stm32f1xx_hal_uart.c |
4 | * @author MCD Application Team |
4 | * @author MCD Application Team |
5 | * @brief UART HAL module driver. |
5 | * @brief UART HAL module driver. |
6 | * This file provides firmware functions to manage the following |
6 | * This file provides firmware functions to manage the following |
7 | * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). |
7 | * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). |
8 | * + Initialization and de-initialization functions |
8 | * + Initialization and de-initialization functions |
9 | * + IO operation functions |
9 | * + IO operation functions |
10 | * + Peripheral Control functions |
10 | * + Peripheral Control functions |
11 | * + Peripheral State and Errors functions |
11 | * + Peripheral State and Errors functions |
12 | @verbatim |
12 | * |
13 | ============================================================================== |
13 | ****************************************************************************** |
14 | ##### How to use this driver ##### |
14 | * @attention |
15 | ============================================================================== |
15 | * |
16 | [..] |
16 | * Copyright (c) 2016 STMicroelectronics. |
17 | The UART HAL driver can be used as follows: |
17 | * All rights reserved. |
18 | 18 | * |
|
19 | (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). |
19 | * This software is licensed under terms that can be found in the LICENSE file |
20 | (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: |
20 | * in the root directory of this software component. |
21 | (##) Enable the USARTx interface clock. |
21 | * If no LICENSE file comes with this software, it is provided AS-IS. |
22 | (##) UART pins configuration: |
22 | * |
23 | (+++) Enable the clock for the UART GPIOs. |
23 | ****************************************************************************** |
24 | (+++) Configure the UART TX/RX pins as alternate function pull-up. |
24 | @verbatim |
25 | (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() |
25 | ============================================================================== |
26 | and HAL_UART_Receive_IT() APIs): |
26 | ##### How to use this driver ##### |
27 | (+++) Configure the USARTx interrupt priority. |
27 | ============================================================================== |
28 | (+++) Enable the NVIC USART IRQ handle. |
28 | [..] |
29 | (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() |
29 | The UART HAL driver can be used as follows: |
30 | and HAL_UART_Receive_DMA() APIs): |
30 | |
31 | (+++) Declare a DMA handle structure for the Tx/Rx channel. |
31 | (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). |
32 | (+++) Enable the DMAx interface clock. |
32 | (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: |
33 | (+++) Configure the declared DMA handle structure with the required |
33 | (##) Enable the USARTx interface clock. |
34 | Tx/Rx parameters. |
34 | (##) UART pins configuration: |
35 | (+++) Configure the DMA Tx/Rx channel. |
35 | (+++) Enable the clock for the UART GPIOs. |
36 | (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. |
36 | (+++) Configure the UART TX/RX pins as alternate function pull-up. |
37 | (+++) Configure the priority and enable the NVIC for the transfer complete |
37 | (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() |
38 | interrupt on the DMA Tx/Rx channel. |
38 | and HAL_UART_Receive_IT() APIs): |
39 | (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle |
39 | (+++) Configure the USARTx interrupt priority. |
40 | (used for last byte sending completion detection in DMA non circular mode) |
40 | (+++) Enable the NVIC USART IRQ handle. |
41 | 41 | (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() |
|
42 | (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware |
42 | and HAL_UART_Receive_DMA() APIs): |
43 | flow control and Mode(Receiver/Transmitter) in the huart Init structure. |
43 | (+++) Declare a DMA handle structure for the Tx/Rx channel. |
44 | 44 | (+++) Enable the DMAx interface clock. |
|
45 | (#) For the UART asynchronous mode, initialize the UART registers by calling |
45 | (+++) Configure the declared DMA handle structure with the required |
46 | the HAL_UART_Init() API. |
46 | Tx/Rx parameters. |
47 | 47 | (+++) Configure the DMA Tx/Rx channel. |
|
48 | (#) For the UART Half duplex mode, initialize the UART registers by calling |
48 | (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. |
49 | the HAL_HalfDuplex_Init() API. |
49 | (+++) Configure the priority and enable the NVIC for the transfer complete |
50 | 50 | interrupt on the DMA Tx/Rx channel. |
|
51 | (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API. |
51 | (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle |
52 | 52 | (used for last byte sending completion detection in DMA non circular mode) |
|
53 | (#) For the Multi-Processor mode, initialize the UART registers by calling |
53 | |
54 | the HAL_MultiProcessor_Init() API. |
54 | (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware |
55 | 55 | flow control and Mode(Receiver/Transmitter) in the huart Init structure. |
|
56 | [..] |
56 | |
57 | (@) The specific UART interrupts (Transmission complete interrupt, |
57 | (#) For the UART asynchronous mode, initialize the UART registers by calling |
58 | RXNE interrupt and Error Interrupts) will be managed using the macros |
58 | the HAL_UART_Init() API. |
59 | __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit |
59 | |
60 | and receive process. |
60 | (#) For the UART Half duplex mode, initialize the UART registers by calling |
61 | 61 | the HAL_HalfDuplex_Init() API. |
|
62 | [..] |
62 | |
63 | (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the |
63 | (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API. |
64 | low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized |
64 | |
65 | HAL_UART_MspInit() API. |
65 | (#) For the Multi-Processor mode, initialize the UART registers by calling |
66 | 66 | the HAL_MultiProcessor_Init() API. |
|
67 | ##### Callback registration ##### |
67 | |
68 | ================================== |
68 | [..] |
69 | 69 | (@) The specific UART interrupts (Transmission complete interrupt, |
|
70 | [..] |
70 | RXNE interrupt and Error Interrupts) will be managed using the macros |
71 | The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1 |
71 | __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit |
72 | allows the user to configure dynamically the driver callbacks. |
72 | and receive process. |
73 | 73 | ||
74 | [..] |
74 | [..] |
75 | Use Function @ref HAL_UART_RegisterCallback() to register a user callback. |
75 | (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the |
76 | Function @ref HAL_UART_RegisterCallback() allows to register following callbacks: |
76 | low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized |
77 | (+) TxHalfCpltCallback : Tx Half Complete Callback. |
77 | HAL_UART_MspInit() API. |
78 | (+) TxCpltCallback : Tx Complete Callback. |
78 | |
79 | (+) RxHalfCpltCallback : Rx Half Complete Callback. |
79 | ##### Callback registration ##### |
80 | (+) RxCpltCallback : Rx Complete Callback. |
80 | ================================== |
81 | (+) ErrorCallback : Error Callback. |
81 | |
82 | (+) AbortCpltCallback : Abort Complete Callback. |
82 | [..] |
83 | (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
83 | The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1 |
84 | (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
84 | allows the user to configure dynamically the driver callbacks. |
85 | (+) MspInitCallback : UART MspInit. |
85 | |
86 | (+) MspDeInitCallback : UART MspDeInit. |
86 | [..] |
87 | This function takes as parameters the HAL peripheral handle, the Callback ID |
87 | Use Function HAL_UART_RegisterCallback() to register a user callback. |
88 | and a pointer to the user callback function. |
88 | Function HAL_UART_RegisterCallback() allows to register following callbacks: |
89 | 89 | (+) TxHalfCpltCallback : Tx Half Complete Callback. |
|
90 | [..] |
90 | (+) TxCpltCallback : Tx Complete Callback. |
91 | Use function @ref HAL_UART_UnRegisterCallback() to reset a callback to the default |
91 | (+) RxHalfCpltCallback : Rx Half Complete Callback. |
92 | weak (surcharged) function. |
92 | (+) RxCpltCallback : Rx Complete Callback. |
93 | @ref HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
93 | (+) ErrorCallback : Error Callback. |
94 | and the Callback ID. |
94 | (+) AbortCpltCallback : Abort Complete Callback. |
95 | This function allows to reset following callbacks: |
95 | (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
96 | (+) TxHalfCpltCallback : Tx Half Complete Callback. |
96 | (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
97 | (+) TxCpltCallback : Tx Complete Callback. |
97 | (+) MspInitCallback : UART MspInit. |
98 | (+) RxHalfCpltCallback : Rx Half Complete Callback. |
98 | (+) MspDeInitCallback : UART MspDeInit. |
99 | (+) RxCpltCallback : Rx Complete Callback. |
99 | This function takes as parameters the HAL peripheral handle, the Callback ID |
100 | (+) ErrorCallback : Error Callback. |
100 | and a pointer to the user callback function. |
101 | (+) AbortCpltCallback : Abort Complete Callback. |
101 | |
102 | (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
102 | [..] |
103 | (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
103 | Use function HAL_UART_UnRegisterCallback() to reset a callback to the default |
104 | (+) MspInitCallback : UART MspInit. |
104 | weak (surcharged) function. |
105 | (+) MspDeInitCallback : UART MspDeInit. |
105 | HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
106 | 106 | and the Callback ID. |
|
107 | [..] |
107 | This function allows to reset following callbacks: |
108 | For specific callback RxEventCallback, use dedicated registration/reset functions: |
108 | (+) TxHalfCpltCallback : Tx Half Complete Callback. |
109 | respectively @ref HAL_UART_RegisterRxEventCallback() , @ref HAL_UART_UnRegisterRxEventCallback(). |
109 | (+) TxCpltCallback : Tx Complete Callback. |
110 | 110 | (+) RxHalfCpltCallback : Rx Half Complete Callback. |
|
111 | [..] |
111 | (+) RxCpltCallback : Rx Complete Callback. |
112 | By default, after the @ref HAL_UART_Init() and when the state is HAL_UART_STATE_RESET |
112 | (+) ErrorCallback : Error Callback. |
113 | all callbacks are set to the corresponding weak (surcharged) functions: |
113 | (+) AbortCpltCallback : Abort Complete Callback. |
114 | examples @ref HAL_UART_TxCpltCallback(), @ref HAL_UART_RxHalfCpltCallback(). |
114 | (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
115 | Exception done for MspInit and MspDeInit functions that are respectively |
115 | (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
116 | reset to the legacy weak (surcharged) functions in the @ref HAL_UART_Init() |
116 | (+) MspInitCallback : UART MspInit. |
117 | and @ref HAL_UART_DeInit() only when these callbacks are null (not registered beforehand). |
117 | (+) MspDeInitCallback : UART MspDeInit. |
118 | If not, MspInit or MspDeInit are not null, the @ref HAL_UART_Init() and @ref HAL_UART_DeInit() |
118 | |
119 | keep and use the user MspInit/MspDeInit callbacks (registered beforehand). |
119 | [..] |
120 | 120 | For specific callback RxEventCallback, use dedicated registration/reset functions: |
|
121 | [..] |
121 | respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback(). |
122 | Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only. |
122 | |
123 | Exception done MspInit/MspDeInit that can be registered/unregistered |
123 | [..] |
124 | in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user) |
124 | By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET |
125 | MspInit/DeInit callbacks can be used during the Init/DeInit. |
125 | all callbacks are set to the corresponding weak (surcharged) functions: |
126 | In that case first register the MspInit/MspDeInit user callbacks |
126 | examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback(). |
127 | using @ref HAL_UART_RegisterCallback() before calling @ref HAL_UART_DeInit() |
127 | Exception done for MspInit and MspDeInit functions that are respectively |
128 | or @ref HAL_UART_Init() function. |
128 | reset to the legacy weak (surcharged) functions in the HAL_UART_Init() |
129 | 129 | and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand). |
|
130 | [..] |
130 | If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit() |
131 | When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or |
131 | keep and use the user MspInit/MspDeInit callbacks (registered beforehand). |
132 | not defined, the callback registration feature is not available |
132 | |
133 | and weak (surcharged) callbacks are used. |
133 | [..] |
134 | 134 | Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only. |
|
135 | [..] |
135 | Exception done MspInit/MspDeInit that can be registered/unregistered |
136 | Three operation modes are available within this driver : |
136 | in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user) |
137 | 137 | MspInit/DeInit callbacks can be used during the Init/DeInit. |
|
138 | *** Polling mode IO operation *** |
138 | In that case first register the MspInit/MspDeInit user callbacks |
139 | ================================= |
139 | using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit() |
140 | [..] |
140 | or HAL_UART_Init() function. |
141 | (+) Send an amount of data in blocking mode using HAL_UART_Transmit() |
141 | |
142 | (+) Receive an amount of data in blocking mode using HAL_UART_Receive() |
142 | [..] |
143 | 143 | When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or |
|
144 | *** Interrupt mode IO operation *** |
144 | not defined, the callback registration feature is not available |
145 | =================================== |
145 | and weak (surcharged) callbacks are used. |
146 | [..] |
146 | |
147 | (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() |
147 | [..] |
148 | (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can |
148 | Three operation modes are available within this driver : |
149 | add his own code by customization of function pointer HAL_UART_TxCpltCallback |
149 | |
150 | (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() |
150 | *** Polling mode IO operation *** |
151 | (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can |
151 | ================================= |
152 | add his own code by customization of function pointer HAL_UART_RxCpltCallback |
152 | [..] |
153 | (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can |
153 | (+) Send an amount of data in blocking mode using HAL_UART_Transmit() |
154 | add his own code by customization of function pointer HAL_UART_ErrorCallback |
154 | (+) Receive an amount of data in blocking mode using HAL_UART_Receive() |
155 | 155 | ||
156 | *** DMA mode IO operation *** |
156 | *** Interrupt mode IO operation *** |
157 | ============================== |
157 | =================================== |
158 | [..] |
158 | [..] |
159 | (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() |
159 | (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() |
160 | (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can |
160 | (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can |
161 | add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback |
161 | add his own code by customization of function pointer HAL_UART_TxCpltCallback |
162 | (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can |
162 | (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() |
163 | add his own code by customization of function pointer HAL_UART_TxCpltCallback |
163 | (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can |
164 | (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() |
164 | add his own code by customization of function pointer HAL_UART_RxCpltCallback |
165 | (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can |
165 | (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can |
166 | add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback |
166 | add his own code by customization of function pointer HAL_UART_ErrorCallback |
167 | (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can |
167 | |
168 | add his own code by customization of function pointer HAL_UART_RxCpltCallback |
168 | *** DMA mode IO operation *** |
169 | (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can |
169 | ============================== |
170 | add his own code by customization of function pointer HAL_UART_ErrorCallback |
170 | [..] |
171 | (+) Pause the DMA Transfer using HAL_UART_DMAPause() |
171 | (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() |
172 | (+) Resume the DMA Transfer using HAL_UART_DMAResume() |
172 | (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can |
173 | (+) Stop the DMA Transfer using HAL_UART_DMAStop() |
173 | add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback |
174 | 174 | (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can |
|
175 | 175 | add his own code by customization of function pointer HAL_UART_TxCpltCallback |
|
176 | [..] This subsection also provides a set of additional functions providing enhanced reception |
176 | (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() |
177 | services to user. (For example, these functions allow application to handle use cases |
177 | (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can |
178 | where number of data to be received is unknown). |
178 | add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback |
179 | 179 | (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can |
|
180 | (#) Compared to standard reception services which only consider number of received |
180 | add his own code by customization of function pointer HAL_UART_RxCpltCallback |
181 | data elements as reception completion criteria, these functions also consider additional events |
181 | (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can |
182 | as triggers for updating reception status to caller : |
182 | add his own code by customization of function pointer HAL_UART_ErrorCallback |
183 | (+) Detection of inactivity period (RX line has not been active for a given period). |
183 | (+) Pause the DMA Transfer using HAL_UART_DMAPause() |
184 | (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state) |
184 | (+) Resume the DMA Transfer using HAL_UART_DMAResume() |
185 | for 1 frame time, after last received byte. |
185 | (+) Stop the DMA Transfer using HAL_UART_DMAStop() |
186 | 186 | ||
187 | (#) There are two mode of transfer: |
187 | |
188 | (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received, |
188 | [..] This subsection also provides a set of additional functions providing enhanced reception |
189 | or till IDLE event occurs. Reception is handled only during function execution. |
189 | services to user. (For example, these functions allow application to handle use cases |
190 | When function exits, no data reception could occur. HAL status and number of actually received data elements, |
190 | where number of data to be received is unknown). |
191 | are returned by function after finishing transfer. |
191 | |
192 | (+) Non-Blocking mode: The reception is performed using Interrupts or DMA. |
192 | (#) Compared to standard reception services which only consider number of received |
193 | These API's return the HAL status. |
193 | data elements as reception completion criteria, these functions also consider additional events |
194 | The end of the data processing will be indicated through the |
194 | as triggers for updating reception status to caller : |
195 | dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. |
195 | (+) Detection of inactivity period (RX line has not been active for a given period). |
196 | The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process |
196 | (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state) |
197 | The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected. |
197 | for 1 frame time, after last received byte. |
198 | 198 | ||
199 | (#) Blocking mode API: |
199 | (#) There are two mode of transfer: |
200 | (+) HAL_UARTEx_ReceiveToIdle() |
200 | (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received, |
201 | 201 | or till IDLE event occurs. Reception is handled only during function execution. |
|
202 | (#) Non-Blocking mode API with Interrupt: |
202 | When function exits, no data reception could occur. HAL status and number of actually received data elements, |
203 | (+) HAL_UARTEx_ReceiveToIdle_IT() |
203 | are returned by function after finishing transfer. |
204 | 204 | (+) Non-Blocking mode: The reception is performed using Interrupts or DMA. |
|
205 | (#) Non-Blocking mode API with DMA: |
205 | These API's return the HAL status. |
206 | (+) HAL_UARTEx_ReceiveToIdle_DMA() |
206 | The end of the data processing will be indicated through the |
207 | 207 | dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. |
|
208 | 208 | The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process |
|
209 | *** UART HAL driver macros list *** |
209 | The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected. |
210 | ============================================= |
210 | |
211 | [..] |
211 | (#) Blocking mode API: |
212 | Below the list of most used macros in UART HAL driver. |
212 | (+) HAL_UARTEx_ReceiveToIdle() |
213 | 213 | ||
214 | (+) __HAL_UART_ENABLE: Enable the UART peripheral |
214 | (#) Non-Blocking mode API with Interrupt: |
215 | (+) __HAL_UART_DISABLE: Disable the UART peripheral |
215 | (+) HAL_UARTEx_ReceiveToIdle_IT() |
216 | (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not |
216 | |
217 | (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag |
217 | (#) Non-Blocking mode API with DMA: |
218 | (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt |
218 | (+) HAL_UARTEx_ReceiveToIdle_DMA() |
219 | (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt |
219 | |
220 | (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not |
220 | |
221 | 221 | *** UART HAL driver macros list *** |
|
222 | [..] |
222 | ============================================= |
223 | (@) You can refer to the UART HAL driver header file for more useful macros |
223 | [..] |
224 | 224 | Below the list of most used macros in UART HAL driver. |
|
225 | @endverbatim |
225 | |
226 | [..] |
226 | (+) __HAL_UART_ENABLE: Enable the UART peripheral |
227 | (@) Additional remark: If the parity is enabled, then the MSB bit of the data written |
227 | (+) __HAL_UART_DISABLE: Disable the UART peripheral |
228 | in the data register is transmitted but is changed by the parity bit. |
228 | (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not |
229 | Depending on the frame length defined by the M bit (8-bits or 9-bits), |
229 | (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag |
230 | the possible UART frame formats are as listed in the following table: |
230 | (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt |
231 | +-------------------------------------------------------------+ |
231 | (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt |
232 | | M bit | PCE bit | UART frame | |
232 | (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not |
233 | |---------------------|---------------------------------------| |
233 | |
234 | | 0 | 0 | | SB | 8 bit data | STB | | |
234 | [..] |
235 | |---------|-----------|---------------------------------------| |
235 | (@) You can refer to the UART HAL driver header file for more useful macros |
236 | | 0 | 1 | | SB | 7 bit data | PB | STB | | |
236 | |
237 | |---------|-----------|---------------------------------------| |
237 | @endverbatim |
238 | | 1 | 0 | | SB | 9 bit data | STB | | |
238 | [..] |
239 | |---------|-----------|---------------------------------------| |
239 | (@) Additional remark: If the parity is enabled, then the MSB bit of the data written |
240 | | 1 | 1 | | SB | 8 bit data | PB | STB | | |
240 | in the data register is transmitted but is changed by the parity bit. |
241 | +-------------------------------------------------------------+ |
241 | Depending on the frame length defined by the M bit (8-bits or 9-bits), |
242 | ****************************************************************************** |
242 | the possible UART frame formats are as listed in the following table: |
243 | * @attention |
243 | +-------------------------------------------------------------+ |
244 | * |
244 | | M bit | PCE bit | UART frame | |
245 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
245 | |---------------------|---------------------------------------| |
246 | * All rights reserved.</center></h2> |
246 | | 0 | 0 | | SB | 8 bit data | STB | | |
247 | * |
247 | |---------|-----------|---------------------------------------| |
248 | * This software component is licensed by ST under BSD 3-Clause license, |
248 | | 0 | 1 | | SB | 7 bit data | PB | STB | | |
249 | * the "License"; You may not use this file except in compliance with the |
249 | |---------|-----------|---------------------------------------| |
250 | * License. You may obtain a copy of the License at: |
250 | | 1 | 0 | | SB | 9 bit data | STB | | |
251 | * opensource.org/licenses/BSD-3-Clause |
251 | |---------|-----------|---------------------------------------| |
252 | * |
252 | | 1 | 1 | | SB | 8 bit data | PB | STB | | |
253 | ****************************************************************************** |
253 | +-------------------------------------------------------------+ |
254 | */ |
254 | ****************************************************************************** |
255 | 255 | */ |
|
256 | /* Includes ------------------------------------------------------------------*/ |
256 | |
257 | #include "stm32f1xx_hal.h" |
257 | /* Includes ------------------------------------------------------------------*/ |
258 | 258 | #include "stm32f1xx_hal.h" |
|
259 | /** @addtogroup STM32F1xx_HAL_Driver |
259 | |
260 | * @{ |
260 | /** @addtogroup STM32F1xx_HAL_Driver |
261 | */ |
261 | * @{ |
262 | 262 | */ |
|
263 | /** @defgroup UART UART |
263 | |
264 | * @brief HAL UART module driver |
264 | /** @defgroup UART UART |
265 | * @{ |
265 | * @brief HAL UART module driver |
266 | */ |
266 | * @{ |
267 | #ifdef HAL_UART_MODULE_ENABLED |
267 | */ |
268 | 268 | #ifdef HAL_UART_MODULE_ENABLED |
|
269 | /* Private typedef -----------------------------------------------------------*/ |
269 | |
270 | /* Private define ------------------------------------------------------------*/ |
270 | /* Private typedef -----------------------------------------------------------*/ |
271 | /** @addtogroup UART_Private_Constants |
271 | /* Private define ------------------------------------------------------------*/ |
272 | * @{ |
272 | /** @addtogroup UART_Private_Constants |
273 | */ |
273 | * @{ |
274 | /** |
274 | */ |
275 | * @} |
275 | /** |
276 | */ |
276 | * @} |
277 | /* Private macro -------------------------------------------------------------*/ |
277 | */ |
278 | /* Private variables ---------------------------------------------------------*/ |
278 | /* Private macro -------------------------------------------------------------*/ |
279 | /* Private function prototypes -----------------------------------------------*/ |
279 | /* Private variables ---------------------------------------------------------*/ |
280 | /** @addtogroup UART_Private_Functions UART Private Functions |
280 | /* Private function prototypes -----------------------------------------------*/ |
281 | * @{ |
281 | /** @addtogroup UART_Private_Functions UART Private Functions |
282 | */ |
282 | * @{ |
283 | 283 | */ |
|
284 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
284 | |
285 | void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart); |
285 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
286 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
286 | void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart); |
287 | static void UART_EndTxTransfer(UART_HandleTypeDef *huart); |
287 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
288 | static void UART_EndRxTransfer(UART_HandleTypeDef *huart); |
288 | static void UART_EndTxTransfer(UART_HandleTypeDef *huart); |
289 | static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); |
289 | static void UART_EndRxTransfer(UART_HandleTypeDef *huart); |
290 | static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); |
290 | static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); |
291 | static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); |
291 | static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); |
292 | static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); |
292 | static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); |
293 | static void UART_DMAError(DMA_HandleTypeDef *hdma); |
293 | static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); |
294 | static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); |
294 | static void UART_DMAError(DMA_HandleTypeDef *hdma); |
295 | static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); |
295 | static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); |
296 | static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); |
296 | static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); |
297 | static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
297 | static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); |
298 | static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
298 | static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
299 | static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart); |
299 | static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
300 | static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart); |
300 | static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart); |
301 | static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart); |
301 | static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart); |
302 | static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); |
302 | static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart); |
303 | static void UART_SetConfig(UART_HandleTypeDef *huart); |
303 | static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, |
304 | 304 | uint32_t Tickstart, uint32_t Timeout); |
|
305 | /** |
305 | static void UART_SetConfig(UART_HandleTypeDef *huart); |
306 | * @} |
306 | |
307 | */ |
307 | /** |
308 | 308 | * @} |
|
309 | /* Exported functions ---------------------------------------------------------*/ |
309 | */ |
310 | /** @defgroup UART_Exported_Functions UART Exported Functions |
310 | |
311 | * @{ |
311 | /* Exported functions ---------------------------------------------------------*/ |
312 | */ |
312 | /** @defgroup UART_Exported_Functions UART Exported Functions |
313 | 313 | * @{ |
|
314 | /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions |
314 | */ |
315 | * @brief Initialization and Configuration functions |
315 | |
316 | * |
316 | /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions |
317 | @verbatim |
317 | * @brief Initialization and Configuration functions |
318 | =============================================================================== |
318 | * |
319 | ##### Initialization and Configuration functions ##### |
319 | @verbatim |
320 | =============================================================================== |
320 | =============================================================================== |
321 | [..] |
321 | ##### Initialization and Configuration functions ##### |
322 | This subsection provides a set of functions allowing to initialize the USARTx or the UARTy |
322 | =============================================================================== |
323 | in asynchronous mode. |
323 | [..] |
324 | (+) For the asynchronous mode only these parameters can be configured: |
324 | This subsection provides a set of functions allowing to initialize the USARTx or the UARTy |
325 | (++) Baud Rate |
325 | in asynchronous mode. |
326 | (++) Word Length |
326 | (+) For the asynchronous mode only these parameters can be configured: |
327 | (++) Stop Bit |
327 | (++) Baud Rate |
328 | (++) Parity: If the parity is enabled, then the MSB bit of the data written |
328 | (++) Word Length |
329 | in the data register is transmitted but is changed by the parity bit. |
329 | (++) Stop Bit |
330 | Depending on the frame length defined by the M bit (8-bits or 9-bits), |
330 | (++) Parity: If the parity is enabled, then the MSB bit of the data written |
331 | please refer to Reference manual for possible UART frame formats. |
331 | in the data register is transmitted but is changed by the parity bit. |
332 | (++) Hardware flow control |
332 | Depending on the frame length defined by the M bit (8-bits or 9-bits), |
333 | (++) Receiver/transmitter modes |
333 | please refer to Reference manual for possible UART frame formats. |
334 | (++) Over Sampling Method |
334 | (++) Hardware flow control |
335 | [..] |
335 | (++) Receiver/transmitter modes |
336 | The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs |
336 | (++) Over Sampling Method |
337 | follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration |
337 | [..] |
338 | procedures (details for the procedures are available in reference manuals |
338 | The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs |
339 | (RM0008 for STM32F10Xxx MCUs and RM0041 for STM32F100xx MCUs)). |
339 | follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration |
340 | 340 | procedures (details for the procedures are available in reference manuals |
|
341 | @endverbatim |
341 | (RM0008 for STM32F10Xxx MCUs and RM0041 for STM32F100xx MCUs)). |
342 | * @{ |
342 | |
343 | */ |
343 | @endverbatim |
344 | 344 | * @{ |
|
345 | /** |
345 | */ |
346 | * @brief Initializes the UART mode according to the specified parameters in |
346 | |
347 | * the UART_InitTypeDef and create the associated handle. |
347 | /** |
348 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
348 | * @brief Initializes the UART mode according to the specified parameters in |
349 | * the configuration information for the specified UART module. |
349 | * the UART_InitTypeDef and create the associated handle. |
350 | * @retval HAL status |
350 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
351 | */ |
351 | * the configuration information for the specified UART module. |
352 | HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) |
352 | * @retval HAL status |
353 | { |
353 | */ |
354 | /* Check the UART handle allocation */ |
354 | HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) |
355 | if (huart == NULL) |
355 | { |
356 | { |
356 | /* Check the UART handle allocation */ |
357 | return HAL_ERROR; |
357 | if (huart == NULL) |
358 | } |
358 | { |
359 | 359 | return HAL_ERROR; |
|
360 | /* Check the parameters */ |
360 | } |
361 | if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) |
361 | |
362 | { |
362 | /* Check the parameters */ |
363 | /* The hardware flow control is available only for USART1, USART2 and USART3 */ |
363 | if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) |
364 | assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); |
364 | { |
365 | assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); |
365 | /* The hardware flow control is available only for USART1, USART2 and USART3 */ |
366 | } |
366 | assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); |
367 | else |
367 | assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); |
368 | { |
368 | } |
369 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
369 | else |
370 | } |
370 | { |
371 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
371 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
372 | #if defined(USART_CR1_OVER8) |
372 | } |
373 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
373 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
374 | #endif /* USART_CR1_OVER8 */ |
374 | #if defined(USART_CR1_OVER8) |
375 | 375 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
|
376 | if (huart->gState == HAL_UART_STATE_RESET) |
376 | #endif /* USART_CR1_OVER8 */ |
377 | { |
377 | |
378 | /* Allocate lock resource and initialize it */ |
378 | if (huart->gState == HAL_UART_STATE_RESET) |
379 | huart->Lock = HAL_UNLOCKED; |
379 | { |
380 | 380 | /* Allocate lock resource and initialize it */ |
|
381 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
381 | huart->Lock = HAL_UNLOCKED; |
382 | UART_InitCallbacksToDefault(huart); |
382 | |
383 | 383 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
384 | if (huart->MspInitCallback == NULL) |
384 | UART_InitCallbacksToDefault(huart); |
385 | { |
385 | |
386 | huart->MspInitCallback = HAL_UART_MspInit; |
386 | if (huart->MspInitCallback == NULL) |
387 | } |
387 | { |
388 | 388 | huart->MspInitCallback = HAL_UART_MspInit; |
|
389 | /* Init the low level hardware */ |
389 | } |
390 | huart->MspInitCallback(huart); |
390 | |
391 | #else |
391 | /* Init the low level hardware */ |
392 | /* Init the low level hardware : GPIO, CLOCK */ |
392 | huart->MspInitCallback(huart); |
393 | HAL_UART_MspInit(huart); |
393 | #else |
394 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
394 | /* Init the low level hardware : GPIO, CLOCK */ |
395 | } |
395 | HAL_UART_MspInit(huart); |
396 | 396 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
397 | huart->gState = HAL_UART_STATE_BUSY; |
397 | } |
398 | 398 | ||
399 | /* Disable the peripheral */ |
399 | huart->gState = HAL_UART_STATE_BUSY; |
400 | __HAL_UART_DISABLE(huart); |
400 | |
401 | 401 | /* Disable the peripheral */ |
|
402 | /* Set the UART Communication parameters */ |
402 | __HAL_UART_DISABLE(huart); |
403 | UART_SetConfig(huart); |
403 | |
404 | 404 | /* Set the UART Communication parameters */ |
|
405 | /* In asynchronous mode, the following bits must be kept cleared: |
405 | UART_SetConfig(huart); |
406 | - LINEN and CLKEN bits in the USART_CR2 register, |
406 | |
407 | - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ |
407 | /* In asynchronous mode, the following bits must be kept cleared: |
408 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
408 | - LINEN and CLKEN bits in the USART_CR2 register, |
409 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
409 | - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ |
410 | 410 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
|
411 | /* Enable the peripheral */ |
411 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
412 | __HAL_UART_ENABLE(huart); |
412 | |
413 | 413 | /* Enable the peripheral */ |
|
414 | /* Initialize the UART state */ |
414 | __HAL_UART_ENABLE(huart); |
415 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
415 | |
416 | huart->gState = HAL_UART_STATE_READY; |
416 | /* Initialize the UART state */ |
417 | huart->RxState = HAL_UART_STATE_READY; |
417 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
418 | 418 | huart->gState = HAL_UART_STATE_READY; |
|
419 | return HAL_OK; |
419 | huart->RxState = HAL_UART_STATE_READY; |
420 | } |
420 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
421 | 421 | ||
422 | /** |
422 | return HAL_OK; |
423 | * @brief Initializes the half-duplex mode according to the specified |
423 | } |
424 | * parameters in the UART_InitTypeDef and create the associated handle. |
424 | |
425 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
425 | /** |
426 | * the configuration information for the specified UART module. |
426 | * @brief Initializes the half-duplex mode according to the specified |
427 | * @retval HAL status |
427 | * parameters in the UART_InitTypeDef and create the associated handle. |
428 | */ |
428 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
429 | HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) |
429 | * the configuration information for the specified UART module. |
430 | { |
430 | * @retval HAL status |
431 | /* Check the UART handle allocation */ |
431 | */ |
432 | if (huart == NULL) |
432 | HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) |
433 | { |
433 | { |
434 | return HAL_ERROR; |
434 | /* Check the UART handle allocation */ |
435 | } |
435 | if (huart == NULL) |
436 | 436 | { |
|
437 | /* Check the parameters */ |
437 | return HAL_ERROR; |
438 | assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); |
438 | } |
439 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
439 | |
440 | #if defined(USART_CR1_OVER8) |
440 | /* Check the parameters */ |
441 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
441 | assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); |
442 | #endif /* USART_CR1_OVER8 */ |
442 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
443 | 443 | #if defined(USART_CR1_OVER8) |
|
444 | if (huart->gState == HAL_UART_STATE_RESET) |
444 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
445 | { |
445 | #endif /* USART_CR1_OVER8 */ |
446 | /* Allocate lock resource and initialize it */ |
446 | |
447 | huart->Lock = HAL_UNLOCKED; |
447 | if (huart->gState == HAL_UART_STATE_RESET) |
448 | 448 | { |
|
449 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
449 | /* Allocate lock resource and initialize it */ |
450 | UART_InitCallbacksToDefault(huart); |
450 | huart->Lock = HAL_UNLOCKED; |
451 | 451 | ||
452 | if (huart->MspInitCallback == NULL) |
452 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
453 | { |
453 | UART_InitCallbacksToDefault(huart); |
454 | huart->MspInitCallback = HAL_UART_MspInit; |
454 | |
455 | } |
455 | if (huart->MspInitCallback == NULL) |
456 | 456 | { |
|
457 | /* Init the low level hardware */ |
457 | huart->MspInitCallback = HAL_UART_MspInit; |
458 | huart->MspInitCallback(huart); |
458 | } |
459 | #else |
459 | |
460 | /* Init the low level hardware : GPIO, CLOCK */ |
460 | /* Init the low level hardware */ |
461 | HAL_UART_MspInit(huart); |
461 | huart->MspInitCallback(huart); |
462 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
462 | #else |
463 | } |
463 | /* Init the low level hardware : GPIO, CLOCK */ |
464 | 464 | HAL_UART_MspInit(huart); |
|
465 | huart->gState = HAL_UART_STATE_BUSY; |
465 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
466 | 466 | } |
|
467 | /* Disable the peripheral */ |
467 | |
468 | __HAL_UART_DISABLE(huart); |
468 | huart->gState = HAL_UART_STATE_BUSY; |
469 | 469 | ||
470 | /* Set the UART Communication parameters */ |
470 | /* Disable the peripheral */ |
471 | UART_SetConfig(huart); |
471 | __HAL_UART_DISABLE(huart); |
472 | 472 | ||
473 | /* In half-duplex mode, the following bits must be kept cleared: |
473 | /* Set the UART Communication parameters */ |
474 | - LINEN and CLKEN bits in the USART_CR2 register, |
474 | UART_SetConfig(huart); |
475 | - SCEN and IREN bits in the USART_CR3 register.*/ |
475 | |
476 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
476 | /* In half-duplex mode, the following bits must be kept cleared: |
477 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); |
477 | - LINEN and CLKEN bits in the USART_CR2 register, |
478 | 478 | - SCEN and IREN bits in the USART_CR3 register.*/ |
|
479 | /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ |
479 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
480 | SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); |
480 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); |
481 | 481 | ||
482 | /* Enable the peripheral */ |
482 | /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ |
483 | __HAL_UART_ENABLE(huart); |
483 | SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); |
484 | 484 | ||
485 | /* Initialize the UART state*/ |
485 | /* Enable the peripheral */ |
486 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
486 | __HAL_UART_ENABLE(huart); |
487 | huart->gState = HAL_UART_STATE_READY; |
487 | |
488 | huart->RxState = HAL_UART_STATE_READY; |
488 | /* Initialize the UART state*/ |
489 | 489 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
490 | return HAL_OK; |
490 | huart->gState = HAL_UART_STATE_READY; |
491 | } |
491 | huart->RxState = HAL_UART_STATE_READY; |
492 | 492 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
493 | /** |
493 | |
494 | * @brief Initializes the LIN mode according to the specified |
494 | return HAL_OK; |
495 | * parameters in the UART_InitTypeDef and create the associated handle. |
495 | } |
496 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
496 | |
497 | * the configuration information for the specified UART module. |
497 | /** |
498 | * @param BreakDetectLength Specifies the LIN break detection length. |
498 | * @brief Initializes the LIN mode according to the specified |
499 | * This parameter can be one of the following values: |
499 | * parameters in the UART_InitTypeDef and create the associated handle. |
500 | * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection |
500 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
501 | * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection |
501 | * the configuration information for the specified UART module. |
502 | * @retval HAL status |
502 | * @param BreakDetectLength Specifies the LIN break detection length. |
503 | */ |
503 | * This parameter can be one of the following values: |
504 | HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) |
504 | * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection |
505 | { |
505 | * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection |
506 | /* Check the UART handle allocation */ |
506 | * @retval HAL status |
507 | if (huart == NULL) |
507 | */ |
508 | { |
508 | HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) |
509 | return HAL_ERROR; |
509 | { |
510 | } |
510 | /* Check the UART handle allocation */ |
511 | 511 | if (huart == NULL) |
|
512 | /* Check the LIN UART instance */ |
512 | { |
513 | assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); |
513 | return HAL_ERROR; |
514 | 514 | } |
|
515 | /* Check the Break detection length parameter */ |
515 | |
516 | assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); |
516 | /* Check the LIN UART instance */ |
517 | assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength)); |
517 | assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); |
518 | #if defined(USART_CR1_OVER8) |
518 | |
519 | assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling)); |
519 | /* Check the Break detection length parameter */ |
520 | #endif /* USART_CR1_OVER8 */ |
520 | assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); |
521 | 521 | assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength)); |
|
522 | if (huart->gState == HAL_UART_STATE_RESET) |
522 | #if defined(USART_CR1_OVER8) |
523 | { |
523 | assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling)); |
524 | /* Allocate lock resource and initialize it */ |
524 | #endif /* USART_CR1_OVER8 */ |
525 | huart->Lock = HAL_UNLOCKED; |
525 | |
526 | 526 | if (huart->gState == HAL_UART_STATE_RESET) |
|
527 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
527 | { |
528 | UART_InitCallbacksToDefault(huart); |
528 | /* Allocate lock resource and initialize it */ |
529 | 529 | huart->Lock = HAL_UNLOCKED; |
|
530 | if (huart->MspInitCallback == NULL) |
530 | |
531 | { |
531 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
532 | huart->MspInitCallback = HAL_UART_MspInit; |
532 | UART_InitCallbacksToDefault(huart); |
533 | } |
533 | |
534 | 534 | if (huart->MspInitCallback == NULL) |
|
535 | /* Init the low level hardware */ |
535 | { |
536 | huart->MspInitCallback(huart); |
536 | huart->MspInitCallback = HAL_UART_MspInit; |
537 | #else |
537 | } |
538 | /* Init the low level hardware : GPIO, CLOCK */ |
538 | |
539 | HAL_UART_MspInit(huart); |
539 | /* Init the low level hardware */ |
540 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
540 | huart->MspInitCallback(huart); |
541 | } |
541 | #else |
542 | 542 | /* Init the low level hardware : GPIO, CLOCK */ |
|
543 | huart->gState = HAL_UART_STATE_BUSY; |
543 | HAL_UART_MspInit(huart); |
544 | 544 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
545 | /* Disable the peripheral */ |
545 | } |
546 | __HAL_UART_DISABLE(huart); |
546 | |
547 | 547 | huart->gState = HAL_UART_STATE_BUSY; |
|
548 | /* Set the UART Communication parameters */ |
548 | |
549 | UART_SetConfig(huart); |
549 | /* Disable the peripheral */ |
550 | 550 | __HAL_UART_DISABLE(huart); |
|
551 | /* In LIN mode, the following bits must be kept cleared: |
551 | |
552 | - CLKEN bits in the USART_CR2 register, |
552 | /* Set the UART Communication parameters */ |
553 | - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ |
553 | UART_SetConfig(huart); |
554 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN)); |
554 | |
555 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN)); |
555 | /* In LIN mode, the following bits must be kept cleared: |
556 | 556 | - CLKEN bits in the USART_CR2 register, |
|
557 | /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ |
557 | - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ |
558 | SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); |
558 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN)); |
559 | 559 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN)); |
|
560 | /* Set the USART LIN Break detection length. */ |
560 | |
561 | CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL); |
561 | /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ |
562 | SET_BIT(huart->Instance->CR2, BreakDetectLength); |
562 | SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); |
563 | 563 | ||
564 | /* Enable the peripheral */ |
564 | /* Set the USART LIN Break detection length. */ |
565 | __HAL_UART_ENABLE(huart); |
565 | CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL); |
566 | 566 | SET_BIT(huart->Instance->CR2, BreakDetectLength); |
|
567 | /* Initialize the UART state*/ |
567 | |
568 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
568 | /* Enable the peripheral */ |
569 | huart->gState = HAL_UART_STATE_READY; |
569 | __HAL_UART_ENABLE(huart); |
570 | huart->RxState = HAL_UART_STATE_READY; |
570 | |
571 | 571 | /* Initialize the UART state*/ |
|
572 | return HAL_OK; |
572 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
573 | } |
573 | huart->gState = HAL_UART_STATE_READY; |
574 | 574 | huart->RxState = HAL_UART_STATE_READY; |
|
575 | /** |
575 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
576 | * @brief Initializes the Multi-Processor mode according to the specified |
576 | |
577 | * parameters in the UART_InitTypeDef and create the associated handle. |
577 | return HAL_OK; |
578 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
578 | } |
579 | * the configuration information for the specified UART module. |
579 | |
580 | * @param Address USART address |
580 | /** |
581 | * @param WakeUpMethod specifies the USART wake-up method. |
581 | * @brief Initializes the Multi-Processor mode according to the specified |
582 | * This parameter can be one of the following values: |
582 | * parameters in the UART_InitTypeDef and create the associated handle. |
583 | * @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection |
583 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
584 | * @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark |
584 | * the configuration information for the specified UART module. |
585 | * @retval HAL status |
585 | * @param Address USART address |
586 | */ |
586 | * @param WakeUpMethod specifies the USART wake-up method. |
587 | HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) |
587 | * This parameter can be one of the following values: |
588 | { |
588 | * @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection |
589 | /* Check the UART handle allocation */ |
589 | * @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark |
590 | if (huart == NULL) |
590 | * @retval HAL status |
591 | { |
591 | */ |
592 | return HAL_ERROR; |
592 | HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) |
593 | } |
593 | { |
594 | 594 | /* Check the UART handle allocation */ |
|
595 | /* Check the parameters */ |
595 | if (huart == NULL) |
596 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
596 | { |
597 | 597 | return HAL_ERROR; |
|
598 | /* Check the Address & wake up method parameters */ |
598 | } |
599 | assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); |
599 | |
600 | assert_param(IS_UART_ADDRESS(Address)); |
600 | /* Check the parameters */ |
601 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
601 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
602 | #if defined(USART_CR1_OVER8) |
602 | |
603 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
603 | /* Check the Address & wake up method parameters */ |
604 | #endif /* USART_CR1_OVER8 */ |
604 | assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); |
605 | 605 | assert_param(IS_UART_ADDRESS(Address)); |
|
606 | if (huart->gState == HAL_UART_STATE_RESET) |
606 | assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
607 | { |
607 | #if defined(USART_CR1_OVER8) |
608 | /* Allocate lock resource and initialize it */ |
608 | assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
609 | huart->Lock = HAL_UNLOCKED; |
609 | #endif /* USART_CR1_OVER8 */ |
610 | 610 | ||
611 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
611 | if (huart->gState == HAL_UART_STATE_RESET) |
612 | UART_InitCallbacksToDefault(huart); |
612 | { |
613 | 613 | /* Allocate lock resource and initialize it */ |
|
614 | if (huart->MspInitCallback == NULL) |
614 | huart->Lock = HAL_UNLOCKED; |
615 | { |
615 | |
616 | huart->MspInitCallback = HAL_UART_MspInit; |
616 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
617 | } |
617 | UART_InitCallbacksToDefault(huart); |
618 | 618 | ||
619 | /* Init the low level hardware */ |
619 | if (huart->MspInitCallback == NULL) |
620 | huart->MspInitCallback(huart); |
620 | { |
621 | #else |
621 | huart->MspInitCallback = HAL_UART_MspInit; |
622 | /* Init the low level hardware : GPIO, CLOCK */ |
622 | } |
623 | HAL_UART_MspInit(huart); |
623 | |
624 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
624 | /* Init the low level hardware */ |
625 | } |
625 | huart->MspInitCallback(huart); |
626 | 626 | #else |
|
627 | huart->gState = HAL_UART_STATE_BUSY; |
627 | /* Init the low level hardware : GPIO, CLOCK */ |
628 | 628 | HAL_UART_MspInit(huart); |
|
629 | /* Disable the peripheral */ |
629 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
630 | __HAL_UART_DISABLE(huart); |
630 | } |
631 | 631 | ||
632 | /* Set the UART Communication parameters */ |
632 | huart->gState = HAL_UART_STATE_BUSY; |
633 | UART_SetConfig(huart); |
633 | |
634 | 634 | /* Disable the peripheral */ |
|
635 | /* In Multi-Processor mode, the following bits must be kept cleared: |
635 | __HAL_UART_DISABLE(huart); |
636 | - LINEN and CLKEN bits in the USART_CR2 register, |
636 | |
637 | - SCEN, HDSEL and IREN bits in the USART_CR3 register */ |
637 | /* Set the UART Communication parameters */ |
638 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
638 | UART_SetConfig(huart); |
639 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
639 | |
640 | 640 | /* In Multi-Processor mode, the following bits must be kept cleared: |
|
641 | /* Set the USART address node */ |
641 | - LINEN and CLKEN bits in the USART_CR2 register, |
642 | CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD); |
642 | - SCEN, HDSEL and IREN bits in the USART_CR3 register */ |
643 | SET_BIT(huart->Instance->CR2, Address); |
643 | CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
644 | 644 | CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
|
645 | /* Set the wake up method by setting the WAKE bit in the CR1 register */ |
645 | |
646 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE); |
646 | /* Set the USART address node */ |
647 | SET_BIT(huart->Instance->CR1, WakeUpMethod); |
647 | CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD); |
648 | 648 | SET_BIT(huart->Instance->CR2, Address); |
|
649 | /* Enable the peripheral */ |
649 | |
650 | __HAL_UART_ENABLE(huart); |
650 | /* Set the wake up method by setting the WAKE bit in the CR1 register */ |
651 | 651 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE); |
|
652 | /* Initialize the UART state */ |
652 | SET_BIT(huart->Instance->CR1, WakeUpMethod); |
653 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
653 | |
654 | huart->gState = HAL_UART_STATE_READY; |
654 | /* Enable the peripheral */ |
655 | huart->RxState = HAL_UART_STATE_READY; |
655 | __HAL_UART_ENABLE(huart); |
656 | 656 | ||
657 | return HAL_OK; |
657 | /* Initialize the UART state */ |
658 | } |
658 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
659 | 659 | huart->gState = HAL_UART_STATE_READY; |
|
660 | /** |
660 | huart->RxState = HAL_UART_STATE_READY; |
661 | * @brief DeInitializes the UART peripheral. |
661 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
662 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
662 | |
663 | * the configuration information for the specified UART module. |
663 | return HAL_OK; |
664 | * @retval HAL status |
664 | } |
665 | */ |
665 | |
666 | HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) |
666 | /** |
667 | { |
667 | * @brief DeInitializes the UART peripheral. |
668 | /* Check the UART handle allocation */ |
668 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
669 | if (huart == NULL) |
669 | * the configuration information for the specified UART module. |
670 | { |
670 | * @retval HAL status |
671 | return HAL_ERROR; |
671 | */ |
672 | } |
672 | HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) |
673 | 673 | { |
|
674 | /* Check the parameters */ |
674 | /* Check the UART handle allocation */ |
675 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
675 | if (huart == NULL) |
676 | 676 | { |
|
677 | huart->gState = HAL_UART_STATE_BUSY; |
677 | return HAL_ERROR; |
678 | 678 | } |
|
679 | /* Disable the Peripheral */ |
679 | |
680 | __HAL_UART_DISABLE(huart); |
680 | /* Check the parameters */ |
681 | 681 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
|
682 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
682 | |
683 | if (huart->MspDeInitCallback == NULL) |
683 | huart->gState = HAL_UART_STATE_BUSY; |
684 | { |
684 | |
685 | huart->MspDeInitCallback = HAL_UART_MspDeInit; |
685 | /* Disable the Peripheral */ |
686 | } |
686 | __HAL_UART_DISABLE(huart); |
687 | /* DeInit the low level hardware */ |
687 | |
688 | huart->MspDeInitCallback(huart); |
688 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
689 | #else |
689 | if (huart->MspDeInitCallback == NULL) |
690 | /* DeInit the low level hardware */ |
690 | { |
691 | HAL_UART_MspDeInit(huart); |
691 | huart->MspDeInitCallback = HAL_UART_MspDeInit; |
692 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
692 | } |
693 | 693 | /* DeInit the low level hardware */ |
|
694 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
694 | huart->MspDeInitCallback(huart); |
695 | huart->gState = HAL_UART_STATE_RESET; |
695 | #else |
696 | huart->RxState = HAL_UART_STATE_RESET; |
696 | /* DeInit the low level hardware */ |
697 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
697 | HAL_UART_MspDeInit(huart); |
698 | 698 | #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
699 | /* Process Unlock */ |
699 | |
700 | __HAL_UNLOCK(huart); |
700 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
701 | 701 | huart->gState = HAL_UART_STATE_RESET; |
|
702 | return HAL_OK; |
702 | huart->RxState = HAL_UART_STATE_RESET; |
703 | } |
703 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
704 | 704 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
705 | /** |
705 | |
706 | * @brief UART MSP Init. |
706 | /* Process Unlock */ |
707 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
707 | __HAL_UNLOCK(huart); |
708 | * the configuration information for the specified UART module. |
708 | |
709 | * @retval None |
709 | return HAL_OK; |
710 | */ |
710 | } |
711 | __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) |
711 | |
712 | { |
712 | /** |
713 | /* Prevent unused argument(s) compilation warning */ |
713 | * @brief UART MSP Init. |
714 | UNUSED(huart); |
714 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
715 | /* NOTE: This function should not be modified, when the callback is needed, |
715 | * the configuration information for the specified UART module. |
716 | the HAL_UART_MspInit could be implemented in the user file |
716 | * @retval None |
717 | */ |
717 | */ |
718 | } |
718 | __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) |
719 | 719 | { |
|
720 | /** |
720 | /* Prevent unused argument(s) compilation warning */ |
721 | * @brief UART MSP DeInit. |
721 | UNUSED(huart); |
722 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
722 | /* NOTE: This function should not be modified, when the callback is needed, |
723 | * the configuration information for the specified UART module. |
723 | the HAL_UART_MspInit could be implemented in the user file |
724 | * @retval None |
724 | */ |
725 | */ |
725 | } |
726 | __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) |
726 | |
727 | { |
727 | /** |
728 | /* Prevent unused argument(s) compilation warning */ |
728 | * @brief UART MSP DeInit. |
729 | UNUSED(huart); |
729 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
730 | /* NOTE: This function should not be modified, when the callback is needed, |
730 | * the configuration information for the specified UART module. |
731 | the HAL_UART_MspDeInit could be implemented in the user file |
731 | * @retval None |
732 | */ |
732 | */ |
733 | } |
733 | __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) |
734 | 734 | { |
|
735 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
735 | /* Prevent unused argument(s) compilation warning */ |
736 | /** |
736 | UNUSED(huart); |
737 | * @brief Register a User UART Callback |
737 | /* NOTE: This function should not be modified, when the callback is needed, |
738 | * To be used instead of the weak predefined callback |
738 | the HAL_UART_MspDeInit could be implemented in the user file |
739 | * @param huart uart handle |
739 | */ |
740 | * @param CallbackID ID of the callback to be registered |
740 | } |
741 | * This parameter can be one of the following values: |
741 | |
742 | * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
742 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
743 | * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
743 | /** |
744 | * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
744 | * @brief Register a User UART Callback |
745 | * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
745 | * To be used instead of the weak predefined callback |
746 | * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
746 | * @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), |
747 | * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
747 | * HAL_MultiProcessor_Init() to register callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID |
748 | * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
748 | * @param huart uart handle |
749 | * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
749 | * @param CallbackID ID of the callback to be registered |
750 | * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
750 | * This parameter can be one of the following values: |
751 | * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
751 | * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
752 | * @param pCallback pointer to the Callback function |
752 | * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
753 | * @retval HAL status |
753 | * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
754 | */ |
754 | * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
755 | HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, pUART_CallbackTypeDef pCallback) |
755 | * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
756 | { |
756 | * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
757 | HAL_StatusTypeDef status = HAL_OK; |
757 | * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
758 | 758 | * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
|
759 | if (pCallback == NULL) |
759 | * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
760 | { |
760 | * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
761 | /* Update the error code */ |
761 | * @param pCallback pointer to the Callback function |
762 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
762 | * @retval HAL status |
763 | 763 | */ |
|
764 | return HAL_ERROR; |
764 | HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, |
765 | } |
765 | pUART_CallbackTypeDef pCallback) |
766 | /* Process locked */ |
766 | { |
767 | __HAL_LOCK(huart); |
767 | HAL_StatusTypeDef status = HAL_OK; |
768 | 768 | ||
769 | if (huart->gState == HAL_UART_STATE_READY) |
769 | if (pCallback == NULL) |
770 | { |
770 | { |
771 | switch (CallbackID) |
771 | /* Update the error code */ |
772 | { |
772 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
773 | case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
773 | |
774 | huart->TxHalfCpltCallback = pCallback; |
774 | return HAL_ERROR; |
775 | break; |
775 | } |
776 | 776 | ||
777 | case HAL_UART_TX_COMPLETE_CB_ID : |
777 | if (huart->gState == HAL_UART_STATE_READY) |
778 | huart->TxCpltCallback = pCallback; |
778 | { |
779 | break; |
779 | switch (CallbackID) |
780 | 780 | { |
|
781 | case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
781 | case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
782 | huart->RxHalfCpltCallback = pCallback; |
782 | huart->TxHalfCpltCallback = pCallback; |
783 | break; |
783 | break; |
784 | 784 | ||
785 | case HAL_UART_RX_COMPLETE_CB_ID : |
785 | case HAL_UART_TX_COMPLETE_CB_ID : |
786 | huart->RxCpltCallback = pCallback; |
786 | huart->TxCpltCallback = pCallback; |
787 | break; |
787 | break; |
788 | 788 | ||
789 | case HAL_UART_ERROR_CB_ID : |
789 | case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
790 | huart->ErrorCallback = pCallback; |
790 | huart->RxHalfCpltCallback = pCallback; |
791 | break; |
791 | break; |
792 | 792 | ||
793 | case HAL_UART_ABORT_COMPLETE_CB_ID : |
793 | case HAL_UART_RX_COMPLETE_CB_ID : |
794 | huart->AbortCpltCallback = pCallback; |
794 | huart->RxCpltCallback = pCallback; |
795 | break; |
795 | break; |
796 | 796 | ||
797 | case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
797 | case HAL_UART_ERROR_CB_ID : |
798 | huart->AbortTransmitCpltCallback = pCallback; |
798 | huart->ErrorCallback = pCallback; |
799 | break; |
799 | break; |
800 | 800 | ||
801 | case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
801 | case HAL_UART_ABORT_COMPLETE_CB_ID : |
802 | huart->AbortReceiveCpltCallback = pCallback; |
802 | huart->AbortCpltCallback = pCallback; |
803 | break; |
803 | break; |
804 | 804 | ||
805 | case HAL_UART_MSPINIT_CB_ID : |
805 | case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
806 | huart->MspInitCallback = pCallback; |
806 | huart->AbortTransmitCpltCallback = pCallback; |
807 | break; |
807 | break; |
808 | 808 | ||
809 | case HAL_UART_MSPDEINIT_CB_ID : |
809 | case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
810 | huart->MspDeInitCallback = pCallback; |
810 | huart->AbortReceiveCpltCallback = pCallback; |
811 | break; |
811 | break; |
812 | 812 | ||
813 | default : |
813 | case HAL_UART_MSPINIT_CB_ID : |
814 | /* Update the error code */ |
814 | huart->MspInitCallback = pCallback; |
815 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
815 | break; |
816 | 816 | ||
817 | /* Return error status */ |
817 | case HAL_UART_MSPDEINIT_CB_ID : |
818 | status = HAL_ERROR; |
818 | huart->MspDeInitCallback = pCallback; |
819 | break; |
819 | break; |
820 | } |
820 | |
821 | } |
821 | default : |
822 | else if (huart->gState == HAL_UART_STATE_RESET) |
822 | /* Update the error code */ |
823 | { |
823 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
824 | switch (CallbackID) |
824 | |
825 | { |
825 | /* Return error status */ |
826 | case HAL_UART_MSPINIT_CB_ID : |
826 | status = HAL_ERROR; |
827 | huart->MspInitCallback = pCallback; |
827 | break; |
828 | break; |
828 | } |
829 | 829 | } |
|
830 | case HAL_UART_MSPDEINIT_CB_ID : |
830 | else if (huart->gState == HAL_UART_STATE_RESET) |
831 | huart->MspDeInitCallback = pCallback; |
831 | { |
832 | break; |
832 | switch (CallbackID) |
833 | 833 | { |
|
834 | default : |
834 | case HAL_UART_MSPINIT_CB_ID : |
835 | /* Update the error code */ |
835 | huart->MspInitCallback = pCallback; |
836 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
836 | break; |
837 | 837 | ||
838 | /* Return error status */ |
838 | case HAL_UART_MSPDEINIT_CB_ID : |
839 | status = HAL_ERROR; |
839 | huart->MspDeInitCallback = pCallback; |
840 | break; |
840 | break; |
841 | } |
841 | |
842 | } |
842 | default : |
843 | else |
843 | /* Update the error code */ |
844 | { |
844 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
845 | /* Update the error code */ |
845 | |
846 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
846 | /* Return error status */ |
847 | 847 | status = HAL_ERROR; |
|
848 | /* Return error status */ |
848 | break; |
849 | status = HAL_ERROR; |
849 | } |
850 | } |
850 | } |
851 | 851 | else |
|
852 | /* Release Lock */ |
852 | { |
853 | __HAL_UNLOCK(huart); |
853 | /* Update the error code */ |
854 | 854 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
855 | return status; |
855 | |
856 | } |
856 | /* Return error status */ |
857 | 857 | status = HAL_ERROR; |
|
858 | /** |
858 | } |
859 | * @brief Unregister an UART Callback |
859 | |
860 | * UART callaback is redirected to the weak predefined callback |
860 | return status; |
861 | * @param huart uart handle |
861 | } |
862 | * @param CallbackID ID of the callback to be unregistered |
862 | |
863 | * This parameter can be one of the following values: |
863 | /** |
864 | * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
864 | * @brief Unregister an UART Callback |
865 | * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
865 | * UART callaback is redirected to the weak predefined callback |
866 | * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
866 | * @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), |
867 | * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
867 | * HAL_LIN_Init(), HAL_MultiProcessor_Init() to un-register callbacks for HAL_UART_MSPINIT_CB_ID |
868 | * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
868 | * and HAL_UART_MSPDEINIT_CB_ID |
869 | * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
869 | * @param huart uart handle |
870 | * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
870 | * @param CallbackID ID of the callback to be unregistered |
871 | * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
871 | * This parameter can be one of the following values: |
872 | * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
872 | * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
873 | * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
873 | * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
874 | * @retval HAL status |
874 | * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
875 | */ |
875 | * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
876 | HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID) |
876 | * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
877 | { |
877 | * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
878 | HAL_StatusTypeDef status = HAL_OK; |
878 | * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
879 | 879 | * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
|
880 | /* Process locked */ |
880 | * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
881 | __HAL_LOCK(huart); |
881 | * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
882 | 882 | * @retval HAL status |
|
883 | if (HAL_UART_STATE_READY == huart->gState) |
883 | */ |
884 | { |
884 | HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID) |
885 | switch (CallbackID) |
885 | { |
886 | { |
886 | HAL_StatusTypeDef status = HAL_OK; |
887 | case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
887 | |
888 | huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
888 | if (HAL_UART_STATE_READY == huart->gState) |
889 | break; |
889 | { |
890 | 890 | switch (CallbackID) |
|
891 | case HAL_UART_TX_COMPLETE_CB_ID : |
891 | { |
892 | huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
892 | case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
893 | break; |
893 | huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
894 | 894 | break; |
|
895 | case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
895 | |
896 | huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
896 | case HAL_UART_TX_COMPLETE_CB_ID : |
897 | break; |
897 | huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
898 | 898 | break; |
|
899 | case HAL_UART_RX_COMPLETE_CB_ID : |
899 | |
900 | huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
900 | case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
901 | break; |
901 | huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
902 | 902 | break; |
|
903 | case HAL_UART_ERROR_CB_ID : |
903 | |
904 | huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
904 | case HAL_UART_RX_COMPLETE_CB_ID : |
905 | break; |
905 | huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
906 | 906 | break; |
|
907 | case HAL_UART_ABORT_COMPLETE_CB_ID : |
907 | |
908 | huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
908 | case HAL_UART_ERROR_CB_ID : |
909 | break; |
909 | huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
910 | 910 | break; |
|
911 | case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
911 | |
912 | huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ |
912 | case HAL_UART_ABORT_COMPLETE_CB_ID : |
913 | break; |
913 | huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
914 | 914 | break; |
|
915 | case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
915 | |
916 | huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ |
916 | case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
917 | break; |
917 | huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ |
918 | 918 | break; |
|
919 | case HAL_UART_MSPINIT_CB_ID : |
919 | |
920 | huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */ |
920 | case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
921 | break; |
921 | huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ |
922 | 922 | break; |
|
923 | case HAL_UART_MSPDEINIT_CB_ID : |
923 | |
924 | huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */ |
924 | case HAL_UART_MSPINIT_CB_ID : |
925 | break; |
925 | huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */ |
926 | 926 | break; |
|
927 | default : |
927 | |
928 | /* Update the error code */ |
928 | case HAL_UART_MSPDEINIT_CB_ID : |
929 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
929 | huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */ |
930 | 930 | break; |
|
931 | /* Return error status */ |
931 | |
932 | status = HAL_ERROR; |
932 | default : |
933 | break; |
933 | /* Update the error code */ |
934 | } |
934 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
935 | } |
935 | |
936 | else if (HAL_UART_STATE_RESET == huart->gState) |
936 | /* Return error status */ |
937 | { |
937 | status = HAL_ERROR; |
938 | switch (CallbackID) |
938 | break; |
939 | { |
939 | } |
940 | case HAL_UART_MSPINIT_CB_ID : |
940 | } |
941 | huart->MspInitCallback = HAL_UART_MspInit; |
941 | else if (HAL_UART_STATE_RESET == huart->gState) |
942 | break; |
942 | { |
943 | 943 | switch (CallbackID) |
|
944 | case HAL_UART_MSPDEINIT_CB_ID : |
944 | { |
945 | huart->MspDeInitCallback = HAL_UART_MspDeInit; |
945 | case HAL_UART_MSPINIT_CB_ID : |
946 | break; |
946 | huart->MspInitCallback = HAL_UART_MspInit; |
947 | 947 | break; |
|
948 | default : |
948 | |
949 | /* Update the error code */ |
949 | case HAL_UART_MSPDEINIT_CB_ID : |
950 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
950 | huart->MspDeInitCallback = HAL_UART_MspDeInit; |
951 | 951 | break; |
|
952 | /* Return error status */ |
952 | |
953 | status = HAL_ERROR; |
953 | default : |
954 | break; |
954 | /* Update the error code */ |
955 | } |
955 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
956 | } |
956 | |
957 | else |
957 | /* Return error status */ |
958 | { |
958 | status = HAL_ERROR; |
959 | /* Update the error code */ |
959 | break; |
960 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
960 | } |
961 | 961 | } |
|
962 | /* Return error status */ |
962 | else |
963 | status = HAL_ERROR; |
963 | { |
964 | } |
964 | /* Update the error code */ |
965 | 965 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
966 | /* Release Lock */ |
966 | |
967 | __HAL_UNLOCK(huart); |
967 | /* Return error status */ |
968 | 968 | status = HAL_ERROR; |
|
969 | return status; |
969 | } |
970 | } |
970 | |
971 | 971 | return status; |
|
972 | /** |
972 | } |
973 | * @brief Register a User UART Rx Event Callback |
973 | |
974 | * To be used instead of the weak predefined callback |
974 | /** |
975 | * @param huart Uart handle |
975 | * @brief Register a User UART Rx Event Callback |
976 | * @param pCallback Pointer to the Rx Event Callback function |
976 | * To be used instead of the weak predefined callback |
977 | * @retval HAL status |
977 | * @param huart Uart handle |
978 | */ |
978 | * @param pCallback Pointer to the Rx Event Callback function |
979 | HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback) |
979 | * @retval HAL status |
980 | { |
980 | */ |
981 | HAL_StatusTypeDef status = HAL_OK; |
981 | HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback) |
982 | 982 | { |
|
983 | if (pCallback == NULL) |
983 | HAL_StatusTypeDef status = HAL_OK; |
984 | { |
984 | |
985 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
985 | if (pCallback == NULL) |
986 | 986 | { |
|
987 | return HAL_ERROR; |
987 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
988 | } |
988 | |
989 | 989 | return HAL_ERROR; |
|
990 | /* Process locked */ |
990 | } |
991 | __HAL_LOCK(huart); |
991 | |
992 | 992 | /* Process locked */ |
|
993 | if (huart->gState == HAL_UART_STATE_READY) |
993 | __HAL_LOCK(huart); |
994 | { |
994 | |
995 | huart->RxEventCallback = pCallback; |
995 | if (huart->gState == HAL_UART_STATE_READY) |
996 | } |
996 | { |
997 | else |
997 | huart->RxEventCallback = pCallback; |
998 | { |
998 | } |
999 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
999 | else |
1000 | 1000 | { |
|
1001 | status = HAL_ERROR; |
1001 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
1002 | } |
1002 | |
1003 | 1003 | status = HAL_ERROR; |
|
1004 | /* Release Lock */ |
1004 | } |
1005 | __HAL_UNLOCK(huart); |
1005 | |
1006 | 1006 | /* Release Lock */ |
|
1007 | return status; |
1007 | __HAL_UNLOCK(huart); |
1008 | } |
1008 | |
1009 | 1009 | return status; |
|
1010 | /** |
1010 | } |
1011 | * @brief UnRegister the UART Rx Event Callback |
1011 | |
1012 | * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback |
1012 | /** |
1013 | * @param huart Uart handle |
1013 | * @brief UnRegister the UART Rx Event Callback |
1014 | * @retval HAL status |
1014 | * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback |
1015 | */ |
1015 | * @param huart Uart handle |
1016 | HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart) |
1016 | * @retval HAL status |
1017 | { |
1017 | */ |
1018 | HAL_StatusTypeDef status = HAL_OK; |
1018 | HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart) |
1019 | 1019 | { |
|
1020 | /* Process locked */ |
1020 | HAL_StatusTypeDef status = HAL_OK; |
1021 | __HAL_LOCK(huart); |
1021 | |
1022 | 1022 | /* Process locked */ |
|
1023 | if (huart->gState == HAL_UART_STATE_READY) |
1023 | __HAL_LOCK(huart); |
1024 | { |
1024 | |
1025 | huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */ |
1025 | if (huart->gState == HAL_UART_STATE_READY) |
1026 | } |
1026 | { |
1027 | else |
1027 | huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */ |
1028 | { |
1028 | } |
1029 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
1029 | else |
1030 | 1030 | { |
|
1031 | status = HAL_ERROR; |
1031 | huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
1032 | } |
1032 | |
1033 | 1033 | status = HAL_ERROR; |
|
1034 | /* Release Lock */ |
1034 | } |
1035 | __HAL_UNLOCK(huart); |
1035 | |
1036 | return status; |
1036 | /* Release Lock */ |
1037 | } |
1037 | __HAL_UNLOCK(huart); |
1038 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
1038 | return status; |
1039 | 1039 | } |
|
1040 | /** |
1040 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
1041 | * @} |
1041 | |
1042 | */ |
1042 | /** |
1043 | 1043 | * @} |
|
1044 | /** @defgroup UART_Exported_Functions_Group2 IO operation functions |
1044 | */ |
1045 | * @brief UART Transmit and Receive functions |
1045 | |
1046 | * |
1046 | /** @defgroup UART_Exported_Functions_Group2 IO operation functions |
1047 | @verbatim |
1047 | * @brief UART Transmit and Receive functions |
1048 | =============================================================================== |
1048 | * |
1049 | ##### IO operation functions ##### |
1049 | @verbatim |
1050 | =============================================================================== |
1050 | =============================================================================== |
1051 | This subsection provides a set of functions allowing to manage the UART asynchronous |
1051 | ##### IO operation functions ##### |
1052 | and Half duplex data transfers. |
1052 | =============================================================================== |
1053 | 1053 | This subsection provides a set of functions allowing to manage the UART asynchronous |
|
1054 | (#) There are two modes of transfer: |
1054 | and Half duplex data transfers. |
1055 | (+) Blocking mode: The communication is performed in polling mode. |
1055 | |
1056 | The HAL status of all data processing is returned by the same function |
1056 | (#) There are two modes of transfer: |
1057 | after finishing transfer. |
1057 | (+) Blocking mode: The communication is performed in polling mode. |
1058 | (+) Non-Blocking mode: The communication is performed using Interrupts |
1058 | The HAL status of all data processing is returned by the same function |
1059 | or DMA, these API's return the HAL status. |
1059 | after finishing transfer. |
1060 | The end of the data processing will be indicated through the |
1060 | (+) Non-Blocking mode: The communication is performed using Interrupts |
1061 | dedicated UART IRQ when using Interrupt mode or the DMA IRQ when |
1061 | or DMA, these API's return the HAL status. |
1062 | using DMA mode. |
1062 | The end of the data processing will be indicated through the |
1063 | The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks |
1063 | dedicated UART IRQ when using Interrupt mode or the DMA IRQ when |
1064 | will be executed respectively at the end of the transmit or receive process |
1064 | using DMA mode. |
1065 | The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected. |
1065 | The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks |
1066 | 1066 | will be executed respectively at the end of the transmit or receive process |
|
1067 | (#) Blocking mode API's are : |
1067 | The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected. |
1068 | (+) HAL_UART_Transmit() |
1068 | |
1069 | (+) HAL_UART_Receive() |
1069 | (#) Blocking mode API's are : |
1070 | 1070 | (+) HAL_UART_Transmit() |
|
1071 | (#) Non-Blocking mode API's with Interrupt are : |
1071 | (+) HAL_UART_Receive() |
1072 | (+) HAL_UART_Transmit_IT() |
1072 | |
1073 | (+) HAL_UART_Receive_IT() |
1073 | (#) Non-Blocking mode API's with Interrupt are : |
1074 | (+) HAL_UART_IRQHandler() |
1074 | (+) HAL_UART_Transmit_IT() |
1075 | 1075 | (+) HAL_UART_Receive_IT() |
|
1076 | (#) Non-Blocking mode API's with DMA are : |
1076 | (+) HAL_UART_IRQHandler() |
1077 | (+) HAL_UART_Transmit_DMA() |
1077 | |
1078 | (+) HAL_UART_Receive_DMA() |
1078 | (#) Non-Blocking mode API's with DMA are : |
1079 | (+) HAL_UART_DMAPause() |
1079 | (+) HAL_UART_Transmit_DMA() |
1080 | (+) HAL_UART_DMAResume() |
1080 | (+) HAL_UART_Receive_DMA() |
1081 | (+) HAL_UART_DMAStop() |
1081 | (+) HAL_UART_DMAPause() |
1082 | 1082 | (+) HAL_UART_DMAResume() |
|
1083 | (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: |
1083 | (+) HAL_UART_DMAStop() |
1084 | (+) HAL_UART_TxHalfCpltCallback() |
1084 | |
1085 | (+) HAL_UART_TxCpltCallback() |
1085 | (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: |
1086 | (+) HAL_UART_RxHalfCpltCallback() |
1086 | (+) HAL_UART_TxHalfCpltCallback() |
1087 | (+) HAL_UART_RxCpltCallback() |
1087 | (+) HAL_UART_TxCpltCallback() |
1088 | (+) HAL_UART_ErrorCallback() |
1088 | (+) HAL_UART_RxHalfCpltCallback() |
1089 | 1089 | (+) HAL_UART_RxCpltCallback() |
|
1090 | (#) Non-Blocking mode transfers could be aborted using Abort API's : |
1090 | (+) HAL_UART_ErrorCallback() |
1091 | (+) HAL_UART_Abort() |
1091 | |
1092 | (+) HAL_UART_AbortTransmit() |
1092 | (#) Non-Blocking mode transfers could be aborted using Abort API's : |
1093 | (+) HAL_UART_AbortReceive() |
1093 | (+) HAL_UART_Abort() |
1094 | (+) HAL_UART_Abort_IT() |
1094 | (+) HAL_UART_AbortTransmit() |
1095 | (+) HAL_UART_AbortTransmit_IT() |
1095 | (+) HAL_UART_AbortReceive() |
1096 | (+) HAL_UART_AbortReceive_IT() |
1096 | (+) HAL_UART_Abort_IT() |
1097 | 1097 | (+) HAL_UART_AbortTransmit_IT() |
|
1098 | (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided: |
1098 | (+) HAL_UART_AbortReceive_IT() |
1099 | (+) HAL_UART_AbortCpltCallback() |
1099 | |
1100 | (+) HAL_UART_AbortTransmitCpltCallback() |
1100 | (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided: |
1101 | (+) HAL_UART_AbortReceiveCpltCallback() |
1101 | (+) HAL_UART_AbortCpltCallback() |
1102 | 1102 | (+) HAL_UART_AbortTransmitCpltCallback() |
|
1103 | (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services: |
1103 | (+) HAL_UART_AbortReceiveCpltCallback() |
1104 | (+) HAL_UARTEx_RxEventCallback() |
1104 | |
1105 | 1105 | (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services: |
|
1106 | (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. |
1106 | (+) HAL_UARTEx_RxEventCallback() |
1107 | Errors are handled as follows : |
1107 | |
1108 | (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is |
1108 | (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. |
1109 | to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . |
1109 | Errors are handled as follows : |
1110 | Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, |
1110 | (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is |
1111 | and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side. |
1111 | to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . |
1112 | If user wants to abort it, Abort services should be called by user. |
1112 | Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, |
1113 | (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. |
1113 | and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side. |
1114 | This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. |
1114 | If user wants to abort it, Abort services should be called by user. |
1115 | Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed. |
1115 | (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. |
1116 | 1116 | This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. |
|
1117 | -@- In the Half duplex communication, it is forbidden to run the transmit |
1117 | Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed. |
1118 | and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. |
1118 | |
1119 | 1119 | -@- In the Half duplex communication, it is forbidden to run the transmit |
|
1120 | @endverbatim |
1120 | and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. |
1121 | * @{ |
1121 | |
1122 | */ |
1122 | @endverbatim |
1123 | 1123 | * @{ |
|
1124 | /** |
1124 | */ |
1125 | * @brief Sends an amount of data in blocking mode. |
1125 | |
1126 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1126 | /** |
1127 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1127 | * @brief Sends an amount of data in blocking mode. |
1128 | * of u16 provided through pData. |
1128 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1129 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1129 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1130 | * the configuration information for the specified UART module. |
1130 | * of u16 provided through pData. |
1131 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1131 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1132 | * @param Size Amount of data elements (u8 or u16) to be sent |
1132 | * the configuration information for the specified UART module. |
1133 | * @param Timeout Timeout duration |
1133 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1134 | * @retval HAL status |
1134 | * @param Size Amount of data elements (u8 or u16) to be sent |
1135 | */ |
1135 | * @param Timeout Timeout duration |
1136 | HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
1136 | * @retval HAL status |
1137 | { |
1137 | */ |
1138 | uint8_t *pdata8bits; |
1138 | HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout) |
1139 | uint16_t *pdata16bits; |
1139 | { |
1140 | uint32_t tickstart = 0U; |
1140 | const uint8_t *pdata8bits; |
1141 | 1141 | const uint16_t *pdata16bits; |
|
1142 | /* Check that a Tx process is not already ongoing */ |
1142 | uint32_t tickstart = 0U; |
1143 | if (huart->gState == HAL_UART_STATE_READY) |
1143 | |
1144 | { |
1144 | /* Check that a Tx process is not already ongoing */ |
1145 | if ((pData == NULL) || (Size == 0U)) |
1145 | if (huart->gState == HAL_UART_STATE_READY) |
1146 | { |
1146 | { |
1147 | return HAL_ERROR; |
1147 | if ((pData == NULL) || (Size == 0U)) |
1148 | } |
1148 | { |
1149 | 1149 | return HAL_ERROR; |
|
1150 | /* Process Locked */ |
1150 | } |
1151 | __HAL_LOCK(huart); |
1151 | |
1152 | 1152 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
1153 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1153 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1154 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1154 | |
1155 | 1155 | /* Init tickstart for timeout management */ |
|
1156 | /* Init tickstart for timeout management */ |
1156 | tickstart = HAL_GetTick(); |
1157 | tickstart = HAL_GetTick(); |
1157 | |
1158 | 1158 | huart->TxXferSize = Size; |
|
1159 | huart->TxXferSize = Size; |
1159 | huart->TxXferCount = Size; |
1160 | huart->TxXferCount = Size; |
1160 | |
1161 | 1161 | /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ |
|
1162 | /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ |
1162 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1163 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1163 | { |
1164 | { |
1164 | pdata8bits = NULL; |
1165 | pdata8bits = NULL; |
1165 | pdata16bits = (const uint16_t *) pData; |
1166 | pdata16bits = (uint16_t *) pData; |
1166 | } |
1167 | } |
1167 | else |
1168 | else |
1168 | { |
1169 | { |
1169 | pdata8bits = pData; |
1170 | pdata8bits = pData; |
1170 | pdata16bits = NULL; |
1171 | pdata16bits = NULL; |
1171 | } |
1172 | } |
1172 | |
1173 | 1173 | while (huart->TxXferCount > 0U) |
|
1174 | /* Process Unlocked */ |
1174 | { |
1175 | __HAL_UNLOCK(huart); |
1175 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) |
1176 | 1176 | { |
|
1177 | while (huart->TxXferCount > 0U) |
1177 | return HAL_TIMEOUT; |
1178 | { |
1178 | } |
1179 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) |
1179 | if (pdata8bits == NULL) |
1180 | { |
1180 | { |
1181 | return HAL_TIMEOUT; |
1181 | huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU); |
1182 | } |
1182 | pdata16bits++; |
1183 | if (pdata8bits == NULL) |
1183 | } |
1184 | { |
1184 | else |
1185 | huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU); |
1185 | { |
1186 | pdata16bits++; |
1186 | huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU); |
1187 | } |
1187 | pdata8bits++; |
1188 | else |
1188 | } |
1189 | { |
1189 | huart->TxXferCount--; |
1190 | huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU); |
1190 | } |
1191 | pdata8bits++; |
1191 | |
1192 | } |
1192 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) |
1193 | huart->TxXferCount--; |
1193 | { |
1194 | } |
1194 | return HAL_TIMEOUT; |
1195 | 1195 | } |
|
1196 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) |
1196 | |
1197 | { |
1197 | /* At end of Tx process, restore huart->gState to Ready */ |
1198 | return HAL_TIMEOUT; |
1198 | huart->gState = HAL_UART_STATE_READY; |
1199 | } |
1199 | |
1200 | 1200 | return HAL_OK; |
|
1201 | /* At end of Tx process, restore huart->gState to Ready */ |
1201 | } |
1202 | huart->gState = HAL_UART_STATE_READY; |
1202 | else |
1203 | 1203 | { |
|
1204 | return HAL_OK; |
1204 | return HAL_BUSY; |
1205 | } |
1205 | } |
1206 | else |
1206 | } |
1207 | { |
1207 | |
1208 | return HAL_BUSY; |
1208 | /** |
1209 | } |
1209 | * @brief Receives an amount of data in blocking mode. |
1210 | } |
1210 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1211 | 1211 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
|
1212 | /** |
1212 | * of u16 available through pData. |
1213 | * @brief Receives an amount of data in blocking mode. |
1213 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1214 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1214 | * the configuration information for the specified UART module. |
1215 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
1215 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1216 | * of u16 available through pData. |
1216 | * @param Size Amount of data elements (u8 or u16) to be received. |
1217 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1217 | * @param Timeout Timeout duration |
1218 | * the configuration information for the specified UART module. |
1218 | * @retval HAL status |
1219 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1219 | */ |
1220 | * @param Size Amount of data elements (u8 or u16) to be received. |
1220 | HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
1221 | * @param Timeout Timeout duration |
1221 | { |
1222 | * @retval HAL status |
1222 | uint8_t *pdata8bits; |
1223 | */ |
1223 | uint16_t *pdata16bits; |
1224 | HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
1224 | uint32_t tickstart = 0U; |
1225 | { |
1225 | |
1226 | uint8_t *pdata8bits; |
1226 | /* Check that a Rx process is not already ongoing */ |
1227 | uint16_t *pdata16bits; |
1227 | if (huart->RxState == HAL_UART_STATE_READY) |
1228 | uint32_t tickstart = 0U; |
1228 | { |
1229 | 1229 | if ((pData == NULL) || (Size == 0U)) |
|
1230 | /* Check that a Rx process is not already ongoing */ |
1230 | { |
1231 | if (huart->RxState == HAL_UART_STATE_READY) |
1231 | return HAL_ERROR; |
1232 | { |
1232 | } |
1233 | if ((pData == NULL) || (Size == 0U)) |
1233 | |
1234 | { |
1234 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1235 | return HAL_ERROR; |
1235 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
1236 | } |
1236 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1237 | 1237 | ||
1238 | /* Process Locked */ |
1238 | /* Init tickstart for timeout management */ |
1239 | __HAL_LOCK(huart); |
1239 | tickstart = HAL_GetTick(); |
1240 | 1240 | ||
1241 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1241 | huart->RxXferSize = Size; |
1242 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
1242 | huart->RxXferCount = Size; |
1243 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1243 | |
1244 | 1244 | /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
|
1245 | /* Init tickstart for timeout management */ |
1245 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1246 | tickstart = HAL_GetTick(); |
1246 | { |
1247 | 1247 | pdata8bits = NULL; |
|
1248 | huart->RxXferSize = Size; |
1248 | pdata16bits = (uint16_t *) pData; |
1249 | huart->RxXferCount = Size; |
1249 | } |
1250 | 1250 | else |
|
1251 | /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
1251 | { |
1252 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1252 | pdata8bits = pData; |
1253 | { |
1253 | pdata16bits = NULL; |
1254 | pdata8bits = NULL; |
1254 | } |
1255 | pdata16bits = (uint16_t *) pData; |
1255 | |
1256 | } |
1256 | /* Check the remain data to be received */ |
1257 | else |
1257 | while (huart->RxXferCount > 0U) |
1258 | { |
1258 | { |
1259 | pdata8bits = pData; |
1259 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) |
1260 | pdata16bits = NULL; |
1260 | { |
1261 | } |
1261 | return HAL_TIMEOUT; |
1262 | 1262 | } |
|
1263 | /* Process Unlocked */ |
1263 | if (pdata8bits == NULL) |
1264 | __HAL_UNLOCK(huart); |
1264 | { |
1265 | 1265 | *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF); |
|
1266 | /* Check the remain data to be received */ |
1266 | pdata16bits++; |
1267 | while (huart->RxXferCount > 0U) |
1267 | } |
1268 | { |
1268 | else |
1269 | if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) |
1269 | { |
1270 | { |
1270 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
1271 | return HAL_TIMEOUT; |
1271 | { |
1272 | } |
1272 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
1273 | if (pdata8bits == NULL) |
1273 | } |
1274 | { |
1274 | else |
1275 | *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF); |
1275 | { |
1276 | pdata16bits++; |
1276 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
1277 | } |
1277 | } |
1278 | else |
1278 | pdata8bits++; |
1279 | { |
1279 | } |
1280 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
1280 | huart->RxXferCount--; |
1281 | { |
1281 | } |
1282 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
1282 | |
1283 | } |
1283 | /* At end of Rx process, restore huart->RxState to Ready */ |
1284 | else |
1284 | huart->RxState = HAL_UART_STATE_READY; |
1285 | { |
1285 | |
1286 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
1286 | return HAL_OK; |
1287 | } |
1287 | } |
1288 | pdata8bits++; |
1288 | else |
1289 | } |
1289 | { |
1290 | huart->RxXferCount--; |
1290 | return HAL_BUSY; |
1291 | } |
1291 | } |
1292 | 1292 | } |
|
1293 | /* At end of Rx process, restore huart->RxState to Ready */ |
1293 | |
1294 | huart->RxState = HAL_UART_STATE_READY; |
1294 | /** |
1295 | 1295 | * @brief Sends an amount of data in non blocking mode. |
|
1296 | return HAL_OK; |
1296 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1297 | } |
1297 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1298 | else |
1298 | * of u16 provided through pData. |
1299 | { |
1299 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1300 | return HAL_BUSY; |
1300 | * the configuration information for the specified UART module. |
1301 | } |
1301 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1302 | } |
1302 | * @param Size Amount of data elements (u8 or u16) to be sent |
1303 | 1303 | * @retval HAL status |
|
1304 | /** |
1304 | */ |
1305 | * @brief Sends an amount of data in non blocking mode. |
1305 | HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) |
1306 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1306 | { |
1307 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1307 | /* Check that a Tx process is not already ongoing */ |
1308 | * of u16 provided through pData. |
1308 | if (huart->gState == HAL_UART_STATE_READY) |
1309 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1309 | { |
1310 | * the configuration information for the specified UART module. |
1310 | if ((pData == NULL) || (Size == 0U)) |
1311 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1311 | { |
1312 | * @param Size Amount of data elements (u8 or u16) to be sent |
1312 | return HAL_ERROR; |
1313 | * @retval HAL status |
1313 | } |
1314 | */ |
1314 | |
1315 | HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1315 | huart->pTxBuffPtr = pData; |
1316 | { |
1316 | huart->TxXferSize = Size; |
1317 | /* Check that a Tx process is not already ongoing */ |
1317 | huart->TxXferCount = Size; |
1318 | if (huart->gState == HAL_UART_STATE_READY) |
1318 | |
1319 | { |
1319 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1320 | if ((pData == NULL) || (Size == 0U)) |
1320 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1321 | { |
1321 | |
1322 | return HAL_ERROR; |
1322 | /* Enable the UART Transmit data register empty Interrupt */ |
1323 | } |
1323 | __HAL_UART_ENABLE_IT(huart, UART_IT_TXE); |
1324 | 1324 | ||
1325 | /* Process Locked */ |
1325 | return HAL_OK; |
1326 | __HAL_LOCK(huart); |
1326 | } |
1327 | 1327 | else |
|
1328 | huart->pTxBuffPtr = pData; |
1328 | { |
1329 | huart->TxXferSize = Size; |
1329 | return HAL_BUSY; |
1330 | huart->TxXferCount = Size; |
1330 | } |
1331 | 1331 | } |
|
1332 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1332 | |
1333 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1333 | /** |
1334 | 1334 | * @brief Receives an amount of data in non blocking mode. |
|
1335 | /* Process Unlocked */ |
1335 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1336 | __HAL_UNLOCK(huart); |
1336 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
1337 | 1337 | * of u16 available through pData. |
|
1338 | /* Enable the UART Transmit data register empty Interrupt */ |
1338 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1339 | __HAL_UART_ENABLE_IT(huart, UART_IT_TXE); |
1339 | * the configuration information for the specified UART module. |
1340 | 1340 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
|
1341 | return HAL_OK; |
1341 | * @param Size Amount of data elements (u8 or u16) to be received. |
1342 | } |
1342 | * @retval HAL status |
1343 | else |
1343 | */ |
1344 | { |
1344 | HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1345 | return HAL_BUSY; |
1345 | { |
1346 | } |
1346 | /* Check that a Rx process is not already ongoing */ |
1347 | } |
1347 | if (huart->RxState == HAL_UART_STATE_READY) |
1348 | 1348 | { |
|
1349 | /** |
1349 | if ((pData == NULL) || (Size == 0U)) |
1350 | * @brief Receives an amount of data in non blocking mode. |
1350 | { |
1351 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1351 | return HAL_ERROR; |
1352 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
1352 | } |
1353 | * of u16 available through pData. |
1353 | |
1354 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1354 | /* Set Reception type to Standard reception */ |
1355 | * the configuration information for the specified UART module. |
1355 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1356 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1356 | |
1357 | * @param Size Amount of data elements (u8 or u16) to be received. |
1357 | return (UART_Start_Receive_IT(huart, pData, Size)); |
1358 | * @retval HAL status |
1358 | } |
1359 | */ |
1359 | else |
1360 | HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1360 | { |
1361 | { |
1361 | return HAL_BUSY; |
1362 | /* Check that a Rx process is not already ongoing */ |
1362 | } |
1363 | if (huart->RxState == HAL_UART_STATE_READY) |
1363 | } |
1364 | { |
1364 | |
1365 | if ((pData == NULL) || (Size == 0U)) |
1365 | /** |
1366 | { |
1366 | * @brief Sends an amount of data in DMA mode. |
1367 | return HAL_ERROR; |
1367 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1368 | } |
1368 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1369 | 1369 | * of u16 provided through pData. |
|
1370 | /* Process Locked */ |
1370 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1371 | __HAL_LOCK(huart); |
1371 | * the configuration information for the specified UART module. |
1372 | 1372 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
|
1373 | /* Set Reception type to Standard reception */ |
1373 | * @param Size Amount of data elements (u8 or u16) to be sent |
1374 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1374 | * @retval HAL status |
1375 | 1375 | */ |
|
1376 | return(UART_Start_Receive_IT(huart, pData, Size)); |
1376 | HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) |
1377 | } |
1377 | { |
1378 | else |
1378 | const uint32_t *tmp; |
1379 | { |
1379 | |
1380 | return HAL_BUSY; |
1380 | /* Check that a Tx process is not already ongoing */ |
1381 | } |
1381 | if (huart->gState == HAL_UART_STATE_READY) |
1382 | } |
1382 | { |
1383 | 1383 | if ((pData == NULL) || (Size == 0U)) |
|
1384 | /** |
1384 | { |
1385 | * @brief Sends an amount of data in DMA mode. |
1385 | return HAL_ERROR; |
1386 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1386 | } |
1387 | * the sent data is handled as a set of u16. In this case, Size must indicate the number |
1387 | |
1388 | * of u16 provided through pData. |
1388 | huart->pTxBuffPtr = pData; |
1389 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1389 | huart->TxXferSize = Size; |
1390 | * the configuration information for the specified UART module. |
1390 | huart->TxXferCount = Size; |
1391 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1391 | |
1392 | * @param Size Amount of data elements (u8 or u16) to be sent |
1392 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1393 | * @retval HAL status |
1393 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1394 | */ |
1394 | |
1395 | HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1395 | /* Set the UART DMA transfer complete callback */ |
1396 | { |
1396 | huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; |
1397 | uint32_t *tmp; |
1397 | |
1398 | 1398 | /* Set the UART DMA Half transfer complete callback */ |
|
1399 | /* Check that a Tx process is not already ongoing */ |
1399 | huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; |
1400 | if (huart->gState == HAL_UART_STATE_READY) |
1400 | |
1401 | { |
1401 | /* Set the DMA error callback */ |
1402 | if ((pData == NULL) || (Size == 0U)) |
1402 | huart->hdmatx->XferErrorCallback = UART_DMAError; |
1403 | { |
1403 | |
1404 | return HAL_ERROR; |
1404 | /* Set the DMA abort callback */ |
1405 | } |
1405 | huart->hdmatx->XferAbortCallback = NULL; |
1406 | 1406 | ||
1407 | /* Process Locked */ |
1407 | /* Enable the UART transmit DMA channel */ |
1408 | __HAL_LOCK(huart); |
1408 | tmp = (const uint32_t *)&pData; |
1409 | 1409 | HAL_DMA_Start_IT(huart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size); |
|
1410 | huart->pTxBuffPtr = pData; |
1410 | |
1411 | huart->TxXferSize = Size; |
1411 | /* Clear the TC flag in the SR register by writing 0 to it */ |
1412 | huart->TxXferCount = Size; |
1412 | __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); |
1413 | 1413 | ||
1414 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1414 | /* Enable the DMA transfer for transmit request by setting the DMAT bit |
1415 | huart->gState = HAL_UART_STATE_BUSY_TX; |
1415 | in the UART CR3 register */ |
1416 | 1416 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
1417 | /* Set the UART DMA transfer complete callback */ |
1417 | |
1418 | huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; |
1418 | return HAL_OK; |
1419 | 1419 | } |
|
1420 | /* Set the UART DMA Half transfer complete callback */ |
1420 | else |
1421 | huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; |
1421 | { |
1422 | 1422 | return HAL_BUSY; |
|
1423 | /* Set the DMA error callback */ |
1423 | } |
1424 | huart->hdmatx->XferErrorCallback = UART_DMAError; |
1424 | } |
1425 | 1425 | ||
1426 | /* Set the DMA abort callback */ |
1426 | /** |
1427 | huart->hdmatx->XferAbortCallback = NULL; |
1427 | * @brief Receives an amount of data in DMA mode. |
1428 | 1428 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
1429 | /* Enable the UART transmit DMA channel */ |
1429 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
1430 | tmp = (uint32_t *)&pData; |
1430 | * of u16 available through pData. |
1431 | HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size); |
1431 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1432 | 1432 | * the configuration information for the specified UART module. |
|
1433 | /* Clear the TC flag in the SR register by writing 0 to it */ |
1433 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1434 | __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); |
1434 | * @param Size Amount of data elements (u8 or u16) to be received. |
1435 | 1435 | * @note When the UART parity is enabled (PCE = 1) the received data contains the parity bit. |
|
1436 | /* Process Unlocked */ |
1436 | * @retval HAL status |
1437 | __HAL_UNLOCK(huart); |
1437 | */ |
1438 | 1438 | HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
1439 | /* Enable the DMA transfer for transmit request by setting the DMAT bit |
1439 | { |
1440 | in the UART CR3 register */ |
1440 | /* Check that a Rx process is not already ongoing */ |
1441 | SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1441 | if (huart->RxState == HAL_UART_STATE_READY) |
1442 | 1442 | { |
|
1443 | return HAL_OK; |
1443 | if ((pData == NULL) || (Size == 0U)) |
1444 | } |
1444 | { |
1445 | else |
1445 | return HAL_ERROR; |
1446 | { |
1446 | } |
1447 | return HAL_BUSY; |
1447 | |
1448 | } |
1448 | /* Set Reception type to Standard reception */ |
1449 | } |
1449 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1450 | 1450 | ||
1451 | /** |
1451 | return (UART_Start_Receive_DMA(huart, pData, Size)); |
1452 | * @brief Receives an amount of data in DMA mode. |
1452 | } |
1453 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
1453 | else |
1454 | * the received data is handled as a set of u16. In this case, Size must indicate the number |
1454 | { |
1455 | * of u16 available through pData. |
1455 | return HAL_BUSY; |
1456 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1456 | } |
1457 | * the configuration information for the specified UART module. |
1457 | } |
1458 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
1458 | |
1459 | * @param Size Amount of data elements (u8 or u16) to be received. |
1459 | /** |
1460 | * @note When the UART parity is enabled (PCE = 1) the received data contains the parity bit. |
1460 | * @brief Pauses the DMA Transfer. |
1461 | * @retval HAL status |
1461 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1462 | */ |
1462 | * the configuration information for the specified UART module. |
1463 | HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1463 | * @retval HAL status |
1464 | { |
1464 | */ |
1465 | /* Check that a Rx process is not already ongoing */ |
1465 | HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) |
1466 | if (huart->RxState == HAL_UART_STATE_READY) |
1466 | { |
1467 | { |
1467 | uint32_t dmarequest = 0x00U; |
1468 | if ((pData == NULL) || (Size == 0U)) |
1468 | |
1469 | { |
1469 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
1470 | return HAL_ERROR; |
1470 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
1471 | } |
1471 | { |
1472 | 1472 | /* Disable the UART DMA Tx request */ |
|
1473 | /* Process Locked */ |
1473 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1474 | __HAL_LOCK(huart); |
1474 | } |
1475 | 1475 | ||
1476 | /* Set Reception type to Standard reception */ |
1476 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
1477 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1477 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
1478 | 1478 | { |
|
1479 | return(UART_Start_Receive_DMA(huart, pData, Size)); |
1479 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1480 | } |
1480 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
1481 | else |
1481 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1482 | { |
1482 | |
1483 | return HAL_BUSY; |
1483 | /* Disable the UART DMA Rx request */ |
1484 | } |
1484 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1485 | } |
1485 | } |
1486 | 1486 | ||
1487 | /** |
1487 | return HAL_OK; |
1488 | * @brief Pauses the DMA Transfer. |
1488 | } |
1489 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1489 | |
1490 | * the configuration information for the specified UART module. |
1490 | /** |
1491 | * @retval HAL status |
1491 | * @brief Resumes the DMA Transfer. |
1492 | */ |
1492 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1493 | HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) |
1493 | * the configuration information for the specified UART module. |
1494 | { |
1494 | * @retval HAL status |
1495 | uint32_t dmarequest = 0x00U; |
1495 | */ |
1496 | 1496 | HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) |
|
1497 | /* Process Locked */ |
1497 | { |
1498 | __HAL_LOCK(huart); |
1498 | |
1499 | 1499 | if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
1500 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
1500 | { |
1501 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
1501 | /* Enable the UART DMA Tx request */ |
1502 | { |
1502 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1503 | /* Disable the UART DMA Tx request */ |
1503 | } |
1504 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1504 | |
1505 | } |
1505 | if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
1506 | 1506 | { |
|
1507 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
1507 | /* Clear the Overrun flag before resuming the Rx transfer*/ |
1508 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
1508 | __HAL_UART_CLEAR_OREFLAG(huart); |
1509 | { |
1509 | |
1510 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1510 | /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1511 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
1511 | if (huart->Init.Parity != UART_PARITY_NONE) |
1512 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1512 | { |
1513 | 1513 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
1514 | /* Disable the UART DMA Rx request */ |
1514 | } |
1515 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1515 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1516 | } |
1516 | |
1517 | 1517 | /* Enable the UART DMA Rx request */ |
|
1518 | /* Process Unlocked */ |
1518 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1519 | __HAL_UNLOCK(huart); |
1519 | } |
1520 | 1520 | ||
1521 | return HAL_OK; |
1521 | return HAL_OK; |
1522 | } |
1522 | } |
1523 | 1523 | ||
1524 | /** |
1524 | /** |
1525 | * @brief Resumes the DMA Transfer. |
1525 | * @brief Stops the DMA Transfer. |
1526 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1526 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1527 | * the configuration information for the specified UART module. |
1527 | * the configuration information for the specified UART module. |
1528 | * @retval HAL status |
1528 | * @retval HAL status |
1529 | */ |
1529 | */ |
1530 | HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) |
1530 | HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) |
1531 | { |
1531 | { |
1532 | /* Process Locked */ |
1532 | uint32_t dmarequest = 0x00U; |
1533 | __HAL_LOCK(huart); |
1533 | /* The Lock is not implemented on this API to allow the user application |
1534 | 1534 | to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback(): |
|
1535 | if (huart->gState == HAL_UART_STATE_BUSY_TX) |
1535 | when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated |
1536 | { |
1536 | and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() |
1537 | /* Enable the UART DMA Tx request */ |
1537 | */ |
1538 | SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1538 | |
1539 | } |
1539 | /* Stop UART DMA Tx request if ongoing */ |
1540 | 1540 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
|
1541 | if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
1541 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
1542 | { |
1542 | { |
1543 | /* Clear the Overrun flag before resuming the Rx transfer*/ |
1543 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1544 | __HAL_UART_CLEAR_OREFLAG(huart); |
1544 | |
1545 | 1545 | /* Abort the UART DMA Tx channel */ |
|
1546 | /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1546 | if (huart->hdmatx != NULL) |
1547 | SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
1547 | { |
1548 | SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1548 | HAL_DMA_Abort(huart->hdmatx); |
1549 | 1549 | } |
|
1550 | /* Enable the UART DMA Rx request */ |
1550 | UART_EndTxTransfer(huart); |
1551 | SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1551 | } |
1552 | } |
1552 | |
1553 | 1553 | /* Stop UART DMA Rx request if ongoing */ |
|
1554 | /* Process Unlocked */ |
1554 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
1555 | __HAL_UNLOCK(huart); |
1555 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
1556 | 1556 | { |
|
1557 | return HAL_OK; |
1557 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1558 | } |
1558 | |
1559 | 1559 | /* Abort the UART DMA Rx channel */ |
|
1560 | /** |
1560 | if (huart->hdmarx != NULL) |
1561 | * @brief Stops the DMA Transfer. |
1561 | { |
1562 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
1562 | HAL_DMA_Abort(huart->hdmarx); |
1563 | * the configuration information for the specified UART module. |
1563 | } |
1564 | * @retval HAL status |
1564 | UART_EndRxTransfer(huart); |
1565 | */ |
1565 | } |
1566 | HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) |
1566 | |
1567 | { |
1567 | return HAL_OK; |
1568 | uint32_t dmarequest = 0x00U; |
1568 | } |
1569 | /* The Lock is not implemented on this API to allow the user application |
1569 | |
1570 | to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback(): |
1570 | /** |
1571 | when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated |
1571 | * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs. |
1572 | and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() |
1572 | * @note HAL_OK is returned if reception is completed (expected number of data has been received) |
1573 | */ |
1573 | * or if reception is stopped after IDLE event (less than the expected number of data has been received) |
1574 | 1574 | * In this case, RxLen output parameter indicates number of data available in reception buffer. |
|
1575 | /* Stop UART DMA Tx request if ongoing */ |
1575 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1576 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
1576 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
1577 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
1577 | * of uint16_t available through pData. |
1578 | { |
1578 | * @param huart UART handle. |
1579 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1579 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1580 | 1580 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
|
1581 | /* Abort the UART DMA Tx channel */ |
1581 | * @param RxLen Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event) |
1582 | if (huart->hdmatx != NULL) |
1582 | * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence). |
1583 | { |
1583 | * @retval HAL status |
1584 | HAL_DMA_Abort(huart->hdmatx); |
1584 | */ |
1585 | } |
1585 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen, |
1586 | UART_EndTxTransfer(huart); |
1586 | uint32_t Timeout) |
1587 | } |
1587 | { |
1588 | 1588 | uint8_t *pdata8bits; |
|
1589 | /* Stop UART DMA Rx request if ongoing */ |
1589 | uint16_t *pdata16bits; |
1590 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
1590 | uint32_t tickstart; |
1591 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
1591 | |
1592 | { |
1592 | /* Check that a Rx process is not already ongoing */ |
1593 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1593 | if (huart->RxState == HAL_UART_STATE_READY) |
1594 | 1594 | { |
|
1595 | /* Abort the UART DMA Rx channel */ |
1595 | if ((pData == NULL) || (Size == 0U)) |
1596 | if (huart->hdmarx != NULL) |
1596 | { |
1597 | { |
1597 | return HAL_ERROR; |
1598 | HAL_DMA_Abort(huart->hdmarx); |
1598 | } |
1599 | } |
1599 | |
1600 | UART_EndRxTransfer(huart); |
1600 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1601 | } |
1601 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
1602 | 1602 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
|
1603 | return HAL_OK; |
1603 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
1604 | } |
1604 | |
1605 | 1605 | /* Init tickstart for timeout management */ |
|
1606 | /** |
1606 | tickstart = HAL_GetTick(); |
1607 | * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs. |
1607 | |
1608 | * @note HAL_OK is returned if reception is completed (expected number of data has been received) |
1608 | huart->RxXferSize = Size; |
1609 | * or if reception is stopped after IDLE event (less than the expected number of data has been received) |
1609 | huart->RxXferCount = Size; |
1610 | * In this case, RxLen output parameter indicates number of data available in reception buffer. |
1610 | |
1611 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1611 | /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
1612 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
1612 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1613 | * of uint16_t available through pData. |
1613 | { |
1614 | * @param huart UART handle. |
1614 | pdata8bits = NULL; |
1615 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1615 | pdata16bits = (uint16_t *) pData; |
1616 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
1616 | } |
1617 | * @param RxLen Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event) |
1617 | else |
1618 | * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence). |
1618 | { |
1619 | * @retval HAL status |
1619 | pdata8bits = pData; |
1620 | */ |
1620 | pdata16bits = NULL; |
1621 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen, uint32_t Timeout) |
1621 | } |
1622 | { |
1622 | |
1623 | uint8_t *pdata8bits; |
1623 | /* Initialize output number of received elements */ |
1624 | uint16_t *pdata16bits; |
1624 | *RxLen = 0U; |
1625 | uint32_t tickstart; |
1625 | |
1626 | 1626 | /* as long as data have to be received */ |
|
1627 | /* Check that a Rx process is not already ongoing */ |
1627 | while (huart->RxXferCount > 0U) |
1628 | if (huart->RxState == HAL_UART_STATE_READY) |
1628 | { |
1629 | { |
1629 | /* Check if IDLE flag is set */ |
1630 | if ((pData == NULL) || (Size == 0U)) |
1630 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) |
1631 | { |
1631 | { |
1632 | return HAL_ERROR; |
1632 | /* Clear IDLE flag in ISR */ |
1633 | } |
1633 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
1634 | 1634 | ||
1635 | __HAL_LOCK(huart); |
1635 | /* If Set, but no data ever received, clear flag without exiting loop */ |
1636 | 1636 | /* If Set, and data has already been received, this means Idle Event is valid : End reception */ |
|
1637 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1637 | if (*RxLen > 0U) |
1638 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
1638 | { |
1639 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
1639 | huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
1640 | 1640 | huart->RxState = HAL_UART_STATE_READY; |
|
1641 | /* Init tickstart for timeout management */ |
1641 | |
1642 | tickstart = HAL_GetTick(); |
1642 | return HAL_OK; |
1643 | 1643 | } |
|
1644 | huart->RxXferSize = Size; |
1644 | } |
1645 | huart->RxXferCount = Size; |
1645 | |
1646 | 1646 | /* Check if RXNE flag is set */ |
|
1647 | /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
1647 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE)) |
1648 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
1648 | { |
1649 | { |
1649 | if (pdata8bits == NULL) |
1650 | pdata8bits = NULL; |
1650 | { |
1651 | pdata16bits = (uint16_t *) pData; |
1651 | *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); |
1652 | } |
1652 | pdata16bits++; |
1653 | else |
1653 | } |
1654 | { |
1654 | else |
1655 | pdata8bits = pData; |
1655 | { |
1656 | pdata16bits = NULL; |
1656 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
1657 | } |
1657 | { |
1658 | 1658 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
|
1659 | __HAL_UNLOCK(huart); |
1659 | } |
1660 | 1660 | else |
|
1661 | /* Initialize output number of received elements */ |
1661 | { |
1662 | *RxLen = 0U; |
1662 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
1663 | 1663 | } |
|
1664 | /* as long as data have to be received */ |
1664 | |
1665 | while (huart->RxXferCount > 0U) |
1665 | pdata8bits++; |
1666 | { |
1666 | } |
1667 | /* Check if IDLE flag is set */ |
1667 | /* Increment number of received elements */ |
1668 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) |
1668 | *RxLen += 1U; |
1669 | { |
1669 | huart->RxXferCount--; |
1670 | /* Clear IDLE flag in ISR */ |
1670 | } |
1671 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
1671 | |
1672 | 1672 | /* Check for the Timeout */ |
|
1673 | /* If Set, but no data ever received, clear flag without exiting loop */ |
1673 | if (Timeout != HAL_MAX_DELAY) |
1674 | /* If Set, and data has already been received, this means Idle Event is valid : End reception */ |
1674 | { |
1675 | if (*RxLen > 0U) |
1675 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
1676 | { |
1676 | { |
1677 | huart->RxState = HAL_UART_STATE_READY; |
1677 | huart->RxState = HAL_UART_STATE_READY; |
1678 | 1678 | ||
1679 | return HAL_OK; |
1679 | return HAL_TIMEOUT; |
1680 | } |
1680 | } |
1681 | } |
1681 | } |
1682 | 1682 | } |
|
1683 | /* Check if RXNE flag is set */ |
1683 | |
1684 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE)) |
1684 | /* Set number of received elements in output parameter : RxLen */ |
1685 | { |
1685 | *RxLen = huart->RxXferSize - huart->RxXferCount; |
1686 | if (pdata8bits == NULL) |
1686 | /* At end of Rx process, restore huart->RxState to Ready */ |
1687 | { |
1687 | huart->RxState = HAL_UART_STATE_READY; |
1688 | *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); |
1688 | |
1689 | pdata16bits++; |
1689 | return HAL_OK; |
1690 | } |
1690 | } |
1691 | else |
1691 | else |
1692 | { |
1692 | { |
1693 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
1693 | return HAL_BUSY; |
1694 | { |
1694 | } |
1695 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
1695 | } |
1696 | } |
1696 | |
1697 | else |
1697 | /** |
1698 | { |
1698 | * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs. |
1699 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
1699 | * @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
1700 | } |
1700 | * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating |
1701 | 1701 | * number of received data elements. |
|
1702 | pdata8bits++; |
1702 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1703 | } |
1703 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
1704 | /* Increment number of received elements */ |
1704 | * of uint16_t available through pData. |
1705 | *RxLen += 1U; |
1705 | * @param huart UART handle. |
1706 | huart->RxXferCount--; |
1706 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1707 | } |
1707 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
1708 | 1708 | * @retval HAL status |
|
1709 | /* Check for the Timeout */ |
1709 | */ |
1710 | if (Timeout != HAL_MAX_DELAY) |
1710 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1711 | { |
1711 | { |
1712 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
1712 | HAL_StatusTypeDef status; |
1713 | { |
1713 | |
1714 | huart->RxState = HAL_UART_STATE_READY; |
1714 | /* Check that a Rx process is not already ongoing */ |
1715 | 1715 | if (huart->RxState == HAL_UART_STATE_READY) |
|
1716 | return HAL_TIMEOUT; |
1716 | { |
1717 | } |
1717 | if ((pData == NULL) || (Size == 0U)) |
1718 | } |
1718 | { |
1719 | } |
1719 | return HAL_ERROR; |
1720 | 1720 | } |
|
1721 | /* Set number of received elements in output parameter : RxLen */ |
1721 | |
1722 | *RxLen = huart->RxXferSize - huart->RxXferCount; |
1722 | /* Set Reception type to reception till IDLE Event*/ |
1723 | /* At end of Rx process, restore huart->RxState to Ready */ |
1723 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
1724 | huart->RxState = HAL_UART_STATE_READY; |
1724 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
1725 | 1725 | ||
1726 | return HAL_OK; |
1726 | status = UART_Start_Receive_IT(huart, pData, Size); |
1727 | } |
1727 | |
1728 | else |
1728 | /* Check Rx process has been successfully started */ |
1729 | { |
1729 | if (status == HAL_OK) |
1730 | return HAL_BUSY; |
1730 | { |
1731 | } |
1731 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
1732 | } |
1732 | { |
1733 | 1733 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
|
1734 | /** |
1734 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
1735 | * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs. |
1735 | } |
1736 | * @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
1736 | else |
1737 | * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating |
1737 | { |
1738 | * number of received data elements. |
1738 | /* In case of errors already pending when reception is started, |
1739 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1739 | Interrupts may have already been raised and lead to reception abortion. |
1740 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
1740 | (Overrun error for instance). |
1741 | * of uint16_t available through pData. |
1741 | In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
1742 | * @param huart UART handle. |
1742 | status = HAL_ERROR; |
1743 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1743 | } |
1744 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
1744 | } |
1745 | * @retval HAL status |
1745 | |
1746 | */ |
1746 | return status; |
1747 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1747 | } |
1748 | { |
1748 | else |
1749 | HAL_StatusTypeDef status; |
1749 | { |
1750 | 1750 | return HAL_BUSY; |
|
1751 | /* Check that a Rx process is not already ongoing */ |
1751 | } |
1752 | if (huart->RxState == HAL_UART_STATE_READY) |
1752 | } |
1753 | { |
1753 | |
1754 | if ((pData == NULL) || (Size == 0U)) |
1754 | /** |
1755 | { |
1755 | * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs. |
1756 | return HAL_ERROR; |
1756 | * @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
1757 | } |
1757 | * to DMA services, transferring automatically received data elements in user reception buffer and |
1758 | 1758 | * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider |
|
1759 | __HAL_LOCK(huart); |
1759 | * reception phase as ended. In all cases, callback execution will indicate number of received data elements. |
1760 | 1760 | * @note When the UART parity is enabled (PCE = 1), the received data contain |
|
1761 | /* Set Reception type to reception till IDLE Event*/ |
1761 | * the parity bit (MSB position). |
1762 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
1762 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1763 | 1763 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
|
1764 | status = UART_Start_Receive_IT(huart, pData, Size); |
1764 | * of uint16_t available through pData. |
1765 | 1765 | * @param huart UART handle. |
|
1766 | /* Check Rx process has been successfully started */ |
1766 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1767 | if (status == HAL_OK) |
1767 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
1768 | { |
1768 | * @retval HAL status |
1769 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
1769 | */ |
1770 | { |
1770 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1771 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
1771 | { |
1772 | SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
1772 | HAL_StatusTypeDef status; |
1773 | } |
1773 | |
1774 | else |
1774 | /* Check that a Rx process is not already ongoing */ |
1775 | { |
1775 | if (huart->RxState == HAL_UART_STATE_READY) |
1776 | /* In case of errors already pending when reception is started, |
1776 | { |
1777 | Interrupts may have already been raised and lead to reception abortion. |
1777 | if ((pData == NULL) || (Size == 0U)) |
1778 | (Overrun error for instance). |
1778 | { |
1779 | In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
1779 | return HAL_ERROR; |
1780 | status = HAL_ERROR; |
1780 | } |
1781 | } |
1781 | |
1782 | } |
1782 | /* Set Reception type to reception till IDLE Event*/ |
1783 | 1783 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
|
1784 | return status; |
1784 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
1785 | } |
1785 | |
1786 | else |
1786 | status = UART_Start_Receive_DMA(huart, pData, Size); |
1787 | { |
1787 | |
1788 | return HAL_BUSY; |
1788 | /* Check Rx process has been successfully started */ |
1789 | } |
1789 | if (status == HAL_OK) |
1790 | } |
1790 | { |
1791 | 1791 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
1792 | /** |
1792 | { |
1793 | * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs. |
1793 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
1794 | * @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
1794 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
1795 | * to DMA services, transferring automatically received data elements in user reception buffer and |
1795 | } |
1796 | * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider |
1796 | else |
1797 | * reception phase as ended. In all cases, callback execution will indicate number of received data elements. |
1797 | { |
1798 | * @note When the UART parity is enabled (PCE = 1), the received data contain |
1798 | /* In case of errors already pending when reception is started, |
1799 | * the parity bit (MSB position). |
1799 | Interrupts may have already been raised and lead to reception abortion. |
1800 | * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01), |
1800 | (Overrun error for instance). |
1801 | * the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
1801 | In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
1802 | * of uint16_t available through pData. |
1802 | status = HAL_ERROR; |
1803 | * @param huart UART handle. |
1803 | } |
1804 | * @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
1804 | } |
1805 | * @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
1805 | |
1806 | * @retval HAL status |
1806 | return status; |
1807 | */ |
1807 | } |
1808 | HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
1808 | else |
1809 | { |
1809 | { |
1810 | HAL_StatusTypeDef status; |
1810 | return HAL_BUSY; |
1811 | 1811 | } |
|
1812 | /* Check that a Rx process is not already ongoing */ |
1812 | } |
1813 | if (huart->RxState == HAL_UART_STATE_READY) |
1813 | |
1814 | { |
1814 | /** |
1815 | if ((pData == NULL) || (Size == 0U)) |
1815 | * @brief Provide Rx Event type that has lead to RxEvent callback execution. |
1816 | { |
1816 | * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress |
1817 | return HAL_ERROR; |
1817 | * of reception process is provided to application through calls of Rx Event callback (either default one |
1818 | } |
1818 | * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event, |
1819 | 1819 | * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead |
|
1820 | __HAL_LOCK(huart); |
1820 | * to Rx Event callback execution. |
1821 | 1821 | * @note This function is expected to be called within the user implementation of Rx Event Callback, |
|
1822 | /* Set Reception type to reception till IDLE Event*/ |
1822 | * in order to provide the accurate value : |
1823 | huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
1823 | * In Interrupt Mode : |
1824 | 1824 | * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) |
|
1825 | status = UART_Start_Receive_DMA(huart, pData, Size); |
1825 | * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of |
1826 | 1826 | * received data is lower than expected one) |
|
1827 | /* Check Rx process has been successfully started */ |
1827 | * In DMA Mode : |
1828 | if (status == HAL_OK) |
1828 | * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) |
1829 | { |
1829 | * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received |
1830 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
1830 | * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of |
1831 | { |
1831 | * received data is lower than expected one). |
1832 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
1832 | * In DMA mode, RxEvent callback could be called several times; |
1833 | SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
1833 | * When DMA is configured in Normal Mode, HT event does not stop Reception process; |
1834 | } |
1834 | * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process; |
1835 | else |
1835 | * @param huart UART handle. |
1836 | { |
1836 | * @retval Rx Event Type (returned value will be a value of @ref UART_RxEvent_Type_Values) |
1837 | /* In case of errors already pending when reception is started, |
1837 | */ |
1838 | Interrupts may have already been raised and lead to reception abortion. |
1838 | HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart) |
1839 | (Overrun error for instance). |
1839 | { |
1840 | In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
1840 | /* Return Rx Event type value, as stored in UART handle */ |
1841 | status = HAL_ERROR; |
1841 | return(huart->RxEventType); |
1842 | } |
1842 | } |
1843 | } |
1843 | |
1844 | 1844 | /** |
|
1845 | return status; |
1845 | * @brief Abort ongoing transfers (blocking mode). |
1846 | } |
1846 | * @param huart UART handle. |
1847 | else |
1847 | * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
1848 | { |
1848 | * This procedure performs following operations : |
1849 | return HAL_BUSY; |
1849 | * - Disable UART Interrupts (Tx and Rx) |
1850 | } |
1850 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1851 | } |
1851 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
1852 | 1852 | * - Set handle State to READY |
|
1853 | /** |
1853 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
1854 | * @brief Abort ongoing transfers (blocking mode). |
1854 | * @retval HAL status |
1855 | * @param huart UART handle. |
1855 | */ |
1856 | * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
1856 | HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart) |
1857 | * This procedure performs following operations : |
1857 | { |
1858 | * - Disable UART Interrupts (Tx and Rx) |
1858 | /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1859 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1859 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); |
1860 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
1860 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1861 | * - Set handle State to READY |
1861 | |
1862 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
1862 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
1863 | * @retval HAL status |
1863 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
1864 | */ |
1864 | { |
1865 | HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart) |
1865 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
1866 | { |
1866 | } |
1867 | /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1867 | |
1868 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); |
1868 | /* Disable the UART DMA Tx request if enabled */ |
1869 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
1869 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
1870 | 1870 | { |
|
1871 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
1871 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1872 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
1872 | |
1873 | { |
1873 | /* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */ |
1874 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
1874 | if (huart->hdmatx != NULL) |
1875 | } |
1875 | { |
1876 | 1876 | /* Set the UART DMA Abort callback to Null. |
|
1877 | /* Disable the UART DMA Tx request if enabled */ |
1877 | No call back execution at end of DMA abort procedure */ |
1878 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
1878 | huart->hdmatx->XferAbortCallback = NULL; |
1879 | { |
1879 | |
1880 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1880 | if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
1881 | 1881 | { |
|
1882 | /* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */ |
1882 | if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
1883 | if (huart->hdmatx != NULL) |
1883 | { |
1884 | { |
1884 | /* Set error code to DMA */ |
1885 | /* Set the UART DMA Abort callback to Null. |
1885 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1886 | No call back execution at end of DMA abort procedure */ |
1886 | |
1887 | huart->hdmatx->XferAbortCallback = NULL; |
1887 | return HAL_TIMEOUT; |
1888 | 1888 | } |
|
1889 | if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
1889 | } |
1890 | { |
1890 | } |
1891 | if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
1891 | } |
1892 | { |
1892 | |
1893 | /* Set error code to DMA */ |
1893 | /* Disable the UART DMA Rx request if enabled */ |
1894 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1894 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
1895 | 1895 | { |
|
1896 | return HAL_TIMEOUT; |
1896 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1897 | } |
1897 | |
1898 | } |
1898 | /* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */ |
1899 | } |
1899 | if (huart->hdmarx != NULL) |
1900 | } |
1900 | { |
1901 | 1901 | /* Set the UART DMA Abort callback to Null. |
|
1902 | /* Disable the UART DMA Rx request if enabled */ |
1902 | No call back execution at end of DMA abort procedure */ |
1903 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
1903 | huart->hdmarx->XferAbortCallback = NULL; |
1904 | { |
1904 | |
1905 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
1905 | if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
1906 | 1906 | { |
|
1907 | /* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */ |
1907 | if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
1908 | if (huart->hdmarx != NULL) |
1908 | { |
1909 | { |
1909 | /* Set error code to DMA */ |
1910 | /* Set the UART DMA Abort callback to Null. |
1910 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1911 | No call back execution at end of DMA abort procedure */ |
1911 | |
1912 | huart->hdmarx->XferAbortCallback = NULL; |
1912 | return HAL_TIMEOUT; |
1913 | 1913 | } |
|
1914 | if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
1914 | } |
1915 | { |
1915 | } |
1916 | if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
1916 | } |
1917 | { |
1917 | |
1918 | /* Set error code to DMA */ |
1918 | /* Reset Tx and Rx transfer counters */ |
1919 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1919 | huart->TxXferCount = 0x00U; |
1920 | 1920 | huart->RxXferCount = 0x00U; |
|
1921 | return HAL_TIMEOUT; |
1921 | |
1922 | } |
1922 | /* Reset ErrorCode */ |
1923 | } |
1923 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1924 | } |
1924 | |
1925 | } |
1925 | /* Restore huart->RxState and huart->gState to Ready */ |
1926 | 1926 | huart->RxState = HAL_UART_STATE_READY; |
|
1927 | /* Reset Tx and Rx transfer counters */ |
1927 | huart->gState = HAL_UART_STATE_READY; |
1928 | huart->TxXferCount = 0x00U; |
1928 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1929 | huart->RxXferCount = 0x00U; |
1929 | |
1930 | 1930 | return HAL_OK; |
|
1931 | /* Reset ErrorCode */ |
1931 | } |
1932 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
1932 | |
1933 | 1933 | /** |
|
1934 | /* Restore huart->RxState and huart->gState to Ready */ |
1934 | * @brief Abort ongoing Transmit transfer (blocking mode). |
1935 | huart->RxState = HAL_UART_STATE_READY; |
1935 | * @param huart UART handle. |
1936 | huart->gState = HAL_UART_STATE_READY; |
1936 | * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
1937 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
1937 | * This procedure performs following operations : |
1938 | 1938 | * - Disable UART Interrupts (Tx) |
|
1939 | return HAL_OK; |
1939 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1940 | } |
1940 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
1941 | 1941 | * - Set handle State to READY |
|
1942 | /** |
1942 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
1943 | * @brief Abort ongoing Transmit transfer (blocking mode). |
1943 | * @retval HAL status |
1944 | * @param huart UART handle. |
1944 | */ |
1945 | * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
1945 | HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart) |
1946 | * This procedure performs following operations : |
1946 | { |
1947 | * - Disable UART Interrupts (Tx) |
1947 | /* Disable TXEIE and TCIE interrupts */ |
1948 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1948 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
1949 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
1949 | |
1950 | * - Set handle State to READY |
1950 | /* Disable the UART DMA Tx request if enabled */ |
1951 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
1951 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
1952 | * @retval HAL status |
1952 | { |
1953 | */ |
1953 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1954 | HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart) |
1954 | |
1955 | { |
1955 | /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
1956 | /* Disable TXEIE and TCIE interrupts */ |
1956 | if (huart->hdmatx != NULL) |
1957 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
1957 | { |
1958 | 1958 | /* Set the UART DMA Abort callback to Null. |
|
1959 | /* Disable the UART DMA Tx request if enabled */ |
1959 | No call back execution at end of DMA abort procedure */ |
1960 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
1960 | huart->hdmatx->XferAbortCallback = NULL; |
1961 | { |
1961 | |
1962 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
1962 | if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
1963 | 1963 | { |
|
1964 | /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
1964 | if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
1965 | if (huart->hdmatx != NULL) |
1965 | { |
1966 | { |
1966 | /* Set error code to DMA */ |
1967 | /* Set the UART DMA Abort callback to Null. |
1967 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1968 | No call back execution at end of DMA abort procedure */ |
1968 | |
1969 | huart->hdmatx->XferAbortCallback = NULL; |
1969 | return HAL_TIMEOUT; |
1970 | 1970 | } |
|
1971 | if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
1971 | } |
1972 | { |
1972 | } |
1973 | if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
1973 | } |
1974 | { |
1974 | |
1975 | /* Set error code to DMA */ |
1975 | /* Reset Tx transfer counter */ |
1976 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
1976 | huart->TxXferCount = 0x00U; |
1977 | 1977 | ||
1978 | return HAL_TIMEOUT; |
1978 | /* Restore huart->gState to Ready */ |
1979 | } |
1979 | huart->gState = HAL_UART_STATE_READY; |
1980 | } |
1980 | |
1981 | } |
1981 | return HAL_OK; |
1982 | } |
1982 | } |
1983 | 1983 | ||
1984 | /* Reset Tx transfer counter */ |
1984 | /** |
1985 | huart->TxXferCount = 0x00U; |
1985 | * @brief Abort ongoing Receive transfer (blocking mode). |
1986 | 1986 | * @param huart UART handle. |
|
1987 | /* Restore huart->gState to Ready */ |
1987 | * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
1988 | huart->gState = HAL_UART_STATE_READY; |
1988 | * This procedure performs following operations : |
1989 | 1989 | * - Disable UART Interrupts (Rx) |
|
1990 | return HAL_OK; |
1990 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1991 | } |
1991 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
1992 | 1992 | * - Set handle State to READY |
|
1993 | /** |
1993 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
1994 | * @brief Abort ongoing Receive transfer (blocking mode). |
1994 | * @retval HAL status |
1995 | * @param huart UART handle. |
1995 | */ |
1996 | * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
1996 | HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart) |
1997 | * This procedure performs following operations : |
1997 | { |
1998 | * - Disable UART Interrupts (Rx) |
1998 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
1999 | * - Disable the DMA transfer in the peripheral register (if enabled) |
1999 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2000 | * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
2000 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2001 | * - Set handle State to READY |
2001 | |
2002 | * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
2002 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2003 | * @retval HAL status |
2003 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2004 | */ |
2004 | { |
2005 | HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart) |
2005 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2006 | { |
2006 | } |
2007 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2007 | |
2008 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2008 | /* Disable the UART DMA Rx request if enabled */ |
2009 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2009 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2010 | 2010 | { |
|
2011 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2011 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2012 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2012 | |
2013 | { |
2013 | /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
2014 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2014 | if (huart->hdmarx != NULL) |
2015 | } |
2015 | { |
2016 | 2016 | /* Set the UART DMA Abort callback to Null. |
|
2017 | /* Disable the UART DMA Rx request if enabled */ |
2017 | No call back execution at end of DMA abort procedure */ |
2018 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2018 | huart->hdmarx->XferAbortCallback = NULL; |
2019 | { |
2019 | |
2020 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2020 | if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
2021 | 2021 | { |
|
2022 | /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
2022 | if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
2023 | if (huart->hdmarx != NULL) |
2023 | { |
2024 | { |
2024 | /* Set error code to DMA */ |
2025 | /* Set the UART DMA Abort callback to Null. |
2025 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
2026 | No call back execution at end of DMA abort procedure */ |
2026 | |
2027 | huart->hdmarx->XferAbortCallback = NULL; |
2027 | return HAL_TIMEOUT; |
2028 | 2028 | } |
|
2029 | if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
2029 | } |
2030 | { |
2030 | } |
2031 | if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
2031 | } |
2032 | { |
2032 | |
2033 | /* Set error code to DMA */ |
2033 | /* Reset Rx transfer counter */ |
2034 | huart->ErrorCode = HAL_UART_ERROR_DMA; |
2034 | huart->RxXferCount = 0x00U; |
2035 | 2035 | ||
2036 | return HAL_TIMEOUT; |
2036 | /* Restore huart->RxState to Ready */ |
2037 | } |
2037 | huart->RxState = HAL_UART_STATE_READY; |
2038 | } |
2038 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2039 | } |
2039 | |
2040 | } |
2040 | return HAL_OK; |
2041 | 2041 | } |
|
2042 | /* Reset Rx transfer counter */ |
2042 | |
2043 | huart->RxXferCount = 0x00U; |
2043 | /** |
2044 | 2044 | * @brief Abort ongoing transfers (Interrupt mode). |
|
2045 | /* Restore huart->RxState to Ready */ |
2045 | * @param huart UART handle. |
2046 | huart->RxState = HAL_UART_STATE_READY; |
2046 | * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
2047 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2047 | * This procedure performs following operations : |
2048 | 2048 | * - Disable UART Interrupts (Tx and Rx) |
|
2049 | return HAL_OK; |
2049 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2050 | } |
2050 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2051 | 2051 | * - Set handle State to READY |
|
2052 | /** |
2052 | * - At abort completion, call user abort complete callback |
2053 | * @brief Abort ongoing transfers (Interrupt mode). |
2053 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2054 | * @param huart UART handle. |
2054 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2055 | * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
2055 | * @retval HAL status |
2056 | * This procedure performs following operations : |
2056 | */ |
2057 | * - Disable UART Interrupts (Tx and Rx) |
2057 | HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart) |
2058 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2058 | { |
2059 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2059 | uint32_t AbortCplt = 0x01U; |
2060 | * - Set handle State to READY |
2060 | |
2061 | * - At abort completion, call user abort complete callback |
2061 | /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2062 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2062 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); |
2063 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2063 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2064 | * @retval HAL status |
2064 | |
2065 | */ |
2065 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2066 | HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart) |
2066 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2067 | { |
2067 | { |
2068 | uint32_t AbortCplt = 0x01U; |
2068 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2069 | 2069 | } |
|
2070 | /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2070 | |
2071 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); |
2071 | /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised |
2072 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2072 | before any call to DMA Abort functions */ |
2073 | 2073 | /* DMA Tx Handle is valid */ |
|
2074 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2074 | if (huart->hdmatx != NULL) |
2075 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2075 | { |
2076 | { |
2076 | /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. |
2077 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2077 | Otherwise, set it to NULL */ |
2078 | } |
2078 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2079 | 2079 | { |
|
2080 | /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised |
2080 | huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback; |
2081 | before any call to DMA Abort functions */ |
2081 | } |
2082 | /* DMA Tx Handle is valid */ |
2082 | else |
2083 | if (huart->hdmatx != NULL) |
2083 | { |
2084 | { |
2084 | huart->hdmatx->XferAbortCallback = NULL; |
2085 | /* Set DMA Abort Complete callback if UART DMA Tx request if enabled. |
2085 | } |
2086 | Otherwise, set it to NULL */ |
2086 | } |
2087 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2087 | /* DMA Rx Handle is valid */ |
2088 | { |
2088 | if (huart->hdmarx != NULL) |
2089 | huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback; |
2089 | { |
2090 | } |
2090 | /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. |
2091 | else |
2091 | Otherwise, set it to NULL */ |
2092 | { |
2092 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2093 | huart->hdmatx->XferAbortCallback = NULL; |
2093 | { |
2094 | } |
2094 | huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback; |
2095 | } |
2095 | } |
2096 | /* DMA Rx Handle is valid */ |
2096 | else |
2097 | if (huart->hdmarx != NULL) |
2097 | { |
2098 | { |
2098 | huart->hdmarx->XferAbortCallback = NULL; |
2099 | /* Set DMA Abort Complete callback if UART DMA Rx request if enabled. |
2099 | } |
2100 | Otherwise, set it to NULL */ |
2100 | } |
2101 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2101 | |
2102 | { |
2102 | /* Disable the UART DMA Tx request if enabled */ |
2103 | huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback; |
2103 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2104 | } |
2104 | { |
2105 | else |
2105 | /* Disable DMA Tx at UART level */ |
2106 | { |
2106 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2107 | huart->hdmarx->XferAbortCallback = NULL; |
2107 | |
2108 | } |
2108 | /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ |
2109 | } |
2109 | if (huart->hdmatx != NULL) |
2110 | 2110 | { |
|
2111 | /* Disable the UART DMA Tx request if enabled */ |
2111 | /* UART Tx DMA Abort callback has already been initialised : |
2112 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2112 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2113 | { |
2113 | |
2114 | /* Disable DMA Tx at UART level */ |
2114 | /* Abort DMA TX */ |
2115 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2115 | if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
2116 | 2116 | { |
|
2117 | /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ |
2117 | huart->hdmatx->XferAbortCallback = NULL; |
2118 | if (huart->hdmatx != NULL) |
2118 | } |
2119 | { |
2119 | else |
2120 | /* UART Tx DMA Abort callback has already been initialised : |
2120 | { |
2121 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2121 | AbortCplt = 0x00U; |
2122 | 2122 | } |
|
2123 | /* Abort DMA TX */ |
2123 | } |
2124 | if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
2124 | } |
2125 | { |
2125 | |
2126 | huart->hdmatx->XferAbortCallback = NULL; |
2126 | /* Disable the UART DMA Rx request if enabled */ |
2127 | } |
2127 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2128 | else |
2128 | { |
2129 | { |
2129 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2130 | AbortCplt = 0x00U; |
2130 | |
2131 | } |
2131 | /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ |
2132 | } |
2132 | if (huart->hdmarx != NULL) |
2133 | } |
2133 | { |
2134 | 2134 | /* UART Rx DMA Abort callback has already been initialised : |
|
2135 | /* Disable the UART DMA Rx request if enabled */ |
2135 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2136 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2136 | |
2137 | { |
2137 | /* Abort DMA RX */ |
2138 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2138 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
2139 | 2139 | { |
|
2140 | /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ |
2140 | huart->hdmarx->XferAbortCallback = NULL; |
2141 | if (huart->hdmarx != NULL) |
2141 | AbortCplt = 0x01U; |
2142 | { |
2142 | } |
2143 | /* UART Rx DMA Abort callback has already been initialised : |
2143 | else |
2144 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2144 | { |
2145 | 2145 | AbortCplt = 0x00U; |
|
2146 | /* Abort DMA RX */ |
2146 | } |
2147 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
2147 | } |
2148 | { |
2148 | } |
2149 | huart->hdmarx->XferAbortCallback = NULL; |
2149 | |
2150 | AbortCplt = 0x01U; |
2150 | /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ |
2151 | } |
2151 | if (AbortCplt == 0x01U) |
2152 | else |
2152 | { |
2153 | { |
2153 | /* Reset Tx and Rx transfer counters */ |
2154 | AbortCplt = 0x00U; |
2154 | huart->TxXferCount = 0x00U; |
2155 | } |
2155 | huart->RxXferCount = 0x00U; |
2156 | } |
2156 | |
2157 | } |
2157 | /* Reset ErrorCode */ |
2158 | 2158 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
2159 | /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ |
2159 | |
2160 | if (AbortCplt == 0x01U) |
2160 | /* Restore huart->gState and huart->RxState to Ready */ |
2161 | { |
2161 | huart->gState = HAL_UART_STATE_READY; |
2162 | /* Reset Tx and Rx transfer counters */ |
2162 | huart->RxState = HAL_UART_STATE_READY; |
2163 | huart->TxXferCount = 0x00U; |
2163 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2164 | huart->RxXferCount = 0x00U; |
2164 | |
2165 | 2165 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
|
2166 | /* Reset ErrorCode */ |
2166 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2167 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
2167 | /* Call registered Abort complete callback */ |
2168 | 2168 | huart->AbortCpltCallback(huart); |
|
2169 | /* Restore huart->gState and huart->RxState to Ready */ |
2169 | #else |
2170 | huart->gState = HAL_UART_STATE_READY; |
2170 | /* Call legacy weak Abort complete callback */ |
2171 | huart->RxState = HAL_UART_STATE_READY; |
2171 | HAL_UART_AbortCpltCallback(huart); |
2172 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2172 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2173 | 2173 | } |
|
2174 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2174 | |
2175 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2175 | return HAL_OK; |
2176 | /* Call registered Abort complete callback */ |
2176 | } |
2177 | huart->AbortCpltCallback(huart); |
2177 | |
2178 | #else |
2178 | /** |
2179 | /* Call legacy weak Abort complete callback */ |
2179 | * @brief Abort ongoing Transmit transfer (Interrupt mode). |
2180 | HAL_UART_AbortCpltCallback(huart); |
2180 | * @param huart UART handle. |
2181 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2181 | * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
2182 | } |
2182 | * This procedure performs following operations : |
2183 | 2183 | * - Disable UART Interrupts (Tx) |
|
2184 | return HAL_OK; |
2184 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2185 | } |
2185 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2186 | 2186 | * - Set handle State to READY |
|
2187 | /** |
2187 | * - At abort completion, call user abort complete callback |
2188 | * @brief Abort ongoing Transmit transfer (Interrupt mode). |
2188 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2189 | * @param huart UART handle. |
2189 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2190 | * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
2190 | * @retval HAL status |
2191 | * This procedure performs following operations : |
2191 | */ |
2192 | * - Disable UART Interrupts (Tx) |
2192 | HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart) |
2193 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2193 | { |
2194 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2194 | /* Disable TXEIE and TCIE interrupts */ |
2195 | * - Set handle State to READY |
2195 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
2196 | * - At abort completion, call user abort complete callback |
2196 | |
2197 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2197 | /* Disable the UART DMA Tx request if enabled */ |
2198 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2198 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2199 | * @retval HAL status |
2199 | { |
2200 | */ |
2200 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2201 | HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart) |
2201 | |
2202 | { |
2202 | /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
2203 | /* Disable TXEIE and TCIE interrupts */ |
2203 | if (huart->hdmatx != NULL) |
2204 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
2204 | { |
2205 | 2205 | /* Set the UART DMA Abort callback : |
|
2206 | /* Disable the UART DMA Tx request if enabled */ |
2206 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2207 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
2207 | huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback; |
2208 | { |
2208 | |
2209 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2209 | /* Abort DMA TX */ |
2210 | 2210 | if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
|
2211 | /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
2211 | { |
2212 | if (huart->hdmatx != NULL) |
2212 | /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */ |
2213 | { |
2213 | huart->hdmatx->XferAbortCallback(huart->hdmatx); |
2214 | /* Set the UART DMA Abort callback : |
2214 | } |
2215 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2215 | } |
2216 | huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback; |
2216 | else |
2217 | 2217 | { |
|
2218 | /* Abort DMA TX */ |
2218 | /* Reset Tx transfer counter */ |
2219 | if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
2219 | huart->TxXferCount = 0x00U; |
2220 | { |
2220 | |
2221 | /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */ |
2221 | /* Restore huart->gState to Ready */ |
2222 | huart->hdmatx->XferAbortCallback(huart->hdmatx); |
2222 | huart->gState = HAL_UART_STATE_READY; |
2223 | } |
2223 | |
2224 | } |
2224 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2225 | else |
2225 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2226 | { |
2226 | /* Call registered Abort Transmit Complete Callback */ |
2227 | /* Reset Tx transfer counter */ |
2227 | huart->AbortTransmitCpltCallback(huart); |
2228 | huart->TxXferCount = 0x00U; |
2228 | #else |
2229 | 2229 | /* Call legacy weak Abort Transmit Complete Callback */ |
|
2230 | /* Restore huart->gState to Ready */ |
2230 | HAL_UART_AbortTransmitCpltCallback(huart); |
2231 | huart->gState = HAL_UART_STATE_READY; |
2231 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2232 | 2232 | } |
|
2233 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2233 | } |
2234 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2234 | else |
2235 | /* Call registered Abort Transmit Complete Callback */ |
2235 | { |
2236 | huart->AbortTransmitCpltCallback(huart); |
2236 | /* Reset Tx transfer counter */ |
2237 | #else |
2237 | huart->TxXferCount = 0x00U; |
2238 | /* Call legacy weak Abort Transmit Complete Callback */ |
2238 | |
2239 | HAL_UART_AbortTransmitCpltCallback(huart); |
2239 | /* Restore huart->gState to Ready */ |
2240 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2240 | huart->gState = HAL_UART_STATE_READY; |
2241 | } |
2241 | |
2242 | } |
2242 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2243 | else |
2243 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2244 | { |
2244 | /* Call registered Abort Transmit Complete Callback */ |
2245 | /* Reset Tx transfer counter */ |
2245 | huart->AbortTransmitCpltCallback(huart); |
2246 | huart->TxXferCount = 0x00U; |
2246 | #else |
2247 | 2247 | /* Call legacy weak Abort Transmit Complete Callback */ |
|
2248 | /* Restore huart->gState to Ready */ |
2248 | HAL_UART_AbortTransmitCpltCallback(huart); |
2249 | huart->gState = HAL_UART_STATE_READY; |
2249 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2250 | 2250 | } |
|
2251 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2251 | |
2252 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2252 | return HAL_OK; |
2253 | /* Call registered Abort Transmit Complete Callback */ |
2253 | } |
2254 | huart->AbortTransmitCpltCallback(huart); |
2254 | |
2255 | #else |
2255 | /** |
2256 | /* Call legacy weak Abort Transmit Complete Callback */ |
2256 | * @brief Abort ongoing Receive transfer (Interrupt mode). |
2257 | HAL_UART_AbortTransmitCpltCallback(huart); |
2257 | * @param huart UART handle. |
2258 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2258 | * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
2259 | } |
2259 | * This procedure performs following operations : |
2260 | 2260 | * - Disable UART Interrupts (Rx) |
|
2261 | return HAL_OK; |
2261 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2262 | } |
2262 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2263 | 2263 | * - Set handle State to READY |
|
2264 | /** |
2264 | * - At abort completion, call user abort complete callback |
2265 | * @brief Abort ongoing Receive transfer (Interrupt mode). |
2265 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2266 | * @param huart UART handle. |
2266 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2267 | * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
2267 | * @retval HAL status |
2268 | * This procedure performs following operations : |
2268 | */ |
2269 | * - Disable UART Interrupts (Rx) |
2269 | HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart) |
2270 | * - Disable the DMA transfer in the peripheral register (if enabled) |
2270 | { |
2271 | * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
2271 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2272 | * - Set handle State to READY |
2272 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2273 | * - At abort completion, call user abort complete callback |
2273 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2274 | * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
2274 | |
2275 | * considered as completed only when user abort complete callback is executed (not when exiting function). |
2275 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2276 | * @retval HAL status |
2276 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2277 | */ |
2277 | { |
2278 | HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart) |
2278 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2279 | { |
2279 | } |
2280 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2280 | |
2281 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2281 | /* Disable the UART DMA Rx request if enabled */ |
2282 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2282 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2283 | 2283 | { |
|
2284 | /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
2284 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2285 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2285 | |
2286 | { |
2286 | /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
2287 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
2287 | if (huart->hdmarx != NULL) |
2288 | } |
2288 | { |
2289 | 2289 | /* Set the UART DMA Abort callback : |
|
2290 | /* Disable the UART DMA Rx request if enabled */ |
2290 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2291 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2291 | huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback; |
2292 | { |
2292 | |
2293 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2293 | /* Abort DMA RX */ |
2294 | 2294 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
|
2295 | /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
2295 | { |
2296 | if (huart->hdmarx != NULL) |
2296 | /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ |
2297 | { |
2297 | huart->hdmarx->XferAbortCallback(huart->hdmarx); |
2298 | /* Set the UART DMA Abort callback : |
2298 | } |
2299 | will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
2299 | } |
2300 | huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback; |
2300 | else |
2301 | 2301 | { |
|
2302 | /* Abort DMA RX */ |
2302 | /* Reset Rx transfer counter */ |
2303 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
2303 | huart->RxXferCount = 0x00U; |
2304 | { |
2304 | |
2305 | /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ |
2305 | /* Restore huart->RxState to Ready */ |
2306 | huart->hdmarx->XferAbortCallback(huart->hdmarx); |
2306 | huart->RxState = HAL_UART_STATE_READY; |
2307 | } |
2307 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2308 | } |
2308 | |
2309 | else |
2309 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2310 | { |
2310 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2311 | /* Reset Rx transfer counter */ |
2311 | /* Call registered Abort Receive Complete Callback */ |
2312 | huart->RxXferCount = 0x00U; |
2312 | huart->AbortReceiveCpltCallback(huart); |
2313 | 2313 | #else |
|
2314 | /* Restore huart->RxState to Ready */ |
2314 | /* Call legacy weak Abort Receive Complete Callback */ |
2315 | huart->RxState = HAL_UART_STATE_READY; |
2315 | HAL_UART_AbortReceiveCpltCallback(huart); |
2316 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2316 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2317 | 2317 | } |
|
2318 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2318 | } |
2319 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2319 | else |
2320 | /* Call registered Abort Receive Complete Callback */ |
2320 | { |
2321 | huart->AbortReceiveCpltCallback(huart); |
2321 | /* Reset Rx transfer counter */ |
2322 | #else |
2322 | huart->RxXferCount = 0x00U; |
2323 | /* Call legacy weak Abort Receive Complete Callback */ |
2323 | |
2324 | HAL_UART_AbortReceiveCpltCallback(huart); |
2324 | /* Restore huart->RxState to Ready */ |
2325 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2325 | huart->RxState = HAL_UART_STATE_READY; |
2326 | } |
2326 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2327 | } |
2327 | |
2328 | else |
2328 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2329 | { |
2329 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2330 | /* Reset Rx transfer counter */ |
2330 | /* Call registered Abort Receive Complete Callback */ |
2331 | huart->RxXferCount = 0x00U; |
2331 | huart->AbortReceiveCpltCallback(huart); |
2332 | 2332 | #else |
|
2333 | /* Restore huart->RxState to Ready */ |
2333 | /* Call legacy weak Abort Receive Complete Callback */ |
2334 | huart->RxState = HAL_UART_STATE_READY; |
2334 | HAL_UART_AbortReceiveCpltCallback(huart); |
2335 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2335 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2336 | 2336 | } |
|
2337 | /* As no DMA to be aborted, call directly user Abort complete callback */ |
2337 | |
2338 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2338 | return HAL_OK; |
2339 | /* Call registered Abort Receive Complete Callback */ |
2339 | } |
2340 | huart->AbortReceiveCpltCallback(huart); |
2340 | |
2341 | #else |
2341 | /** |
2342 | /* Call legacy weak Abort Receive Complete Callback */ |
2342 | * @brief This function handles UART interrupt request. |
2343 | HAL_UART_AbortReceiveCpltCallback(huart); |
2343 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2344 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2344 | * the configuration information for the specified UART module. |
2345 | } |
2345 | * @retval None |
2346 | 2346 | */ |
|
2347 | return HAL_OK; |
2347 | void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) |
2348 | } |
2348 | { |
2349 | 2349 | uint32_t isrflags = READ_REG(huart->Instance->SR); |
|
2350 | /** |
2350 | uint32_t cr1its = READ_REG(huart->Instance->CR1); |
2351 | * @brief This function handles UART interrupt request. |
2351 | uint32_t cr3its = READ_REG(huart->Instance->CR3); |
2352 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2352 | uint32_t errorflags = 0x00U; |
2353 | * the configuration information for the specified UART module. |
2353 | uint32_t dmarequest = 0x00U; |
2354 | * @retval None |
2354 | |
2355 | */ |
2355 | /* If no error occurs */ |
2356 | void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) |
2356 | errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE)); |
2357 | { |
2357 | if (errorflags == RESET) |
2358 | uint32_t isrflags = READ_REG(huart->Instance->SR); |
2358 | { |
2359 | uint32_t cr1its = READ_REG(huart->Instance->CR1); |
2359 | /* UART in mode Receiver -------------------------------------------------*/ |
2360 | uint32_t cr3its = READ_REG(huart->Instance->CR3); |
2360 | if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) |
2361 | uint32_t errorflags = 0x00U; |
2361 | { |
2362 | uint32_t dmarequest = 0x00U; |
2362 | UART_Receive_IT(huart); |
2363 | 2363 | return; |
|
2364 | /* If no error occurs */ |
2364 | } |
2365 | errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE)); |
2365 | } |
2366 | if (errorflags == RESET) |
2366 | |
2367 | { |
2367 | /* If some errors occur */ |
2368 | /* UART in mode Receiver -------------------------------------------------*/ |
2368 | if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) |
2369 | if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) |
2369 | || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET))) |
2370 | { |
2370 | { |
2371 | UART_Receive_IT(huart); |
2371 | /* UART parity error interrupt occurred ----------------------------------*/ |
2372 | return; |
2372 | if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) |
2373 | } |
2373 | { |
2374 | } |
2374 | huart->ErrorCode |= HAL_UART_ERROR_PE; |
2375 | 2375 | } |
|
2376 | /* If some errors occur */ |
2376 | |
2377 | if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET))) |
2377 | /* UART noise error interrupt occurred -----------------------------------*/ |
2378 | { |
2378 | if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) |
2379 | /* UART parity error interrupt occurred ----------------------------------*/ |
2379 | { |
2380 | if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) |
2380 | huart->ErrorCode |= HAL_UART_ERROR_NE; |
2381 | { |
2381 | } |
2382 | huart->ErrorCode |= HAL_UART_ERROR_PE; |
2382 | |
2383 | } |
2383 | /* UART frame error interrupt occurred -----------------------------------*/ |
2384 | 2384 | if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) |
|
2385 | /* UART noise error interrupt occurred -----------------------------------*/ |
2385 | { |
2386 | if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) |
2386 | huart->ErrorCode |= HAL_UART_ERROR_FE; |
2387 | { |
2387 | } |
2388 | huart->ErrorCode |= HAL_UART_ERROR_NE; |
2388 | |
2389 | } |
2389 | /* UART Over-Run interrupt occurred --------------------------------------*/ |
2390 | 2390 | if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET) |
|
2391 | /* UART frame error interrupt occurred -----------------------------------*/ |
2391 | || ((cr3its & USART_CR3_EIE) != RESET))) |
2392 | if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) |
2392 | { |
2393 | { |
2393 | huart->ErrorCode |= HAL_UART_ERROR_ORE; |
2394 | huart->ErrorCode |= HAL_UART_ERROR_FE; |
2394 | } |
2395 | } |
2395 | |
2396 | 2396 | /* Call UART Error Call back function if need be --------------------------*/ |
|
2397 | /* UART Over-Run interrupt occurred --------------------------------------*/ |
2397 | if (huart->ErrorCode != HAL_UART_ERROR_NONE) |
2398 | if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET) || ((cr3its & USART_CR3_EIE) != RESET))) |
2398 | { |
2399 | { |
2399 | /* UART in mode Receiver -----------------------------------------------*/ |
2400 | huart->ErrorCode |= HAL_UART_ERROR_ORE; |
2400 | if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) |
2401 | } |
2401 | { |
2402 | 2402 | UART_Receive_IT(huart); |
|
2403 | /* Call UART Error Call back function if need be --------------------------*/ |
2403 | } |
2404 | if (huart->ErrorCode != HAL_UART_ERROR_NONE) |
2404 | |
2405 | { |
2405 | /* If Overrun error occurs, or if any error occurs in DMA mode reception, |
2406 | /* UART in mode Receiver -----------------------------------------------*/ |
2406 | consider error as blocking */ |
2407 | if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) |
2407 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
2408 | { |
2408 | if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest) |
2409 | UART_Receive_IT(huart); |
2409 | { |
2410 | } |
2410 | /* Blocking error : transfer is aborted |
2411 | 2411 | Set the UART state ready to be able to start again the process, |
|
2412 | /* If Overrun error occurs, or if any error occurs in DMA mode reception, |
2412 | Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ |
2413 | consider error as blocking */ |
2413 | UART_EndRxTransfer(huart); |
2414 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
2414 | |
2415 | if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest) |
2415 | /* Disable the UART DMA Rx request if enabled */ |
2416 | { |
2416 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2417 | /* Blocking error : transfer is aborted |
2417 | { |
2418 | Set the UART state ready to be able to start again the process, |
2418 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2419 | Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ |
2419 | |
2420 | UART_EndRxTransfer(huart); |
2420 | /* Abort the UART DMA Rx channel */ |
2421 | 2421 | if (huart->hdmarx != NULL) |
|
2422 | /* Disable the UART DMA Rx request if enabled */ |
2422 | { |
2423 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2423 | /* Set the UART DMA Abort callback : |
2424 | { |
2424 | will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ |
2425 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2425 | huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; |
2426 | 2426 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
|
2427 | /* Abort the UART DMA Rx channel */ |
2427 | { |
2428 | if (huart->hdmarx != NULL) |
2428 | /* Call Directly XferAbortCallback function in case of error */ |
2429 | { |
2429 | huart->hdmarx->XferAbortCallback(huart->hdmarx); |
2430 | /* Set the UART DMA Abort callback : |
2430 | } |
2431 | will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ |
2431 | } |
2432 | huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; |
2432 | else |
2433 | if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
2433 | { |
2434 | { |
2434 | /* Call user error callback */ |
2435 | /* Call Directly XferAbortCallback function in case of error */ |
2435 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2436 | huart->hdmarx->XferAbortCallback(huart->hdmarx); |
2436 | /*Call registered error callback*/ |
2437 | } |
2437 | huart->ErrorCallback(huart); |
2438 | } |
2438 | #else |
2439 | else |
2439 | /*Call legacy weak error callback*/ |
2440 | { |
2440 | HAL_UART_ErrorCallback(huart); |
2441 | /* Call user error callback */ |
2441 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2442 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2442 | } |
2443 | /*Call registered error callback*/ |
2443 | } |
2444 | huart->ErrorCallback(huart); |
2444 | else |
2445 | #else |
2445 | { |
2446 | /*Call legacy weak error callback*/ |
2446 | /* Call user error callback */ |
2447 | HAL_UART_ErrorCallback(huart); |
2447 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2448 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2448 | /*Call registered error callback*/ |
2449 | } |
2449 | huart->ErrorCallback(huart); |
2450 | } |
2450 | #else |
2451 | else |
2451 | /*Call legacy weak error callback*/ |
2452 | { |
2452 | HAL_UART_ErrorCallback(huart); |
2453 | /* Call user error callback */ |
2453 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2454 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2454 | } |
2455 | /*Call registered error callback*/ |
2455 | } |
2456 | huart->ErrorCallback(huart); |
2456 | else |
2457 | #else |
2457 | { |
2458 | /*Call legacy weak error callback*/ |
2458 | /* Non Blocking error : transfer could go on. |
2459 | HAL_UART_ErrorCallback(huart); |
2459 | Error is notified to user through user error callback */ |
2460 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2460 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2461 | } |
2461 | /*Call registered error callback*/ |
2462 | } |
2462 | huart->ErrorCallback(huart); |
2463 | else |
2463 | #else |
2464 | { |
2464 | /*Call legacy weak error callback*/ |
2465 | /* Non Blocking error : transfer could go on. |
2465 | HAL_UART_ErrorCallback(huart); |
2466 | Error is notified to user through user error callback */ |
2466 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2467 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2467 | |
2468 | /*Call registered error callback*/ |
2468 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
2469 | huart->ErrorCallback(huart); |
2469 | } |
2470 | #else |
2470 | } |
2471 | /*Call legacy weak error callback*/ |
2471 | return; |
2472 | HAL_UART_ErrorCallback(huart); |
2472 | } /* End if some error occurs */ |
2473 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2473 | |
2474 | 2474 | /* Check current reception Mode : |
|
2475 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
2475 | If Reception till IDLE event has been selected : */ |
2476 | } |
2476 | if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2477 | } |
2477 | && ((isrflags & USART_SR_IDLE) != 0U) |
2478 | return; |
2478 | && ((cr1its & USART_SR_IDLE) != 0U)) |
2479 | } /* End if some error occurs */ |
2479 | { |
2480 | 2480 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
|
2481 | /* Check current reception Mode : |
2481 | |
2482 | If Reception till IDLE event has been selected : */ |
2482 | /* Check if DMA mode is enabled in UART */ |
2483 | if ( (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
2483 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2484 | &&((isrflags & USART_SR_IDLE) != 0U) |
2484 | { |
2485 | &&((cr1its & USART_SR_IDLE) != 0U)) |
2485 | /* DMA mode enabled */ |
2486 | { |
2486 | /* Check received length : If all expected data are received, do nothing, |
2487 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
2487 | (DMA cplt callback will be called). |
2488 | 2488 | Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
|
2489 | /* Check if DMA mode is enabled in UART */ |
2489 | uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx); |
2490 | if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
2490 | if ((nb_remaining_rx_data > 0U) |
2491 | { |
2491 | && (nb_remaining_rx_data < huart->RxXferSize)) |
2492 | /* DMA mode enabled */ |
2492 | { |
2493 | /* Check received length : If all expected data are received, do nothing, |
2493 | /* Reception is not complete */ |
2494 | (DMA cplt callback will be called). |
2494 | huart->RxXferCount = nb_remaining_rx_data; |
2495 | Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
2495 | |
2496 | uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx); |
2496 | /* In Normal mode, end DMA xfer and HAL UART Rx process*/ |
2497 | if ( (nb_remaining_rx_data > 0U) |
2497 | if (huart->hdmarx->Init.Mode != DMA_CIRCULAR) |
2498 | &&(nb_remaining_rx_data < huart->RxXferSize)) |
2498 | { |
2499 | { |
2499 | /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2500 | /* Reception is not complete */ |
2500 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
2501 | huart->RxXferCount = nb_remaining_rx_data; |
2501 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2502 | 2502 | ||
2503 | /* In Normal mode, end DMA xfer and HAL UART Rx process*/ |
2503 | /* Disable the DMA transfer for the receiver request by resetting the DMAR bit |
2504 | if (huart->hdmarx->Init.Mode != DMA_CIRCULAR) |
2504 | in the UART CR3 register */ |
2505 | { |
2505 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2506 | /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
2506 | |
2507 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
2507 | /* At end of Rx process, restore huart->RxState to Ready */ |
2508 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2508 | huart->RxState = HAL_UART_STATE_READY; |
2509 | 2509 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
2510 | /* Disable the DMA transfer for the receiver request by resetting the DMAR bit |
2510 | |
2511 | in the UART CR3 register */ |
2511 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
2512 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
2512 | |
2513 | 2513 | /* Last bytes received, so no need as the abort is immediate */ |
|
2514 | /* At end of Rx process, restore huart->RxState to Ready */ |
2514 | (void)HAL_DMA_Abort(huart->hdmarx); |
2515 | huart->RxState = HAL_UART_STATE_READY; |
2515 | } |
2516 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2516 | |
2517 | 2517 | /* Initialize type of RxEvent that correspond to RxEvent callback execution; |
|
2518 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
2518 | In this case, Rx Event type is Idle Event */ |
2519 | 2519 | huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
|
2520 | /* Last bytes received, so no need as the abort is immediate */ |
2520 | |
2521 | (void)HAL_DMA_Abort(huart->hdmarx); |
2521 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2522 | } |
2522 | /*Call registered Rx Event callback*/ |
2523 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2523 | huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
2524 | /*Call registered Rx Event callback*/ |
2524 | #else |
2525 | huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
2525 | /*Call legacy weak Rx Event callback*/ |
2526 | #else |
2526 | HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
2527 | /*Call legacy weak Rx Event callback*/ |
2527 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2528 | HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
2528 | } |
2529 | #endif |
2529 | return; |
2530 | } |
2530 | } |
2531 | return; |
2531 | else |
2532 | } |
2532 | { |
2533 | else |
2533 | /* DMA mode not enabled */ |
2534 | { |
2534 | /* Check received length : If all expected data are received, do nothing. |
2535 | /* DMA mode not enabled */ |
2535 | Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
2536 | /* Check received length : If all expected data are received, do nothing. |
2536 | uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount; |
2537 | Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
2537 | if ((huart->RxXferCount > 0U) |
2538 | uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount; |
2538 | && (nb_rx_data > 0U)) |
2539 | if ( (huart->RxXferCount > 0U) |
2539 | { |
2540 | &&(nb_rx_data > 0U) ) |
2540 | /* Disable the UART Parity Error Interrupt and RXNE interrupts */ |
2541 | { |
2541 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2542 | /* Disable the UART Parity Error Interrupt and RXNE interrupts */ |
2542 | |
2543 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
2543 | /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
2544 | 2544 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
2545 | /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
2545 | |
2546 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
2546 | /* Rx process is completed, restore huart->RxState to Ready */ |
2547 | 2547 | huart->RxState = HAL_UART_STATE_READY; |
|
2548 | /* Rx process is completed, restore huart->RxState to Ready */ |
2548 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2549 | huart->RxState = HAL_UART_STATE_READY; |
2549 | |
2550 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
2550 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
2551 | 2551 | ||
2552 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
2552 | /* Initialize type of RxEvent that correspond to RxEvent callback execution; |
2553 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2553 | In this case, Rx Event type is Idle Event */ |
2554 | /*Call registered Rx complete callback*/ |
2554 | huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
2555 | huart->RxEventCallback(huart, nb_rx_data); |
2555 | |
2556 | #else |
2556 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2557 | /*Call legacy weak Rx Event callback*/ |
2557 | /*Call registered Rx complete callback*/ |
2558 | HAL_UARTEx_RxEventCallback(huart, nb_rx_data); |
2558 | huart->RxEventCallback(huart, nb_rx_data); |
2559 | #endif |
2559 | #else |
2560 | } |
2560 | /*Call legacy weak Rx Event callback*/ |
2561 | return; |
2561 | HAL_UARTEx_RxEventCallback(huart, nb_rx_data); |
2562 | } |
2562 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2563 | } |
2563 | } |
2564 | 2564 | return; |
|
2565 | /* UART in mode Transmitter ------------------------------------------------*/ |
2565 | } |
2566 | if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) |
2566 | } |
2567 | { |
2567 | |
2568 | UART_Transmit_IT(huart); |
2568 | /* UART in mode Transmitter ------------------------------------------------*/ |
2569 | return; |
2569 | if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) |
2570 | } |
2570 | { |
2571 | 2571 | UART_Transmit_IT(huart); |
|
2572 | /* UART in mode Transmitter end --------------------------------------------*/ |
2572 | return; |
2573 | if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) |
2573 | } |
2574 | { |
2574 | |
2575 | UART_EndTransmit_IT(huart); |
2575 | /* UART in mode Transmitter end --------------------------------------------*/ |
2576 | return; |
2576 | if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) |
2577 | } |
2577 | { |
2578 | } |
2578 | UART_EndTransmit_IT(huart); |
2579 | 2579 | return; |
|
2580 | /** |
2580 | } |
2581 | * @brief Tx Transfer completed callbacks. |
2581 | } |
2582 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2582 | |
2583 | * the configuration information for the specified UART module. |
2583 | /** |
2584 | * @retval None |
2584 | * @brief Tx Transfer completed callbacks. |
2585 | */ |
2585 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2586 | __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) |
2586 | * the configuration information for the specified UART module. |
2587 | { |
2587 | * @retval None |
2588 | /* Prevent unused argument(s) compilation warning */ |
2588 | */ |
2589 | UNUSED(huart); |
2589 | __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) |
2590 | /* NOTE: This function should not be modified, when the callback is needed, |
2590 | { |
2591 | the HAL_UART_TxCpltCallback could be implemented in the user file |
2591 | /* Prevent unused argument(s) compilation warning */ |
2592 | */ |
2592 | UNUSED(huart); |
2593 | } |
2593 | /* NOTE: This function should not be modified, when the callback is needed, |
2594 | 2594 | the HAL_UART_TxCpltCallback could be implemented in the user file |
|
2595 | /** |
2595 | */ |
2596 | * @brief Tx Half Transfer completed callbacks. |
2596 | } |
2597 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2597 | |
2598 | * the configuration information for the specified UART module. |
2598 | /** |
2599 | * @retval None |
2599 | * @brief Tx Half Transfer completed callbacks. |
2600 | */ |
2600 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2601 | __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) |
2601 | * the configuration information for the specified UART module. |
2602 | { |
2602 | * @retval None |
2603 | /* Prevent unused argument(s) compilation warning */ |
2603 | */ |
2604 | UNUSED(huart); |
2604 | __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) |
2605 | /* NOTE: This function should not be modified, when the callback is needed, |
2605 | { |
2606 | the HAL_UART_TxHalfCpltCallback could be implemented in the user file |
2606 | /* Prevent unused argument(s) compilation warning */ |
2607 | */ |
2607 | UNUSED(huart); |
2608 | } |
2608 | /* NOTE: This function should not be modified, when the callback is needed, |
2609 | 2609 | the HAL_UART_TxHalfCpltCallback could be implemented in the user file |
|
2610 | /** |
2610 | */ |
2611 | * @brief Rx Transfer completed callbacks. |
2611 | } |
2612 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2612 | |
2613 | * the configuration information for the specified UART module. |
2613 | /** |
2614 | * @retval None |
2614 | * @brief Rx Transfer completed callbacks. |
2615 | */ |
2615 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2616 | __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) |
2616 | * the configuration information for the specified UART module. |
2617 | { |
2617 | * @retval None |
2618 | /* Prevent unused argument(s) compilation warning */ |
2618 | */ |
2619 | UNUSED(huart); |
2619 | __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) |
2620 | /* NOTE: This function should not be modified, when the callback is needed, |
2620 | { |
2621 | the HAL_UART_RxCpltCallback could be implemented in the user file |
2621 | /* Prevent unused argument(s) compilation warning */ |
2622 | */ |
2622 | UNUSED(huart); |
2623 | } |
2623 | /* NOTE: This function should not be modified, when the callback is needed, |
2624 | 2624 | the HAL_UART_RxCpltCallback could be implemented in the user file |
|
2625 | /** |
2625 | */ |
2626 | * @brief Rx Half Transfer completed callbacks. |
2626 | } |
2627 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2627 | |
2628 | * the configuration information for the specified UART module. |
2628 | /** |
2629 | * @retval None |
2629 | * @brief Rx Half Transfer completed callbacks. |
2630 | */ |
2630 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2631 | __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) |
2631 | * the configuration information for the specified UART module. |
2632 | { |
2632 | * @retval None |
2633 | /* Prevent unused argument(s) compilation warning */ |
2633 | */ |
2634 | UNUSED(huart); |
2634 | __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) |
2635 | /* NOTE: This function should not be modified, when the callback is needed, |
2635 | { |
2636 | the HAL_UART_RxHalfCpltCallback could be implemented in the user file |
2636 | /* Prevent unused argument(s) compilation warning */ |
2637 | */ |
2637 | UNUSED(huart); |
2638 | } |
2638 | /* NOTE: This function should not be modified, when the callback is needed, |
2639 | 2639 | the HAL_UART_RxHalfCpltCallback could be implemented in the user file |
|
2640 | /** |
2640 | */ |
2641 | * @brief UART error callbacks. |
2641 | } |
2642 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2642 | |
2643 | * the configuration information for the specified UART module. |
2643 | /** |
2644 | * @retval None |
2644 | * @brief UART error callbacks. |
2645 | */ |
2645 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2646 | __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) |
2646 | * the configuration information for the specified UART module. |
2647 | { |
2647 | * @retval None |
2648 | /* Prevent unused argument(s) compilation warning */ |
2648 | */ |
2649 | UNUSED(huart); |
2649 | __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) |
2650 | /* NOTE: This function should not be modified, when the callback is needed, |
2650 | { |
2651 | the HAL_UART_ErrorCallback could be implemented in the user file |
2651 | /* Prevent unused argument(s) compilation warning */ |
2652 | */ |
2652 | UNUSED(huart); |
2653 | } |
2653 | /* NOTE: This function should not be modified, when the callback is needed, |
2654 | 2654 | the HAL_UART_ErrorCallback could be implemented in the user file |
|
2655 | /** |
2655 | */ |
2656 | * @brief UART Abort Complete callback. |
2656 | } |
2657 | * @param huart UART handle. |
2657 | |
2658 | * @retval None |
2658 | /** |
2659 | */ |
2659 | * @brief UART Abort Complete callback. |
2660 | __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart) |
2660 | * @param huart UART handle. |
2661 | { |
2661 | * @retval None |
2662 | /* Prevent unused argument(s) compilation warning */ |
2662 | */ |
2663 | UNUSED(huart); |
2663 | __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart) |
2664 | 2664 | { |
|
2665 | /* NOTE : This function should not be modified, when the callback is needed, |
2665 | /* Prevent unused argument(s) compilation warning */ |
2666 | the HAL_UART_AbortCpltCallback can be implemented in the user file. |
2666 | UNUSED(huart); |
2667 | */ |
2667 | |
2668 | } |
2668 | /* NOTE : This function should not be modified, when the callback is needed, |
2669 | 2669 | the HAL_UART_AbortCpltCallback can be implemented in the user file. |
|
2670 | /** |
2670 | */ |
2671 | * @brief UART Abort Complete callback. |
2671 | } |
2672 | * @param huart UART handle. |
2672 | |
2673 | * @retval None |
2673 | /** |
2674 | */ |
2674 | * @brief UART Abort Complete callback. |
2675 | __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart) |
2675 | * @param huart UART handle. |
2676 | { |
2676 | * @retval None |
2677 | /* Prevent unused argument(s) compilation warning */ |
2677 | */ |
2678 | UNUSED(huart); |
2678 | __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart) |
2679 | 2679 | { |
|
2680 | /* NOTE : This function should not be modified, when the callback is needed, |
2680 | /* Prevent unused argument(s) compilation warning */ |
2681 | the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file. |
2681 | UNUSED(huart); |
2682 | */ |
2682 | |
2683 | } |
2683 | /* NOTE : This function should not be modified, when the callback is needed, |
2684 | 2684 | the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file. |
|
2685 | /** |
2685 | */ |
2686 | * @brief UART Abort Receive Complete callback. |
2686 | } |
2687 | * @param huart UART handle. |
2687 | |
2688 | * @retval None |
2688 | /** |
2689 | */ |
2689 | * @brief UART Abort Receive Complete callback. |
2690 | __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart) |
2690 | * @param huart UART handle. |
2691 | { |
2691 | * @retval None |
2692 | /* Prevent unused argument(s) compilation warning */ |
2692 | */ |
2693 | UNUSED(huart); |
2693 | __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart) |
2694 | 2694 | { |
|
2695 | /* NOTE : This function should not be modified, when the callback is needed, |
2695 | /* Prevent unused argument(s) compilation warning */ |
2696 | the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file. |
2696 | UNUSED(huart); |
2697 | */ |
2697 | |
2698 | } |
2698 | /* NOTE : This function should not be modified, when the callback is needed, |
2699 | 2699 | the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file. |
|
2700 | /** |
2700 | */ |
2701 | * @brief Reception Event Callback (Rx event notification called after use of advanced reception service). |
2701 | } |
2702 | * @param huart UART handle |
2702 | |
2703 | * @param Size Number of data available in application reception buffer (indicates a position in |
2703 | /** |
2704 | * reception buffer until which, data are available) |
2704 | * @brief Reception Event Callback (Rx event notification called after use of advanced reception service). |
2705 | * @retval None |
2705 | * @param huart UART handle |
2706 | */ |
2706 | * @param Size Number of data available in application reception buffer (indicates a position in |
2707 | __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) |
2707 | * reception buffer until which, data are available) |
2708 | { |
2708 | * @retval None |
2709 | /* Prevent unused argument(s) compilation warning */ |
2709 | */ |
2710 | UNUSED(huart); |
2710 | __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) |
2711 | UNUSED(Size); |
2711 | { |
2712 | 2712 | /* Prevent unused argument(s) compilation warning */ |
|
2713 | /* NOTE : This function should not be modified, when the callback is needed, |
2713 | UNUSED(huart); |
2714 | the HAL_UARTEx_RxEventCallback can be implemented in the user file. |
2714 | UNUSED(Size); |
2715 | */ |
2715 | |
2716 | } |
2716 | /* NOTE : This function should not be modified, when the callback is needed, |
2717 | 2717 | the HAL_UARTEx_RxEventCallback can be implemented in the user file. |
|
2718 | /** |
2718 | */ |
2719 | * @} |
2719 | } |
2720 | */ |
2720 | |
2721 | 2721 | /** |
|
2722 | /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions |
2722 | * @} |
2723 | * @brief UART control functions |
2723 | */ |
2724 | * |
2724 | |
2725 | @verbatim |
2725 | /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions |
2726 | ============================================================================== |
2726 | * @brief UART control functions |
2727 | ##### Peripheral Control functions ##### |
2727 | * |
2728 | ============================================================================== |
2728 | @verbatim |
2729 | [..] |
2729 | ============================================================================== |
2730 | This subsection provides a set of functions allowing to control the UART: |
2730 | ##### Peripheral Control functions ##### |
2731 | (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character. |
2731 | ============================================================================== |
2732 | (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode. |
2732 | [..] |
2733 | (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software. |
2733 | This subsection provides a set of functions allowing to control the UART: |
2734 | (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode |
2734 | (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character. |
2735 | (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode |
2735 | (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode. |
2736 | 2736 | (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software. |
|
2737 | @endverbatim |
2737 | (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode |
2738 | * @{ |
2738 | (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode |
2739 | */ |
2739 | |
2740 | 2740 | @endverbatim |
|
2741 | /** |
2741 | * @{ |
2742 | * @brief Transmits break characters. |
2742 | */ |
2743 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2743 | |
2744 | * the configuration information for the specified UART module. |
2744 | /** |
2745 | * @retval HAL status |
2745 | * @brief Transmits break characters. |
2746 | */ |
2746 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2747 | HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) |
2747 | * the configuration information for the specified UART module. |
2748 | { |
2748 | * @retval HAL status |
2749 | /* Check the parameters */ |
2749 | */ |
2750 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
2750 | HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) |
2751 | 2751 | { |
|
2752 | /* Process Locked */ |
2752 | /* Check the parameters */ |
2753 | __HAL_LOCK(huart); |
2753 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
2754 | 2754 | ||
2755 | huart->gState = HAL_UART_STATE_BUSY; |
2755 | /* Process Locked */ |
2756 | 2756 | __HAL_LOCK(huart); |
|
2757 | /* Send break characters */ |
2757 | |
2758 | SET_BIT(huart->Instance->CR1, USART_CR1_SBK); |
2758 | huart->gState = HAL_UART_STATE_BUSY; |
2759 | 2759 | ||
2760 | huart->gState = HAL_UART_STATE_READY; |
2760 | /* Send break characters */ |
2761 | 2761 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_SBK); |
|
2762 | /* Process Unlocked */ |
2762 | |
2763 | __HAL_UNLOCK(huart); |
2763 | huart->gState = HAL_UART_STATE_READY; |
2764 | 2764 | ||
2765 | return HAL_OK; |
2765 | /* Process Unlocked */ |
2766 | } |
2766 | __HAL_UNLOCK(huart); |
2767 | 2767 | ||
2768 | /** |
2768 | return HAL_OK; |
2769 | * @brief Enters the UART in mute mode. |
2769 | } |
2770 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2770 | |
2771 | * the configuration information for the specified UART module. |
2771 | /** |
2772 | * @retval HAL status |
2772 | * @brief Enters the UART in mute mode. |
2773 | */ |
2773 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2774 | HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) |
2774 | * the configuration information for the specified UART module. |
2775 | { |
2775 | * @retval HAL status |
2776 | /* Check the parameters */ |
2776 | */ |
2777 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
2777 | HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) |
2778 | 2778 | { |
|
2779 | /* Process Locked */ |
2779 | /* Check the parameters */ |
2780 | __HAL_LOCK(huart); |
2780 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
2781 | 2781 | ||
2782 | huart->gState = HAL_UART_STATE_BUSY; |
2782 | /* Process Locked */ |
2783 | 2783 | __HAL_LOCK(huart); |
|
2784 | /* Enable the USART mute mode by setting the RWU bit in the CR1 register */ |
2784 | |
2785 | SET_BIT(huart->Instance->CR1, USART_CR1_RWU); |
2785 | huart->gState = HAL_UART_STATE_BUSY; |
2786 | 2786 | ||
2787 | huart->gState = HAL_UART_STATE_READY; |
2787 | /* Enable the USART mute mode by setting the RWU bit in the CR1 register */ |
2788 | 2788 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RWU); |
|
2789 | /* Process Unlocked */ |
2789 | |
2790 | __HAL_UNLOCK(huart); |
2790 | huart->gState = HAL_UART_STATE_READY; |
2791 | 2791 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
2792 | return HAL_OK; |
2792 | |
2793 | } |
2793 | /* Process Unlocked */ |
2794 | 2794 | __HAL_UNLOCK(huart); |
|
2795 | /** |
2795 | |
2796 | * @brief Exits the UART mute mode: wake up software. |
2796 | return HAL_OK; |
2797 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2797 | } |
2798 | * the configuration information for the specified UART module. |
2798 | |
2799 | * @retval HAL status |
2799 | /** |
2800 | */ |
2800 | * @brief Exits the UART mute mode: wake up software. |
2801 | HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart) |
2801 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2802 | { |
2802 | * the configuration information for the specified UART module. |
2803 | /* Check the parameters */ |
2803 | * @retval HAL status |
2804 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
2804 | */ |
2805 | 2805 | HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart) |
|
2806 | /* Process Locked */ |
2806 | { |
2807 | __HAL_LOCK(huart); |
2807 | /* Check the parameters */ |
2808 | 2808 | assert_param(IS_UART_INSTANCE(huart->Instance)); |
|
2809 | huart->gState = HAL_UART_STATE_BUSY; |
2809 | |
2810 | 2810 | /* Process Locked */ |
|
2811 | /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */ |
2811 | __HAL_LOCK(huart); |
2812 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU); |
2812 | |
2813 | 2813 | huart->gState = HAL_UART_STATE_BUSY; |
|
2814 | huart->gState = HAL_UART_STATE_READY; |
2814 | |
2815 | 2815 | /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */ |
|
2816 | /* Process Unlocked */ |
2816 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU); |
2817 | __HAL_UNLOCK(huart); |
2817 | |
2818 | 2818 | huart->gState = HAL_UART_STATE_READY; |
|
2819 | return HAL_OK; |
2819 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
2820 | } |
2820 | |
2821 | 2821 | /* Process Unlocked */ |
|
2822 | /** |
2822 | __HAL_UNLOCK(huart); |
2823 | * @brief Enables the UART transmitter and disables the UART receiver. |
2823 | |
2824 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2824 | return HAL_OK; |
2825 | * the configuration information for the specified UART module. |
2825 | } |
2826 | * @retval HAL status |
2826 | |
2827 | */ |
2827 | /** |
2828 | HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) |
2828 | * @brief Enables the UART transmitter and disables the UART receiver. |
2829 | { |
2829 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2830 | uint32_t tmpreg = 0x00U; |
2830 | * the configuration information for the specified UART module. |
2831 | 2831 | * @retval HAL status |
|
2832 | /* Process Locked */ |
2832 | */ |
2833 | __HAL_LOCK(huart); |
2833 | HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) |
2834 | 2834 | { |
|
2835 | huart->gState = HAL_UART_STATE_BUSY; |
2835 | uint32_t tmpreg = 0x00U; |
2836 | 2836 | ||
2837 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
2837 | /* Process Locked */ |
2838 | tmpreg = huart->Instance->CR1; |
2838 | __HAL_LOCK(huart); |
2839 | 2839 | ||
2840 | /* Clear TE and RE bits */ |
2840 | huart->gState = HAL_UART_STATE_BUSY; |
2841 | tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); |
2841 | |
2842 | 2842 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
|
2843 | /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ |
2843 | tmpreg = huart->Instance->CR1; |
2844 | tmpreg |= (uint32_t)USART_CR1_TE; |
2844 | |
2845 | 2845 | /* Clear TE and RE bits */ |
|
2846 | /* Write to USART CR1 */ |
2846 | tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); |
2847 | WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg); |
2847 | |
2848 | 2848 | /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ |
|
2849 | huart->gState = HAL_UART_STATE_READY; |
2849 | tmpreg |= (uint32_t)USART_CR1_TE; |
2850 | 2850 | ||
2851 | /* Process Unlocked */ |
2851 | /* Write to USART CR1 */ |
2852 | __HAL_UNLOCK(huart); |
2852 | WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg); |
2853 | 2853 | ||
2854 | return HAL_OK; |
2854 | huart->gState = HAL_UART_STATE_READY; |
2855 | } |
2855 | |
2856 | 2856 | /* Process Unlocked */ |
|
2857 | /** |
2857 | __HAL_UNLOCK(huart); |
2858 | * @brief Enables the UART receiver and disables the UART transmitter. |
2858 | |
2859 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2859 | return HAL_OK; |
2860 | * the configuration information for the specified UART module. |
2860 | } |
2861 | * @retval HAL status |
2861 | |
2862 | */ |
2862 | /** |
2863 | HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) |
2863 | * @brief Enables the UART receiver and disables the UART transmitter. |
2864 | { |
2864 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2865 | uint32_t tmpreg = 0x00U; |
2865 | * the configuration information for the specified UART module. |
2866 | 2866 | * @retval HAL status |
|
2867 | /* Process Locked */ |
2867 | */ |
2868 | __HAL_LOCK(huart); |
2868 | HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) |
2869 | 2869 | { |
|
2870 | huart->gState = HAL_UART_STATE_BUSY; |
2870 | uint32_t tmpreg = 0x00U; |
2871 | 2871 | ||
2872 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
2872 | /* Process Locked */ |
2873 | tmpreg = huart->Instance->CR1; |
2873 | __HAL_LOCK(huart); |
2874 | 2874 | ||
2875 | /* Clear TE and RE bits */ |
2875 | huart->gState = HAL_UART_STATE_BUSY; |
2876 | tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); |
2876 | |
2877 | 2877 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
|
2878 | /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ |
2878 | tmpreg = huart->Instance->CR1; |
2879 | tmpreg |= (uint32_t)USART_CR1_RE; |
2879 | |
2880 | 2880 | /* Clear TE and RE bits */ |
|
2881 | /* Write to USART CR1 */ |
2881 | tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); |
2882 | WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg); |
2882 | |
2883 | 2883 | /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ |
|
2884 | huart->gState = HAL_UART_STATE_READY; |
2884 | tmpreg |= (uint32_t)USART_CR1_RE; |
2885 | 2885 | ||
2886 | /* Process Unlocked */ |
2886 | /* Write to USART CR1 */ |
2887 | __HAL_UNLOCK(huart); |
2887 | WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg); |
2888 | 2888 | ||
2889 | return HAL_OK; |
2889 | huart->gState = HAL_UART_STATE_READY; |
2890 | } |
2890 | |
2891 | 2891 | /* Process Unlocked */ |
|
2892 | /** |
2892 | __HAL_UNLOCK(huart); |
2893 | * @} |
2893 | |
2894 | */ |
2894 | return HAL_OK; |
2895 | 2895 | } |
|
2896 | /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions |
2896 | |
2897 | * @brief UART State and Errors functions |
2897 | /** |
2898 | * |
2898 | * @} |
2899 | @verbatim |
2899 | */ |
2900 | ============================================================================== |
2900 | |
2901 | ##### Peripheral State and Errors functions ##### |
2901 | /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions |
2902 | ============================================================================== |
2902 | * @brief UART State and Errors functions |
2903 | [..] |
2903 | * |
2904 | This subsection provides a set of functions allowing to return the State of |
2904 | @verbatim |
2905 | UART communication process, return Peripheral Errors occurred during communication |
2905 | ============================================================================== |
2906 | process |
2906 | ##### Peripheral State and Errors functions ##### |
2907 | (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral. |
2907 | ============================================================================== |
2908 | (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication. |
2908 | [..] |
2909 | 2909 | This subsection provides a set of functions allowing to return the State of |
|
2910 | @endverbatim |
2910 | UART communication process, return Peripheral Errors occurred during communication |
2911 | * @{ |
2911 | process |
2912 | */ |
2912 | (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral. |
2913 | 2913 | (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication. |
|
2914 | /** |
2914 | |
2915 | * @brief Returns the UART state. |
2915 | @endverbatim |
2916 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2916 | * @{ |
2917 | * the configuration information for the specified UART module. |
2917 | */ |
2918 | * @retval HAL state |
2918 | |
2919 | */ |
2919 | /** |
2920 | HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart) |
2920 | * @brief Returns the UART state. |
2921 | { |
2921 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2922 | uint32_t temp1 = 0x00U, temp2 = 0x00U; |
2922 | * the configuration information for the specified UART module. |
2923 | temp1 = huart->gState; |
2923 | * @retval HAL state |
2924 | temp2 = huart->RxState; |
2924 | */ |
2925 | 2925 | HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart) |
|
2926 | return (HAL_UART_StateTypeDef)(temp1 | temp2); |
2926 | { |
2927 | } |
2927 | uint32_t temp1 = 0x00U, temp2 = 0x00U; |
2928 | 2928 | temp1 = huart->gState; |
|
2929 | /** |
2929 | temp2 = huart->RxState; |
2930 | * @brief Return the UART error code |
2930 | |
2931 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2931 | return (HAL_UART_StateTypeDef)(temp1 | temp2); |
2932 | * the configuration information for the specified UART. |
2932 | } |
2933 | * @retval UART Error Code |
2933 | |
2934 | */ |
2934 | /** |
2935 | uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart) |
2935 | * @brief Return the UART error code |
2936 | { |
2936 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
2937 | return huart->ErrorCode; |
2937 | * the configuration information for the specified UART. |
2938 | } |
2938 | * @retval UART Error Code |
2939 | 2939 | */ |
|
2940 | /** |
2940 | uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart) |
2941 | * @} |
2941 | { |
2942 | */ |
2942 | return huart->ErrorCode; |
2943 | 2943 | } |
|
2944 | /** |
2944 | |
2945 | * @} |
2945 | /** |
2946 | */ |
2946 | * @} |
2947 | 2947 | */ |
|
2948 | /** @defgroup UART_Private_Functions UART Private Functions |
2948 | |
2949 | * @{ |
2949 | /** |
2950 | */ |
2950 | * @} |
2951 | 2951 | */ |
|
2952 | /** |
2952 | |
2953 | * @brief Initialize the callbacks to their default values. |
2953 | /** @defgroup UART_Private_Functions UART Private Functions |
2954 | * @param huart UART handle. |
2954 | * @{ |
2955 | * @retval none |
2955 | */ |
2956 | */ |
2956 | |
2957 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2957 | /** |
2958 | void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart) |
2958 | * @brief Initialize the callbacks to their default values. |
2959 | { |
2959 | * @param huart UART handle. |
2960 | /* Init the UART Callback settings */ |
2960 | * @retval none |
2961 | huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
2961 | */ |
2962 | huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
2962 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2963 | huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
2963 | void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart) |
2964 | huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
2964 | { |
2965 | huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
2965 | /* Init the UART Callback settings */ |
2966 | huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
2966 | huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
2967 | huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ |
2967 | huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
2968 | huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ |
2968 | huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
2969 | huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */ |
2969 | huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
2970 | 2970 | huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
|
2971 | } |
2971 | huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
2972 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2972 | huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ |
2973 | 2973 | huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ |
|
2974 | /** |
2974 | huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */ |
2975 | * @brief DMA UART transmit process complete callback. |
2975 | |
2976 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
2976 | } |
2977 | * the configuration information for the specified DMA module. |
2977 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
2978 | * @retval None |
2978 | |
2979 | */ |
2979 | /** |
2980 | static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) |
2980 | * @brief DMA UART transmit process complete callback. |
2981 | { |
2981 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
2982 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2982 | * the configuration information for the specified DMA module. |
2983 | /* DMA Normal mode*/ |
2983 | * @retval None |
2984 | if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) |
2984 | */ |
2985 | { |
2985 | static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) |
2986 | huart->TxXferCount = 0x00U; |
2986 | { |
2987 | 2987 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
2988 | /* Disable the DMA transfer for transmit request by setting the DMAT bit |
2988 | /* DMA Normal mode*/ |
2989 | in the UART CR3 register */ |
2989 | if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) |
2990 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2990 | { |
2991 | 2991 | huart->TxXferCount = 0x00U; |
|
2992 | /* Enable the UART Transmit Complete Interrupt */ |
2992 | |
2993 | SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
2993 | /* Disable the DMA transfer for transmit request by setting the DMAT bit |
2994 | 2994 | in the UART CR3 register */ |
|
2995 | } |
2995 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
2996 | /* DMA Circular mode */ |
2996 | |
2997 | else |
2997 | /* Enable the UART Transmit Complete Interrupt */ |
2998 | { |
2998 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
2999 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
2999 | |
3000 | /*Call registered Tx complete callback*/ |
3000 | } |
3001 | huart->TxCpltCallback(huart); |
3001 | /* DMA Circular mode */ |
3002 | #else |
3002 | else |
3003 | /*Call legacy weak Tx complete callback*/ |
3003 | { |
3004 | HAL_UART_TxCpltCallback(huart); |
3004 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3005 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3005 | /*Call registered Tx complete callback*/ |
3006 | } |
3006 | huart->TxCpltCallback(huart); |
3007 | } |
3007 | #else |
3008 | 3008 | /*Call legacy weak Tx complete callback*/ |
|
3009 | /** |
3009 | HAL_UART_TxCpltCallback(huart); |
3010 | * @brief DMA UART transmit process half complete callback |
3010 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3011 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3011 | } |
3012 | * the configuration information for the specified DMA module. |
3012 | } |
3013 | * @retval None |
3013 | |
3014 | */ |
3014 | /** |
3015 | static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) |
3015 | * @brief DMA UART transmit process half complete callback |
3016 | { |
3016 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3017 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3017 | * the configuration information for the specified DMA module. |
3018 | 3018 | * @retval None |
|
3019 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3019 | */ |
3020 | /*Call registered Tx complete callback*/ |
3020 | static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) |
3021 | huart->TxHalfCpltCallback(huart); |
3021 | { |
3022 | #else |
3022 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3023 | /*Call legacy weak Tx complete callback*/ |
3023 | |
3024 | HAL_UART_TxHalfCpltCallback(huart); |
3024 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3025 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3025 | /*Call registered Tx complete callback*/ |
3026 | } |
3026 | huart->TxHalfCpltCallback(huart); |
3027 | 3027 | #else |
|
3028 | /** |
3028 | /*Call legacy weak Tx complete callback*/ |
3029 | * @brief DMA UART receive process complete callback. |
3029 | HAL_UART_TxHalfCpltCallback(huart); |
3030 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3030 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3031 | * the configuration information for the specified DMA module. |
3031 | } |
3032 | * @retval None |
3032 | |
3033 | */ |
3033 | /** |
3034 | static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) |
3034 | * @brief DMA UART receive process complete callback. |
3035 | { |
3035 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3036 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3036 | * the configuration information for the specified DMA module. |
3037 | /* DMA Normal mode*/ |
3037 | * @retval None |
3038 | if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) |
3038 | */ |
3039 | { |
3039 | static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) |
3040 | huart->RxXferCount = 0U; |
3040 | { |
3041 | 3041 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
3042 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
3042 | |
3043 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
3043 | /* DMA Normal mode*/ |
3044 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3044 | if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) |
3045 | 3045 | { |
|
3046 | /* Disable the DMA transfer for the receiver request by setting the DMAR bit |
3046 | huart->RxXferCount = 0U; |
3047 | in the UART CR3 register */ |
3047 | |
3048 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
3048 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
3049 | 3049 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
3050 | /* At end of Rx process, restore huart->RxState to Ready */ |
3050 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3051 | huart->RxState = HAL_UART_STATE_READY; |
3051 | |
3052 | 3052 | /* Disable the DMA transfer for the receiver request by setting the DMAR bit |
|
3053 | /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */ |
3053 | in the UART CR3 register */ |
3054 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3054 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
3055 | { |
3055 | |
3056 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3056 | /* At end of Rx process, restore huart->RxState to Ready */ |
3057 | } |
3057 | huart->RxState = HAL_UART_STATE_READY; |
3058 | } |
3058 | |
3059 | 3059 | /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */ |
|
3060 | /* Check current reception Mode : |
3060 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3061 | If Reception till IDLE event has been selected : use Rx Event callback */ |
3061 | { |
3062 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3062 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3063 | { |
3063 | } |
3064 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3064 | } |
3065 | /*Call registered Rx Event callback*/ |
3065 | |
3066 | huart->RxEventCallback(huart, huart->RxXferSize); |
3066 | /* Initialize type of RxEvent that correspond to RxEvent callback execution; |
3067 | #else |
3067 | In this case, Rx Event type is Transfer Complete */ |
3068 | /*Call legacy weak Rx Event callback*/ |
3068 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
3069 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
3069 | |
3070 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3070 | /* Check current reception Mode : |
3071 | } |
3071 | If Reception till IDLE event has been selected : use Rx Event callback */ |
3072 | else |
3072 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3073 | { |
3073 | { |
3074 | /* In other cases : use Rx Complete callback */ |
3074 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3075 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3075 | /*Call registered Rx Event callback*/ |
3076 | /*Call registered Rx complete callback*/ |
3076 | huart->RxEventCallback(huart, huart->RxXferSize); |
3077 | huart->RxCpltCallback(huart); |
3077 | #else |
3078 | #else |
3078 | /*Call legacy weak Rx Event callback*/ |
3079 | /*Call legacy weak Rx complete callback*/ |
3079 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
3080 | HAL_UART_RxCpltCallback(huart); |
3080 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3081 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3081 | } |
3082 | } |
3082 | else |
3083 | } |
3083 | { |
3084 | 3084 | /* In other cases : use Rx Complete callback */ |
|
3085 | /** |
3085 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3086 | * @brief DMA UART receive process half complete callback |
3086 | /*Call registered Rx complete callback*/ |
3087 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3087 | huart->RxCpltCallback(huart); |
3088 | * the configuration information for the specified DMA module. |
3088 | #else |
3089 | * @retval None |
3089 | /*Call legacy weak Rx complete callback*/ |
3090 | */ |
3090 | HAL_UART_RxCpltCallback(huart); |
3091 | static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) |
3091 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3092 | { |
3092 | } |
3093 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3093 | } |
3094 | 3094 | ||
3095 | /* Check current reception Mode : |
3095 | /** |
3096 | If Reception till IDLE event has been selected : use Rx Event callback */ |
3096 | * @brief DMA UART receive process half complete callback |
3097 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3097 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3098 | { |
3098 | * the configuration information for the specified DMA module. |
3099 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3099 | * @retval None |
3100 | /*Call registered Rx Event callback*/ |
3100 | */ |
3101 | huart->RxEventCallback(huart, huart->RxXferSize/2U); |
3101 | static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) |
3102 | #else |
3102 | { |
3103 | /*Call legacy weak Rx Event callback*/ |
3103 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3104 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize/2U); |
3104 | |
3105 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3105 | /* Initialize type of RxEvent that correspond to RxEvent callback execution; |
3106 | } |
3106 | In this case, Rx Event type is Half Transfer */ |
3107 | else |
3107 | huart->RxEventType = HAL_UART_RXEVENT_HT; |
3108 | { |
3108 | |
3109 | /* In other cases : use Rx Half Complete callback */ |
3109 | /* Check current reception Mode : |
3110 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3110 | If Reception till IDLE event has been selected : use Rx Event callback */ |
3111 | /*Call registered Rx Half complete callback*/ |
3111 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3112 | huart->RxHalfCpltCallback(huart); |
3112 | { |
3113 | #else |
3113 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3114 | /*Call legacy weak Rx Half complete callback*/ |
3114 | /*Call registered Rx Event callback*/ |
3115 | HAL_UART_RxHalfCpltCallback(huart); |
3115 | huart->RxEventCallback(huart, huart->RxXferSize / 2U); |
3116 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3116 | #else |
3117 | } |
3117 | /*Call legacy weak Rx Event callback*/ |
3118 | } |
3118 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U); |
3119 | 3119 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
3120 | /** |
3120 | } |
3121 | * @brief DMA UART communication error callback. |
3121 | else |
3122 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3122 | { |
3123 | * the configuration information for the specified DMA module. |
3123 | /* In other cases : use Rx Half Complete callback */ |
3124 | * @retval None |
3124 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3125 | */ |
3125 | /*Call registered Rx Half complete callback*/ |
3126 | static void UART_DMAError(DMA_HandleTypeDef *hdma) |
3126 | huart->RxHalfCpltCallback(huart); |
3127 | { |
3127 | #else |
3128 | uint32_t dmarequest = 0x00U; |
3128 | /*Call legacy weak Rx Half complete callback*/ |
3129 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3129 | HAL_UART_RxHalfCpltCallback(huart); |
3130 | 3130 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
3131 | /* Stop UART DMA Tx request if ongoing */ |
3131 | } |
3132 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
3132 | } |
3133 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
3133 | |
3134 | { |
3134 | /** |
3135 | huart->TxXferCount = 0x00U; |
3135 | * @brief DMA UART communication error callback. |
3136 | UART_EndTxTransfer(huart); |
3136 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3137 | } |
3137 | * the configuration information for the specified DMA module. |
3138 | 3138 | * @retval None |
|
3139 | /* Stop UART DMA Rx request if ongoing */ |
3139 | */ |
3140 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
3140 | static void UART_DMAError(DMA_HandleTypeDef *hdma) |
3141 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
3141 | { |
3142 | { |
3142 | uint32_t dmarequest = 0x00U; |
3143 | huart->RxXferCount = 0x00U; |
3143 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3144 | UART_EndRxTransfer(huart); |
3144 | |
3145 | } |
3145 | /* Stop UART DMA Tx request if ongoing */ |
3146 | 3146 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT); |
|
3147 | huart->ErrorCode |= HAL_UART_ERROR_DMA; |
3147 | if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest) |
3148 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3148 | { |
3149 | /*Call registered error callback*/ |
3149 | huart->TxXferCount = 0x00U; |
3150 | huart->ErrorCallback(huart); |
3150 | UART_EndTxTransfer(huart); |
3151 | #else |
3151 | } |
3152 | /*Call legacy weak error callback*/ |
3152 | |
3153 | HAL_UART_ErrorCallback(huart); |
3153 | /* Stop UART DMA Rx request if ongoing */ |
3154 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3154 | dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); |
3155 | } |
3155 | if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest) |
3156 | 3156 | { |
|
3157 | /** |
3157 | huart->RxXferCount = 0x00U; |
3158 | * @brief This function handles UART Communication Timeout. |
3158 | UART_EndRxTransfer(huart); |
3159 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3159 | } |
3160 | * the configuration information for the specified UART module. |
3160 | |
3161 | * @param Flag specifies the UART flag to check. |
3161 | huart->ErrorCode |= HAL_UART_ERROR_DMA; |
3162 | * @param Status The new Flag status (SET or RESET). |
3162 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3163 | * @param Tickstart Tick start value |
3163 | /*Call registered error callback*/ |
3164 | * @param Timeout Timeout duration |
3164 | huart->ErrorCallback(huart); |
3165 | * @retval HAL status |
3165 | #else |
3166 | */ |
3166 | /*Call legacy weak error callback*/ |
3167 | static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) |
3167 | HAL_UART_ErrorCallback(huart); |
3168 | { |
3168 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3169 | /* Wait until flag is set */ |
3169 | } |
3170 | while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) |
3170 | |
3171 | { |
3171 | /** |
3172 | /* Check for the Timeout */ |
3172 | * @brief This function handles UART Communication Timeout. It waits |
3173 | if (Timeout != HAL_MAX_DELAY) |
3173 | * until a flag is no longer in the specified status. |
3174 | { |
3174 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3175 | if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout)) |
3175 | * the configuration information for the specified UART module. |
3176 | { |
3176 | * @param Flag specifies the UART flag to check. |
3177 | /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ |
3177 | * @param Status The actual Flag status (SET or RESET). |
3178 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); |
3178 | * @param Tickstart Tick start value |
3179 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3179 | * @param Timeout Timeout duration |
3180 | 3180 | * @retval HAL status |
|
3181 | huart->gState = HAL_UART_STATE_READY; |
3181 | */ |
3182 | huart->RxState = HAL_UART_STATE_READY; |
3182 | static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, |
3183 | 3183 | uint32_t Tickstart, uint32_t Timeout) |
|
3184 | /* Process Unlocked */ |
3184 | { |
3185 | __HAL_UNLOCK(huart); |
3185 | /* Wait until flag is set */ |
3186 | 3186 | while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) |
|
3187 | return HAL_TIMEOUT; |
3187 | { |
3188 | } |
3188 | /* Check for the Timeout */ |
3189 | } |
3189 | if (Timeout != HAL_MAX_DELAY) |
3190 | } |
3190 | { |
3191 | return HAL_OK; |
3191 | if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout)) |
3192 | } |
3192 | { |
3193 | 3193 | /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ |
|
3194 | /** |
3194 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); |
3195 | * @brief Start Receive operation in interrupt mode. |
3195 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3196 | * @note This function could be called by all HAL UART API providing reception in Interrupt mode. |
3196 | |
3197 | * @note When calling this function, parameters validity is considered as already checked, |
3197 | huart->gState = HAL_UART_STATE_READY; |
3198 | * i.e. Rx State, buffer address, ... |
3198 | huart->RxState = HAL_UART_STATE_READY; |
3199 | * UART Handle is assumed as Locked. |
3199 | |
3200 | * @param huart UART handle. |
3200 | /* Process Unlocked */ |
3201 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
3201 | __HAL_UNLOCK(huart); |
3202 | * @param Size Amount of data elements (u8 or u16) to be received. |
3202 | |
3203 | * @retval HAL status |
3203 | return HAL_TIMEOUT; |
3204 | */ |
3204 | } |
3205 | HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
3205 | } |
3206 | { |
3206 | } |
3207 | huart->pRxBuffPtr = pData; |
3207 | return HAL_OK; |
3208 | huart->RxXferSize = Size; |
3208 | } |
3209 | huart->RxXferCount = Size; |
3209 | |
3210 | 3210 | /** |
|
3211 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3211 | * @brief Start Receive operation in interrupt mode. |
3212 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
3212 | * @note This function could be called by all HAL UART API providing reception in Interrupt mode. |
3213 | 3213 | * @note When calling this function, parameters validity is considered as already checked, |
|
3214 | /* Process Unlocked */ |
3214 | * i.e. Rx State, buffer address, ... |
3215 | __HAL_UNLOCK(huart); |
3215 | * UART Handle is assumed as Locked. |
3216 | 3216 | * @param huart UART handle. |
|
3217 | /* Enable the UART Parity Error Interrupt */ |
3217 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
3218 | __HAL_UART_ENABLE_IT(huart, UART_IT_PE); |
3218 | * @param Size Amount of data elements (u8 or u16) to be received. |
3219 | 3219 | * @retval HAL status |
|
3220 | /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3220 | */ |
3221 | __HAL_UART_ENABLE_IT(huart, UART_IT_ERR); |
3221 | HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
3222 | 3222 | { |
|
3223 | /* Enable the UART Data Register not empty Interrupt */ |
3223 | huart->pRxBuffPtr = pData; |
3224 | __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE); |
3224 | huart->RxXferSize = Size; |
3225 | 3225 | huart->RxXferCount = Size; |
|
3226 | return HAL_OK; |
3226 | |
3227 | } |
3227 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3228 | 3228 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
|
3229 | /** |
3229 | |
3230 | * @brief Start Receive operation in DMA mode. |
3230 | if (huart->Init.Parity != UART_PARITY_NONE) |
3231 | * @note This function could be called by all HAL UART API providing reception in DMA mode. |
3231 | { |
3232 | * @note When calling this function, parameters validity is considered as already checked, |
3232 | /* Enable the UART Parity Error Interrupt */ |
3233 | * i.e. Rx State, buffer address, ... |
3233 | __HAL_UART_ENABLE_IT(huart, UART_IT_PE); |
3234 | * UART Handle is assumed as Locked. |
3234 | } |
3235 | * @param huart UART handle. |
3235 | |
3236 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
3236 | /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3237 | * @param Size Amount of data elements (u8 or u16) to be received. |
3237 | __HAL_UART_ENABLE_IT(huart, UART_IT_ERR); |
3238 | * @retval HAL status |
3238 | |
3239 | */ |
3239 | /* Enable the UART Data Register not empty Interrupt */ |
3240 | HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
3240 | __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE); |
3241 | { |
3241 | |
3242 | uint32_t *tmp; |
3242 | return HAL_OK; |
3243 | 3243 | } |
|
3244 | huart->pRxBuffPtr = pData; |
3244 | |
3245 | huart->RxXferSize = Size; |
3245 | /** |
3246 | 3246 | * @brief Start Receive operation in DMA mode. |
|
3247 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3247 | * @note This function could be called by all HAL UART API providing reception in DMA mode. |
3248 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
3248 | * @note When calling this function, parameters validity is considered as already checked, |
3249 | 3249 | * i.e. Rx State, buffer address, ... |
|
3250 | /* Set the UART DMA transfer complete callback */ |
3250 | * UART Handle is assumed as Locked. |
3251 | huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; |
3251 | * @param huart UART handle. |
3252 | 3252 | * @param pData Pointer to data buffer (u8 or u16 data elements). |
|
3253 | /* Set the UART DMA Half transfer complete callback */ |
3253 | * @param Size Amount of data elements (u8 or u16) to be received. |
3254 | huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; |
3254 | * @retval HAL status |
3255 | 3255 | */ |
|
3256 | /* Set the DMA error callback */ |
3256 | HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
3257 | huart->hdmarx->XferErrorCallback = UART_DMAError; |
3257 | { |
3258 | 3258 | uint32_t *tmp; |
|
3259 | /* Set the DMA abort callback */ |
3259 | |
3260 | huart->hdmarx->XferAbortCallback = NULL; |
3260 | huart->pRxBuffPtr = pData; |
3261 | 3261 | huart->RxXferSize = Size; |
|
3262 | /* Enable the DMA stream */ |
3262 | |
3263 | tmp = (uint32_t *)&pData; |
3263 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3264 | HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size); |
3264 | huart->RxState = HAL_UART_STATE_BUSY_RX; |
3265 | 3265 | ||
3266 | /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */ |
3266 | /* Set the UART DMA transfer complete callback */ |
3267 | __HAL_UART_CLEAR_OREFLAG(huart); |
3267 | huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; |
3268 | 3268 | ||
3269 | /* Process Unlocked */ |
3269 | /* Set the UART DMA Half transfer complete callback */ |
3270 | __HAL_UNLOCK(huart); |
3270 | huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; |
3271 | 3271 | ||
3272 | /* Enable the UART Parity Error Interrupt */ |
3272 | /* Set the DMA error callback */ |
3273 | SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
3273 | huart->hdmarx->XferErrorCallback = UART_DMAError; |
3274 | 3274 | ||
3275 | /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3275 | /* Set the DMA abort callback */ |
3276 | SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3276 | huart->hdmarx->XferAbortCallback = NULL; |
3277 | 3277 | ||
3278 | /* Enable the DMA transfer for the receiver request by setting the DMAR bit |
3278 | /* Enable the DMA stream */ |
3279 | in the UART CR3 register */ |
3279 | tmp = (uint32_t *)&pData; |
3280 | SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
3280 | HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size); |
3281 | 3281 | ||
3282 | return HAL_OK; |
3282 | /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */ |
3283 | } |
3283 | __HAL_UART_CLEAR_OREFLAG(huart); |
3284 | 3284 | ||
3285 | /** |
3285 | if (huart->Init.Parity != UART_PARITY_NONE) |
3286 | * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). |
3286 | { |
3287 | * @param huart UART handle. |
3287 | /* Enable the UART Parity Error Interrupt */ |
3288 | * @retval None |
3288 | ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
3289 | */ |
3289 | } |
3290 | static void UART_EndTxTransfer(UART_HandleTypeDef *huart) |
3290 | |
3291 | { |
3291 | /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3292 | /* Disable TXEIE and TCIE interrupts */ |
3292 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3293 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
3293 | |
3294 | 3294 | /* Enable the DMA transfer for the receiver request by setting the DMAR bit |
|
3295 | /* At end of Tx process, restore huart->gState to Ready */ |
3295 | in the UART CR3 register */ |
3296 | huart->gState = HAL_UART_STATE_READY; |
3296 | ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
3297 | } |
3297 | |
3298 | 3298 | return HAL_OK; |
|
3299 | /** |
3299 | } |
3300 | * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). |
3300 | |
3301 | * @param huart UART handle. |
3301 | /** |
3302 | * @retval None |
3302 | * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). |
3303 | */ |
3303 | * @param huart UART handle. |
3304 | static void UART_EndRxTransfer(UART_HandleTypeDef *huart) |
3304 | * @retval None |
3305 | { |
3305 | */ |
3306 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
3306 | static void UART_EndTxTransfer(UART_HandleTypeDef *huart) |
3307 | CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
3307 | { |
3308 | CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3308 | /* Disable TXEIE and TCIE interrupts */ |
3309 | 3309 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); |
|
3310 | /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */ |
3310 | |
3311 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3311 | /* At end of Tx process, restore huart->gState to Ready */ |
3312 | { |
3312 | huart->gState = HAL_UART_STATE_READY; |
3313 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3313 | } |
3314 | } |
3314 | |
3315 | 3315 | /** |
|
3316 | /* At end of Rx process, restore huart->RxState to Ready */ |
3316 | * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). |
3317 | huart->RxState = HAL_UART_STATE_READY; |
3317 | * @param huart UART handle. |
3318 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3318 | * @retval None |
3319 | } |
3319 | */ |
3320 | 3320 | static void UART_EndRxTransfer(UART_HandleTypeDef *huart) |
|
3321 | /** |
3321 | { |
3322 | * @brief DMA UART communication abort callback, when initiated by HAL services on Error |
3322 | /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
3323 | * (To be called at end of DMA Abort procedure following error occurrence). |
3323 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); |
3324 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3324 | ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
3325 | * the configuration information for the specified DMA module. |
3325 | |
3326 | * @retval None |
3326 | /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */ |
3327 | */ |
3327 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3328 | static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) |
3328 | { |
3329 | { |
3329 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3330 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3330 | } |
3331 | huart->RxXferCount = 0x00U; |
3331 | |
3332 | huart->TxXferCount = 0x00U; |
3332 | /* At end of Rx process, restore huart->RxState to Ready */ |
3333 | 3333 | huart->RxState = HAL_UART_STATE_READY; |
|
3334 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3334 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3335 | /*Call registered error callback*/ |
3335 | } |
3336 | huart->ErrorCallback(huart); |
3336 | |
3337 | #else |
3337 | /** |
3338 | /*Call legacy weak error callback*/ |
3338 | * @brief DMA UART communication abort callback, when initiated by HAL services on Error |
3339 | HAL_UART_ErrorCallback(huart); |
3339 | * (To be called at end of DMA Abort procedure following error occurrence). |
3340 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3340 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3341 | } |
3341 | * the configuration information for the specified DMA module. |
3342 | 3342 | * @retval None |
|
3343 | /** |
3343 | */ |
3344 | * @brief DMA UART Tx communication abort callback, when initiated by user |
3344 | static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) |
3345 | * (To be called at end of DMA Tx Abort procedure following user abort request). |
3345 | { |
3346 | * @note When this callback is executed, User Abort complete call back is called only if no |
3346 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3347 | * Abort still ongoing for Rx DMA Handle. |
3347 | huart->RxXferCount = 0x00U; |
3348 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3348 | huart->TxXferCount = 0x00U; |
3349 | * the configuration information for the specified DMA module. |
3349 | |
3350 | * @retval None |
3350 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3351 | */ |
3351 | /*Call registered error callback*/ |
3352 | static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) |
3352 | huart->ErrorCallback(huart); |
3353 | { |
3353 | #else |
3354 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3354 | /*Call legacy weak error callback*/ |
3355 | 3355 | HAL_UART_ErrorCallback(huart); |
|
3356 | huart->hdmatx->XferAbortCallback = NULL; |
3356 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3357 | 3357 | } |
|
3358 | /* Check if an Abort process is still ongoing */ |
3358 | |
3359 | if (huart->hdmarx != NULL) |
3359 | /** |
3360 | { |
3360 | * @brief DMA UART Tx communication abort callback, when initiated by user |
3361 | if (huart->hdmarx->XferAbortCallback != NULL) |
3361 | * (To be called at end of DMA Tx Abort procedure following user abort request). |
3362 | { |
3362 | * @note When this callback is executed, User Abort complete call back is called only if no |
3363 | return; |
3363 | * Abort still ongoing for Rx DMA Handle. |
3364 | } |
3364 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3365 | } |
3365 | * the configuration information for the specified DMA module. |
3366 | 3366 | * @retval None |
|
3367 | /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
3367 | */ |
3368 | huart->TxXferCount = 0x00U; |
3368 | static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) |
3369 | huart->RxXferCount = 0x00U; |
3369 | { |
3370 | 3370 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
3371 | /* Reset ErrorCode */ |
3371 | |
3372 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3372 | huart->hdmatx->XferAbortCallback = NULL; |
3373 | 3373 | ||
3374 | /* Restore huart->gState and huart->RxState to Ready */ |
3374 | /* Check if an Abort process is still ongoing */ |
3375 | huart->gState = HAL_UART_STATE_READY; |
3375 | if (huart->hdmarx != NULL) |
3376 | huart->RxState = HAL_UART_STATE_READY; |
3376 | { |
3377 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3377 | if (huart->hdmarx->XferAbortCallback != NULL) |
3378 | 3378 | { |
|
3379 | /* Call user Abort complete callback */ |
3379 | return; |
3380 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3380 | } |
3381 | /* Call registered Abort complete callback */ |
3381 | } |
3382 | huart->AbortCpltCallback(huart); |
3382 | |
3383 | #else |
3383 | /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
3384 | /* Call legacy weak Abort complete callback */ |
3384 | huart->TxXferCount = 0x00U; |
3385 | HAL_UART_AbortCpltCallback(huart); |
3385 | huart->RxXferCount = 0x00U; |
3386 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3386 | |
3387 | } |
3387 | /* Reset ErrorCode */ |
3388 | 3388 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
3389 | /** |
3389 | |
3390 | * @brief DMA UART Rx communication abort callback, when initiated by user |
3390 | /* Restore huart->gState and huart->RxState to Ready */ |
3391 | * (To be called at end of DMA Rx Abort procedure following user abort request). |
3391 | huart->gState = HAL_UART_STATE_READY; |
3392 | * @note When this callback is executed, User Abort complete call back is called only if no |
3392 | huart->RxState = HAL_UART_STATE_READY; |
3393 | * Abort still ongoing for Tx DMA Handle. |
3393 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3394 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3394 | |
3395 | * the configuration information for the specified DMA module. |
3395 | /* Call user Abort complete callback */ |
3396 | * @retval None |
3396 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3397 | */ |
3397 | /* Call registered Abort complete callback */ |
3398 | static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) |
3398 | huart->AbortCpltCallback(huart); |
3399 | { |
3399 | #else |
3400 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3400 | /* Call legacy weak Abort complete callback */ |
3401 | 3401 | HAL_UART_AbortCpltCallback(huart); |
|
3402 | huart->hdmarx->XferAbortCallback = NULL; |
3402 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3403 | 3403 | } |
|
3404 | /* Check if an Abort process is still ongoing */ |
3404 | |
3405 | if (huart->hdmatx != NULL) |
3405 | /** |
3406 | { |
3406 | * @brief DMA UART Rx communication abort callback, when initiated by user |
3407 | if (huart->hdmatx->XferAbortCallback != NULL) |
3407 | * (To be called at end of DMA Rx Abort procedure following user abort request). |
3408 | { |
3408 | * @note When this callback is executed, User Abort complete call back is called only if no |
3409 | return; |
3409 | * Abort still ongoing for Tx DMA Handle. |
3410 | } |
3410 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3411 | } |
3411 | * the configuration information for the specified DMA module. |
3412 | 3412 | * @retval None |
|
3413 | /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
3413 | */ |
3414 | huart->TxXferCount = 0x00U; |
3414 | static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) |
3415 | huart->RxXferCount = 0x00U; |
3415 | { |
3416 | 3416 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
3417 | /* Reset ErrorCode */ |
3417 | |
3418 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
3418 | huart->hdmarx->XferAbortCallback = NULL; |
3419 | 3419 | ||
3420 | /* Restore huart->gState and huart->RxState to Ready */ |
3420 | /* Check if an Abort process is still ongoing */ |
3421 | huart->gState = HAL_UART_STATE_READY; |
3421 | if (huart->hdmatx != NULL) |
3422 | huart->RxState = HAL_UART_STATE_READY; |
3422 | { |
3423 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3423 | if (huart->hdmatx->XferAbortCallback != NULL) |
3424 | 3424 | { |
|
3425 | /* Call user Abort complete callback */ |
3425 | return; |
3426 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3426 | } |
3427 | /* Call registered Abort complete callback */ |
3427 | } |
3428 | huart->AbortCpltCallback(huart); |
3428 | |
3429 | #else |
3429 | /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
3430 | /* Call legacy weak Abort complete callback */ |
3430 | huart->TxXferCount = 0x00U; |
3431 | HAL_UART_AbortCpltCallback(huart); |
3431 | huart->RxXferCount = 0x00U; |
3432 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3432 | |
3433 | } |
3433 | /* Reset ErrorCode */ |
3434 | 3434 | huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
3435 | /** |
3435 | |
3436 | * @brief DMA UART Tx communication abort callback, when initiated by user by a call to |
3436 | /* Restore huart->gState and huart->RxState to Ready */ |
3437 | * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer) |
3437 | huart->gState = HAL_UART_STATE_READY; |
3438 | * (This callback is executed at end of DMA Tx Abort procedure following user abort request, |
3438 | huart->RxState = HAL_UART_STATE_READY; |
3439 | * and leads to user Tx Abort Complete callback execution). |
3439 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3440 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3440 | |
3441 | * the configuration information for the specified DMA module. |
3441 | /* Call user Abort complete callback */ |
3442 | * @retval None |
3442 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3443 | */ |
3443 | /* Call registered Abort complete callback */ |
3444 | static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
3444 | huart->AbortCpltCallback(huart); |
3445 | { |
3445 | #else |
3446 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3446 | /* Call legacy weak Abort complete callback */ |
3447 | 3447 | HAL_UART_AbortCpltCallback(huart); |
|
3448 | huart->TxXferCount = 0x00U; |
3448 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3449 | 3449 | } |
|
3450 | /* Restore huart->gState to Ready */ |
3450 | |
3451 | huart->gState = HAL_UART_STATE_READY; |
3451 | /** |
3452 | 3452 | * @brief DMA UART Tx communication abort callback, when initiated by user by a call to |
|
3453 | /* Call user Abort complete callback */ |
3453 | * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer) |
3454 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3454 | * (This callback is executed at end of DMA Tx Abort procedure following user abort request, |
3455 | /* Call registered Abort Transmit Complete Callback */ |
3455 | * and leads to user Tx Abort Complete callback execution). |
3456 | huart->AbortTransmitCpltCallback(huart); |
3456 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3457 | #else |
3457 | * the configuration information for the specified DMA module. |
3458 | /* Call legacy weak Abort Transmit Complete Callback */ |
3458 | * @retval None |
3459 | HAL_UART_AbortTransmitCpltCallback(huart); |
3459 | */ |
3460 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3460 | static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
3461 | } |
3461 | { |
3462 | 3462 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
3463 | /** |
3463 | |
3464 | * @brief DMA UART Rx communication abort callback, when initiated by user by a call to |
3464 | huart->TxXferCount = 0x00U; |
3465 | * HAL_UART_AbortReceive_IT API (Abort only Rx transfer) |
3465 | |
3466 | * (This callback is executed at end of DMA Rx Abort procedure following user abort request, |
3466 | /* Restore huart->gState to Ready */ |
3467 | * and leads to user Rx Abort Complete callback execution). |
3467 | huart->gState = HAL_UART_STATE_READY; |
3468 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3468 | |
3469 | * the configuration information for the specified DMA module. |
3469 | /* Call user Abort complete callback */ |
3470 | * @retval None |
3470 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3471 | */ |
3471 | /* Call registered Abort Transmit Complete Callback */ |
3472 | static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
3472 | huart->AbortTransmitCpltCallback(huart); |
3473 | { |
3473 | #else |
3474 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3474 | /* Call legacy weak Abort Transmit Complete Callback */ |
3475 | 3475 | HAL_UART_AbortTransmitCpltCallback(huart); |
|
3476 | huart->RxXferCount = 0x00U; |
3476 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3477 | 3477 | } |
|
3478 | /* Restore huart->RxState to Ready */ |
3478 | |
3479 | huart->RxState = HAL_UART_STATE_READY; |
3479 | /** |
3480 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3480 | * @brief DMA UART Rx communication abort callback, when initiated by user by a call to |
3481 | 3481 | * HAL_UART_AbortReceive_IT API (Abort only Rx transfer) |
|
3482 | /* Call user Abort complete callback */ |
3482 | * (This callback is executed at end of DMA Rx Abort procedure following user abort request, |
3483 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3483 | * and leads to user Rx Abort Complete callback execution). |
3484 | /* Call registered Abort Receive Complete Callback */ |
3484 | * @param hdma Pointer to a DMA_HandleTypeDef structure that contains |
3485 | huart->AbortReceiveCpltCallback(huart); |
3485 | * the configuration information for the specified DMA module. |
3486 | #else |
3486 | * @retval None |
3487 | /* Call legacy weak Abort Receive Complete Callback */ |
3487 | */ |
3488 | HAL_UART_AbortReceiveCpltCallback(huart); |
3488 | static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
3489 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3489 | { |
3490 | } |
3490 | UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
3491 | 3491 | ||
3492 | /** |
3492 | huart->RxXferCount = 0x00U; |
3493 | * @brief Sends an amount of data in non blocking mode. |
3493 | |
3494 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3494 | /* Restore huart->RxState to Ready */ |
3495 | * the configuration information for the specified UART module. |
3495 | huart->RxState = HAL_UART_STATE_READY; |
3496 | * @retval HAL status |
3496 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3497 | */ |
3497 | |
3498 | static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart) |
3498 | /* Call user Abort complete callback */ |
3499 | { |
3499 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3500 | uint16_t *tmp; |
3500 | /* Call registered Abort Receive Complete Callback */ |
3501 | 3501 | huart->AbortReceiveCpltCallback(huart); |
|
3502 | /* Check that a Tx process is ongoing */ |
3502 | #else |
3503 | if (huart->gState == HAL_UART_STATE_BUSY_TX) |
3503 | /* Call legacy weak Abort Receive Complete Callback */ |
3504 | { |
3504 | HAL_UART_AbortReceiveCpltCallback(huart); |
3505 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
3505 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3506 | { |
3506 | } |
3507 | tmp = (uint16_t *) huart->pTxBuffPtr; |
3507 | |
3508 | huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); |
3508 | /** |
3509 | huart->pTxBuffPtr += 2U; |
3509 | * @brief Sends an amount of data in non blocking mode. |
3510 | } |
3510 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3511 | else |
3511 | * the configuration information for the specified UART module. |
3512 | { |
3512 | * @retval HAL status |
3513 | huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF); |
3513 | */ |
3514 | } |
3514 | static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart) |
3515 | 3515 | { |
|
3516 | if (--huart->TxXferCount == 0U) |
3516 | const uint16_t *tmp; |
3517 | { |
3517 | |
3518 | /* Disable the UART Transmit Complete Interrupt */ |
3518 | /* Check that a Tx process is ongoing */ |
3519 | __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); |
3519 | if (huart->gState == HAL_UART_STATE_BUSY_TX) |
3520 | 3520 | { |
|
3521 | /* Enable the UART Transmit Complete Interrupt */ |
3521 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
3522 | __HAL_UART_ENABLE_IT(huart, UART_IT_TC); |
3522 | { |
3523 | } |
3523 | tmp = (const uint16_t *) huart->pTxBuffPtr; |
3524 | return HAL_OK; |
3524 | huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); |
3525 | } |
3525 | huart->pTxBuffPtr += 2U; |
3526 | else |
3526 | } |
3527 | { |
3527 | else |
3528 | return HAL_BUSY; |
3528 | { |
3529 | } |
3529 | huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF); |
3530 | } |
3530 | } |
3531 | 3531 | ||
3532 | /** |
3532 | if (--huart->TxXferCount == 0U) |
3533 | * @brief Wraps up transmission in non blocking mode. |
3533 | { |
3534 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3534 | /* Disable the UART Transmit Data Register Empty Interrupt */ |
3535 | * the configuration information for the specified UART module. |
3535 | __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); |
3536 | * @retval HAL status |
3536 | |
3537 | */ |
3537 | /* Enable the UART Transmit Complete Interrupt */ |
3538 | static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart) |
3538 | __HAL_UART_ENABLE_IT(huart, UART_IT_TC); |
3539 | { |
3539 | } |
3540 | /* Disable the UART Transmit Complete Interrupt */ |
3540 | return HAL_OK; |
3541 | __HAL_UART_DISABLE_IT(huart, UART_IT_TC); |
3541 | } |
3542 | 3542 | else |
|
3543 | /* Tx process is ended, restore huart->gState to Ready */ |
3543 | { |
3544 | huart->gState = HAL_UART_STATE_READY; |
3544 | return HAL_BUSY; |
3545 | 3545 | } |
|
3546 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3546 | } |
3547 | /*Call registered Tx complete callback*/ |
3547 | |
3548 | huart->TxCpltCallback(huart); |
3548 | /** |
3549 | #else |
3549 | * @brief Wraps up transmission in non blocking mode. |
3550 | /*Call legacy weak Tx complete callback*/ |
3550 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3551 | HAL_UART_TxCpltCallback(huart); |
3551 | * the configuration information for the specified UART module. |
3552 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3552 | * @retval HAL status |
3553 | 3553 | */ |
|
3554 | return HAL_OK; |
3554 | static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart) |
3555 | } |
3555 | { |
3556 | 3556 | /* Disable the UART Transmit Complete Interrupt */ |
|
3557 | /** |
3557 | __HAL_UART_DISABLE_IT(huart, UART_IT_TC); |
3558 | * @brief Receives an amount of data in non blocking mode |
3558 | |
3559 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3559 | /* Tx process is ended, restore huart->gState to Ready */ |
3560 | * the configuration information for the specified UART module. |
3560 | huart->gState = HAL_UART_STATE_READY; |
3561 | * @retval HAL status |
3561 | |
3562 | */ |
3562 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3563 | static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart) |
3563 | /*Call registered Tx complete callback*/ |
3564 | { |
3564 | huart->TxCpltCallback(huart); |
3565 | uint8_t *pdata8bits; |
3565 | #else |
3566 | uint16_t *pdata16bits; |
3566 | /*Call legacy weak Tx complete callback*/ |
3567 | 3567 | HAL_UART_TxCpltCallback(huart); |
|
3568 | /* Check that a Rx process is ongoing */ |
3568 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3569 | if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
3569 | |
3570 | { |
3570 | return HAL_OK; |
3571 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
3571 | } |
3572 | { |
3572 | |
3573 | pdata8bits = NULL; |
3573 | /** |
3574 | pdata16bits = (uint16_t *) huart->pRxBuffPtr; |
3574 | * @brief Receives an amount of data in non blocking mode |
3575 | *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); |
3575 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3576 | huart->pRxBuffPtr += 2U; |
3576 | * the configuration information for the specified UART module. |
3577 | } |
3577 | * @retval HAL status |
3578 | else |
3578 | */ |
3579 | { |
3579 | static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart) |
3580 | pdata8bits = (uint8_t *) huart->pRxBuffPtr; |
3580 | { |
3581 | pdata16bits = NULL; |
3581 | uint8_t *pdata8bits; |
3582 | 3582 | uint16_t *pdata16bits; |
|
3583 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
3583 | |
3584 | { |
3584 | /* Check that a Rx process is ongoing */ |
3585 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
3585 | if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
3586 | } |
3586 | { |
3587 | else |
3587 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
3588 | { |
3588 | { |
3589 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
3589 | pdata8bits = NULL; |
3590 | } |
3590 | pdata16bits = (uint16_t *) huart->pRxBuffPtr; |
3591 | huart->pRxBuffPtr += 1U; |
3591 | *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); |
3592 | } |
3592 | huart->pRxBuffPtr += 2U; |
3593 | 3593 | } |
|
3594 | if (--huart->RxXferCount == 0U) |
3594 | else |
3595 | { |
3595 | { |
3596 | /* Disable the UART Data Register not empty Interrupt */ |
3596 | pdata8bits = (uint8_t *) huart->pRxBuffPtr; |
3597 | __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); |
3597 | pdata16bits = NULL; |
3598 | 3598 | ||
3599 | /* Disable the UART Parity Error Interrupt */ |
3599 | if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE))) |
3600 | __HAL_UART_DISABLE_IT(huart, UART_IT_PE); |
3600 | { |
3601 | 3601 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); |
|
3602 | /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3602 | } |
3603 | __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); |
3603 | else |
3604 | 3604 | { |
|
3605 | /* Rx process is completed, restore huart->RxState to Ready */ |
3605 | *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); |
3606 | huart->RxState = HAL_UART_STATE_READY; |
3606 | } |
3607 | 3607 | huart->pRxBuffPtr += 1U; |
|
3608 | /* Check current reception Mode : |
3608 | } |
3609 | If Reception till IDLE event has been selected : */ |
3609 | |
3610 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3610 | if (--huart->RxXferCount == 0U) |
3611 | { |
3611 | { |
3612 | /* Set reception type to Standard */ |
3612 | /* Disable the UART Data Register not empty Interrupt */ |
3613 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3613 | __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); |
3614 | 3614 | ||
3615 | /* Disable IDLE interrupt */ |
3615 | /* Disable the UART Parity Error Interrupt */ |
3616 | CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3616 | __HAL_UART_DISABLE_IT(huart, UART_IT_PE); |
3617 | 3617 | ||
3618 | /* Check if IDLE flag is set */ |
3618 | /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
3619 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) |
3619 | __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); |
3620 | { |
3620 | |
3621 | /* Clear IDLE flag in ISR */ |
3621 | /* Rx process is completed, restore huart->RxState to Ready */ |
3622 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
3622 | huart->RxState = HAL_UART_STATE_READY; |
3623 | } |
3623 | |
3624 | 3624 | /* Initialize type of RxEvent to Transfer Complete */ |
|
3625 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3625 | huart->RxEventType = HAL_UART_RXEVENT_TC; |
3626 | /*Call registered Rx Event callback*/ |
3626 | |
3627 | huart->RxEventCallback(huart, huart->RxXferSize); |
3627 | /* Check current reception Mode : |
3628 | #else |
3628 | If Reception till IDLE event has been selected : */ |
3629 | /*Call legacy weak Rx Event callback*/ |
3629 | if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
3630 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
3630 | { |
3631 | #endif |
3631 | /* Set reception type to Standard */ |
3632 | } |
3632 | huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
3633 | else |
3633 | |
3634 | { |
3634 | /* Disable IDLE interrupt */ |
3635 | /* Standard reception API called */ |
3635 | ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
3636 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3636 | |
3637 | /*Call registered Rx complete callback*/ |
3637 | /* Check if IDLE flag is set */ |
3638 | huart->RxCpltCallback(huart); |
3638 | if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) |
3639 | #else |
3639 | { |
3640 | /*Call legacy weak Rx complete callback*/ |
3640 | /* Clear IDLE flag in ISR */ |
3641 | HAL_UART_RxCpltCallback(huart); |
3641 | __HAL_UART_CLEAR_IDLEFLAG(huart); |
3642 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3642 | } |
3643 | } |
3643 | |
3644 | 3644 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
3645 | return HAL_OK; |
3645 | /*Call registered Rx Event callback*/ |
3646 | } |
3646 | huart->RxEventCallback(huart, huart->RxXferSize); |
3647 | return HAL_OK; |
3647 | #else |
3648 | } |
3648 | /*Call legacy weak Rx Event callback*/ |
3649 | else |
3649 | HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
3650 | { |
3650 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3651 | return HAL_BUSY; |
3651 | } |
3652 | } |
3652 | else |
3653 | } |
3653 | { |
3654 | 3654 | /* Standard reception API called */ |
|
3655 | /** |
3655 | #if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
3656 | * @brief Configures the UART peripheral. |
3656 | /*Call registered Rx complete callback*/ |
3657 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
3657 | huart->RxCpltCallback(huart); |
3658 | * the configuration information for the specified UART module. |
3658 | #else |
3659 | * @retval None |
3659 | /*Call legacy weak Rx complete callback*/ |
3660 | */ |
3660 | HAL_UART_RxCpltCallback(huart); |
3661 | static void UART_SetConfig(UART_HandleTypeDef *huart) |
3661 | #endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
3662 | { |
3662 | } |
3663 | uint32_t tmpreg; |
3663 | |
3664 | uint32_t pclk; |
3664 | return HAL_OK; |
3665 | 3665 | } |
|
3666 | /* Check the parameters */ |
3666 | return HAL_OK; |
3667 | assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); |
3667 | } |
3668 | assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); |
3668 | else |
3669 | assert_param(IS_UART_PARITY(huart->Init.Parity)); |
3669 | { |
3670 | assert_param(IS_UART_MODE(huart->Init.Mode)); |
3670 | return HAL_BUSY; |
3671 | 3671 | } |
|
3672 | /*-------------------------- USART CR2 Configuration -----------------------*/ |
3672 | } |
3673 | /* Configure the UART Stop Bits: Set STOP[13:12] bits |
3673 | |
3674 | according to huart->Init.StopBits value */ |
3674 | /** |
3675 | MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); |
3675 | * @brief Configures the UART peripheral. |
3676 | 3676 | * @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
3677 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
3677 | * the configuration information for the specified UART module. |
3678 | /* Configure the UART Word Length, Parity and mode: |
3678 | * @retval None |
3679 | Set the M bits according to huart->Init.WordLength value |
3679 | */ |
3680 | Set PCE and PS bits according to huart->Init.Parity value |
3680 | static void UART_SetConfig(UART_HandleTypeDef *huart) |
3681 | Set TE and RE bits according to huart->Init.Mode value |
3681 | { |
3682 | Set OVER8 bit according to huart->Init.OverSampling value */ |
3682 | uint32_t tmpreg; |
3683 | 3683 | uint32_t pclk; |
|
3684 | #if defined(USART_CR1_OVER8) |
3684 | |
3685 | tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling; |
3685 | /* Check the parameters */ |
3686 | MODIFY_REG(huart->Instance->CR1, |
3686 | assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); |
3687 | (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8), |
3687 | assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); |
3688 | tmpreg); |
3688 | assert_param(IS_UART_PARITY(huart->Init.Parity)); |
3689 | #else |
3689 | assert_param(IS_UART_MODE(huart->Init.Mode)); |
3690 | tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode; |
3690 | |
3691 | MODIFY_REG(huart->Instance->CR1, |
3691 | /*-------------------------- USART CR2 Configuration -----------------------*/ |
3692 | (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE), |
3692 | /* Configure the UART Stop Bits: Set STOP[13:12] bits |
3693 | tmpreg); |
3693 | according to huart->Init.StopBits value */ |
3694 | #endif /* USART_CR1_OVER8 */ |
3694 | MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); |
3695 | 3695 | ||
3696 | /*-------------------------- USART CR3 Configuration -----------------------*/ |
3696 | /*-------------------------- USART CR1 Configuration -----------------------*/ |
3697 | /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */ |
3697 | /* Configure the UART Word Length, Parity and mode: |
3698 | MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl); |
3698 | Set the M bits according to huart->Init.WordLength value |
3699 | 3699 | Set PCE and PS bits according to huart->Init.Parity value |
|
3700 | 3700 | Set TE and RE bits according to huart->Init.Mode value |
|
3701 | if(huart->Instance == USART1) |
3701 | Set OVER8 bit according to huart->Init.OverSampling value */ |
3702 | { |
3702 | |
3703 | pclk = HAL_RCC_GetPCLK2Freq(); |
3703 | #if defined(USART_CR1_OVER8) |
3704 | } |
3704 | tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling; |
3705 | else |
3705 | MODIFY_REG(huart->Instance->CR1, |
3706 | { |
3706 | (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8), |
3707 | pclk = HAL_RCC_GetPCLK1Freq(); |
3707 | tmpreg); |
3708 | } |
3708 | #else |
3709 | 3709 | tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode; |
|
3710 | /*-------------------------- USART BRR Configuration ---------------------*/ |
3710 | MODIFY_REG(huart->Instance->CR1, |
3711 | #if defined(USART_CR1_OVER8) |
3711 | (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE), |
3712 | if (huart->Init.OverSampling == UART_OVERSAMPLING_8) |
3712 | tmpreg); |
3713 | { |
3713 | #endif /* USART_CR1_OVER8 */ |
3714 | huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate); |
3714 | |
3715 | } |
3715 | /*-------------------------- USART CR3 Configuration -----------------------*/ |
3716 | else |
3716 | /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */ |
3717 | { |
3717 | MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl); |
3718 | huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate); |
3718 | |
3719 | } |
3719 | |
3720 | #else |
3720 | if(huart->Instance == USART1) |
3721 | huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate); |
3721 | { |
3722 | #endif /* USART_CR1_OVER8 */ |
3722 | pclk = HAL_RCC_GetPCLK2Freq(); |
3723 | } |
3723 | } |
3724 | 3724 | else |
|
3725 | /** |
3725 | { |
3726 | * @} |
3726 | pclk = HAL_RCC_GetPCLK1Freq(); |
3727 | */ |
3727 | } |
3728 | 3728 | ||
3729 | #endif /* HAL_UART_MODULE_ENABLED */ |
3729 | /*-------------------------- USART BRR Configuration ---------------------*/ |
3730 | /** |
3730 | #if defined(USART_CR1_OVER8) |
3731 | * @} |
3731 | if (huart->Init.OverSampling == UART_OVERSAMPLING_8) |
3732 | */ |
3732 | { |
3733 | 3733 | huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate); |
|
3734 | /** |
3734 | } |
3735 | * @} |
3735 | else |
3736 | */ |
3736 | { |
3737 | 3737 | huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate); |
|
3738 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
3738 | } |
- | 3739 | #else |
|
- | 3740 | huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate); |
|
- | 3741 | #endif /* USART_CR1_OVER8 */ |
|
- | 3742 | } |
|
- | 3743 | ||
- | 3744 | /** |
|
- | 3745 | * @} |
|
- | 3746 | */ |
|
- | 3747 | ||
- | 3748 | #endif /* HAL_UART_MODULE_ENABLED */ |
|
- | 3749 | /** |
|
- | 3750 | * @} |
|
- | 3751 | */ |
|
- | 3752 | ||
- | 3753 | /** |
|
- | 3754 | * @} |
|
- | 3755 | */ |
|
- | 3756 |