Rev 2 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 2 | Rev 18 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | /** |
1 | /** |
2 | ****************************************************************************** |
2 | ****************************************************************************** |
3 | * @file stm32f1xx_hal_tim_ex.c |
3 | * @file stm32f1xx_hal_tim_ex.c |
4 | * @author MCD Application Team |
4 | * @author MCD Application Team |
5 | * @brief TIM HAL module driver. |
5 | * @brief TIM HAL module driver. |
6 | * This file provides firmware functions to manage the following |
6 | * This file provides firmware functions to manage the following |
7 | * functionalities of the Timer Extended peripheral: |
7 | * functionalities of the Timer Extended peripheral: |
8 | * + Time Hall Sensor Interface Initialization |
8 | * + Time Hall Sensor Interface Initialization |
9 | * + Time Hall Sensor Interface Start |
9 | * + Time Hall Sensor Interface Start |
10 | * + Time Complementary signal break and dead time configuration |
10 | * + Time Complementary signal break and dead time configuration |
11 | * + Time Master and Slave synchronization configuration |
11 | * + Time Master and Slave synchronization configuration |
12 | * + Timer remapping capabilities configuration |
12 | * + Timer remapping capabilities configuration |
13 | @verbatim |
13 | ****************************************************************************** |
14 | ============================================================================== |
14 | * @attention |
15 | ##### TIMER Extended features ##### |
15 | * |
16 | ============================================================================== |
16 | * Copyright (c) 2016 STMicroelectronics. |
17 | [..] |
17 | * All rights reserved. |
18 | The Timer Extended features include: |
18 | * |
19 | (#) Complementary outputs with programmable dead-time for : |
19 | * This software is licensed under terms that can be found in the LICENSE file |
20 | (++) Output Compare |
20 | * in the root directory of this software component. |
21 | (++) PWM generation (Edge and Center-aligned Mode) |
21 | * If no LICENSE file comes with this software, it is provided AS-IS. |
22 | (++) One-pulse mode output |
22 | * |
23 | (#) Synchronization circuit to control the timer with external signals and to |
23 | ****************************************************************************** |
24 | interconnect several timers together. |
24 | @verbatim |
25 | (#) Break input to put the timer output signals in reset state or in a known state. |
25 | ============================================================================== |
26 | (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for |
26 | ##### TIMER Extended features ##### |
27 | positioning purposes |
27 | ============================================================================== |
28 | 28 | [..] |
|
29 | ##### How to use this driver ##### |
29 | The Timer Extended features include: |
30 | ============================================================================== |
30 | (#) Complementary outputs with programmable dead-time for : |
31 | [..] |
31 | (++) Output Compare |
32 | (#) Initialize the TIM low level resources by implementing the following functions |
32 | (++) PWM generation (Edge and Center-aligned Mode) |
33 | depending on the selected feature: |
33 | (++) One-pulse mode output |
34 | (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() |
34 | (#) Synchronization circuit to control the timer with external signals and to |
35 | 35 | interconnect several timers together. |
|
36 | (#) Initialize the TIM low level resources : |
36 | (#) Break input to put the timer output signals in reset state or in a known state. |
37 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
37 | (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for |
38 | (##) TIM pins configuration |
38 | positioning purposes |
39 | (+++) Enable the clock for the TIM GPIOs using the following function: |
39 | |
40 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
40 | ##### How to use this driver ##### |
41 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
41 | ============================================================================== |
42 | 42 | [..] |
|
43 | (#) The external Clock can be configured, if needed (the default clock is the |
43 | (#) Initialize the TIM low level resources by implementing the following functions |
44 | internal clock from the APBx), using the following function: |
44 | depending on the selected feature: |
45 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
45 | (++) Hall Sensor output : HAL_TIMEx_HallSensor_MspInit() |
46 | any start function. |
46 | |
47 | 47 | (#) Initialize the TIM low level resources : |
|
48 | (#) Configure the TIM in the desired functioning mode using one of the |
48 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
49 | initialization function of this driver: |
49 | (##) TIM pins configuration |
50 | (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the |
50 | (+++) Enable the clock for the TIM GPIOs using the following function: |
51 | Timer Hall Sensor Interface and the commutation event with the corresponding |
51 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
52 | Interrupt and DMA request if needed (Note that One Timer is used to interface |
52 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
53 | with the Hall sensor Interface and another Timer should be used to use |
53 | |
54 | the commutation event). |
54 | (#) The external Clock can be configured, if needed (the default clock is the |
55 | 55 | internal clock from the APBx), using the following function: |
|
56 | (#) Activate the TIM peripheral using one of the start functions: |
56 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
57 | (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), |
57 | any start function. |
58 | HAL_TIMEx_OCN_Start_IT() |
58 | |
59 | (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), |
59 | (#) Configure the TIM in the desired functioning mode using one of the |
60 | HAL_TIMEx_PWMN_Start_IT() |
60 | initialization function of this driver: |
61 | (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() |
61 | (++) HAL_TIMEx_HallSensor_Init() and HAL_TIMEx_ConfigCommutEvent(): to use the |
62 | (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), |
62 | Timer Hall Sensor Interface and the commutation event with the corresponding |
63 | HAL_TIMEx_HallSensor_Start_IT(). |
63 | Interrupt and DMA request if needed (Note that One Timer is used to interface |
64 | 64 | with the Hall sensor Interface and another Timer should be used to use |
|
65 | @endverbatim |
65 | the commutation event). |
66 | ****************************************************************************** |
66 | |
67 | * @attention |
67 | (#) Activate the TIM peripheral using one of the start functions: |
68 | * |
68 | (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), |
69 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
69 | HAL_TIMEx_OCN_Start_IT() |
70 | * All rights reserved.</center></h2> |
70 | (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), |
71 | * |
71 | HAL_TIMEx_PWMN_Start_IT() |
72 | * This software component is licensed by ST under BSD 3-Clause license, |
72 | (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() |
73 | * the "License"; You may not use this file except in compliance with the |
73 | (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), |
74 | * License. You may obtain a copy of the License at: |
74 | HAL_TIMEx_HallSensor_Start_IT(). |
75 | * opensource.org/licenses/BSD-3-Clause |
75 | |
76 | * |
76 | @endverbatim |
77 | ****************************************************************************** |
77 | ****************************************************************************** |
78 | */ |
78 | */ |
79 | 79 | ||
80 | /* Includes ------------------------------------------------------------------*/ |
80 | /* Includes ------------------------------------------------------------------*/ |
81 | #include "stm32f1xx_hal.h" |
81 | #include "stm32f1xx_hal.h" |
82 | 82 | ||
83 | /** @addtogroup STM32F1xx_HAL_Driver |
83 | /** @addtogroup STM32F1xx_HAL_Driver |
84 | * @{ |
84 | * @{ |
85 | */ |
85 | */ |
86 | 86 | ||
87 | /** @defgroup TIMEx TIMEx |
87 | /** @defgroup TIMEx TIMEx |
88 | * @brief TIM Extended HAL module driver |
88 | * @brief TIM Extended HAL module driver |
89 | * @{ |
89 | * @{ |
90 | */ |
90 | */ |
91 | 91 | ||
92 | #ifdef HAL_TIM_MODULE_ENABLED |
92 | #ifdef HAL_TIM_MODULE_ENABLED |
93 | 93 | ||
94 | /* Private typedef -----------------------------------------------------------*/ |
94 | /* Private typedef -----------------------------------------------------------*/ |
95 | /* Private define ------------------------------------------------------------*/ |
95 | /* Private define ------------------------------------------------------------*/ |
96 | /* Private macros ------------------------------------------------------------*/ |
96 | /* Private macros ------------------------------------------------------------*/ |
97 | /* Private variables ---------------------------------------------------------*/ |
97 | /* Private variables ---------------------------------------------------------*/ |
98 | /* Private function prototypes -----------------------------------------------*/ |
98 | /* Private function prototypes -----------------------------------------------*/ |
99 | static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma); |
99 | static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma); |
100 | static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma); |
100 | static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma); |
101 | static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); |
101 | static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState); |
102 | 102 | ||
103 | /* Exported functions --------------------------------------------------------*/ |
103 | /* Exported functions --------------------------------------------------------*/ |
104 | /** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions |
104 | /** @defgroup TIMEx_Exported_Functions TIM Extended Exported Functions |
105 | * @{ |
105 | * @{ |
106 | */ |
106 | */ |
107 | 107 | ||
108 | /** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions |
108 | /** @defgroup TIMEx_Exported_Functions_Group1 Extended Timer Hall Sensor functions |
109 | * @brief Timer Hall Sensor functions |
109 | * @brief Timer Hall Sensor functions |
110 | * |
110 | * |
111 | @verbatim |
111 | @verbatim |
112 | ============================================================================== |
112 | ============================================================================== |
113 | ##### Timer Hall Sensor functions ##### |
113 | ##### Timer Hall Sensor functions ##### |
114 | ============================================================================== |
114 | ============================================================================== |
115 | [..] |
115 | [..] |
116 | This section provides functions allowing to: |
116 | This section provides functions allowing to: |
117 | (+) Initialize and configure TIM HAL Sensor. |
117 | (+) Initialize and configure TIM HAL Sensor. |
118 | (+) De-initialize TIM HAL Sensor. |
118 | (+) De-initialize TIM HAL Sensor. |
119 | (+) Start the Hall Sensor Interface. |
119 | (+) Start the Hall Sensor Interface. |
120 | (+) Stop the Hall Sensor Interface. |
120 | (+) Stop the Hall Sensor Interface. |
121 | (+) Start the Hall Sensor Interface and enable interrupts. |
121 | (+) Start the Hall Sensor Interface and enable interrupts. |
122 | (+) Stop the Hall Sensor Interface and disable interrupts. |
122 | (+) Stop the Hall Sensor Interface and disable interrupts. |
123 | (+) Start the Hall Sensor Interface and enable DMA transfers. |
123 | (+) Start the Hall Sensor Interface and enable DMA transfers. |
124 | (+) Stop the Hall Sensor Interface and disable DMA transfers. |
124 | (+) Stop the Hall Sensor Interface and disable DMA transfers. |
125 | 125 | ||
126 | @endverbatim |
126 | @endverbatim |
127 | * @{ |
127 | * @{ |
128 | */ |
128 | */ |
129 | /** |
129 | /** |
130 | * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. |
130 | * @brief Initializes the TIM Hall Sensor Interface and initialize the associated handle. |
131 | * @note When the timer instance is initialized in Hall Sensor Interface mode, |
131 | * @note When the timer instance is initialized in Hall Sensor Interface mode, |
132 | * timer channels 1 and channel 2 are reserved and cannot be used for |
132 | * timer channels 1 and channel 2 are reserved and cannot be used for |
133 | * other purpose. |
133 | * other purpose. |
134 | * @param htim TIM Hall Sensor Interface handle |
134 | * @param htim TIM Hall Sensor Interface handle |
135 | * @param sConfig TIM Hall Sensor configuration structure |
135 | * @param sConfig TIM Hall Sensor configuration structure |
136 | * @retval HAL status |
136 | * @retval HAL status |
137 | */ |
137 | */ |
138 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef *sConfig) |
138 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, const TIM_HallSensor_InitTypeDef *sConfig) |
139 | { |
139 | { |
140 | TIM_OC_InitTypeDef OC_Config; |
140 | TIM_OC_InitTypeDef OC_Config; |
141 | 141 | ||
142 | /* Check the TIM handle allocation */ |
142 | /* Check the TIM handle allocation */ |
143 | if (htim == NULL) |
143 | if (htim == NULL) |
144 | { |
144 | { |
145 | return HAL_ERROR; |
145 | return HAL_ERROR; |
146 | } |
146 | } |
147 | 147 | ||
148 | /* Check the parameters */ |
148 | /* Check the parameters */ |
149 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
149 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
150 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
150 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
151 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
151 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
152 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
152 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
153 | assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); |
153 | assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); |
154 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
154 | assert_param(IS_TIM_PERIOD(htim->Init.Period)); |
155 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
155 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
156 | 156 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
|
157 | if (htim->State == HAL_TIM_STATE_RESET) |
157 | |
158 | { |
158 | if (htim->State == HAL_TIM_STATE_RESET) |
159 | /* Allocate lock resource and initialize it */ |
159 | { |
160 | htim->Lock = HAL_UNLOCKED; |
160 | /* Allocate lock resource and initialize it */ |
161 | 161 | htim->Lock = HAL_UNLOCKED; |
|
162 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
162 | |
163 | /* Reset interrupt callbacks to legacy week callbacks */ |
163 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
164 | TIM_ResetCallback(htim); |
164 | /* Reset interrupt callbacks to legacy week callbacks */ |
165 | 165 | TIM_ResetCallback(htim); |
|
166 | if (htim->HallSensor_MspInitCallback == NULL) |
166 | |
167 | { |
167 | if (htim->HallSensor_MspInitCallback == NULL) |
168 | htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
168 | { |
169 | } |
169 | htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
170 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
170 | } |
171 | htim->HallSensor_MspInitCallback(htim); |
171 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
172 | #else |
172 | htim->HallSensor_MspInitCallback(htim); |
173 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
173 | #else |
174 | HAL_TIMEx_HallSensor_MspInit(htim); |
174 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
175 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
175 | HAL_TIMEx_HallSensor_MspInit(htim); |
176 | } |
176 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
177 | 177 | } |
|
178 | /* Set the TIM state */ |
178 | |
179 | htim->State = HAL_TIM_STATE_BUSY; |
179 | /* Set the TIM state */ |
180 | 180 | htim->State = HAL_TIM_STATE_BUSY; |
|
181 | /* Configure the Time base in the Encoder Mode */ |
181 | |
182 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
182 | /* Configure the Time base in the Encoder Mode */ |
183 | 183 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
184 | /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ |
184 | |
185 | TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); |
185 | /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ |
186 | 186 | TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); |
|
187 | /* Reset the IC1PSC Bits */ |
187 | |
188 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
188 | /* Reset the IC1PSC Bits */ |
189 | /* Set the IC1PSC value */ |
189 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
190 | htim->Instance->CCMR1 |= sConfig->IC1Prescaler; |
190 | /* Set the IC1PSC value */ |
191 | 191 | htim->Instance->CCMR1 |= sConfig->IC1Prescaler; |
|
192 | /* Enable the Hall sensor interface (XOR function of the three inputs) */ |
192 | |
193 | htim->Instance->CR2 |= TIM_CR2_TI1S; |
193 | /* Enable the Hall sensor interface (XOR function of the three inputs) */ |
194 | 194 | htim->Instance->CR2 |= TIM_CR2_TI1S; |
|
195 | /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ |
195 | |
196 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
196 | /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ |
197 | htim->Instance->SMCR |= TIM_TS_TI1F_ED; |
197 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
198 | 198 | htim->Instance->SMCR |= TIM_TS_TI1F_ED; |
|
199 | /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ |
199 | |
200 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
200 | /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ |
201 | htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; |
201 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
202 | 202 | htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; |
|
203 | /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ |
203 | |
204 | OC_Config.OCFastMode = TIM_OCFAST_DISABLE; |
204 | /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ |
205 | OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; |
205 | OC_Config.OCFastMode = TIM_OCFAST_DISABLE; |
206 | OC_Config.OCMode = TIM_OCMODE_PWM2; |
206 | OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; |
207 | OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; |
207 | OC_Config.OCMode = TIM_OCMODE_PWM2; |
208 | OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; |
208 | OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; |
209 | OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; |
209 | OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; |
210 | OC_Config.Pulse = sConfig->Commutation_Delay; |
210 | OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; |
211 | 211 | OC_Config.Pulse = sConfig->Commutation_Delay; |
|
212 | TIM_OC2_SetConfig(htim->Instance, &OC_Config); |
212 | |
213 | 213 | TIM_OC2_SetConfig(htim->Instance, &OC_Config); |
|
214 | /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 |
214 | |
215 | register to 101 */ |
215 | /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 |
216 | htim->Instance->CR2 &= ~TIM_CR2_MMS; |
216 | register to 101 */ |
217 | htim->Instance->CR2 |= TIM_TRGO_OC2REF; |
217 | htim->Instance->CR2 &= ~TIM_CR2_MMS; |
218 | 218 | htim->Instance->CR2 |= TIM_TRGO_OC2REF; |
|
219 | /* Initialize the DMA burst operation state */ |
219 | |
220 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
220 | /* Initialize the DMA burst operation state */ |
221 | 221 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
222 | /* Initialize the TIM channels state */ |
222 | |
223 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
223 | /* Initialize the TIM channels state */ |
224 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
224 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
225 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
225 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
226 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
226 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
227 | 227 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
228 | /* Initialize the TIM state*/ |
228 | |
229 | htim->State = HAL_TIM_STATE_READY; |
229 | /* Initialize the TIM state*/ |
230 | 230 | htim->State = HAL_TIM_STATE_READY; |
|
231 | return HAL_OK; |
231 | |
232 | } |
232 | return HAL_OK; |
233 | 233 | } |
|
234 | /** |
234 | |
235 | * @brief DeInitializes the TIM Hall Sensor interface |
235 | /** |
236 | * @param htim TIM Hall Sensor Interface handle |
236 | * @brief DeInitializes the TIM Hall Sensor interface |
237 | * @retval HAL status |
237 | * @param htim TIM Hall Sensor Interface handle |
238 | */ |
238 | * @retval HAL status |
239 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) |
239 | */ |
240 | { |
240 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) |
241 | /* Check the parameters */ |
241 | { |
242 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
242 | /* Check the parameters */ |
243 | 243 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
244 | htim->State = HAL_TIM_STATE_BUSY; |
244 | |
245 | 245 | htim->State = HAL_TIM_STATE_BUSY; |
|
246 | /* Disable the TIM Peripheral Clock */ |
246 | |
247 | __HAL_TIM_DISABLE(htim); |
247 | /* Disable the TIM Peripheral Clock */ |
248 | 248 | __HAL_TIM_DISABLE(htim); |
|
249 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
249 | |
250 | if (htim->HallSensor_MspDeInitCallback == NULL) |
250 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
251 | { |
251 | if (htim->HallSensor_MspDeInitCallback == NULL) |
252 | htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
252 | { |
253 | } |
253 | htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
254 | /* DeInit the low level hardware */ |
254 | } |
255 | htim->HallSensor_MspDeInitCallback(htim); |
255 | /* DeInit the low level hardware */ |
256 | #else |
256 | htim->HallSensor_MspDeInitCallback(htim); |
257 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
257 | #else |
258 | HAL_TIMEx_HallSensor_MspDeInit(htim); |
258 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
259 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
259 | HAL_TIMEx_HallSensor_MspDeInit(htim); |
260 | 260 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
261 | /* Change the DMA burst operation state */ |
261 | |
262 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
262 | /* Change the DMA burst operation state */ |
263 | 263 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
264 | /* Change the TIM channels state */ |
264 | |
265 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
265 | /* Change the TIM channels state */ |
266 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
266 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
267 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
267 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
268 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
268 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
269 | 269 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
|
270 | /* Change TIM state */ |
270 | |
271 | htim->State = HAL_TIM_STATE_RESET; |
271 | /* Change TIM state */ |
272 | 272 | htim->State = HAL_TIM_STATE_RESET; |
|
273 | /* Release Lock */ |
273 | |
274 | __HAL_UNLOCK(htim); |
274 | /* Release Lock */ |
275 | 275 | __HAL_UNLOCK(htim); |
|
276 | return HAL_OK; |
276 | |
277 | } |
277 | return HAL_OK; |
278 | 278 | } |
|
279 | /** |
279 | |
280 | * @brief Initializes the TIM Hall Sensor MSP. |
280 | /** |
281 | * @param htim TIM Hall Sensor Interface handle |
281 | * @brief Initializes the TIM Hall Sensor MSP. |
282 | * @retval None |
282 | * @param htim TIM Hall Sensor Interface handle |
283 | */ |
283 | * @retval None |
284 | __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) |
284 | */ |
285 | { |
285 | __weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) |
286 | /* Prevent unused argument(s) compilation warning */ |
286 | { |
287 | UNUSED(htim); |
287 | /* Prevent unused argument(s) compilation warning */ |
288 | 288 | UNUSED(htim); |
|
289 | /* NOTE : This function should not be modified, when the callback is needed, |
289 | |
290 | the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file |
290 | /* NOTE : This function should not be modified, when the callback is needed, |
291 | */ |
291 | the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file |
292 | } |
292 | */ |
293 | 293 | } |
|
294 | /** |
294 | |
295 | * @brief DeInitializes TIM Hall Sensor MSP. |
295 | /** |
296 | * @param htim TIM Hall Sensor Interface handle |
296 | * @brief DeInitializes TIM Hall Sensor MSP. |
297 | * @retval None |
297 | * @param htim TIM Hall Sensor Interface handle |
298 | */ |
298 | * @retval None |
299 | __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) |
299 | */ |
300 | { |
300 | __weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) |
301 | /* Prevent unused argument(s) compilation warning */ |
301 | { |
302 | UNUSED(htim); |
302 | /* Prevent unused argument(s) compilation warning */ |
303 | 303 | UNUSED(htim); |
|
304 | /* NOTE : This function should not be modified, when the callback is needed, |
304 | |
305 | the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file |
305 | /* NOTE : This function should not be modified, when the callback is needed, |
306 | */ |
306 | the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file |
307 | } |
307 | */ |
308 | 308 | } |
|
309 | /** |
309 | |
310 | * @brief Starts the TIM Hall Sensor Interface. |
310 | /** |
311 | * @param htim TIM Hall Sensor Interface handle |
311 | * @brief Starts the TIM Hall Sensor Interface. |
312 | * @retval HAL status |
312 | * @param htim TIM Hall Sensor Interface handle |
313 | */ |
313 | * @retval HAL status |
314 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) |
314 | */ |
315 | { |
315 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) |
316 | uint32_t tmpsmcr; |
316 | { |
317 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
317 | uint32_t tmpsmcr; |
318 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
318 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
319 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
319 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
320 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
320 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
321 | 321 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
322 | /* Check the parameters */ |
322 | |
323 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
323 | /* Check the parameters */ |
324 | 324 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
325 | /* Check the TIM channels state */ |
325 | |
326 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
326 | /* Check the TIM channels state */ |
327 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
327 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
328 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
328 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
329 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
329 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
330 | { |
330 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
331 | return HAL_ERROR; |
331 | { |
332 | } |
332 | return HAL_ERROR; |
333 | 333 | } |
|
334 | /* Set the TIM channels state */ |
334 | |
335 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
335 | /* Set the TIM channels state */ |
336 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
336 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
337 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
337 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
338 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
338 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
339 | 339 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
340 | /* Enable the Input Capture channel 1 |
340 | |
341 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
341 | /* Enable the Input Capture channel 1 |
342 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
342 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
343 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
343 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
344 | 344 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
345 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
345 | |
346 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
346 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
347 | { |
347 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
348 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
348 | { |
349 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
349 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
350 | { |
350 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
351 | __HAL_TIM_ENABLE(htim); |
351 | { |
352 | } |
352 | __HAL_TIM_ENABLE(htim); |
353 | } |
353 | } |
354 | else |
354 | } |
355 | { |
355 | else |
356 | __HAL_TIM_ENABLE(htim); |
356 | { |
357 | } |
357 | __HAL_TIM_ENABLE(htim); |
358 | 358 | } |
|
359 | /* Return function status */ |
359 | |
360 | return HAL_OK; |
360 | /* Return function status */ |
361 | } |
361 | return HAL_OK; |
362 | 362 | } |
|
363 | /** |
363 | |
364 | * @brief Stops the TIM Hall sensor Interface. |
364 | /** |
365 | * @param htim TIM Hall Sensor Interface handle |
365 | * @brief Stops the TIM Hall sensor Interface. |
366 | * @retval HAL status |
366 | * @param htim TIM Hall Sensor Interface handle |
367 | */ |
367 | * @retval HAL status |
368 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) |
368 | */ |
369 | { |
369 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) |
370 | /* Check the parameters */ |
370 | { |
371 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
371 | /* Check the parameters */ |
372 | 372 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
373 | /* Disable the Input Capture channels 1, 2 and 3 |
373 | |
374 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
374 | /* Disable the Input Capture channels 1, 2 and 3 |
375 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
375 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
376 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
376 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
377 | 377 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
378 | /* Disable the Peripheral */ |
378 | |
379 | __HAL_TIM_DISABLE(htim); |
379 | /* Disable the Peripheral */ |
380 | 380 | __HAL_TIM_DISABLE(htim); |
|
381 | /* Set the TIM channels state */ |
381 | |
382 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
382 | /* Set the TIM channels state */ |
383 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
383 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
384 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
384 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
385 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
385 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
386 | 386 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
387 | /* Return function status */ |
387 | |
388 | return HAL_OK; |
388 | /* Return function status */ |
389 | } |
389 | return HAL_OK; |
390 | 390 | } |
|
391 | /** |
391 | |
392 | * @brief Starts the TIM Hall Sensor Interface in interrupt mode. |
392 | /** |
393 | * @param htim TIM Hall Sensor Interface handle |
393 | * @brief Starts the TIM Hall Sensor Interface in interrupt mode. |
394 | * @retval HAL status |
394 | * @param htim TIM Hall Sensor Interface handle |
395 | */ |
395 | * @retval HAL status |
396 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) |
396 | */ |
397 | { |
397 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) |
398 | uint32_t tmpsmcr; |
398 | { |
399 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
399 | uint32_t tmpsmcr; |
400 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
400 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
401 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
401 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
402 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
402 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
403 | 403 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
404 | /* Check the parameters */ |
404 | |
405 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
405 | /* Check the parameters */ |
406 | 406 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
407 | /* Check the TIM channels state */ |
407 | |
408 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
408 | /* Check the TIM channels state */ |
409 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
409 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
410 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
410 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
411 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
411 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
412 | { |
412 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
413 | return HAL_ERROR; |
413 | { |
414 | } |
414 | return HAL_ERROR; |
415 | 415 | } |
|
416 | /* Set the TIM channels state */ |
416 | |
417 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
417 | /* Set the TIM channels state */ |
418 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
418 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
419 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
419 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
420 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
420 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
421 | 421 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
|
422 | /* Enable the capture compare Interrupts 1 event */ |
422 | |
423 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
423 | /* Enable the capture compare Interrupts 1 event */ |
424 | 424 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
425 | /* Enable the Input Capture channel 1 |
425 | |
426 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
426 | /* Enable the Input Capture channel 1 |
427 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
427 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
428 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
428 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
429 | 429 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
430 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
430 | |
431 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
431 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
432 | { |
432 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
433 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
433 | { |
434 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
434 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
435 | { |
435 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
436 | __HAL_TIM_ENABLE(htim); |
436 | { |
437 | } |
437 | __HAL_TIM_ENABLE(htim); |
438 | } |
438 | } |
439 | else |
439 | } |
440 | { |
440 | else |
441 | __HAL_TIM_ENABLE(htim); |
441 | { |
442 | } |
442 | __HAL_TIM_ENABLE(htim); |
443 | 443 | } |
|
444 | /* Return function status */ |
444 | |
445 | return HAL_OK; |
445 | /* Return function status */ |
446 | } |
446 | return HAL_OK; |
447 | 447 | } |
|
448 | /** |
448 | |
449 | * @brief Stops the TIM Hall Sensor Interface in interrupt mode. |
449 | /** |
450 | * @param htim TIM Hall Sensor Interface handle |
450 | * @brief Stops the TIM Hall Sensor Interface in interrupt mode. |
451 | * @retval HAL status |
451 | * @param htim TIM Hall Sensor Interface handle |
452 | */ |
452 | * @retval HAL status |
453 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) |
453 | */ |
454 | { |
454 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) |
455 | /* Check the parameters */ |
455 | { |
456 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
456 | /* Check the parameters */ |
457 | 457 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
458 | /* Disable the Input Capture channel 1 |
458 | |
459 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
459 | /* Disable the Input Capture channel 1 |
460 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
460 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
461 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
461 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
462 | 462 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
463 | /* Disable the capture compare Interrupts event */ |
463 | |
464 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
464 | /* Disable the capture compare Interrupts event */ |
465 | 465 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
466 | /* Disable the Peripheral */ |
466 | |
467 | __HAL_TIM_DISABLE(htim); |
467 | /* Disable the Peripheral */ |
468 | 468 | __HAL_TIM_DISABLE(htim); |
|
469 | /* Set the TIM channels state */ |
469 | |
470 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
470 | /* Set the TIM channels state */ |
471 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
471 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
472 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
472 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
473 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
473 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
474 | 474 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
475 | /* Return function status */ |
475 | |
476 | return HAL_OK; |
476 | /* Return function status */ |
477 | } |
477 | return HAL_OK; |
478 | 478 | } |
|
479 | /** |
479 | |
480 | * @brief Starts the TIM Hall Sensor Interface in DMA mode. |
480 | /** |
481 | * @param htim TIM Hall Sensor Interface handle |
481 | * @brief Starts the TIM Hall Sensor Interface in DMA mode. |
482 | * @param pData The destination Buffer address. |
482 | * @param htim TIM Hall Sensor Interface handle |
483 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
483 | * @param pData The destination Buffer address. |
484 | * @retval HAL status |
484 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
485 | */ |
485 | * @retval HAL status |
486 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
486 | */ |
487 | { |
487 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
488 | uint32_t tmpsmcr; |
488 | { |
489 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
489 | uint32_t tmpsmcr; |
490 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
490 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
491 | 491 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
|
492 | /* Check the parameters */ |
492 | |
493 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
493 | /* Check the parameters */ |
494 | 494 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
495 | /* Set the TIM channel state */ |
495 | |
496 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
496 | /* Set the TIM channel state */ |
497 | || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
497 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
498 | { |
498 | || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
499 | return HAL_BUSY; |
499 | { |
500 | } |
500 | return HAL_BUSY; |
501 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
501 | } |
502 | && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) |
502 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
503 | { |
503 | && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) |
504 | if ((pData == NULL) && (Length > 0U)) |
504 | { |
505 | { |
505 | if ((pData == NULL) || (Length == 0U)) |
506 | return HAL_ERROR; |
506 | { |
507 | } |
507 | return HAL_ERROR; |
508 | else |
508 | } |
509 | { |
509 | else |
510 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
510 | { |
511 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
511 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
512 | } |
512 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
513 | } |
513 | } |
514 | else |
514 | } |
515 | { |
515 | else |
516 | return HAL_ERROR; |
516 | { |
517 | } |
517 | return HAL_ERROR; |
518 | 518 | } |
|
519 | /* Enable the Input Capture channel 1 |
519 | |
520 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
520 | /* Enable the Input Capture channel 1 |
521 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
521 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
522 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
522 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
523 | 523 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
524 | /* Set the DMA Input Capture 1 Callbacks */ |
524 | |
525 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
525 | /* Set the DMA Input Capture 1 Callbacks */ |
526 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
526 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
527 | /* Set the DMA error callback */ |
527 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
528 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
528 | /* Set the DMA error callback */ |
529 | 529 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
530 | /* Enable the DMA channel for Capture 1*/ |
530 | |
531 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) |
531 | /* Enable the DMA channel for Capture 1*/ |
532 | { |
532 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length) != HAL_OK) |
533 | /* Return error status */ |
533 | { |
534 | return HAL_ERROR; |
534 | /* Return error status */ |
535 | } |
535 | return HAL_ERROR; |
536 | /* Enable the capture compare 1 Interrupt */ |
536 | } |
537 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
537 | /* Enable the capture compare 1 Interrupt */ |
538 | 538 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
|
539 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
539 | |
540 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
540 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
541 | { |
541 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
542 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
542 | { |
543 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
543 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
544 | { |
544 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
545 | __HAL_TIM_ENABLE(htim); |
545 | { |
546 | } |
546 | __HAL_TIM_ENABLE(htim); |
547 | } |
547 | } |
548 | else |
548 | } |
549 | { |
549 | else |
550 | __HAL_TIM_ENABLE(htim); |
550 | { |
551 | } |
551 | __HAL_TIM_ENABLE(htim); |
552 | 552 | } |
|
553 | /* Return function status */ |
553 | |
554 | return HAL_OK; |
554 | /* Return function status */ |
555 | } |
555 | return HAL_OK; |
556 | 556 | } |
|
557 | /** |
557 | |
558 | * @brief Stops the TIM Hall Sensor Interface in DMA mode. |
558 | /** |
559 | * @param htim TIM Hall Sensor Interface handle |
559 | * @brief Stops the TIM Hall Sensor Interface in DMA mode. |
560 | * @retval HAL status |
560 | * @param htim TIM Hall Sensor Interface handle |
561 | */ |
561 | * @retval HAL status |
562 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) |
562 | */ |
563 | { |
563 | HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) |
564 | /* Check the parameters */ |
564 | { |
565 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
565 | /* Check the parameters */ |
566 | 566 | assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(htim->Instance)); |
|
567 | /* Disable the Input Capture channel 1 |
567 | |
568 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
568 | /* Disable the Input Capture channel 1 |
569 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
569 | (in the Hall Sensor Interface the three possible channels that can be used are TIM_CHANNEL_1, |
570 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
570 | TIM_CHANNEL_2 and TIM_CHANNEL_3) */ |
571 | 571 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
|
572 | 572 | ||
573 | /* Disable the capture compare Interrupts 1 event */ |
573 | |
574 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
574 | /* Disable the capture compare Interrupts 1 event */ |
575 | 575 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
576 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
576 | |
577 | 577 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
|
578 | /* Disable the Peripheral */ |
578 | |
579 | __HAL_TIM_DISABLE(htim); |
579 | /* Disable the Peripheral */ |
580 | 580 | __HAL_TIM_DISABLE(htim); |
|
581 | /* Set the TIM channel state */ |
581 | |
582 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
582 | /* Set the TIM channel state */ |
583 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
583 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
584 | 584 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
585 | /* Return function status */ |
585 | |
586 | return HAL_OK; |
586 | /* Return function status */ |
587 | } |
587 | return HAL_OK; |
588 | 588 | } |
|
589 | /** |
589 | |
590 | * @} |
590 | /** |
591 | */ |
591 | * @} |
592 | 592 | */ |
|
593 | /** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions |
593 | |
594 | * @brief Timer Complementary Output Compare functions |
594 | /** @defgroup TIMEx_Exported_Functions_Group2 Extended Timer Complementary Output Compare functions |
595 | * |
595 | * @brief Timer Complementary Output Compare functions |
596 | @verbatim |
596 | * |
597 | ============================================================================== |
597 | @verbatim |
598 | ##### Timer Complementary Output Compare functions ##### |
598 | ============================================================================== |
599 | ============================================================================== |
599 | ##### Timer Complementary Output Compare functions ##### |
600 | [..] |
600 | ============================================================================== |
601 | This section provides functions allowing to: |
601 | [..] |
602 | (+) Start the Complementary Output Compare/PWM. |
602 | This section provides functions allowing to: |
603 | (+) Stop the Complementary Output Compare/PWM. |
603 | (+) Start the Complementary Output Compare/PWM. |
604 | (+) Start the Complementary Output Compare/PWM and enable interrupts. |
604 | (+) Stop the Complementary Output Compare/PWM. |
605 | (+) Stop the Complementary Output Compare/PWM and disable interrupts. |
605 | (+) Start the Complementary Output Compare/PWM and enable interrupts. |
606 | (+) Start the Complementary Output Compare/PWM and enable DMA transfers. |
606 | (+) Stop the Complementary Output Compare/PWM and disable interrupts. |
607 | (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. |
607 | (+) Start the Complementary Output Compare/PWM and enable DMA transfers. |
608 | 608 | (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. |
|
609 | @endverbatim |
609 | |
610 | * @{ |
610 | @endverbatim |
611 | */ |
611 | * @{ |
612 | 612 | */ |
|
613 | /** |
613 | |
614 | * @brief Starts the TIM Output Compare signal generation on the complementary |
614 | /** |
615 | * output. |
615 | * @brief Starts the TIM Output Compare signal generation on the complementary |
616 | * @param htim TIM Output Compare handle |
616 | * output. |
617 | * @param Channel TIM Channel to be enabled |
617 | * @param htim TIM Output Compare handle |
618 | * This parameter can be one of the following values: |
618 | * @param Channel TIM Channel to be enabled |
619 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
619 | * This parameter can be one of the following values: |
620 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
620 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
621 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
621 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
622 | * @retval HAL status |
622 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
623 | */ |
623 | * @retval HAL status |
624 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
624 | */ |
625 | { |
625 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
626 | uint32_t tmpsmcr; |
626 | { |
627 | 627 | uint32_t tmpsmcr; |
|
628 | /* Check the parameters */ |
628 | |
629 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
629 | /* Check the parameters */ |
630 | 630 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
|
631 | /* Check the TIM complementary channel state */ |
631 | |
632 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
632 | /* Check the TIM complementary channel state */ |
633 | { |
633 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
634 | return HAL_ERROR; |
634 | { |
635 | } |
635 | return HAL_ERROR; |
636 | 636 | } |
|
637 | /* Set the TIM complementary channel state */ |
637 | |
638 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
638 | /* Set the TIM complementary channel state */ |
639 | 639 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
640 | /* Enable the Capture compare channel N */ |
640 | |
641 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
641 | /* Enable the Capture compare channel N */ |
642 | 642 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
|
643 | /* Enable the Main Output */ |
643 | |
644 | __HAL_TIM_MOE_ENABLE(htim); |
644 | /* Enable the Main Output */ |
645 | 645 | __HAL_TIM_MOE_ENABLE(htim); |
|
646 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
646 | |
647 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
647 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
648 | { |
648 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
649 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
649 | { |
650 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
650 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
651 | { |
651 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
652 | __HAL_TIM_ENABLE(htim); |
652 | { |
653 | } |
653 | __HAL_TIM_ENABLE(htim); |
654 | } |
654 | } |
655 | else |
655 | } |
656 | { |
656 | else |
657 | __HAL_TIM_ENABLE(htim); |
657 | { |
658 | } |
658 | __HAL_TIM_ENABLE(htim); |
659 | 659 | } |
|
660 | /* Return function status */ |
660 | |
661 | return HAL_OK; |
661 | /* Return function status */ |
662 | } |
662 | return HAL_OK; |
663 | 663 | } |
|
664 | /** |
664 | |
665 | * @brief Stops the TIM Output Compare signal generation on the complementary |
665 | /** |
666 | * output. |
666 | * @brief Stops the TIM Output Compare signal generation on the complementary |
667 | * @param htim TIM handle |
667 | * output. |
668 | * @param Channel TIM Channel to be disabled |
668 | * @param htim TIM handle |
669 | * This parameter can be one of the following values: |
669 | * @param Channel TIM Channel to be disabled |
670 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
670 | * This parameter can be one of the following values: |
671 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
671 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
672 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
672 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
673 | * @retval HAL status |
673 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
674 | */ |
674 | * @retval HAL status |
675 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
675 | */ |
676 | { |
676 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
677 | /* Check the parameters */ |
677 | { |
678 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
678 | /* Check the parameters */ |
679 | 679 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
|
680 | /* Disable the Capture compare channel N */ |
680 | |
681 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
681 | /* Disable the Capture compare channel N */ |
682 | 682 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
|
683 | /* Disable the Main Output */ |
683 | |
684 | __HAL_TIM_MOE_DISABLE(htim); |
684 | /* Disable the Main Output */ |
685 | 685 | __HAL_TIM_MOE_DISABLE(htim); |
|
686 | /* Disable the Peripheral */ |
686 | |
687 | __HAL_TIM_DISABLE(htim); |
687 | /* Disable the Peripheral */ |
688 | 688 | __HAL_TIM_DISABLE(htim); |
|
689 | /* Set the TIM complementary channel state */ |
689 | |
690 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
690 | /* Set the TIM complementary channel state */ |
691 | 691 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
|
692 | /* Return function status */ |
692 | |
693 | return HAL_OK; |
693 | /* Return function status */ |
694 | } |
694 | return HAL_OK; |
695 | 695 | } |
|
696 | /** |
696 | |
697 | * @brief Starts the TIM Output Compare signal generation in interrupt mode |
697 | /** |
698 | * on the complementary output. |
698 | * @brief Starts the TIM Output Compare signal generation in interrupt mode |
699 | * @param htim TIM OC handle |
699 | * on the complementary output. |
700 | * @param Channel TIM Channel to be enabled |
700 | * @param htim TIM OC handle |
701 | * This parameter can be one of the following values: |
701 | * @param Channel TIM Channel to be enabled |
702 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
702 | * This parameter can be one of the following values: |
703 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
703 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
704 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
704 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
705 | * @retval HAL status |
705 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
706 | */ |
706 | * @retval HAL status |
707 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
707 | */ |
708 | { |
708 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
709 | uint32_t tmpsmcr; |
709 | { |
710 | 710 | HAL_StatusTypeDef status = HAL_OK; |
|
711 | /* Check the parameters */ |
711 | uint32_t tmpsmcr; |
712 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
712 | |
713 | 713 | /* Check the parameters */ |
|
714 | /* Check the TIM complementary channel state */ |
714 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
715 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
715 | |
716 | { |
716 | /* Check the TIM complementary channel state */ |
717 | return HAL_ERROR; |
717 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
718 | } |
718 | { |
719 | 719 | return HAL_ERROR; |
|
720 | /* Set the TIM complementary channel state */ |
720 | } |
721 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
721 | |
722 | 722 | /* Set the TIM complementary channel state */ |
|
723 | switch (Channel) |
723 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
724 | { |
724 | |
725 | case TIM_CHANNEL_1: |
725 | switch (Channel) |
726 | { |
726 | { |
727 | /* Enable the TIM Output Compare interrupt */ |
727 | case TIM_CHANNEL_1: |
728 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
728 | { |
729 | break; |
729 | /* Enable the TIM Output Compare interrupt */ |
730 | } |
730 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
731 | 731 | break; |
|
732 | case TIM_CHANNEL_2: |
732 | } |
733 | { |
733 | |
734 | /* Enable the TIM Output Compare interrupt */ |
734 | case TIM_CHANNEL_2: |
735 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
735 | { |
736 | break; |
736 | /* Enable the TIM Output Compare interrupt */ |
737 | } |
737 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
738 | 738 | break; |
|
739 | case TIM_CHANNEL_3: |
739 | } |
740 | { |
740 | |
741 | /* Enable the TIM Output Compare interrupt */ |
741 | case TIM_CHANNEL_3: |
742 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
742 | { |
743 | break; |
743 | /* Enable the TIM Output Compare interrupt */ |
744 | } |
744 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
745 | 745 | break; |
|
746 | 746 | } |
|
747 | default: |
747 | |
748 | break; |
748 | |
749 | } |
749 | default: |
750 | 750 | status = HAL_ERROR; |
|
751 | /* Enable the TIM Break interrupt */ |
751 | break; |
752 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); |
752 | } |
753 | 753 | ||
754 | /* Enable the Capture compare channel N */ |
754 | if (status == HAL_OK) |
755 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
755 | { |
756 | 756 | /* Enable the TIM Break interrupt */ |
|
757 | /* Enable the Main Output */ |
757 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); |
758 | __HAL_TIM_MOE_ENABLE(htim); |
758 | |
759 | 759 | /* Enable the Capture compare channel N */ |
|
760 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
760 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
761 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
761 | |
762 | { |
762 | /* Enable the Main Output */ |
763 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
763 | __HAL_TIM_MOE_ENABLE(htim); |
764 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
764 | |
765 | { |
765 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
766 | __HAL_TIM_ENABLE(htim); |
766 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
767 | } |
767 | { |
768 | } |
768 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
769 | else |
769 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
770 | { |
770 | { |
771 | __HAL_TIM_ENABLE(htim); |
771 | __HAL_TIM_ENABLE(htim); |
772 | } |
772 | } |
773 | 773 | } |
|
774 | /* Return function status */ |
774 | else |
775 | return HAL_OK; |
775 | { |
776 | } |
776 | __HAL_TIM_ENABLE(htim); |
777 | 777 | } |
|
778 | /** |
778 | } |
779 | * @brief Stops the TIM Output Compare signal generation in interrupt mode |
779 | |
780 | * on the complementary output. |
780 | /* Return function status */ |
781 | * @param htim TIM Output Compare handle |
781 | return status; |
782 | * @param Channel TIM Channel to be disabled |
782 | } |
783 | * This parameter can be one of the following values: |
783 | |
784 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
784 | /** |
785 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
785 | * @brief Stops the TIM Output Compare signal generation in interrupt mode |
786 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
786 | * on the complementary output. |
787 | * @retval HAL status |
787 | * @param htim TIM Output Compare handle |
788 | */ |
788 | * @param Channel TIM Channel to be disabled |
789 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
789 | * This parameter can be one of the following values: |
790 | { |
790 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
791 | uint32_t tmpccer; |
791 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
792 | /* Check the parameters */ |
792 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
793 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
793 | * @retval HAL status |
794 | 794 | */ |
|
795 | switch (Channel) |
795 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
796 | { |
796 | { |
797 | case TIM_CHANNEL_1: |
797 | HAL_StatusTypeDef status = HAL_OK; |
798 | { |
798 | uint32_t tmpccer; |
799 | /* Disable the TIM Output Compare interrupt */ |
799 | |
800 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
800 | /* Check the parameters */ |
801 | break; |
801 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
802 | } |
802 | |
803 | 803 | switch (Channel) |
|
804 | case TIM_CHANNEL_2: |
804 | { |
805 | { |
805 | case TIM_CHANNEL_1: |
806 | /* Disable the TIM Output Compare interrupt */ |
806 | { |
807 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
807 | /* Disable the TIM Output Compare interrupt */ |
808 | break; |
808 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
809 | } |
809 | break; |
810 | 810 | } |
|
811 | case TIM_CHANNEL_3: |
811 | |
812 | { |
812 | case TIM_CHANNEL_2: |
813 | /* Disable the TIM Output Compare interrupt */ |
813 | { |
814 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
814 | /* Disable the TIM Output Compare interrupt */ |
815 | break; |
815 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
816 | } |
816 | break; |
817 | 817 | } |
|
818 | default: |
818 | |
819 | break; |
819 | case TIM_CHANNEL_3: |
820 | } |
820 | { |
821 | 821 | /* Disable the TIM Output Compare interrupt */ |
|
822 | /* Disable the Capture compare channel N */ |
822 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
823 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
823 | break; |
824 | 824 | } |
|
825 | /* Disable the TIM Break interrupt (only if no more channel is active) */ |
825 | |
826 | tmpccer = htim->Instance->CCER; |
826 | default: |
827 | if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) |
827 | status = HAL_ERROR; |
828 | { |
828 | break; |
829 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); |
829 | } |
830 | } |
830 | |
831 | 831 | if (status == HAL_OK) |
|
832 | /* Disable the Main Output */ |
832 | { |
833 | __HAL_TIM_MOE_DISABLE(htim); |
833 | /* Disable the Capture compare channel N */ |
834 | 834 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
|
835 | /* Disable the Peripheral */ |
835 | |
836 | __HAL_TIM_DISABLE(htim); |
836 | /* Disable the TIM Break interrupt (only if no more channel is active) */ |
837 | 837 | tmpccer = htim->Instance->CCER; |
|
838 | /* Set the TIM complementary channel state */ |
838 | if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) |
839 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
839 | { |
840 | 840 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); |
|
841 | /* Return function status */ |
841 | } |
842 | return HAL_OK; |
842 | |
843 | } |
843 | /* Disable the Main Output */ |
844 | 844 | __HAL_TIM_MOE_DISABLE(htim); |
|
845 | /** |
845 | |
846 | * @brief Starts the TIM Output Compare signal generation in DMA mode |
846 | /* Disable the Peripheral */ |
847 | * on the complementary output. |
847 | __HAL_TIM_DISABLE(htim); |
848 | * @param htim TIM Output Compare handle |
848 | |
849 | * @param Channel TIM Channel to be enabled |
849 | /* Set the TIM complementary channel state */ |
850 | * This parameter can be one of the following values: |
850 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
851 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
851 | } |
852 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
852 | |
853 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
853 | /* Return function status */ |
854 | * @param pData The source Buffer address. |
854 | return status; |
855 | * @param Length The length of data to be transferred from memory to TIM peripheral |
855 | } |
856 | * @retval HAL status |
856 | |
857 | */ |
857 | /** |
858 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
858 | * @brief Starts the TIM Output Compare signal generation in DMA mode |
859 | { |
859 | * on the complementary output. |
860 | uint32_t tmpsmcr; |
860 | * @param htim TIM Output Compare handle |
861 | 861 | * @param Channel TIM Channel to be enabled |
|
862 | /* Check the parameters */ |
862 | * This parameter can be one of the following values: |
863 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
863 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
864 | 864 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
865 | /* Set the TIM complementary channel state */ |
865 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
866 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
866 | * @param pData The source Buffer address. |
867 | { |
867 | * @param Length The length of data to be transferred from memory to TIM peripheral |
868 | return HAL_BUSY; |
868 | * @retval HAL status |
869 | } |
869 | */ |
870 | else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
870 | HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
871 | { |
871 | uint16_t Length) |
872 | if ((pData == NULL) && (Length > 0U)) |
872 | { |
873 | { |
873 | HAL_StatusTypeDef status = HAL_OK; |
874 | return HAL_ERROR; |
874 | uint32_t tmpsmcr; |
875 | } |
875 | |
876 | else |
876 | /* Check the parameters */ |
877 | { |
877 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
878 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
878 | |
879 | } |
879 | /* Set the TIM complementary channel state */ |
880 | } |
880 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
881 | else |
881 | { |
882 | { |
882 | return HAL_BUSY; |
883 | return HAL_ERROR; |
883 | } |
884 | } |
884 | else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
885 | 885 | { |
|
886 | switch (Channel) |
886 | if ((pData == NULL) || (Length == 0U)) |
887 | { |
887 | { |
888 | case TIM_CHANNEL_1: |
888 | return HAL_ERROR; |
889 | { |
889 | } |
890 | /* Set the DMA compare callbacks */ |
890 | else |
891 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
891 | { |
892 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
892 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
893 | 893 | } |
|
894 | /* Set the DMA error callback */ |
894 | } |
895 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; |
895 | else |
896 | 896 | { |
|
897 | /* Enable the DMA channel */ |
897 | return HAL_ERROR; |
898 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
898 | } |
899 | Length) != HAL_OK) |
899 | |
900 | { |
900 | switch (Channel) |
901 | /* Return error status */ |
901 | { |
902 | return HAL_ERROR; |
902 | case TIM_CHANNEL_1: |
903 | } |
903 | { |
904 | /* Enable the TIM Output Compare DMA request */ |
904 | /* Set the DMA compare callbacks */ |
905 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
905 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
906 | break; |
906 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
907 | } |
907 | |
908 | 908 | /* Set the DMA error callback */ |
|
909 | case TIM_CHANNEL_2: |
909 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; |
910 | { |
910 | |
911 | /* Set the DMA compare callbacks */ |
911 | /* Enable the DMA channel */ |
912 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
912 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
913 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
913 | Length) != HAL_OK) |
914 | 914 | { |
|
915 | /* Set the DMA error callback */ |
915 | /* Return error status */ |
916 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; |
916 | return HAL_ERROR; |
917 | 917 | } |
|
918 | /* Enable the DMA channel */ |
918 | /* Enable the TIM Output Compare DMA request */ |
919 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
919 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
920 | Length) != HAL_OK) |
920 | break; |
921 | { |
921 | } |
922 | /* Return error status */ |
922 | |
923 | return HAL_ERROR; |
923 | case TIM_CHANNEL_2: |
924 | } |
924 | { |
925 | /* Enable the TIM Output Compare DMA request */ |
925 | /* Set the DMA compare callbacks */ |
926 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
926 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
927 | break; |
927 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
928 | } |
928 | |
929 | 929 | /* Set the DMA error callback */ |
|
930 | case TIM_CHANNEL_3: |
930 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; |
931 | { |
931 | |
932 | /* Set the DMA compare callbacks */ |
932 | /* Enable the DMA channel */ |
933 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
933 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
934 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
934 | Length) != HAL_OK) |
935 | 935 | { |
|
936 | /* Set the DMA error callback */ |
936 | /* Return error status */ |
937 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; |
937 | return HAL_ERROR; |
938 | 938 | } |
|
939 | /* Enable the DMA channel */ |
939 | /* Enable the TIM Output Compare DMA request */ |
940 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
940 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
941 | Length) != HAL_OK) |
941 | break; |
942 | { |
942 | } |
943 | /* Return error status */ |
943 | |
944 | return HAL_ERROR; |
944 | case TIM_CHANNEL_3: |
945 | } |
945 | { |
946 | /* Enable the TIM Output Compare DMA request */ |
946 | /* Set the DMA compare callbacks */ |
947 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
947 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
948 | break; |
948 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
949 | } |
949 | |
950 | 950 | /* Set the DMA error callback */ |
|
951 | default: |
951 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; |
952 | break; |
952 | |
953 | } |
953 | /* Enable the DMA channel */ |
954 | 954 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
|
955 | /* Enable the Capture compare channel N */ |
955 | Length) != HAL_OK) |
956 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
956 | { |
957 | 957 | /* Return error status */ |
|
958 | /* Enable the Main Output */ |
958 | return HAL_ERROR; |
959 | __HAL_TIM_MOE_ENABLE(htim); |
959 | } |
960 | 960 | /* Enable the TIM Output Compare DMA request */ |
|
961 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
961 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
962 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
962 | break; |
963 | { |
963 | } |
964 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
964 | |
965 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
965 | default: |
966 | { |
966 | status = HAL_ERROR; |
967 | __HAL_TIM_ENABLE(htim); |
967 | break; |
968 | } |
968 | } |
969 | } |
969 | |
970 | else |
970 | if (status == HAL_OK) |
971 | { |
971 | { |
972 | __HAL_TIM_ENABLE(htim); |
972 | /* Enable the Capture compare channel N */ |
973 | } |
973 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
974 | 974 | ||
975 | /* Return function status */ |
975 | /* Enable the Main Output */ |
976 | return HAL_OK; |
976 | __HAL_TIM_MOE_ENABLE(htim); |
977 | } |
977 | |
978 | 978 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
979 | /** |
979 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
980 | * @brief Stops the TIM Output Compare signal generation in DMA mode |
980 | { |
981 | * on the complementary output. |
981 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
982 | * @param htim TIM Output Compare handle |
982 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
983 | * @param Channel TIM Channel to be disabled |
983 | { |
984 | * This parameter can be one of the following values: |
984 | __HAL_TIM_ENABLE(htim); |
985 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
985 | } |
986 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
986 | } |
987 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
987 | else |
988 | * @retval HAL status |
988 | { |
989 | */ |
989 | __HAL_TIM_ENABLE(htim); |
990 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
990 | } |
991 | { |
991 | } |
992 | /* Check the parameters */ |
992 | |
993 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
993 | /* Return function status */ |
994 | 994 | return status; |
|
995 | switch (Channel) |
995 | } |
996 | { |
996 | |
997 | case TIM_CHANNEL_1: |
997 | /** |
998 | { |
998 | * @brief Stops the TIM Output Compare signal generation in DMA mode |
999 | /* Disable the TIM Output Compare DMA request */ |
999 | * on the complementary output. |
1000 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1000 | * @param htim TIM Output Compare handle |
1001 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1001 | * @param Channel TIM Channel to be disabled |
1002 | break; |
1002 | * This parameter can be one of the following values: |
1003 | } |
1003 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1004 | 1004 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
1005 | case TIM_CHANNEL_2: |
1005 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1006 | { |
1006 | * @retval HAL status |
1007 | /* Disable the TIM Output Compare DMA request */ |
1007 | */ |
1008 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1008 | HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1009 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1009 | { |
1010 | break; |
1010 | HAL_StatusTypeDef status = HAL_OK; |
1011 | } |
1011 | |
1012 | 1012 | /* Check the parameters */ |
|
1013 | case TIM_CHANNEL_3: |
1013 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1014 | { |
1014 | |
1015 | /* Disable the TIM Output Compare DMA request */ |
1015 | switch (Channel) |
1016 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1016 | { |
1017 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1017 | case TIM_CHANNEL_1: |
1018 | break; |
1018 | { |
1019 | } |
1019 | /* Disable the TIM Output Compare DMA request */ |
1020 | 1020 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
|
1021 | default: |
1021 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1022 | break; |
1022 | break; |
1023 | } |
1023 | } |
1024 | 1024 | ||
1025 | /* Disable the Capture compare channel N */ |
1025 | case TIM_CHANNEL_2: |
1026 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1026 | { |
1027 | 1027 | /* Disable the TIM Output Compare DMA request */ |
|
1028 | /* Disable the Main Output */ |
1028 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1029 | __HAL_TIM_MOE_DISABLE(htim); |
1029 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1030 | 1030 | break; |
|
1031 | /* Disable the Peripheral */ |
1031 | } |
1032 | __HAL_TIM_DISABLE(htim); |
1032 | |
1033 | 1033 | case TIM_CHANNEL_3: |
|
1034 | /* Set the TIM complementary channel state */ |
1034 | { |
1035 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1035 | /* Disable the TIM Output Compare DMA request */ |
1036 | 1036 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
|
1037 | /* Return function status */ |
1037 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1038 | return HAL_OK; |
1038 | break; |
1039 | } |
1039 | } |
1040 | 1040 | ||
1041 | /** |
1041 | default: |
1042 | * @} |
1042 | status = HAL_ERROR; |
1043 | */ |
1043 | break; |
1044 | 1044 | } |
|
1045 | /** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions |
1045 | |
1046 | * @brief Timer Complementary PWM functions |
1046 | if (status == HAL_OK) |
1047 | * |
1047 | { |
1048 | @verbatim |
1048 | /* Disable the Capture compare channel N */ |
1049 | ============================================================================== |
1049 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1050 | ##### Timer Complementary PWM functions ##### |
1050 | |
1051 | ============================================================================== |
1051 | /* Disable the Main Output */ |
1052 | [..] |
1052 | __HAL_TIM_MOE_DISABLE(htim); |
1053 | This section provides functions allowing to: |
1053 | |
1054 | (+) Start the Complementary PWM. |
1054 | /* Disable the Peripheral */ |
1055 | (+) Stop the Complementary PWM. |
1055 | __HAL_TIM_DISABLE(htim); |
1056 | (+) Start the Complementary PWM and enable interrupts. |
1056 | |
1057 | (+) Stop the Complementary PWM and disable interrupts. |
1057 | /* Set the TIM complementary channel state */ |
1058 | (+) Start the Complementary PWM and enable DMA transfers. |
1058 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1059 | (+) Stop the Complementary PWM and disable DMA transfers. |
1059 | } |
1060 | (+) Start the Complementary Input Capture measurement. |
1060 | |
1061 | (+) Stop the Complementary Input Capture. |
1061 | /* Return function status */ |
1062 | (+) Start the Complementary Input Capture and enable interrupts. |
1062 | return status; |
1063 | (+) Stop the Complementary Input Capture and disable interrupts. |
1063 | } |
1064 | (+) Start the Complementary Input Capture and enable DMA transfers. |
1064 | |
1065 | (+) Stop the Complementary Input Capture and disable DMA transfers. |
1065 | /** |
1066 | (+) Start the Complementary One Pulse generation. |
1066 | * @} |
1067 | (+) Stop the Complementary One Pulse. |
1067 | */ |
1068 | (+) Start the Complementary One Pulse and enable interrupts. |
1068 | |
1069 | (+) Stop the Complementary One Pulse and disable interrupts. |
1069 | /** @defgroup TIMEx_Exported_Functions_Group3 Extended Timer Complementary PWM functions |
1070 | 1070 | * @brief Timer Complementary PWM functions |
|
1071 | @endverbatim |
1071 | * |
1072 | * @{ |
1072 | @verbatim |
1073 | */ |
1073 | ============================================================================== |
1074 | 1074 | ##### Timer Complementary PWM functions ##### |
|
1075 | /** |
1075 | ============================================================================== |
1076 | * @brief Starts the PWM signal generation on the complementary output. |
1076 | [..] |
1077 | * @param htim TIM handle |
1077 | This section provides functions allowing to: |
1078 | * @param Channel TIM Channel to be enabled |
1078 | (+) Start the Complementary PWM. |
1079 | * This parameter can be one of the following values: |
1079 | (+) Stop the Complementary PWM. |
1080 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1080 | (+) Start the Complementary PWM and enable interrupts. |
1081 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1081 | (+) Stop the Complementary PWM and disable interrupts. |
1082 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1082 | (+) Start the Complementary PWM and enable DMA transfers. |
1083 | * @retval HAL status |
1083 | (+) Stop the Complementary PWM and disable DMA transfers. |
1084 | */ |
1084 | (+) Start the Complementary Input Capture measurement. |
1085 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1085 | (+) Stop the Complementary Input Capture. |
1086 | { |
1086 | (+) Start the Complementary Input Capture and enable interrupts. |
1087 | uint32_t tmpsmcr; |
1087 | (+) Stop the Complementary Input Capture and disable interrupts. |
1088 | 1088 | (+) Start the Complementary Input Capture and enable DMA transfers. |
|
1089 | /* Check the parameters */ |
1089 | (+) Stop the Complementary Input Capture and disable DMA transfers. |
1090 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1090 | (+) Start the Complementary One Pulse generation. |
1091 | 1091 | (+) Stop the Complementary One Pulse. |
|
1092 | /* Check the TIM complementary channel state */ |
1092 | (+) Start the Complementary One Pulse and enable interrupts. |
1093 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1093 | (+) Stop the Complementary One Pulse and disable interrupts. |
1094 | { |
1094 | |
1095 | return HAL_ERROR; |
1095 | @endverbatim |
1096 | } |
1096 | * @{ |
1097 | 1097 | */ |
|
1098 | /* Set the TIM complementary channel state */ |
1098 | |
1099 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1099 | /** |
1100 | 1100 | * @brief Starts the PWM signal generation on the complementary output. |
|
1101 | /* Enable the complementary PWM output */ |
1101 | * @param htim TIM handle |
1102 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1102 | * @param Channel TIM Channel to be enabled |
1103 | 1103 | * This parameter can be one of the following values: |
|
1104 | /* Enable the Main Output */ |
1104 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1105 | __HAL_TIM_MOE_ENABLE(htim); |
1105 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1106 | 1106 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
1107 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1107 | * @retval HAL status |
1108 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1108 | */ |
1109 | { |
1109 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1110 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1110 | { |
1111 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1111 | uint32_t tmpsmcr; |
1112 | { |
1112 | |
1113 | __HAL_TIM_ENABLE(htim); |
1113 | /* Check the parameters */ |
1114 | } |
1114 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1115 | } |
1115 | |
1116 | else |
1116 | /* Check the TIM complementary channel state */ |
1117 | { |
1117 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1118 | __HAL_TIM_ENABLE(htim); |
1118 | { |
1119 | } |
1119 | return HAL_ERROR; |
1120 | 1120 | } |
|
1121 | /* Return function status */ |
1121 | |
1122 | return HAL_OK; |
1122 | /* Set the TIM complementary channel state */ |
1123 | } |
1123 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1124 | 1124 | ||
1125 | /** |
1125 | /* Enable the complementary PWM output */ |
1126 | * @brief Stops the PWM signal generation on the complementary output. |
1126 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1127 | * @param htim TIM handle |
1127 | |
1128 | * @param Channel TIM Channel to be disabled |
1128 | /* Enable the Main Output */ |
1129 | * This parameter can be one of the following values: |
1129 | __HAL_TIM_MOE_ENABLE(htim); |
1130 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1130 | |
1131 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1131 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1132 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1132 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1133 | * @retval HAL status |
1133 | { |
1134 | */ |
1134 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1135 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
1135 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1136 | { |
1136 | { |
1137 | /* Check the parameters */ |
1137 | __HAL_TIM_ENABLE(htim); |
1138 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1138 | } |
1139 | 1139 | } |
|
1140 | /* Disable the complementary PWM output */ |
1140 | else |
1141 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1141 | { |
1142 | 1142 | __HAL_TIM_ENABLE(htim); |
|
1143 | /* Disable the Main Output */ |
1143 | } |
1144 | __HAL_TIM_MOE_DISABLE(htim); |
1144 | |
1145 | 1145 | /* Return function status */ |
|
1146 | /* Disable the Peripheral */ |
1146 | return HAL_OK; |
1147 | __HAL_TIM_DISABLE(htim); |
1147 | } |
1148 | 1148 | ||
1149 | /* Set the TIM complementary channel state */ |
1149 | /** |
1150 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1150 | * @brief Stops the PWM signal generation on the complementary output. |
1151 | 1151 | * @param htim TIM handle |
|
1152 | /* Return function status */ |
1152 | * @param Channel TIM Channel to be disabled |
1153 | return HAL_OK; |
1153 | * This parameter can be one of the following values: |
1154 | } |
1154 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1155 | 1155 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
1156 | /** |
1156 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1157 | * @brief Starts the PWM signal generation in interrupt mode on the |
1157 | * @retval HAL status |
1158 | * complementary output. |
1158 | */ |
1159 | * @param htim TIM handle |
1159 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
1160 | * @param Channel TIM Channel to be disabled |
1160 | { |
1161 | * This parameter can be one of the following values: |
1161 | /* Check the parameters */ |
1162 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1162 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1163 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1163 | |
1164 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1164 | /* Disable the complementary PWM output */ |
1165 | * @retval HAL status |
1165 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1166 | */ |
1166 | |
1167 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1167 | /* Disable the Main Output */ |
1168 | { |
1168 | __HAL_TIM_MOE_DISABLE(htim); |
1169 | uint32_t tmpsmcr; |
1169 | |
1170 | 1170 | /* Disable the Peripheral */ |
|
1171 | /* Check the parameters */ |
1171 | __HAL_TIM_DISABLE(htim); |
1172 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1172 | |
1173 | 1173 | /* Set the TIM complementary channel state */ |
|
1174 | /* Check the TIM complementary channel state */ |
1174 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1175 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1175 | |
1176 | { |
1176 | /* Return function status */ |
1177 | return HAL_ERROR; |
1177 | return HAL_OK; |
1178 | } |
1178 | } |
1179 | 1179 | ||
1180 | /* Set the TIM complementary channel state */ |
1180 | /** |
1181 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1181 | * @brief Starts the PWM signal generation in interrupt mode on the |
1182 | 1182 | * complementary output. |
|
1183 | switch (Channel) |
1183 | * @param htim TIM handle |
1184 | { |
1184 | * @param Channel TIM Channel to be disabled |
1185 | case TIM_CHANNEL_1: |
1185 | * This parameter can be one of the following values: |
1186 | { |
1186 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1187 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1187 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1188 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1188 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1189 | break; |
1189 | * @retval HAL status |
1190 | } |
1190 | */ |
1191 | 1191 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
1192 | case TIM_CHANNEL_2: |
1192 | { |
1193 | { |
1193 | HAL_StatusTypeDef status = HAL_OK; |
1194 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1194 | uint32_t tmpsmcr; |
1195 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1195 | |
1196 | break; |
1196 | /* Check the parameters */ |
1197 | } |
1197 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1198 | 1198 | ||
1199 | case TIM_CHANNEL_3: |
1199 | /* Check the TIM complementary channel state */ |
1200 | { |
1200 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1201 | /* Enable the TIM Capture/Compare 3 interrupt */ |
1201 | { |
1202 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
1202 | return HAL_ERROR; |
1203 | break; |
1203 | } |
1204 | } |
1204 | |
1205 | 1205 | /* Set the TIM complementary channel state */ |
|
1206 | default: |
1206 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1207 | break; |
1207 | |
1208 | } |
1208 | switch (Channel) |
1209 | 1209 | { |
|
1210 | /* Enable the TIM Break interrupt */ |
1210 | case TIM_CHANNEL_1: |
1211 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); |
1211 | { |
1212 | 1212 | /* Enable the TIM Capture/Compare 1 interrupt */ |
|
1213 | /* Enable the complementary PWM output */ |
1213 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1214 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1214 | break; |
1215 | 1215 | } |
|
1216 | /* Enable the Main Output */ |
1216 | |
1217 | __HAL_TIM_MOE_ENABLE(htim); |
1217 | case TIM_CHANNEL_2: |
1218 | 1218 | { |
|
1219 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1219 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1220 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1220 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1221 | { |
1221 | break; |
1222 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1222 | } |
1223 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1223 | |
1224 | { |
1224 | case TIM_CHANNEL_3: |
1225 | __HAL_TIM_ENABLE(htim); |
1225 | { |
1226 | } |
1226 | /* Enable the TIM Capture/Compare 3 interrupt */ |
1227 | } |
1227 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
1228 | else |
1228 | break; |
1229 | { |
1229 | } |
1230 | __HAL_TIM_ENABLE(htim); |
1230 | |
1231 | } |
1231 | default: |
1232 | 1232 | status = HAL_ERROR; |
|
1233 | /* Return function status */ |
1233 | break; |
1234 | return HAL_OK; |
1234 | } |
1235 | } |
1235 | |
1236 | 1236 | if (status == HAL_OK) |
|
1237 | /** |
1237 | { |
1238 | * @brief Stops the PWM signal generation in interrupt mode on the |
1238 | /* Enable the TIM Break interrupt */ |
1239 | * complementary output. |
1239 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); |
1240 | * @param htim TIM handle |
1240 | |
1241 | * @param Channel TIM Channel to be disabled |
1241 | /* Enable the complementary PWM output */ |
1242 | * This parameter can be one of the following values: |
1242 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1243 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1243 | |
1244 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1244 | /* Enable the Main Output */ |
1245 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1245 | __HAL_TIM_MOE_ENABLE(htim); |
1246 | * @retval HAL status |
1246 | |
1247 | */ |
1247 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1248 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1248 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1249 | { |
1249 | { |
1250 | uint32_t tmpccer; |
1250 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1251 | 1251 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
1252 | /* Check the parameters */ |
1252 | { |
1253 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1253 | __HAL_TIM_ENABLE(htim); |
1254 | 1254 | } |
|
1255 | switch (Channel) |
1255 | } |
1256 | { |
1256 | else |
1257 | case TIM_CHANNEL_1: |
1257 | { |
1258 | { |
1258 | __HAL_TIM_ENABLE(htim); |
1259 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1259 | } |
1260 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1260 | } |
1261 | break; |
1261 | |
1262 | } |
1262 | /* Return function status */ |
1263 | 1263 | return status; |
|
1264 | case TIM_CHANNEL_2: |
1264 | } |
1265 | { |
1265 | |
1266 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1266 | /** |
1267 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
1267 | * @brief Stops the PWM signal generation in interrupt mode on the |
1268 | break; |
1268 | * complementary output. |
1269 | } |
1269 | * @param htim TIM handle |
1270 | 1270 | * @param Channel TIM Channel to be disabled |
|
1271 | case TIM_CHANNEL_3: |
1271 | * This parameter can be one of the following values: |
1272 | { |
1272 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1273 | /* Disable the TIM Capture/Compare 3 interrupt */ |
1273 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1274 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
1274 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1275 | break; |
1275 | * @retval HAL status |
1276 | } |
1276 | */ |
1277 | 1277 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
1278 | default: |
1278 | { |
1279 | break; |
1279 | HAL_StatusTypeDef status = HAL_OK; |
1280 | } |
1280 | uint32_t tmpccer; |
1281 | 1281 | ||
1282 | /* Disable the complementary PWM output */ |
1282 | /* Check the parameters */ |
1283 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1283 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1284 | 1284 | ||
1285 | /* Disable the TIM Break interrupt (only if no more channel is active) */ |
1285 | switch (Channel) |
1286 | tmpccer = htim->Instance->CCER; |
1286 | { |
1287 | if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) |
1287 | case TIM_CHANNEL_1: |
1288 | { |
1288 | { |
1289 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); |
1289 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1290 | } |
1290 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1291 | 1291 | break; |
|
1292 | /* Disable the Main Output */ |
1292 | } |
1293 | __HAL_TIM_MOE_DISABLE(htim); |
1293 | |
1294 | 1294 | case TIM_CHANNEL_2: |
|
1295 | /* Disable the Peripheral */ |
1295 | { |
1296 | __HAL_TIM_DISABLE(htim); |
1296 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1297 | 1297 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
1298 | /* Set the TIM complementary channel state */ |
1298 | break; |
1299 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1299 | } |
1300 | 1300 | ||
1301 | /* Return function status */ |
1301 | case TIM_CHANNEL_3: |
1302 | return HAL_OK; |
1302 | { |
1303 | } |
1303 | /* Disable the TIM Capture/Compare 3 interrupt */ |
1304 | 1304 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
|
1305 | /** |
1305 | break; |
1306 | * @brief Starts the TIM PWM signal generation in DMA mode on the |
1306 | } |
1307 | * complementary output |
1307 | |
1308 | * @param htim TIM handle |
1308 | default: |
1309 | * @param Channel TIM Channel to be enabled |
1309 | status = HAL_ERROR; |
1310 | * This parameter can be one of the following values: |
1310 | break; |
1311 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1311 | } |
1312 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1312 | |
1313 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1313 | if (status == HAL_OK) |
1314 | * @param pData The source Buffer address. |
1314 | { |
1315 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1315 | /* Disable the complementary PWM output */ |
1316 | * @retval HAL status |
1316 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1317 | */ |
1317 | |
1318 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
1318 | /* Disable the TIM Break interrupt (only if no more channel is active) */ |
1319 | { |
1319 | tmpccer = htim->Instance->CCER; |
1320 | uint32_t tmpsmcr; |
1320 | if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET) |
1321 | 1321 | { |
|
1322 | /* Check the parameters */ |
1322 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); |
1323 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1323 | } |
1324 | 1324 | ||
1325 | /* Set the TIM complementary channel state */ |
1325 | /* Disable the Main Output */ |
1326 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1326 | __HAL_TIM_MOE_DISABLE(htim); |
1327 | { |
1327 | |
1328 | return HAL_BUSY; |
1328 | /* Disable the Peripheral */ |
1329 | } |
1329 | __HAL_TIM_DISABLE(htim); |
1330 | else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1330 | |
1331 | { |
1331 | /* Set the TIM complementary channel state */ |
1332 | if ((pData == NULL) && (Length > 0U)) |
1332 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1333 | { |
1333 | } |
1334 | return HAL_ERROR; |
1334 | |
1335 | } |
1335 | /* Return function status */ |
1336 | else |
1336 | return status; |
1337 | { |
1337 | } |
1338 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1338 | |
1339 | } |
1339 | /** |
1340 | } |
1340 | * @brief Starts the TIM PWM signal generation in DMA mode on the |
1341 | else |
1341 | * complementary output |
1342 | { |
1342 | * @param htim TIM handle |
1343 | return HAL_ERROR; |
1343 | * @param Channel TIM Channel to be enabled |
1344 | } |
1344 | * This parameter can be one of the following values: |
1345 | 1345 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
1346 | switch (Channel) |
1346 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1347 | { |
1347 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1348 | case TIM_CHANNEL_1: |
1348 | * @param pData The source Buffer address. |
1349 | { |
1349 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1350 | /* Set the DMA compare callbacks */ |
1350 | * @retval HAL status |
1351 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1351 | */ |
1352 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1352 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
1353 | 1353 | uint16_t Length) |
|
1354 | /* Set the DMA error callback */ |
1354 | { |
1355 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1355 | HAL_StatusTypeDef status = HAL_OK; |
1356 | 1356 | uint32_t tmpsmcr; |
|
1357 | /* Enable the DMA channel */ |
1357 | |
1358 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1358 | /* Check the parameters */ |
1359 | Length) != HAL_OK) |
1359 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1360 | { |
1360 | |
1361 | /* Return error status */ |
1361 | /* Set the TIM complementary channel state */ |
1362 | return HAL_ERROR; |
1362 | if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1363 | } |
1363 | { |
1364 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1364 | return HAL_BUSY; |
1365 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1365 | } |
1366 | break; |
1366 | else if (TIM_CHANNEL_N_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1367 | } |
1367 | { |
1368 | 1368 | if ((pData == NULL) || (Length == 0U)) |
|
1369 | case TIM_CHANNEL_2: |
1369 | { |
1370 | { |
1370 | return HAL_ERROR; |
1371 | /* Set the DMA compare callbacks */ |
1371 | } |
1372 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1372 | else |
1373 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1373 | { |
1374 | 1374 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
1375 | /* Set the DMA error callback */ |
1375 | } |
1376 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1376 | } |
1377 | 1377 | else |
|
1378 | /* Enable the DMA channel */ |
1378 | { |
1379 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1379 | return HAL_ERROR; |
1380 | Length) != HAL_OK) |
1380 | } |
1381 | { |
1381 | |
1382 | /* Return error status */ |
1382 | switch (Channel) |
1383 | return HAL_ERROR; |
1383 | { |
1384 | } |
1384 | case TIM_CHANNEL_1: |
1385 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1385 | { |
1386 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1386 | /* Set the DMA compare callbacks */ |
1387 | break; |
1387 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1388 | } |
1388 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1389 | 1389 | ||
1390 | case TIM_CHANNEL_3: |
1390 | /* Set the DMA error callback */ |
1391 | { |
1391 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1392 | /* Set the DMA compare callbacks */ |
1392 | |
1393 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1393 | /* Enable the DMA channel */ |
1394 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1394 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1395 | 1395 | Length) != HAL_OK) |
|
1396 | /* Set the DMA error callback */ |
1396 | { |
1397 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1397 | /* Return error status */ |
1398 | 1398 | return HAL_ERROR; |
|
1399 | /* Enable the DMA channel */ |
1399 | } |
1400 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1400 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1401 | Length) != HAL_OK) |
1401 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1402 | { |
1402 | break; |
1403 | /* Return error status */ |
1403 | } |
1404 | return HAL_ERROR; |
1404 | |
1405 | } |
1405 | case TIM_CHANNEL_2: |
1406 | /* Enable the TIM Capture/Compare 3 DMA request */ |
1406 | { |
1407 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1407 | /* Set the DMA compare callbacks */ |
1408 | break; |
1408 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1409 | } |
1409 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1410 | 1410 | ||
1411 | default: |
1411 | /* Set the DMA error callback */ |
1412 | break; |
1412 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1413 | } |
1413 | |
1414 | 1414 | /* Enable the DMA channel */ |
|
1415 | /* Enable the complementary PWM output */ |
1415 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1416 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1416 | Length) != HAL_OK) |
1417 | 1417 | { |
|
1418 | /* Enable the Main Output */ |
1418 | /* Return error status */ |
1419 | __HAL_TIM_MOE_ENABLE(htim); |
1419 | return HAL_ERROR; |
1420 | 1420 | } |
|
1421 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1421 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1422 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1422 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1423 | { |
1423 | break; |
1424 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1424 | } |
1425 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1425 | |
1426 | { |
1426 | case TIM_CHANNEL_3: |
1427 | __HAL_TIM_ENABLE(htim); |
1427 | { |
1428 | } |
1428 | /* Set the DMA compare callbacks */ |
1429 | } |
1429 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseNCplt; |
1430 | else |
1430 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1431 | { |
1431 | |
1432 | __HAL_TIM_ENABLE(htim); |
1432 | /* Set the DMA error callback */ |
1433 | } |
1433 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAErrorCCxN ; |
1434 | 1434 | ||
1435 | /* Return function status */ |
1435 | /* Enable the DMA channel */ |
1436 | return HAL_OK; |
1436 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1437 | } |
1437 | Length) != HAL_OK) |
1438 | 1438 | { |
|
1439 | /** |
1439 | /* Return error status */ |
1440 | * @brief Stops the TIM PWM signal generation in DMA mode on the complementary |
1440 | return HAL_ERROR; |
1441 | * output |
1441 | } |
1442 | * @param htim TIM handle |
1442 | /* Enable the TIM Capture/Compare 3 DMA request */ |
1443 | * @param Channel TIM Channel to be disabled |
1443 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1444 | * This parameter can be one of the following values: |
1444 | break; |
1445 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1445 | } |
1446 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1446 | |
1447 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1447 | default: |
1448 | * @retval HAL status |
1448 | status = HAL_ERROR; |
1449 | */ |
1449 | break; |
1450 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1450 | } |
1451 | { |
1451 | |
1452 | /* Check the parameters */ |
1452 | if (status == HAL_OK) |
1453 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1453 | { |
1454 | 1454 | /* Enable the complementary PWM output */ |
|
1455 | switch (Channel) |
1455 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); |
1456 | { |
1456 | |
1457 | case TIM_CHANNEL_1: |
1457 | /* Enable the Main Output */ |
1458 | { |
1458 | __HAL_TIM_MOE_ENABLE(htim); |
1459 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1459 | |
1460 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1460 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1461 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1461 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1462 | break; |
1462 | { |
1463 | } |
1463 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1464 | 1464 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
1465 | case TIM_CHANNEL_2: |
1465 | { |
1466 | { |
1466 | __HAL_TIM_ENABLE(htim); |
1467 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1467 | } |
1468 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1468 | } |
1469 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1469 | else |
1470 | break; |
1470 | { |
1471 | } |
1471 | __HAL_TIM_ENABLE(htim); |
1472 | 1472 | } |
|
1473 | case TIM_CHANNEL_3: |
1473 | } |
1474 | { |
1474 | |
1475 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1475 | /* Return function status */ |
1476 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1476 | return status; |
1477 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1477 | } |
1478 | break; |
1478 | |
1479 | } |
1479 | /** |
1480 | 1480 | * @brief Stops the TIM PWM signal generation in DMA mode on the complementary |
|
1481 | default: |
1481 | * output |
1482 | break; |
1482 | * @param htim TIM handle |
1483 | } |
1483 | * @param Channel TIM Channel to be disabled |
1484 | 1484 | * This parameter can be one of the following values: |
|
1485 | /* Disable the complementary PWM output */ |
1485 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1486 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1486 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1487 | 1487 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
|
1488 | /* Disable the Main Output */ |
1488 | * @retval HAL status |
1489 | __HAL_TIM_MOE_DISABLE(htim); |
1489 | */ |
1490 | 1490 | HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
1491 | /* Disable the Peripheral */ |
1491 | { |
1492 | __HAL_TIM_DISABLE(htim); |
1492 | HAL_StatusTypeDef status = HAL_OK; |
1493 | 1493 | ||
1494 | /* Set the TIM complementary channel state */ |
1494 | /* Check the parameters */ |
1495 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1495 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); |
1496 | 1496 | ||
1497 | /* Return function status */ |
1497 | switch (Channel) |
1498 | return HAL_OK; |
1498 | { |
1499 | } |
1499 | case TIM_CHANNEL_1: |
1500 | 1500 | { |
|
1501 | /** |
1501 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1502 | * @} |
1502 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1503 | */ |
1503 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1504 | 1504 | break; |
|
1505 | /** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions |
1505 | } |
1506 | * @brief Timer Complementary One Pulse functions |
1506 | |
1507 | * |
1507 | case TIM_CHANNEL_2: |
1508 | @verbatim |
1508 | { |
1509 | ============================================================================== |
1509 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1510 | ##### Timer Complementary One Pulse functions ##### |
1510 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1511 | ============================================================================== |
1511 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1512 | [..] |
1512 | break; |
1513 | This section provides functions allowing to: |
1513 | } |
1514 | (+) Start the Complementary One Pulse generation. |
1514 | |
1515 | (+) Stop the Complementary One Pulse. |
1515 | case TIM_CHANNEL_3: |
1516 | (+) Start the Complementary One Pulse and enable interrupts. |
1516 | { |
1517 | (+) Stop the Complementary One Pulse and disable interrupts. |
1517 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1518 | 1518 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
|
1519 | @endverbatim |
1519 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1520 | * @{ |
1520 | break; |
1521 | */ |
1521 | } |
1522 | 1522 | ||
1523 | /** |
1523 | default: |
1524 | * @brief Starts the TIM One Pulse signal generation on the complementary |
1524 | status = HAL_ERROR; |
1525 | * output. |
1525 | break; |
1526 | * @note OutputChannel must match the pulse output channel chosen when calling |
1526 | } |
1527 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1527 | |
1528 | * @param htim TIM One Pulse handle |
1528 | if (status == HAL_OK) |
1529 | * @param OutputChannel pulse output channel to enable |
1529 | { |
1530 | * This parameter can be one of the following values: |
1530 | /* Disable the complementary PWM output */ |
1531 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1531 | TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); |
1532 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1532 | |
1533 | * @retval HAL status |
1533 | /* Disable the Main Output */ |
1534 | */ |
1534 | __HAL_TIM_MOE_DISABLE(htim); |
1535 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1535 | |
1536 | { |
1536 | /* Disable the Peripheral */ |
1537 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1537 | __HAL_TIM_DISABLE(htim); |
1538 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
1538 | |
1539 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
1539 | /* Set the TIM complementary channel state */ |
1540 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
1540 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1541 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
1541 | } |
1542 | 1542 | ||
1543 | /* Check the parameters */ |
1543 | /* Return function status */ |
1544 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1544 | return status; |
1545 | 1545 | } |
|
1546 | /* Check the TIM channels state */ |
1546 | |
1547 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1547 | /** |
1548 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
1548 | * @} |
1549 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1549 | */ |
1550 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
1550 | |
1551 | { |
1551 | /** @defgroup TIMEx_Exported_Functions_Group4 Extended Timer Complementary One Pulse functions |
1552 | return HAL_ERROR; |
1552 | * @brief Timer Complementary One Pulse functions |
1553 | } |
1553 | * |
1554 | 1554 | @verbatim |
|
1555 | /* Set the TIM channels state */ |
1555 | ============================================================================== |
1556 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1556 | ##### Timer Complementary One Pulse functions ##### |
1557 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1557 | ============================================================================== |
1558 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1558 | [..] |
1559 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1559 | This section provides functions allowing to: |
1560 | 1560 | (+) Start the Complementary One Pulse generation. |
|
1561 | /* Enable the complementary One Pulse output channel and the Input Capture channel */ |
1561 | (+) Stop the Complementary One Pulse. |
1562 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); |
1562 | (+) Start the Complementary One Pulse and enable interrupts. |
1563 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); |
1563 | (+) Stop the Complementary One Pulse and disable interrupts. |
1564 | 1564 | ||
1565 | /* Enable the Main Output */ |
1565 | @endverbatim |
1566 | __HAL_TIM_MOE_ENABLE(htim); |
1566 | * @{ |
1567 | 1567 | */ |
|
1568 | /* Return function status */ |
1568 | |
1569 | return HAL_OK; |
1569 | /** |
1570 | } |
1570 | * @brief Starts the TIM One Pulse signal generation on the complementary |
1571 | 1571 | * output. |
|
1572 | /** |
1572 | * @note OutputChannel must match the pulse output channel chosen when calling |
1573 | * @brief Stops the TIM One Pulse signal generation on the complementary |
1573 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1574 | * output. |
1574 | * @param htim TIM One Pulse handle |
1575 | * @note OutputChannel must match the pulse output channel chosen when calling |
1575 | * @param OutputChannel pulse output channel to enable |
1576 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1576 | * This parameter can be one of the following values: |
1577 | * @param htim TIM One Pulse handle |
1577 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1578 | * @param OutputChannel pulse output channel to disable |
1578 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1579 | * This parameter can be one of the following values: |
1579 | * @retval HAL status |
1580 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1580 | */ |
1581 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1581 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1582 | * @retval HAL status |
1582 | { |
1583 | */ |
1583 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1584 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1584 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
1585 | { |
1585 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
1586 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1586 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
1587 | 1587 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
|
1588 | /* Check the parameters */ |
1588 | |
1589 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1589 | /* Check the parameters */ |
1590 | 1590 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
|
1591 | /* Disable the complementary One Pulse output channel and the Input Capture channel */ |
1591 | |
1592 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); |
1592 | /* Check the TIM channels state */ |
1593 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); |
1593 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1594 | 1594 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
|
1595 | /* Disable the Main Output */ |
1595 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1596 | __HAL_TIM_MOE_DISABLE(htim); |
1596 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
1597 | 1597 | { |
|
1598 | /* Disable the Peripheral */ |
1598 | return HAL_ERROR; |
1599 | __HAL_TIM_DISABLE(htim); |
1599 | } |
1600 | 1600 | ||
1601 | /* Set the TIM channels state */ |
1601 | /* Set the TIM channels state */ |
1602 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1602 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1603 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1603 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1604 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1604 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1605 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1605 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1606 | 1606 | ||
1607 | /* Return function status */ |
1607 | /* Enable the complementary One Pulse output channel and the Input Capture channel */ |
1608 | return HAL_OK; |
1608 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); |
1609 | } |
1609 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); |
1610 | 1610 | ||
1611 | /** |
1611 | /* Enable the Main Output */ |
1612 | * @brief Starts the TIM One Pulse signal generation in interrupt mode on the |
1612 | __HAL_TIM_MOE_ENABLE(htim); |
1613 | * complementary channel. |
1613 | |
1614 | * @note OutputChannel must match the pulse output channel chosen when calling |
1614 | /* Return function status */ |
1615 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1615 | return HAL_OK; |
1616 | * @param htim TIM One Pulse handle |
1616 | } |
1617 | * @param OutputChannel pulse output channel to enable |
1617 | |
1618 | * This parameter can be one of the following values: |
1618 | /** |
1619 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1619 | * @brief Stops the TIM One Pulse signal generation on the complementary |
1620 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1620 | * output. |
1621 | * @retval HAL status |
1621 | * @note OutputChannel must match the pulse output channel chosen when calling |
1622 | */ |
1622 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1623 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1623 | * @param htim TIM One Pulse handle |
1624 | { |
1624 | * @param OutputChannel pulse output channel to disable |
1625 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1625 | * This parameter can be one of the following values: |
1626 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
1626 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1627 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
1627 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1628 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
1628 | * @retval HAL status |
1629 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
1629 | */ |
1630 | 1630 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
|
1631 | /* Check the parameters */ |
1631 | { |
1632 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1632 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1633 | 1633 | ||
1634 | /* Check the TIM channels state */ |
1634 | /* Check the parameters */ |
1635 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1635 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1636 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
1636 | |
1637 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1637 | /* Disable the complementary One Pulse output channel and the Input Capture channel */ |
1638 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
1638 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); |
1639 | { |
1639 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); |
1640 | return HAL_ERROR; |
1640 | |
1641 | } |
1641 | /* Disable the Main Output */ |
1642 | 1642 | __HAL_TIM_MOE_DISABLE(htim); |
|
1643 | /* Set the TIM channels state */ |
1643 | |
1644 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1644 | /* Disable the Peripheral */ |
1645 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1645 | __HAL_TIM_DISABLE(htim); |
1646 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1646 | |
1647 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1647 | /* Set the TIM channels state */ |
1648 | 1648 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
1649 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1649 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1650 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1650 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1651 | 1651 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
1652 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1652 | |
1653 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1653 | /* Return function status */ |
1654 | 1654 | return HAL_OK; |
|
1655 | /* Enable the complementary One Pulse output channel and the Input Capture channel */ |
1655 | } |
1656 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); |
1656 | |
1657 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); |
1657 | /** |
1658 | 1658 | * @brief Starts the TIM One Pulse signal generation in interrupt mode on the |
|
1659 | /* Enable the Main Output */ |
1659 | * complementary channel. |
1660 | __HAL_TIM_MOE_ENABLE(htim); |
1660 | * @note OutputChannel must match the pulse output channel chosen when calling |
1661 | 1661 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
1662 | /* Return function status */ |
1662 | * @param htim TIM One Pulse handle |
1663 | return HAL_OK; |
1663 | * @param OutputChannel pulse output channel to enable |
1664 | } |
1664 | * This parameter can be one of the following values: |
1665 | 1665 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
1666 | /** |
1666 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1667 | * @brief Stops the TIM One Pulse signal generation in interrupt mode on the |
1667 | * @retval HAL status |
1668 | * complementary channel. |
1668 | */ |
1669 | * @note OutputChannel must match the pulse output channel chosen when calling |
1669 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1670 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1670 | { |
1671 | * @param htim TIM One Pulse handle |
1671 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1672 | * @param OutputChannel pulse output channel to disable |
1672 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
1673 | * This parameter can be one of the following values: |
1673 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
1674 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1674 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
1675 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1675 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
1676 | * @retval HAL status |
1676 | |
1677 | */ |
1677 | /* Check the parameters */ |
1678 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1678 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1679 | { |
1679 | |
1680 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
1680 | /* Check the TIM channels state */ |
1681 | 1681 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
|
1682 | /* Check the parameters */ |
1682 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
1683 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1683 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
1684 | 1684 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
1685 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1685 | { |
1686 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1686 | return HAL_ERROR; |
1687 | 1687 | } |
|
1688 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1688 | |
1689 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
1689 | /* Set the TIM channels state */ |
1690 | 1690 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
1691 | /* Disable the complementary One Pulse output channel and the Input Capture channel */ |
1691 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1692 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); |
1692 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
1693 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); |
1693 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
1694 | 1694 | ||
1695 | /* Disable the Main Output */ |
1695 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1696 | __HAL_TIM_MOE_DISABLE(htim); |
1696 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1697 | 1697 | ||
1698 | /* Disable the Peripheral */ |
1698 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1699 | __HAL_TIM_DISABLE(htim); |
1699 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1700 | 1700 | ||
1701 | /* Set the TIM channels state */ |
1701 | /* Enable the complementary One Pulse output channel and the Input Capture channel */ |
1702 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1702 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); |
1703 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1703 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_ENABLE); |
1704 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1704 | |
1705 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1705 | /* Enable the Main Output */ |
1706 | 1706 | __HAL_TIM_MOE_ENABLE(htim); |
|
1707 | /* Return function status */ |
1707 | |
1708 | return HAL_OK; |
1708 | /* Return function status */ |
1709 | } |
1709 | return HAL_OK; |
1710 | 1710 | } |
|
1711 | /** |
1711 | |
1712 | * @} |
1712 | /** |
1713 | */ |
1713 | * @brief Stops the TIM One Pulse signal generation in interrupt mode on the |
1714 | 1714 | * complementary channel. |
|
1715 | /** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions |
1715 | * @note OutputChannel must match the pulse output channel chosen when calling |
1716 | * @brief Peripheral Control functions |
1716 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
1717 | * |
1717 | * @param htim TIM One Pulse handle |
1718 | @verbatim |
1718 | * @param OutputChannel pulse output channel to disable |
1719 | ============================================================================== |
1719 | * This parameter can be one of the following values: |
1720 | ##### Peripheral Control functions ##### |
1720 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1721 | ============================================================================== |
1721 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1722 | [..] |
1722 | * @retval HAL status |
1723 | This section provides functions allowing to: |
1723 | */ |
1724 | (+) Configure the commutation event in case of use of the Hall sensor interface. |
1724 | HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
1725 | (+) Configure Output channels for OC and PWM mode. |
1725 | { |
1726 | 1726 | uint32_t input_channel = (OutputChannel == TIM_CHANNEL_1) ? TIM_CHANNEL_2 : TIM_CHANNEL_1; |
|
1727 | (+) Configure Complementary channels, break features and dead time. |
1727 | |
1728 | (+) Configure Master synchronization. |
1728 | /* Check the parameters */ |
1729 | (+) Configure timer remapping capabilities. |
1729 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); |
1730 | 1730 | ||
1731 | @endverbatim |
1731 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1732 | * @{ |
1732 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1733 | */ |
1733 | |
1734 | 1734 | /* Disable the TIM Capture/Compare 2 interrupt */ |
|
1735 | /** |
1735 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
1736 | * @brief Configure the TIM commutation event sequence. |
1736 | |
1737 | * @note This function is mandatory to use the commutation event in order to |
1737 | /* Disable the complementary One Pulse output channel and the Input Capture channel */ |
1738 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1738 | TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); |
1739 | * the typical use of this feature is with the use of another Timer(interface Timer) |
1739 | TIM_CCxChannelCmd(htim->Instance, input_channel, TIM_CCx_DISABLE); |
1740 | * configured in Hall sensor interface, this interface Timer will generate the |
1740 | |
1741 | * commutation at its TRGO output (connected to Timer used in this function) each time |
1741 | /* Disable the Main Output */ |
1742 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1742 | __HAL_TIM_MOE_DISABLE(htim); |
1743 | * @param htim TIM handle |
1743 | |
1744 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
1744 | /* Disable the Peripheral */ |
1745 | * This parameter can be one of the following values: |
1745 | __HAL_TIM_DISABLE(htim); |
1746 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
1746 | |
1747 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1747 | /* Set the TIM channels state */ |
1748 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
1748 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1749 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1749 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1750 | * @arg TIM_TS_NONE: No trigger is needed |
1750 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
1751 | * @param CommutationSource the Commutation Event source |
1751 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
1752 | * This parameter can be one of the following values: |
1752 | |
1753 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1753 | /* Return function status */ |
1754 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1754 | return HAL_OK; |
1755 | * @retval HAL status |
1755 | } |
1756 | */ |
1756 | |
1757 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1757 | /** |
1758 | uint32_t CommutationSource) |
1758 | * @} |
1759 | { |
1759 | */ |
1760 | /* Check the parameters */ |
1760 | |
1761 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1761 | /** @defgroup TIMEx_Exported_Functions_Group5 Extended Peripheral Control functions |
1762 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1762 | * @brief Peripheral Control functions |
1763 | 1763 | * |
|
1764 | __HAL_LOCK(htim); |
1764 | @verbatim |
1765 | 1765 | ============================================================================== |
|
1766 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1766 | ##### Peripheral Control functions ##### |
1767 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1767 | ============================================================================== |
1768 | { |
1768 | [..] |
1769 | /* Select the Input trigger */ |
1769 | This section provides functions allowing to: |
1770 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
1770 | (+) Configure the commutation event in case of use of the Hall sensor interface. |
1771 | htim->Instance->SMCR |= InputTrigger; |
1771 | (+) Configure Output channels for OC and PWM mode. |
1772 | } |
1772 | |
1773 | 1773 | (+) Configure Complementary channels, break features and dead time. |
|
1774 | /* Select the Capture Compare preload feature */ |
1774 | (+) Configure Master synchronization. |
1775 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
1775 | (+) Configure timer remapping capabilities. |
1776 | /* Select the Commutation event source */ |
1776 | |
1777 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1777 | @endverbatim |
1778 | htim->Instance->CR2 |= CommutationSource; |
1778 | * @{ |
1779 | 1779 | */ |
|
1780 | /* Disable Commutation Interrupt */ |
1780 | |
1781 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); |
1781 | /** |
1782 | 1782 | * @brief Configure the TIM commutation event sequence. |
|
1783 | /* Disable Commutation DMA request */ |
1783 | * @note This function is mandatory to use the commutation event in order to |
1784 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); |
1784 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1785 | 1785 | * the typical use of this feature is with the use of another Timer(interface Timer) |
|
1786 | __HAL_UNLOCK(htim); |
1786 | * configured in Hall sensor interface, this interface Timer will generate the |
1787 | 1787 | * commutation at its TRGO output (connected to Timer used in this function) each time |
|
1788 | return HAL_OK; |
1788 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1789 | } |
1789 | * @param htim TIM handle |
1790 | 1790 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
|
1791 | /** |
1791 | * This parameter can be one of the following values: |
1792 | * @brief Configure the TIM commutation event sequence with interrupt. |
1792 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
1793 | * @note This function is mandatory to use the commutation event in order to |
1793 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1794 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1794 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
1795 | * the typical use of this feature is with the use of another Timer(interface Timer) |
1795 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1796 | * configured in Hall sensor interface, this interface Timer will generate the |
1796 | * @arg TIM_TS_NONE: No trigger is needed |
1797 | * commutation at its TRGO output (connected to Timer used in this function) each time |
1797 | * @param CommutationSource the Commutation Event source |
1798 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1798 | * This parameter can be one of the following values: |
1799 | * @param htim TIM handle |
1799 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1800 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
1800 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1801 | * This parameter can be one of the following values: |
1801 | * @retval HAL status |
1802 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
1802 | */ |
1803 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1803 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1804 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
1804 | uint32_t CommutationSource) |
1805 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1805 | { |
1806 | * @arg TIM_TS_NONE: No trigger is needed |
1806 | /* Check the parameters */ |
1807 | * @param CommutationSource the Commutation Event source |
1807 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1808 | * This parameter can be one of the following values: |
1808 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1809 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1809 | |
1810 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1810 | __HAL_LOCK(htim); |
1811 | * @retval HAL status |
1811 | |
1812 | */ |
1812 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1813 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1813 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1814 | uint32_t CommutationSource) |
1814 | { |
1815 | { |
1815 | /* Select the Input trigger */ |
1816 | /* Check the parameters */ |
1816 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
1817 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1817 | htim->Instance->SMCR |= InputTrigger; |
1818 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1818 | } |
1819 | 1819 | ||
1820 | __HAL_LOCK(htim); |
1820 | /* Select the Capture Compare preload feature */ |
1821 | 1821 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
|
1822 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1822 | /* Select the Commutation event source */ |
1823 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1823 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1824 | { |
1824 | htim->Instance->CR2 |= CommutationSource; |
1825 | /* Select the Input trigger */ |
1825 | |
1826 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
1826 | /* Disable Commutation Interrupt */ |
1827 | htim->Instance->SMCR |= InputTrigger; |
1827 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); |
1828 | } |
1828 | |
1829 | 1829 | /* Disable Commutation DMA request */ |
|
1830 | /* Select the Capture Compare preload feature */ |
1830 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); |
1831 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
1831 | |
1832 | /* Select the Commutation event source */ |
1832 | __HAL_UNLOCK(htim); |
1833 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1833 | |
1834 | htim->Instance->CR2 |= CommutationSource; |
1834 | return HAL_OK; |
1835 | 1835 | } |
|
1836 | /* Disable Commutation DMA request */ |
1836 | |
1837 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); |
1837 | /** |
1838 | 1838 | * @brief Configure the TIM commutation event sequence with interrupt. |
|
1839 | /* Enable the Commutation Interrupt */ |
1839 | * @note This function is mandatory to use the commutation event in order to |
1840 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); |
1840 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1841 | 1841 | * the typical use of this feature is with the use of another Timer(interface Timer) |
|
1842 | __HAL_UNLOCK(htim); |
1842 | * configured in Hall sensor interface, this interface Timer will generate the |
1843 | 1843 | * commutation at its TRGO output (connected to Timer used in this function) each time |
|
1844 | return HAL_OK; |
1844 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1845 | } |
1845 | * @param htim TIM handle |
1846 | 1846 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
|
1847 | /** |
1847 | * This parameter can be one of the following values: |
1848 | * @brief Configure the TIM commutation event sequence with DMA. |
1848 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
1849 | * @note This function is mandatory to use the commutation event in order to |
1849 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1850 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1850 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
1851 | * the typical use of this feature is with the use of another Timer(interface Timer) |
1851 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1852 | * configured in Hall sensor interface, this interface Timer will generate the |
1852 | * @arg TIM_TS_NONE: No trigger is needed |
1853 | * commutation at its TRGO output (connected to Timer used in this function) each time |
1853 | * @param CommutationSource the Commutation Event source |
1854 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1854 | * This parameter can be one of the following values: |
1855 | * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set |
1855 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1856 | * @param htim TIM handle |
1856 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1857 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
1857 | * @retval HAL status |
1858 | * This parameter can be one of the following values: |
1858 | */ |
1859 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
1859 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1860 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1860 | uint32_t CommutationSource) |
1861 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
1861 | { |
1862 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1862 | /* Check the parameters */ |
1863 | * @arg TIM_TS_NONE: No trigger is needed |
1863 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1864 | * @param CommutationSource the Commutation Event source |
1864 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1865 | * This parameter can be one of the following values: |
1865 | |
1866 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1866 | __HAL_LOCK(htim); |
1867 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1867 | |
1868 | * @retval HAL status |
1868 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1869 | */ |
1869 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1870 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1870 | { |
1871 | uint32_t CommutationSource) |
1871 | /* Select the Input trigger */ |
1872 | { |
1872 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
1873 | /* Check the parameters */ |
1873 | htim->Instance->SMCR |= InputTrigger; |
1874 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1874 | } |
1875 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1875 | |
1876 | 1876 | /* Select the Capture Compare preload feature */ |
|
1877 | __HAL_LOCK(htim); |
1877 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
1878 | 1878 | /* Select the Commutation event source */ |
|
1879 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1879 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1880 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1880 | htim->Instance->CR2 |= CommutationSource; |
1881 | { |
1881 | |
1882 | /* Select the Input trigger */ |
1882 | /* Disable Commutation DMA request */ |
1883 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
1883 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_COM); |
1884 | htim->Instance->SMCR |= InputTrigger; |
1884 | |
1885 | } |
1885 | /* Enable the Commutation Interrupt */ |
1886 | 1886 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); |
|
1887 | /* Select the Capture Compare preload feature */ |
1887 | |
1888 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
1888 | __HAL_UNLOCK(htim); |
1889 | /* Select the Commutation event source */ |
1889 | |
1890 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1890 | return HAL_OK; |
1891 | htim->Instance->CR2 |= CommutationSource; |
1891 | } |
1892 | 1892 | ||
1893 | /* Enable the Commutation DMA Request */ |
1893 | /** |
1894 | /* Set the DMA Commutation Callback */ |
1894 | * @brief Configure the TIM commutation event sequence with DMA. |
1895 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
1895 | * @note This function is mandatory to use the commutation event in order to |
1896 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
1896 | * update the configuration at each commutation detection on the TRGI input of the Timer, |
1897 | /* Set the DMA error callback */ |
1897 | * the typical use of this feature is with the use of another Timer(interface Timer) |
1898 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; |
1898 | * configured in Hall sensor interface, this interface Timer will generate the |
1899 | 1899 | * commutation at its TRGO output (connected to Timer used in this function) each time |
|
1900 | /* Disable Commutation Interrupt */ |
1900 | * the TI1 of the Interface Timer detect a commutation at its input TI1. |
1901 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); |
1901 | * @note The user should configure the DMA in his own software, in This function only the COMDE bit is set |
1902 | 1902 | * @param htim TIM handle |
|
1903 | /* Enable the Commutation DMA Request */ |
1903 | * @param InputTrigger the Internal trigger corresponding to the Timer Interfacing with the Hall sensor |
1904 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); |
1904 | * This parameter can be one of the following values: |
1905 | 1905 | * @arg TIM_TS_ITR0: Internal trigger 0 selected |
|
1906 | __HAL_UNLOCK(htim); |
1906 | * @arg TIM_TS_ITR1: Internal trigger 1 selected |
1907 | 1907 | * @arg TIM_TS_ITR2: Internal trigger 2 selected |
|
1908 | return HAL_OK; |
1908 | * @arg TIM_TS_ITR3: Internal trigger 3 selected |
1909 | } |
1909 | * @arg TIM_TS_NONE: No trigger is needed |
1910 | 1910 | * @param CommutationSource the Commutation Event source |
|
1911 | /** |
1911 | * This parameter can be one of the following values: |
1912 | * @brief Configures the TIM in master mode. |
1912 | * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer |
1913 | * @param htim TIM handle. |
1913 | * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit |
1914 | * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that |
1914 | * @retval HAL status |
1915 | * contains the selected trigger output (TRGO) and the Master/Slave |
1915 | */ |
1916 | * mode. |
1916 | HAL_StatusTypeDef HAL_TIMEx_ConfigCommutEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, |
1917 | * @retval HAL status |
1917 | uint32_t CommutationSource) |
1918 | */ |
1918 | { |
1919 | HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, |
1919 | /* Check the parameters */ |
1920 | TIM_MasterConfigTypeDef *sMasterConfig) |
1920 | assert_param(IS_TIM_COMMUTATION_EVENT_INSTANCE(htim->Instance)); |
1921 | { |
1921 | assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); |
1922 | uint32_t tmpcr2; |
1922 | |
1923 | uint32_t tmpsmcr; |
1923 | __HAL_LOCK(htim); |
1924 | 1924 | ||
1925 | /* Check the parameters */ |
1925 | if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || |
1926 | assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); |
1926 | (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) |
1927 | assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); |
1927 | { |
1928 | assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); |
1928 | /* Select the Input trigger */ |
1929 | 1929 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
|
1930 | /* Check input state */ |
1930 | htim->Instance->SMCR |= InputTrigger; |
1931 | __HAL_LOCK(htim); |
1931 | } |
1932 | 1932 | ||
1933 | /* Change the handler state */ |
1933 | /* Select the Capture Compare preload feature */ |
1934 | htim->State = HAL_TIM_STATE_BUSY; |
1934 | htim->Instance->CR2 |= TIM_CR2_CCPC; |
1935 | 1935 | /* Select the Commutation event source */ |
|
1936 | /* Get the TIMx CR2 register value */ |
1936 | htim->Instance->CR2 &= ~TIM_CR2_CCUS; |
1937 | tmpcr2 = htim->Instance->CR2; |
1937 | htim->Instance->CR2 |= CommutationSource; |
1938 | 1938 | ||
1939 | /* Get the TIMx SMCR register value */ |
1939 | /* Enable the Commutation DMA Request */ |
1940 | tmpsmcr = htim->Instance->SMCR; |
1940 | /* Set the DMA Commutation Callback */ |
1941 | 1941 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
|
1942 | /* Reset the MMS Bits */ |
1942 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
1943 | tmpcr2 &= ~TIM_CR2_MMS; |
1943 | /* Set the DMA error callback */ |
1944 | /* Select the TRGO source */ |
1944 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; |
1945 | tmpcr2 |= sMasterConfig->MasterOutputTrigger; |
1945 | |
1946 | 1946 | /* Disable Commutation Interrupt */ |
|
1947 | /* Update TIMx CR2 */ |
1947 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_COM); |
1948 | htim->Instance->CR2 = tmpcr2; |
1948 | |
1949 | 1949 | /* Enable the Commutation DMA Request */ |
|
1950 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1950 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); |
1951 | { |
1951 | |
1952 | /* Reset the MSM Bit */ |
1952 | __HAL_UNLOCK(htim); |
1953 | tmpsmcr &= ~TIM_SMCR_MSM; |
1953 | |
1954 | /* Set master mode */ |
1954 | return HAL_OK; |
1955 | tmpsmcr |= sMasterConfig->MasterSlaveMode; |
1955 | } |
1956 | 1956 | ||
1957 | /* Update TIMx SMCR */ |
1957 | /** |
1958 | htim->Instance->SMCR = tmpsmcr; |
1958 | * @brief Configures the TIM in master mode. |
1959 | } |
1959 | * @param htim TIM handle. |
1960 | 1960 | * @param sMasterConfig pointer to a TIM_MasterConfigTypeDef structure that |
|
1961 | /* Change the htim state */ |
1961 | * contains the selected trigger output (TRGO) and the Master/Slave |
1962 | htim->State = HAL_TIM_STATE_READY; |
1962 | * mode. |
1963 | 1963 | * @retval HAL status |
|
1964 | __HAL_UNLOCK(htim); |
1964 | */ |
1965 | 1965 | HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, |
|
1966 | return HAL_OK; |
1966 | const TIM_MasterConfigTypeDef *sMasterConfig) |
1967 | } |
1967 | { |
1968 | 1968 | uint32_t tmpcr2; |
|
1969 | /** |
1969 | uint32_t tmpsmcr; |
1970 | * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State |
1970 | |
1971 | * and the AOE(automatic output enable). |
1971 | /* Check the parameters */ |
1972 | * @param htim TIM handle |
1972 | assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); |
1973 | * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that |
1973 | assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); |
1974 | * contains the BDTR Register configuration information for the TIM peripheral. |
1974 | assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); |
1975 | * @note Interrupts can be generated when an active level is detected on the |
1975 | |
1976 | * break input, the break 2 input or the system break input. Break |
1976 | /* Check input state */ |
1977 | * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. |
1977 | __HAL_LOCK(htim); |
1978 | * @retval HAL status |
1978 | |
1979 | */ |
1979 | /* Change the handler state */ |
1980 | HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, |
1980 | htim->State = HAL_TIM_STATE_BUSY; |
1981 | TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) |
1981 | |
1982 | { |
1982 | /* Get the TIMx CR2 register value */ |
1983 | /* Keep this variable initialized to 0 as it is used to configure BDTR register */ |
1983 | tmpcr2 = htim->Instance->CR2; |
1984 | uint32_t tmpbdtr = 0U; |
1984 | |
1985 | 1985 | /* Get the TIMx SMCR register value */ |
|
1986 | /* Check the parameters */ |
1986 | tmpsmcr = htim->Instance->SMCR; |
1987 | assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); |
1987 | |
1988 | assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); |
1988 | /* Reset the MMS Bits */ |
1989 | assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); |
1989 | tmpcr2 &= ~TIM_CR2_MMS; |
1990 | assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); |
1990 | /* Select the TRGO source */ |
1991 | assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); |
1991 | tmpcr2 |= sMasterConfig->MasterOutputTrigger; |
1992 | assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); |
1992 | |
1993 | assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); |
1993 | /* Update TIMx CR2 */ |
1994 | assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); |
1994 | htim->Instance->CR2 = tmpcr2; |
1995 | 1995 | ||
1996 | /* Check input state */ |
1996 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1997 | __HAL_LOCK(htim); |
1997 | { |
1998 | 1998 | /* Reset the MSM Bit */ |
|
1999 | /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, |
1999 | tmpsmcr &= ~TIM_SMCR_MSM; |
2000 | the OSSI State, the dead time value and the Automatic Output Enable Bit */ |
2000 | /* Set master mode */ |
2001 | 2001 | tmpsmcr |= sMasterConfig->MasterSlaveMode; |
|
2002 | /* Set the BDTR bits */ |
2002 | |
2003 | MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); |
2003 | /* Update TIMx SMCR */ |
2004 | MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); |
2004 | htim->Instance->SMCR = tmpsmcr; |
2005 | MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); |
2005 | } |
2006 | MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); |
2006 | |
2007 | MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); |
2007 | /* Change the htim state */ |
2008 | MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); |
2008 | htim->State = HAL_TIM_STATE_READY; |
2009 | MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); |
2009 | |
2010 | 2010 | __HAL_UNLOCK(htim); |
|
2011 | 2011 | ||
2012 | /* Set TIMx_BDTR */ |
2012 | return HAL_OK; |
2013 | htim->Instance->BDTR = tmpbdtr; |
2013 | } |
2014 | 2014 | ||
2015 | __HAL_UNLOCK(htim); |
2015 | /** |
2016 | 2016 | * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State |
|
2017 | return HAL_OK; |
2017 | * and the AOE(automatic output enable). |
2018 | } |
2018 | * @param htim TIM handle |
2019 | 2019 | * @param sBreakDeadTimeConfig pointer to a TIM_ConfigBreakDeadConfigTypeDef structure that |
|
2020 | /** |
2020 | * contains the BDTR Register configuration information for the TIM peripheral. |
2021 | * @brief Configures the TIMx Remapping input capabilities. |
2021 | * @note Interrupts can be generated when an active level is detected on the |
2022 | * @param htim TIM handle. |
2022 | * break input, the break 2 input or the system break input. Break |
2023 | * @param Remap specifies the TIM remapping source. |
2023 | * interrupt can be enabled by calling the @ref __HAL_TIM_ENABLE_IT macro. |
2024 | * |
2024 | * @retval HAL status |
2025 | * @retval HAL status |
2025 | */ |
2026 | */ |
2026 | HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, |
2027 | HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) |
2027 | const TIM_BreakDeadTimeConfigTypeDef *sBreakDeadTimeConfig) |
2028 | { |
2028 | { |
2029 | /* Prevent unused argument(s) compilation warning */ |
2029 | /* Keep this variable initialized to 0 as it is used to configure BDTR register */ |
2030 | UNUSED(htim); |
2030 | uint32_t tmpbdtr = 0U; |
2031 | UNUSED(Remap); |
2031 | |
2032 | 2032 | /* Check the parameters */ |
|
2033 | return HAL_OK; |
2033 | assert_param(IS_TIM_BREAK_INSTANCE(htim->Instance)); |
2034 | } |
2034 | assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); |
2035 | 2035 | assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); |
|
2036 | /** |
2036 | assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); |
2037 | * @} |
2037 | assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); |
2038 | */ |
2038 | assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); |
2039 | 2039 | assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); |
|
2040 | /** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions |
2040 | assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); |
2041 | * @brief Extended Callbacks functions |
2041 | |
2042 | * |
2042 | /* Check input state */ |
2043 | @verbatim |
2043 | __HAL_LOCK(htim); |
2044 | ============================================================================== |
2044 | |
2045 | ##### Extended Callbacks functions ##### |
2045 | /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, |
2046 | ============================================================================== |
2046 | the OSSI State, the dead time value and the Automatic Output Enable Bit */ |
2047 | [..] |
2047 | |
2048 | This section provides Extended TIM callback functions: |
2048 | /* Set the BDTR bits */ |
2049 | (+) Timer Commutation callback |
2049 | MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, sBreakDeadTimeConfig->DeadTime); |
2050 | (+) Timer Break callback |
2050 | MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, sBreakDeadTimeConfig->LockLevel); |
2051 | 2051 | MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, sBreakDeadTimeConfig->OffStateIDLEMode); |
|
2052 | @endverbatim |
2052 | MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, sBreakDeadTimeConfig->OffStateRunMode); |
2053 | * @{ |
2053 | MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, sBreakDeadTimeConfig->BreakState); |
2054 | */ |
2054 | MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, sBreakDeadTimeConfig->BreakPolarity); |
2055 | 2055 | MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, sBreakDeadTimeConfig->AutomaticOutput); |
|
2056 | /** |
2056 | |
2057 | * @brief Hall commutation changed callback in non-blocking mode |
2057 | |
2058 | * @param htim TIM handle |
2058 | /* Set TIMx_BDTR */ |
2059 | * @retval None |
2059 | htim->Instance->BDTR = tmpbdtr; |
2060 | */ |
2060 | |
2061 | __weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) |
2061 | __HAL_UNLOCK(htim); |
2062 | { |
2062 | |
2063 | /* Prevent unused argument(s) compilation warning */ |
2063 | return HAL_OK; |
2064 | UNUSED(htim); |
2064 | } |
2065 | 2065 | ||
2066 | /* NOTE : This function should not be modified, when the callback is needed, |
2066 | /** |
2067 | the HAL_TIMEx_CommutCallback could be implemented in the user file |
2067 | * @brief Configures the TIMx Remapping input capabilities. |
2068 | */ |
2068 | * @param htim TIM handle. |
2069 | } |
2069 | * @param Remap specifies the TIM remapping source. |
2070 | /** |
2070 | * |
2071 | * @brief Hall commutation changed half complete callback in non-blocking mode |
2071 | * @retval HAL status |
2072 | * @param htim TIM handle |
2072 | */ |
2073 | * @retval None |
2073 | HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) |
2074 | */ |
2074 | { |
2075 | __weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) |
2075 | /* Prevent unused argument(s) compilation warning */ |
2076 | { |
2076 | UNUSED(htim); |
2077 | /* Prevent unused argument(s) compilation warning */ |
2077 | UNUSED(Remap); |
2078 | UNUSED(htim); |
2078 | |
2079 | 2079 | return HAL_OK; |
|
2080 | /* NOTE : This function should not be modified, when the callback is needed, |
2080 | } |
2081 | the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file |
2081 | |
2082 | */ |
2082 | /** |
2083 | } |
2083 | * @} |
2084 | 2084 | */ |
|
2085 | /** |
2085 | |
2086 | * @brief Hall Break detection callback in non-blocking mode |
2086 | /** @defgroup TIMEx_Exported_Functions_Group6 Extended Callbacks functions |
2087 | * @param htim TIM handle |
2087 | * @brief Extended Callbacks functions |
2088 | * @retval None |
2088 | * |
2089 | */ |
2089 | @verbatim |
2090 | __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) |
2090 | ============================================================================== |
2091 | { |
2091 | ##### Extended Callbacks functions ##### |
2092 | /* Prevent unused argument(s) compilation warning */ |
2092 | ============================================================================== |
2093 | UNUSED(htim); |
2093 | [..] |
2094 | 2094 | This section provides Extended TIM callback functions: |
|
2095 | /* NOTE : This function should not be modified, when the callback is needed, |
2095 | (+) Timer Commutation callback |
2096 | the HAL_TIMEx_BreakCallback could be implemented in the user file |
2096 | (+) Timer Break callback |
2097 | */ |
2097 | |
2098 | } |
2098 | @endverbatim |
2099 | /** |
2099 | * @{ |
2100 | * @} |
2100 | */ |
2101 | */ |
2101 | |
2102 | 2102 | /** |
|
2103 | /** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions |
2103 | * @brief Hall commutation changed callback in non-blocking mode |
2104 | * @brief Extended Peripheral State functions |
2104 | * @param htim TIM handle |
2105 | * |
2105 | * @retval None |
2106 | @verbatim |
2106 | */ |
2107 | ============================================================================== |
2107 | __weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) |
2108 | ##### Extended Peripheral State functions ##### |
2108 | { |
2109 | ============================================================================== |
2109 | /* Prevent unused argument(s) compilation warning */ |
2110 | [..] |
2110 | UNUSED(htim); |
2111 | This subsection permits to get in run-time the status of the peripheral |
2111 | |
2112 | and the data flow. |
2112 | /* NOTE : This function should not be modified, when the callback is needed, |
2113 | 2113 | the HAL_TIMEx_CommutCallback could be implemented in the user file |
|
2114 | @endverbatim |
2114 | */ |
2115 | * @{ |
2115 | } |
2116 | */ |
2116 | /** |
2117 | 2117 | * @brief Hall commutation changed half complete callback in non-blocking mode |
|
2118 | /** |
2118 | * @param htim TIM handle |
2119 | * @brief Return the TIM Hall Sensor interface handle state. |
2119 | * @retval None |
2120 | * @param htim TIM Hall Sensor handle |
2120 | */ |
2121 | * @retval HAL state |
2121 | __weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim) |
2122 | */ |
2122 | { |
2123 | HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) |
2123 | /* Prevent unused argument(s) compilation warning */ |
2124 | { |
2124 | UNUSED(htim); |
2125 | return htim->State; |
2125 | |
2126 | } |
2126 | /* NOTE : This function should not be modified, when the callback is needed, |
2127 | 2127 | the HAL_TIMEx_CommutHalfCpltCallback could be implemented in the user file |
|
2128 | /** |
2128 | */ |
2129 | * @brief Return actual state of the TIM complementary channel. |
2129 | } |
2130 | * @param htim TIM handle |
2130 | |
2131 | * @param ChannelN TIM Complementary channel |
2131 | /** |
2132 | * This parameter can be one of the following values: |
2132 | * @brief Hall Break detection callback in non-blocking mode |
2133 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
2133 | * @param htim TIM handle |
2134 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
2134 | * @retval None |
2135 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
2135 | */ |
2136 | * @retval TIM Complementary channel state |
2136 | __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) |
2137 | */ |
2137 | { |
2138 | HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(TIM_HandleTypeDef *htim, uint32_t ChannelN) |
2138 | /* Prevent unused argument(s) compilation warning */ |
2139 | { |
2139 | UNUSED(htim); |
2140 | HAL_TIM_ChannelStateTypeDef channel_state; |
2140 | |
2141 | 2141 | /* NOTE : This function should not be modified, when the callback is needed, |
|
2142 | /* Check the parameters */ |
2142 | the HAL_TIMEx_BreakCallback could be implemented in the user file |
2143 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN)); |
2143 | */ |
2144 | 2144 | } |
|
2145 | channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN); |
2145 | /** |
2146 | 2146 | * @} |
|
2147 | return channel_state; |
2147 | */ |
2148 | } |
2148 | |
2149 | /** |
2149 | /** @defgroup TIMEx_Exported_Functions_Group7 Extended Peripheral State functions |
2150 | * @} |
2150 | * @brief Extended Peripheral State functions |
2151 | */ |
2151 | * |
2152 | 2152 | @verbatim |
|
2153 | /** |
2153 | ============================================================================== |
2154 | * @} |
2154 | ##### Extended Peripheral State functions ##### |
2155 | */ |
2155 | ============================================================================== |
2156 | 2156 | [..] |
|
2157 | /* Private functions ---------------------------------------------------------*/ |
2157 | This subsection permits to get in run-time the status of the peripheral |
2158 | /** @defgroup TIMEx_Private_Functions TIMEx Private Functions |
2158 | and the data flow. |
2159 | * @{ |
2159 | |
2160 | */ |
2160 | @endverbatim |
2161 | 2161 | * @{ |
|
2162 | /** |
2162 | */ |
2163 | * @brief TIM DMA Commutation callback. |
2163 | |
2164 | * @param hdma pointer to DMA handle. |
2164 | /** |
2165 | * @retval None |
2165 | * @brief Return the TIM Hall Sensor interface handle state. |
2166 | */ |
2166 | * @param htim TIM Hall Sensor handle |
2167 | void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) |
2167 | * @retval HAL state |
2168 | { |
2168 | */ |
2169 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2169 | HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(const TIM_HandleTypeDef *htim) |
2170 | 2170 | { |
|
2171 | /* Change the htim state */ |
2171 | return htim->State; |
2172 | htim->State = HAL_TIM_STATE_READY; |
2172 | } |
2173 | 2173 | ||
2174 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2174 | /** |
2175 | htim->CommutationCallback(htim); |
2175 | * @brief Return actual state of the TIM complementary channel. |
2176 | #else |
2176 | * @param htim TIM handle |
2177 | HAL_TIMEx_CommutCallback(htim); |
2177 | * @param ChannelN TIM Complementary channel |
2178 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2178 | * This parameter can be one of the following values: |
2179 | } |
2179 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
2180 | 2180 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
|
2181 | /** |
2181 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
2182 | * @brief TIM DMA Commutation half complete callback. |
2182 | * @retval TIM Complementary channel state |
2183 | * @param hdma pointer to DMA handle. |
2183 | */ |
2184 | * @retval None |
2184 | HAL_TIM_ChannelStateTypeDef HAL_TIMEx_GetChannelNState(const TIM_HandleTypeDef *htim, uint32_t ChannelN) |
2185 | */ |
2185 | { |
2186 | void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) |
2186 | HAL_TIM_ChannelStateTypeDef channel_state; |
2187 | { |
2187 | |
2188 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2188 | /* Check the parameters */ |
2189 | 2189 | assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, ChannelN)); |
|
2190 | /* Change the htim state */ |
2190 | |
2191 | htim->State = HAL_TIM_STATE_READY; |
2191 | channel_state = TIM_CHANNEL_N_STATE_GET(htim, ChannelN); |
2192 | 2192 | ||
2193 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2193 | return channel_state; |
2194 | htim->CommutationHalfCpltCallback(htim); |
2194 | } |
2195 | #else |
2195 | /** |
2196 | HAL_TIMEx_CommutHalfCpltCallback(htim); |
2196 | * @} |
2197 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2197 | */ |
2198 | } |
2198 | |
2199 | 2199 | /** |
|
2200 | 2200 | * @} |
|
2201 | /** |
2201 | */ |
2202 | * @brief TIM DMA Delay Pulse complete callback (complementary channel). |
2202 | |
2203 | * @param hdma pointer to DMA handle. |
2203 | /* Private functions ---------------------------------------------------------*/ |
2204 | * @retval None |
2204 | /** @defgroup TIMEx_Private_Functions TIM Extended Private Functions |
2205 | */ |
2205 | * @{ |
2206 | static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) |
2206 | */ |
2207 | { |
2207 | |
2208 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2208 | /** |
2209 | 2209 | * @brief TIM DMA Commutation callback. |
|
2210 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
2210 | * @param hdma pointer to DMA handle. |
2211 | { |
2211 | * @retval None |
2212 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
2212 | */ |
2213 | 2213 | void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) |
|
2214 | if (hdma->Init.Mode == DMA_NORMAL) |
2214 | { |
2215 | { |
2215 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2216 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2216 | |
2217 | } |
2217 | /* Change the htim state */ |
2218 | } |
2218 | htim->State = HAL_TIM_STATE_READY; |
2219 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
2219 | |
2220 | { |
2220 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2221 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
2221 | htim->CommutationCallback(htim); |
2222 | 2222 | #else |
|
2223 | if (hdma->Init.Mode == DMA_NORMAL) |
2223 | HAL_TIMEx_CommutCallback(htim); |
2224 | { |
2224 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2225 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2225 | } |
2226 | } |
2226 | |
2227 | } |
2227 | /** |
2228 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
2228 | * @brief TIM DMA Commutation half complete callback. |
2229 | { |
2229 | * @param hdma pointer to DMA handle. |
2230 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
2230 | * @retval None |
2231 | 2231 | */ |
|
2232 | if (hdma->Init.Mode == DMA_NORMAL) |
2232 | void TIMEx_DMACommutationHalfCplt(DMA_HandleTypeDef *hdma) |
2233 | { |
2233 | { |
2234 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
2234 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2235 | } |
2235 | |
2236 | } |
2236 | /* Change the htim state */ |
2237 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
2237 | htim->State = HAL_TIM_STATE_READY; |
2238 | { |
2238 | |
2239 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
2239 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2240 | 2240 | htim->CommutationHalfCpltCallback(htim); |
|
2241 | if (hdma->Init.Mode == DMA_NORMAL) |
2241 | #else |
2242 | { |
2242 | HAL_TIMEx_CommutHalfCpltCallback(htim); |
2243 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
2243 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2244 | } |
2244 | } |
2245 | } |
2245 | |
2246 | else |
2246 | |
2247 | { |
2247 | /** |
2248 | /* nothing to do */ |
2248 | * @brief TIM DMA Delay Pulse complete callback (complementary channel). |
2249 | } |
2249 | * @param hdma pointer to DMA handle. |
2250 | 2250 | * @retval None |
|
2251 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2251 | */ |
2252 | htim->PWM_PulseFinishedCallback(htim); |
2252 | static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma) |
2253 | #else |
2253 | { |
2254 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
2254 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2255 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2255 | |
2256 | 2256 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
2257 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
2257 | { |
2258 | } |
2258 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
2259 | 2259 | ||
2260 | /** |
2260 | if (hdma->Init.Mode == DMA_NORMAL) |
2261 | * @brief TIM DMA error callback (complementary channel) |
2261 | { |
2262 | * @param hdma pointer to DMA handle. |
2262 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2263 | * @retval None |
2263 | } |
2264 | */ |
2264 | } |
2265 | static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) |
2265 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
2266 | { |
2266 | { |
2267 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
2267 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
2268 | 2268 | ||
2269 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
2269 | if (hdma->Init.Mode == DMA_NORMAL) |
2270 | { |
2270 | { |
2271 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
2271 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2272 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2272 | } |
2273 | } |
2273 | } |
2274 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
2274 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
2275 | { |
2275 | { |
2276 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
2276 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
2277 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2277 | |
2278 | } |
2278 | if (hdma->Init.Mode == DMA_NORMAL) |
2279 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
2279 | { |
2280 | { |
2280 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
2281 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
2281 | } |
2282 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
2282 | } |
2283 | } |
2283 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
2284 | else |
2284 | { |
2285 | { |
2285 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
2286 | /* nothing to do */ |
2286 | |
2287 | } |
2287 | if (hdma->Init.Mode == DMA_NORMAL) |
2288 | 2288 | { |
|
2289 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2289 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
2290 | htim->ErrorCallback(htim); |
2290 | } |
2291 | #else |
2291 | } |
2292 | HAL_TIM_ErrorCallback(htim); |
2292 | else |
2293 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2293 | { |
2294 | 2294 | /* nothing to do */ |
|
2295 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
2295 | } |
2296 | } |
2296 | |
2297 | 2297 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
2298 | /** |
2298 | htim->PWM_PulseFinishedCallback(htim); |
2299 | * @brief Enables or disables the TIM Capture Compare Channel xN. |
2299 | #else |
2300 | * @param TIMx to select the TIM peripheral |
2300 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
2301 | * @param Channel specifies the TIM Channel |
2301 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2302 | * This parameter can be one of the following values: |
2302 | |
2303 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
2303 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
2304 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
2304 | } |
2305 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
2305 | |
2306 | * @param ChannelNState specifies the TIM Channel CCxNE bit new state. |
2306 | /** |
2307 | * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. |
2307 | * @brief TIM DMA error callback (complementary channel) |
2308 | * @retval None |
2308 | * @param hdma pointer to DMA handle. |
2309 | */ |
2309 | * @retval None |
2310 | static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) |
2310 | */ |
2311 | { |
2311 | static void TIM_DMAErrorCCxN(DMA_HandleTypeDef *hdma) |
2312 | uint32_t tmp; |
2312 | { |
2313 | 2313 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
2314 | tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
2314 | |
2315 | 2315 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
|
2316 | /* Reset the CCxNE Bit */ |
2316 | { |
2317 | TIMx->CCER &= ~tmp; |
2317 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
2318 | 2318 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
2319 | /* Set or reset the CCxNE Bit */ |
2319 | } |
2320 | TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
2320 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
2321 | } |
2321 | { |
2322 | /** |
2322 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
2323 | * @} |
2323 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2324 | */ |
2324 | } |
2325 | 2325 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
2326 | #endif /* HAL_TIM_MODULE_ENABLED */ |
2326 | { |
2327 | /** |
2327 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
2328 | * @} |
2328 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
2329 | */ |
2329 | } |
2330 | 2330 | else |
|
2331 | /** |
2331 | { |
2332 | * @} |
2332 | /* nothing to do */ |
2333 | */ |
2333 | } |
2334 | 2334 | ||
2335 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
2335 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
- | 2336 | htim->ErrorCallback(htim); |
|
- | 2337 | #else |
|
- | 2338 | HAL_TIM_ErrorCallback(htim); |
|
- | 2339 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
- | 2340 | ||
- | 2341 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
- | 2342 | } |
|
- | 2343 | ||
- | 2344 | /** |
|
- | 2345 | * @brief Enables or disables the TIM Capture Compare Channel xN. |
|
- | 2346 | * @param TIMx to select the TIM peripheral |
|
- | 2347 | * @param Channel specifies the TIM Channel |
|
- | 2348 | * This parameter can be one of the following values: |
|
- | 2349 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
|
- | 2350 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
|
- | 2351 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
|
- | 2352 | * @param ChannelNState specifies the TIM Channel CCxNE bit new state. |
|
- | 2353 | * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. |
|
- | 2354 | * @retval None |
|
- | 2355 | */ |
|
- | 2356 | static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelNState) |
|
- | 2357 | { |
|
- | 2358 | uint32_t tmp; |
|
- | 2359 | ||
- | 2360 | tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
|
- | 2361 | ||
- | 2362 | /* Reset the CCxNE Bit */ |
|
- | 2363 | TIMx->CCER &= ~tmp; |
|
- | 2364 | ||
- | 2365 | /* Set or reset the CCxNE Bit */ |
|
- | 2366 | TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
|
- | 2367 | } |
|
- | 2368 | /** |
|
- | 2369 | * @} |
|
- | 2370 | */ |
|
- | 2371 | ||
- | 2372 | #endif /* HAL_TIM_MODULE_ENABLED */ |
|
- | 2373 | /** |
|
- | 2374 | * @} |
|
- | 2375 | */ |
|
- | 2376 | ||
- | 2377 | /** |
|
- | 2378 | * @} |
|
- | 2379 | */ |