Rev 2 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 2 | Rev 3 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | /** |
1 | /** |
2 | ****************************************************************************** |
2 | ****************************************************************************** |
3 | * @file stm32f1xx_hal_nand.c |
3 | * @file stm32f1xx_hal_nand.c |
4 | * @author MCD Application Team |
4 | * @author MCD Application Team |
5 | * @brief NAND HAL module driver. |
5 | * @brief NAND HAL module driver. |
6 | * This file provides a generic firmware to drive NAND memories mounted |
6 | * This file provides a generic firmware to drive NAND memories mounted |
7 | * as external device. |
7 | * as external device. |
8 | * |
8 | * |
9 | @verbatim |
9 | ****************************************************************************** |
10 | ============================================================================== |
10 | * @attention |
11 | ##### How to use this driver ##### |
11 | * |
12 | ============================================================================== |
12 | * Copyright (c) 2016 STMicroelectronics. |
13 | [..] |
13 | * All rights reserved. |
14 | This driver is a generic layered driver which contains a set of APIs used to |
14 | * |
15 | control NAND flash memories. It uses the FSMC layer functions to interface |
15 | * This software is licensed under terms that can be found in the LICENSE file |
16 | with NAND devices. This driver is used as follows: |
16 | * in the root directory of this software component. |
17 | 17 | * If no LICENSE file comes with this software, it is provided AS-IS. |
|
18 | (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() |
18 | * |
19 | with control and timing parameters for both common and attribute spaces. |
19 | ****************************************************************************** |
20 | 20 | @verbatim |
|
21 | (+) Read NAND flash memory maker and device IDs using the function |
21 | ============================================================================== |
22 | HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef |
22 | ##### How to use this driver ##### |
23 | structure declared by the function caller. |
23 | ============================================================================== |
24 | 24 | [..] |
|
25 | (+) Access NAND flash memory by read/write operations using the functions |
25 | This driver is a generic layered driver which contains a set of APIs used to |
26 | HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), |
26 | control NAND flash memories. It uses the FSMC layer functions to interface |
27 | HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), |
27 | with NAND devices. This driver is used as follows: |
28 | HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), |
28 | |
29 | HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() |
29 | (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() |
30 | to read/write page(s)/spare area(s). These functions use specific device |
30 | with control and timing parameters for both common and attribute spaces. |
31 | information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef |
31 | |
32 | structure. The read/write address information is contained by the Nand_Address_Typedef |
32 | (+) Read NAND flash memory maker and device IDs using the function |
33 | structure passed as parameter. |
33 | HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef |
34 | 34 | structure declared by the function caller. |
|
35 | (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). |
35 | |
36 | 36 | (+) Access NAND flash memory by read/write operations using the functions |
|
37 | (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). |
37 | HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), |
38 | The erase block address information is contained in the Nand_Address_Typedef |
38 | HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), |
39 | structure passed as parameter. |
39 | HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), |
40 | 40 | HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() |
|
41 | (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). |
41 | to read/write page(s)/spare area(s). These functions use specific device |
42 | 42 | information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef |
|
43 | (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ |
43 | structure. The read/write address information is contained by the Nand_Address_Typedef |
44 | HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction |
44 | structure passed as parameter. |
45 | feature or the function HAL_NAND_GetECC() to get the ECC correction code. |
45 | |
46 | 46 | (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). |
|
47 | (+) You can monitor the NAND device HAL state by calling the function |
47 | |
48 | HAL_NAND_GetState() |
48 | (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). |
49 | 49 | The erase block address information is contained in the Nand_Address_Typedef |
|
50 | [..] |
50 | structure passed as parameter. |
51 | (@) This driver is a set of generic APIs which handle standard NAND flash operations. |
51 | |
52 | If a NAND flash device contains different operations and/or implementations, |
52 | (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). |
53 | it should be implemented separately. |
53 | |
54 | 54 | (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ |
|
55 | *** Callback registration *** |
55 | HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction |
56 | ============================================= |
56 | feature or the function HAL_NAND_GetECC() to get the ECC correction code. |
57 | [..] |
57 | |
58 | The compilation define USE_HAL_NAND_REGISTER_CALLBACKS when set to 1 |
58 | (+) You can monitor the NAND device HAL state by calling the function |
59 | allows the user to configure dynamically the driver callbacks. |
59 | HAL_NAND_GetState() |
60 | 60 | ||
61 | Use Functions @ref HAL_NAND_RegisterCallback() to register a user callback, |
61 | [..] |
62 | it allows to register following callbacks: |
62 | (@) This driver is a set of generic APIs which handle standard NAND flash operations. |
63 | (+) MspInitCallback : NAND MspInit. |
63 | If a NAND flash device contains different operations and/or implementations, |
64 | (+) MspDeInitCallback : NAND MspDeInit. |
64 | it should be implemented separately. |
65 | This function takes as parameters the HAL peripheral handle, the Callback ID |
65 | |
66 | and a pointer to the user callback function. |
66 | *** Callback registration *** |
67 | 67 | ============================================= |
|
68 | Use function @ref HAL_NAND_UnRegisterCallback() to reset a callback to the default |
68 | [..] |
69 | weak (surcharged) function. It allows to reset following callbacks: |
69 | The compilation define USE_HAL_NAND_REGISTER_CALLBACKS when set to 1 |
70 | (+) MspInitCallback : NAND MspInit. |
70 | allows the user to configure dynamically the driver callbacks. |
71 | (+) MspDeInitCallback : NAND MspDeInit. |
71 | |
72 | This function) takes as parameters the HAL peripheral handle and the Callback ID. |
72 | Use Functions HAL_NAND_RegisterCallback() to register a user callback, |
73 | 73 | it allows to register following callbacks: |
|
74 | By default, after the @ref HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET |
74 | (+) MspInitCallback : NAND MspInit. |
75 | all callbacks are reset to the corresponding legacy weak (surcharged) functions. |
75 | (+) MspDeInitCallback : NAND MspDeInit. |
76 | Exception done for MspInit and MspDeInit callbacks that are respectively |
76 | This function takes as parameters the HAL peripheral handle, the Callback ID |
77 | reset to the legacy weak (surcharged) functions in the @ref HAL_NAND_Init |
77 | and a pointer to the user callback function. |
78 | and @ref HAL_NAND_DeInit only when these callbacks are null (not registered beforehand). |
78 | |
79 | If not, MspInit or MspDeInit are not null, the @ref HAL_NAND_Init and @ref HAL_NAND_DeInit |
79 | Use function HAL_NAND_UnRegisterCallback() to reset a callback to the default |
80 | keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
80 | weak (overridden) function. It allows to reset following callbacks: |
81 | 81 | (+) MspInitCallback : NAND MspInit. |
|
82 | Callbacks can be registered/unregistered in READY state only. |
82 | (+) MspDeInitCallback : NAND MspDeInit. |
83 | Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered |
83 | This function) takes as parameters the HAL peripheral handle and the Callback ID. |
84 | in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used |
84 | |
85 | during the Init/DeInit. |
85 | By default, after the HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET |
86 | In that case first register the MspInit/MspDeInit user callbacks |
86 | all callbacks are reset to the corresponding legacy weak (overridden) functions. |
87 | using @ref HAL_NAND_RegisterCallback before calling @ref HAL_NAND_DeInit |
87 | Exception done for MspInit and MspDeInit callbacks that are respectively |
88 | or @ref HAL_NAND_Init function. |
88 | reset to the legacy weak (overridden) functions in the HAL_NAND_Init |
89 | 89 | and HAL_NAND_DeInit only when these callbacks are null (not registered beforehand). |
|
90 | When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or |
90 | If not, MspInit or MspDeInit are not null, the HAL_NAND_Init and HAL_NAND_DeInit |
91 | not defined, the callback registering feature is not available |
91 | keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
92 | and weak (surcharged) callbacks are used. |
92 | |
93 | 93 | Callbacks can be registered/unregistered in READY state only. |
|
94 | @endverbatim |
94 | Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered |
95 | ****************************************************************************** |
95 | in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used |
96 | * @attention |
96 | during the Init/DeInit. |
97 | * |
97 | In that case first register the MspInit/MspDeInit user callbacks |
98 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
98 | using HAL_NAND_RegisterCallback before calling HAL_NAND_DeInit |
99 | * All rights reserved.</center></h2> |
99 | or HAL_NAND_Init function. |
100 | * |
100 | |
101 | * This software component is licensed by ST under BSD 3-Clause license, |
101 | When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or |
102 | * the "License"; You may not use this file except in compliance with the |
102 | not defined, the callback registering feature is not available |
103 | * License. You may obtain a copy of the License at: |
103 | and weak (overridden) callbacks are used. |
104 | * opensource.org/licenses/BSD-3-Clause |
104 | |
105 | * |
105 | @endverbatim |
106 | ****************************************************************************** |
106 | ****************************************************************************** |
107 | */ |
107 | */ |
108 | 108 | ||
109 | /* Includes ------------------------------------------------------------------*/ |
109 | /* Includes ------------------------------------------------------------------*/ |
110 | #include "stm32f1xx_hal.h" |
110 | #include "stm32f1xx_hal.h" |
111 | 111 | ||
112 | #if defined(FSMC_BANK3) |
112 | #if defined(FSMC_BANK3) |
113 | 113 | ||
114 | /** @addtogroup STM32F1xx_HAL_Driver |
114 | /** @addtogroup STM32F1xx_HAL_Driver |
115 | * @{ |
115 | * @{ |
116 | */ |
116 | */ |
117 | 117 | ||
118 | #ifdef HAL_NAND_MODULE_ENABLED |
118 | #ifdef HAL_NAND_MODULE_ENABLED |
119 | 119 | ||
120 | /** @defgroup NAND NAND |
120 | /** @defgroup NAND NAND |
121 | * @brief NAND HAL module driver |
121 | * @brief NAND HAL module driver |
122 | * @{ |
122 | * @{ |
123 | */ |
123 | */ |
124 | 124 | ||
125 | /* Private typedef -----------------------------------------------------------*/ |
125 | /* Private typedef -----------------------------------------------------------*/ |
126 | /* Private Constants ------------------------------------------------------------*/ |
126 | /* Private Constants ------------------------------------------------------------*/ |
127 | /* Private macro -------------------------------------------------------------*/ |
127 | /* Private macro -------------------------------------------------------------*/ |
128 | /* Private variables ---------------------------------------------------------*/ |
128 | /* Private variables ---------------------------------------------------------*/ |
129 | /* Private function prototypes -----------------------------------------------*/ |
129 | /* Private function prototypes -----------------------------------------------*/ |
130 | /* Exported functions ---------------------------------------------------------*/ |
130 | /* Exported functions ---------------------------------------------------------*/ |
131 | 131 | ||
132 | /** @defgroup NAND_Exported_Functions NAND Exported Functions |
132 | /** @defgroup NAND_Exported_Functions NAND Exported Functions |
133 | * @{ |
133 | * @{ |
134 | */ |
134 | */ |
135 | 135 | ||
136 | /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions |
136 | /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions |
137 | * @brief Initialization and Configuration functions |
137 | * @brief Initialization and Configuration functions |
138 | * |
138 | * |
139 | @verbatim |
139 | @verbatim |
140 | ============================================================================== |
140 | ============================================================================== |
141 | ##### NAND Initialization and de-initialization functions ##### |
141 | ##### NAND Initialization and de-initialization functions ##### |
142 | ============================================================================== |
142 | ============================================================================== |
143 | [..] |
143 | [..] |
144 | This section provides functions allowing to initialize/de-initialize |
144 | This section provides functions allowing to initialize/de-initialize |
145 | the NAND memory |
145 | the NAND memory |
146 | 146 | ||
147 | @endverbatim |
147 | @endverbatim |
148 | * @{ |
148 | * @{ |
149 | */ |
149 | */ |
150 | 150 | ||
151 | /** |
151 | /** |
152 | * @brief Perform NAND memory Initialization sequence |
152 | * @brief Perform NAND memory Initialization sequence |
153 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
153 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
154 | * the configuration information for NAND module. |
154 | * the configuration information for NAND module. |
155 | * @param ComSpace_Timing pointer to Common space timing structure |
155 | * @param ComSpace_Timing pointer to Common space timing structure |
156 | * @param AttSpace_Timing pointer to Attribute space timing structure |
156 | * @param AttSpace_Timing pointer to Attribute space timing structure |
157 | * @retval HAL status |
157 | * @retval HAL status |
158 | */ |
158 | */ |
159 | HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FSMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, |
159 | HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FSMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, |
160 | FSMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) |
160 | FSMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) |
161 | { |
161 | { |
162 | /* Check the NAND handle state */ |
162 | /* Check the NAND handle state */ |
163 | if (hnand == NULL) |
163 | if (hnand == NULL) |
164 | { |
164 | { |
165 | return HAL_ERROR; |
165 | return HAL_ERROR; |
166 | } |
166 | } |
167 | 167 | ||
168 | if (hnand->State == HAL_NAND_STATE_RESET) |
168 | if (hnand->State == HAL_NAND_STATE_RESET) |
169 | { |
169 | { |
170 | /* Allocate lock resource and initialize it */ |
170 | /* Allocate lock resource and initialize it */ |
171 | hnand->Lock = HAL_UNLOCKED; |
171 | hnand->Lock = HAL_UNLOCKED; |
172 | 172 | ||
173 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
173 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
174 | if (hnand->MspInitCallback == NULL) |
174 | if (hnand->MspInitCallback == NULL) |
175 | { |
175 | { |
176 | hnand->MspInitCallback = HAL_NAND_MspInit; |
176 | hnand->MspInitCallback = HAL_NAND_MspInit; |
177 | } |
177 | } |
178 | hnand->ItCallback = HAL_NAND_ITCallback; |
178 | hnand->ItCallback = HAL_NAND_ITCallback; |
179 | 179 | ||
180 | /* Init the low level hardware */ |
180 | /* Init the low level hardware */ |
181 | hnand->MspInitCallback(hnand); |
181 | hnand->MspInitCallback(hnand); |
182 | #else |
182 | #else |
183 | /* Initialize the low level hardware (MSP) */ |
183 | /* Initialize the low level hardware (MSP) */ |
184 | HAL_NAND_MspInit(hnand); |
184 | HAL_NAND_MspInit(hnand); |
185 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
185 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
186 | } |
186 | } |
187 | 187 | ||
188 | /* Initialize NAND control Interface */ |
188 | /* Initialize NAND control Interface */ |
189 | (void)FSMC_NAND_Init(hnand->Instance, &(hnand->Init)); |
189 | (void)FSMC_NAND_Init(hnand->Instance, &(hnand->Init)); |
190 | 190 | ||
191 | /* Initialize NAND common space timing Interface */ |
191 | /* Initialize NAND common space timing Interface */ |
192 | (void)FSMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); |
192 | (void)FSMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); |
193 | 193 | ||
194 | /* Initialize NAND attribute space timing Interface */ |
194 | /* Initialize NAND attribute space timing Interface */ |
195 | (void)FSMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); |
195 | (void)FSMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); |
196 | 196 | ||
197 | /* Enable the NAND device */ |
197 | /* Enable the NAND device */ |
198 | __FSMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); |
198 | __FSMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); |
199 | 199 | ||
200 | /* Update the NAND controller state */ |
200 | /* Update the NAND controller state */ |
201 | hnand->State = HAL_NAND_STATE_READY; |
201 | hnand->State = HAL_NAND_STATE_READY; |
202 | 202 | ||
203 | return HAL_OK; |
203 | return HAL_OK; |
204 | } |
204 | } |
205 | 205 | ||
206 | /** |
206 | /** |
207 | * @brief Perform NAND memory De-Initialization sequence |
207 | * @brief Perform NAND memory De-Initialization sequence |
208 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
208 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
209 | * the configuration information for NAND module. |
209 | * the configuration information for NAND module. |
210 | * @retval HAL status |
210 | * @retval HAL status |
211 | */ |
211 | */ |
212 | HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) |
212 | HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) |
213 | { |
213 | { |
214 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
214 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
215 | if (hnand->MspDeInitCallback == NULL) |
215 | if (hnand->MspDeInitCallback == NULL) |
216 | { |
216 | { |
217 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
217 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
218 | } |
218 | } |
219 | 219 | ||
220 | /* DeInit the low level hardware */ |
220 | /* DeInit the low level hardware */ |
221 | hnand->MspDeInitCallback(hnand); |
221 | hnand->MspDeInitCallback(hnand); |
222 | #else |
222 | #else |
223 | /* Initialize the low level hardware (MSP) */ |
223 | /* Initialize the low level hardware (MSP) */ |
224 | HAL_NAND_MspDeInit(hnand); |
224 | HAL_NAND_MspDeInit(hnand); |
225 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
225 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
226 | 226 | ||
227 | /* Configure the NAND registers with their reset values */ |
227 | /* Configure the NAND registers with their reset values */ |
228 | (void)FSMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); |
228 | (void)FSMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); |
229 | 229 | ||
230 | /* Reset the NAND controller state */ |
230 | /* Reset the NAND controller state */ |
231 | hnand->State = HAL_NAND_STATE_RESET; |
231 | hnand->State = HAL_NAND_STATE_RESET; |
232 | 232 | ||
233 | /* Release Lock */ |
233 | /* Release Lock */ |
234 | __HAL_UNLOCK(hnand); |
234 | __HAL_UNLOCK(hnand); |
235 | 235 | ||
236 | return HAL_OK; |
236 | return HAL_OK; |
237 | } |
237 | } |
238 | 238 | ||
239 | /** |
239 | /** |
240 | * @brief NAND MSP Init |
240 | * @brief NAND MSP Init |
241 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
241 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
242 | * the configuration information for NAND module. |
242 | * the configuration information for NAND module. |
243 | * @retval None |
243 | * @retval None |
244 | */ |
244 | */ |
245 | __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) |
245 | __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) |
246 | { |
246 | { |
247 | /* Prevent unused argument(s) compilation warning */ |
247 | /* Prevent unused argument(s) compilation warning */ |
248 | UNUSED(hnand); |
248 | UNUSED(hnand); |
249 | 249 | ||
250 | /* NOTE : This function Should not be modified, when the callback is needed, |
250 | /* NOTE : This function Should not be modified, when the callback is needed, |
251 | the HAL_NAND_MspInit could be implemented in the user file |
251 | the HAL_NAND_MspInit could be implemented in the user file |
252 | */ |
252 | */ |
253 | } |
253 | } |
254 | 254 | ||
255 | /** |
255 | /** |
256 | * @brief NAND MSP DeInit |
256 | * @brief NAND MSP DeInit |
257 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
257 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
258 | * the configuration information for NAND module. |
258 | * the configuration information for NAND module. |
259 | * @retval None |
259 | * @retval None |
260 | */ |
260 | */ |
261 | __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) |
261 | __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) |
262 | { |
262 | { |
263 | /* Prevent unused argument(s) compilation warning */ |
263 | /* Prevent unused argument(s) compilation warning */ |
264 | UNUSED(hnand); |
264 | UNUSED(hnand); |
265 | 265 | ||
266 | /* NOTE : This function Should not be modified, when the callback is needed, |
266 | /* NOTE : This function Should not be modified, when the callback is needed, |
267 | the HAL_NAND_MspDeInit could be implemented in the user file |
267 | the HAL_NAND_MspDeInit could be implemented in the user file |
268 | */ |
268 | */ |
269 | } |
269 | } |
270 | 270 | ||
271 | 271 | ||
272 | /** |
272 | /** |
273 | * @brief This function handles NAND device interrupt request. |
273 | * @brief This function handles NAND device interrupt request. |
274 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
274 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
275 | * the configuration information for NAND module. |
275 | * the configuration information for NAND module. |
276 | * @retval HAL status |
276 | * @retval HAL status |
277 | */ |
277 | */ |
278 | void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) |
278 | void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) |
279 | { |
279 | { |
280 | /* Check NAND interrupt Rising edge flag */ |
280 | /* Check NAND interrupt Rising edge flag */ |
281 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE)) |
281 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE)) |
282 | { |
282 | { |
283 | /* NAND interrupt callback*/ |
283 | /* NAND interrupt callback*/ |
284 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
284 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
285 | hnand->ItCallback(hnand); |
285 | hnand->ItCallback(hnand); |
286 | #else |
286 | #else |
287 | HAL_NAND_ITCallback(hnand); |
287 | HAL_NAND_ITCallback(hnand); |
288 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
288 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
289 | 289 | ||
290 | /* Clear NAND interrupt Rising edge pending bit */ |
290 | /* Clear NAND interrupt Rising edge pending bit */ |
291 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE); |
291 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE); |
292 | } |
292 | } |
293 | 293 | ||
294 | /* Check NAND interrupt Level flag */ |
294 | /* Check NAND interrupt Level flag */ |
295 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL)) |
295 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL)) |
296 | { |
296 | { |
297 | /* NAND interrupt callback*/ |
297 | /* NAND interrupt callback*/ |
298 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
298 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
299 | hnand->ItCallback(hnand); |
299 | hnand->ItCallback(hnand); |
300 | #else |
300 | #else |
301 | HAL_NAND_ITCallback(hnand); |
301 | HAL_NAND_ITCallback(hnand); |
302 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
302 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
303 | 303 | ||
304 | /* Clear NAND interrupt Level pending bit */ |
304 | /* Clear NAND interrupt Level pending bit */ |
305 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL); |
305 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL); |
306 | } |
306 | } |
307 | 307 | ||
308 | /* Check NAND interrupt Falling edge flag */ |
308 | /* Check NAND interrupt Falling edge flag */ |
309 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE)) |
309 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE)) |
310 | { |
310 | { |
311 | /* NAND interrupt callback*/ |
311 | /* NAND interrupt callback*/ |
312 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
312 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
313 | hnand->ItCallback(hnand); |
313 | hnand->ItCallback(hnand); |
314 | #else |
314 | #else |
315 | HAL_NAND_ITCallback(hnand); |
315 | HAL_NAND_ITCallback(hnand); |
316 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
316 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
317 | 317 | ||
318 | /* Clear NAND interrupt Falling edge pending bit */ |
318 | /* Clear NAND interrupt Falling edge pending bit */ |
319 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE); |
319 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE); |
320 | } |
320 | } |
321 | 321 | ||
322 | /* Check NAND interrupt FIFO empty flag */ |
322 | /* Check NAND interrupt FIFO empty flag */ |
323 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT)) |
323 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT)) |
324 | { |
324 | { |
325 | /* NAND interrupt callback*/ |
325 | /* NAND interrupt callback*/ |
326 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
326 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
327 | hnand->ItCallback(hnand); |
327 | hnand->ItCallback(hnand); |
328 | #else |
328 | #else |
329 | HAL_NAND_ITCallback(hnand); |
329 | HAL_NAND_ITCallback(hnand); |
330 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
330 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
331 | 331 | ||
332 | /* Clear NAND interrupt FIFO empty pending bit */ |
332 | /* Clear NAND interrupt FIFO empty pending bit */ |
333 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT); |
333 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT); |
334 | } |
334 | } |
335 | 335 | ||
336 | } |
336 | } |
337 | 337 | ||
338 | /** |
338 | /** |
339 | * @brief NAND interrupt feature callback |
339 | * @brief NAND interrupt feature callback |
340 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
340 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
341 | * the configuration information for NAND module. |
341 | * the configuration information for NAND module. |
342 | * @retval None |
342 | * @retval None |
343 | */ |
343 | */ |
344 | __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) |
344 | __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) |
345 | { |
345 | { |
346 | /* Prevent unused argument(s) compilation warning */ |
346 | /* Prevent unused argument(s) compilation warning */ |
347 | UNUSED(hnand); |
347 | UNUSED(hnand); |
348 | 348 | ||
349 | /* NOTE : This function Should not be modified, when the callback is needed, |
349 | /* NOTE : This function Should not be modified, when the callback is needed, |
350 | the HAL_NAND_ITCallback could be implemented in the user file |
350 | the HAL_NAND_ITCallback could be implemented in the user file |
351 | */ |
351 | */ |
352 | } |
352 | } |
353 | 353 | ||
354 | /** |
354 | /** |
355 | * @} |
355 | * @} |
356 | */ |
356 | */ |
357 | 357 | ||
358 | /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions |
358 | /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions |
359 | * @brief Input Output and memory control functions |
359 | * @brief Input Output and memory control functions |
360 | * |
360 | * |
361 | @verbatim |
361 | @verbatim |
362 | ============================================================================== |
362 | ============================================================================== |
363 | ##### NAND Input and Output functions ##### |
363 | ##### NAND Input and Output functions ##### |
364 | ============================================================================== |
364 | ============================================================================== |
365 | [..] |
365 | [..] |
366 | This section provides functions allowing to use and control the NAND |
366 | This section provides functions allowing to use and control the NAND |
367 | memory |
367 | memory |
368 | 368 | ||
369 | @endverbatim |
369 | @endverbatim |
370 | * @{ |
370 | * @{ |
371 | */ |
371 | */ |
372 | 372 | ||
373 | /** |
373 | /** |
374 | * @brief Read the NAND memory electronic signature |
374 | * @brief Read the NAND memory electronic signature |
375 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
375 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
376 | * the configuration information for NAND module. |
376 | * the configuration information for NAND module. |
377 | * @param pNAND_ID NAND ID structure |
377 | * @param pNAND_ID NAND ID structure |
378 | * @retval HAL status |
378 | * @retval HAL status |
379 | */ |
379 | */ |
380 | HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) |
380 | HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) |
381 | { |
381 | { |
382 | __IO uint32_t data = 0; |
382 | __IO uint32_t data = 0; |
383 | __IO uint32_t data1 = 0; |
383 | __IO uint32_t data1 = 0; |
384 | uint32_t deviceaddress; |
384 | uint32_t deviceaddress; |
385 | 385 | ||
386 | /* Check the NAND controller state */ |
386 | /* Check the NAND controller state */ |
387 | if (hnand->State == HAL_NAND_STATE_BUSY) |
387 | if (hnand->State == HAL_NAND_STATE_BUSY) |
388 | { |
388 | { |
389 | return HAL_BUSY; |
389 | return HAL_BUSY; |
390 | } |
390 | } |
391 | else if (hnand->State == HAL_NAND_STATE_READY) |
391 | else if (hnand->State == HAL_NAND_STATE_READY) |
392 | { |
392 | { |
393 | /* Process Locked */ |
393 | /* Process Locked */ |
394 | __HAL_LOCK(hnand); |
394 | __HAL_LOCK(hnand); |
395 | 395 | ||
396 | /* Update the NAND controller state */ |
396 | /* Update the NAND controller state */ |
397 | hnand->State = HAL_NAND_STATE_BUSY; |
397 | hnand->State = HAL_NAND_STATE_BUSY; |
398 | 398 | ||
399 | /* Identify the device address */ |
399 | /* Identify the device address */ |
400 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
400 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
401 | { |
401 | { |
402 | deviceaddress = NAND_DEVICE1; |
402 | deviceaddress = NAND_DEVICE1; |
403 | } |
403 | } |
404 | else |
404 | else |
405 | { |
405 | { |
406 | deviceaddress = NAND_DEVICE2; |
406 | deviceaddress = NAND_DEVICE2; |
407 | } |
407 | } |
408 | 408 | ||
409 | /* Send Read ID command sequence */ |
409 | /* Send Read ID command sequence */ |
410 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; |
410 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; |
411 | __DSB(); |
411 | __DSB(); |
412 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; |
412 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; |
413 | __DSB(); |
413 | __DSB(); |
414 | 414 | ||
415 | /* Read the electronic signature from NAND flash */ |
415 | /* Read the electronic signature from NAND flash */ |
416 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
416 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
417 | { |
417 | { |
418 | data = *(__IO uint32_t *)deviceaddress; |
418 | data = *(__IO uint32_t *)deviceaddress; |
419 | 419 | ||
420 | /* Return the data read */ |
420 | /* Return the data read */ |
421 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
421 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
422 | pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); |
422 | pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); |
423 | pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); |
423 | pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); |
424 | pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); |
424 | pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); |
425 | } |
425 | } |
426 | else |
426 | else |
427 | { |
427 | { |
428 | data = *(__IO uint32_t *)deviceaddress; |
428 | data = *(__IO uint32_t *)deviceaddress; |
429 | data1 = *((__IO uint32_t *)deviceaddress + 4); |
429 | data1 = *((__IO uint32_t *)deviceaddress + 4); |
430 | 430 | ||
431 | /* Return the data read */ |
431 | /* Return the data read */ |
432 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
432 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
433 | pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); |
433 | pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); |
434 | pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); |
434 | pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); |
435 | pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); |
435 | pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); |
436 | } |
436 | } |
437 | 437 | ||
438 | /* Update the NAND controller state */ |
438 | /* Update the NAND controller state */ |
439 | hnand->State = HAL_NAND_STATE_READY; |
439 | hnand->State = HAL_NAND_STATE_READY; |
440 | 440 | ||
441 | /* Process unlocked */ |
441 | /* Process unlocked */ |
442 | __HAL_UNLOCK(hnand); |
442 | __HAL_UNLOCK(hnand); |
443 | } |
443 | } |
444 | else |
444 | else |
445 | { |
445 | { |
446 | return HAL_ERROR; |
446 | return HAL_ERROR; |
447 | } |
447 | } |
448 | 448 | ||
449 | return HAL_OK; |
449 | return HAL_OK; |
450 | } |
450 | } |
451 | 451 | ||
452 | /** |
452 | /** |
453 | * @brief NAND memory reset |
453 | * @brief NAND memory reset |
454 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
454 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
455 | * the configuration information for NAND module. |
455 | * the configuration information for NAND module. |
456 | * @retval HAL status |
456 | * @retval HAL status |
457 | */ |
457 | */ |
458 | HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) |
458 | HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) |
459 | { |
459 | { |
460 | uint32_t deviceaddress; |
460 | uint32_t deviceaddress; |
461 | 461 | ||
462 | /* Check the NAND controller state */ |
462 | /* Check the NAND controller state */ |
463 | if (hnand->State == HAL_NAND_STATE_BUSY) |
463 | if (hnand->State == HAL_NAND_STATE_BUSY) |
464 | { |
464 | { |
465 | return HAL_BUSY; |
465 | return HAL_BUSY; |
466 | } |
466 | } |
467 | else if (hnand->State == HAL_NAND_STATE_READY) |
467 | else if (hnand->State == HAL_NAND_STATE_READY) |
468 | { |
468 | { |
469 | /* Process Locked */ |
469 | /* Process Locked */ |
470 | __HAL_LOCK(hnand); |
470 | __HAL_LOCK(hnand); |
471 | 471 | ||
472 | /* Update the NAND controller state */ |
472 | /* Update the NAND controller state */ |
473 | hnand->State = HAL_NAND_STATE_BUSY; |
473 | hnand->State = HAL_NAND_STATE_BUSY; |
474 | 474 | ||
475 | /* Identify the device address */ |
475 | /* Identify the device address */ |
476 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
476 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
477 | { |
477 | { |
478 | deviceaddress = NAND_DEVICE1; |
478 | deviceaddress = NAND_DEVICE1; |
479 | } |
479 | } |
480 | else |
480 | else |
481 | { |
481 | { |
482 | deviceaddress = NAND_DEVICE2; |
482 | deviceaddress = NAND_DEVICE2; |
483 | } |
483 | } |
484 | 484 | ||
485 | /* Send NAND reset command */ |
485 | /* Send NAND reset command */ |
486 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; |
486 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; |
487 | 487 | ||
488 | /* Update the NAND controller state */ |
488 | /* Update the NAND controller state */ |
489 | hnand->State = HAL_NAND_STATE_READY; |
489 | hnand->State = HAL_NAND_STATE_READY; |
490 | 490 | ||
491 | /* Process unlocked */ |
491 | /* Process unlocked */ |
492 | __HAL_UNLOCK(hnand); |
492 | __HAL_UNLOCK(hnand); |
493 | } |
493 | } |
494 | else |
494 | else |
495 | { |
495 | { |
496 | return HAL_ERROR; |
496 | return HAL_ERROR; |
497 | } |
497 | } |
498 | 498 | ||
499 | return HAL_OK; |
499 | return HAL_OK; |
500 | 500 | ||
501 | } |
501 | } |
502 | 502 | ||
503 | /** |
503 | /** |
504 | * @brief Configure the device: Enter the physical parameters of the device |
504 | * @brief Configure the device: Enter the physical parameters of the device |
505 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
505 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
506 | * the configuration information for NAND module. |
506 | * the configuration information for NAND module. |
507 | * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure |
507 | * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure |
508 | * @retval HAL status |
508 | * @retval HAL status |
509 | */ |
509 | */ |
510 | HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) |
510 | HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) |
511 | { |
511 | { |
512 | hnand->Config.PageSize = pDeviceConfig->PageSize; |
512 | hnand->Config.PageSize = pDeviceConfig->PageSize; |
513 | hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; |
513 | hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; |
514 | hnand->Config.BlockSize = pDeviceConfig->BlockSize; |
514 | hnand->Config.BlockSize = pDeviceConfig->BlockSize; |
515 | hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; |
515 | hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; |
516 | hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; |
516 | hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; |
517 | hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; |
517 | hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; |
518 | hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; |
518 | hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; |
519 | 519 | ||
520 | return HAL_OK; |
520 | return HAL_OK; |
521 | } |
521 | } |
522 | 522 | ||
523 | /** |
523 | /** |
524 | * @brief Read Page(s) from NAND memory block (8-bits addressing) |
524 | * @brief Read Page(s) from NAND memory block (8-bits addressing) |
525 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
525 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
526 | * the configuration information for NAND module. |
526 | * the configuration information for NAND module. |
527 | * @param pAddress pointer to NAND address structure |
527 | * @param pAddress pointer to NAND address structure |
528 | * @param pBuffer pointer to destination read buffer |
528 | * @param pBuffer pointer to destination read buffer |
529 | * @param NumPageToRead number of pages to read from block |
529 | * @param NumPageToRead number of pages to read from block |
530 | * @retval HAL status |
530 | * @retval HAL status |
531 | */ |
531 | */ |
532 | HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
532 | HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
533 | uint32_t NumPageToRead) |
533 | uint8_t *pBuffer, uint32_t NumPageToRead) |
534 | { |
534 | { |
535 | uint32_t index; |
535 | uint32_t index; |
536 | uint32_t tickstart; |
536 | uint32_t tickstart; |
537 | uint32_t deviceaddress; |
537 | uint32_t deviceaddress; |
538 | uint32_t numpagesread = 0U; |
538 | uint32_t numpagesread = 0U; |
539 | uint32_t nandaddress; |
539 | uint32_t nandaddress; |
540 | uint32_t nbpages = NumPageToRead; |
540 | uint32_t nbpages = NumPageToRead; |
541 | uint8_t *buff = pBuffer; |
541 | uint8_t *buff = pBuffer; |
542 | 542 | ||
543 | /* Check the NAND controller state */ |
543 | /* Check the NAND controller state */ |
544 | if (hnand->State == HAL_NAND_STATE_BUSY) |
544 | if (hnand->State == HAL_NAND_STATE_BUSY) |
545 | { |
545 | { |
546 | return HAL_BUSY; |
546 | return HAL_BUSY; |
547 | } |
547 | } |
548 | else if (hnand->State == HAL_NAND_STATE_READY) |
548 | else if (hnand->State == HAL_NAND_STATE_READY) |
549 | { |
549 | { |
550 | /* Process Locked */ |
550 | /* Process Locked */ |
551 | __HAL_LOCK(hnand); |
551 | __HAL_LOCK(hnand); |
552 | 552 | ||
553 | /* Update the NAND controller state */ |
553 | /* Update the NAND controller state */ |
554 | hnand->State = HAL_NAND_STATE_BUSY; |
554 | hnand->State = HAL_NAND_STATE_BUSY; |
555 | 555 | ||
556 | /* Identify the device address */ |
556 | /* Identify the device address */ |
557 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
557 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
558 | { |
558 | { |
559 | deviceaddress = NAND_DEVICE1; |
559 | deviceaddress = NAND_DEVICE1; |
560 | } |
560 | } |
561 | else |
561 | else |
562 | { |
562 | { |
563 | deviceaddress = NAND_DEVICE2; |
563 | deviceaddress = NAND_DEVICE2; |
564 | } |
564 | } |
565 | 565 | ||
566 | /* NAND raw address calculation */ |
566 | /* NAND raw address calculation */ |
567 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
567 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
568 | 568 | ||
569 | /* Page(s) read loop */ |
569 | /* Page(s) read loop */ |
570 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
570 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
571 | { |
571 | { |
572 | /* Send read page command sequence */ |
572 | /* Send read page command sequence */ |
573 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
573 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
574 | __DSB(); |
574 | __DSB(); |
575 | 575 | ||
576 | /* Cards with page size <= 512 bytes */ |
576 | /* Cards with page size <= 512 bytes */ |
577 | if ((hnand->Config.PageSize) <= 512U) |
577 | if ((hnand->Config.PageSize) <= 512U) |
578 | { |
578 | { |
579 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
579 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
580 | { |
580 | { |
581 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
581 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
582 | __DSB(); |
582 | __DSB(); |
583 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
583 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
584 | __DSB(); |
584 | __DSB(); |
585 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
585 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
586 | __DSB(); |
586 | __DSB(); |
587 | } |
587 | } |
588 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
588 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
589 | { |
589 | { |
590 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
590 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
591 | __DSB(); |
591 | __DSB(); |
592 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
592 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
593 | __DSB(); |
593 | __DSB(); |
594 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
594 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
595 | __DSB(); |
595 | __DSB(); |
596 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
596 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
597 | __DSB(); |
597 | __DSB(); |
598 | } |
598 | } |
599 | } |
599 | } |
600 | else /* (hnand->Config.PageSize) > 512 */ |
600 | else /* (hnand->Config.PageSize) > 512 */ |
601 | { |
601 | { |
602 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
602 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
603 | { |
603 | { |
604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
605 | __DSB(); |
605 | __DSB(); |
606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
607 | __DSB(); |
607 | __DSB(); |
608 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
608 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
609 | __DSB(); |
609 | __DSB(); |
610 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
610 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
611 | __DSB(); |
611 | __DSB(); |
612 | } |
612 | } |
613 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
613 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
614 | { |
614 | { |
615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
616 | __DSB(); |
616 | __DSB(); |
617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
618 | __DSB(); |
618 | __DSB(); |
619 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
619 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
620 | __DSB(); |
620 | __DSB(); |
621 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
621 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
622 | __DSB(); |
622 | __DSB(); |
623 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
623 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
624 | __DSB(); |
624 | __DSB(); |
625 | } |
625 | } |
626 | } |
626 | } |
627 | 627 | ||
628 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
628 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
629 | __DSB(); |
629 | __DSB(); |
630 | 630 | ||
631 | 631 | ||
632 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
632 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
633 | { |
633 | { |
634 | /* Get tick */ |
634 | /* Get tick */ |
635 | tickstart = HAL_GetTick(); |
635 | tickstart = HAL_GetTick(); |
636 | 636 | ||
637 | /* Read status until NAND is ready */ |
637 | /* Read status until NAND is ready */ |
638 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
638 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
639 | { |
639 | { |
640 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
640 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
641 | { |
641 | { |
642 | /* Update the NAND controller state */ |
642 | /* Update the NAND controller state */ |
643 | hnand->State = HAL_NAND_STATE_ERROR; |
643 | hnand->State = HAL_NAND_STATE_ERROR; |
644 | 644 | ||
645 | /* Process unlocked */ |
645 | /* Process unlocked */ |
646 | __HAL_UNLOCK(hnand); |
646 | __HAL_UNLOCK(hnand); |
647 | 647 | ||
648 | return HAL_TIMEOUT; |
648 | return HAL_TIMEOUT; |
649 | } |
649 | } |
650 | } |
650 | } |
651 | 651 | ||
652 | /* Go back to read mode */ |
652 | /* Go back to read mode */ |
653 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
653 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
654 | __DSB(); |
654 | __DSB(); |
655 | } |
655 | } |
656 | 656 | ||
657 | /* Get Data into Buffer */ |
657 | /* Get Data into Buffer */ |
658 | for (index = 0U; index < hnand->Config.PageSize; index++) |
658 | for (index = 0U; index < hnand->Config.PageSize; index++) |
659 | { |
659 | { |
660 | *buff = *(uint8_t *)deviceaddress; |
660 | *buff = *(uint8_t *)deviceaddress; |
661 | buff++; |
661 | buff++; |
662 | } |
662 | } |
663 | 663 | ||
664 | /* Increment read pages number */ |
664 | /* Increment read pages number */ |
665 | numpagesread++; |
665 | numpagesread++; |
666 | 666 | ||
667 | /* Decrement pages to read */ |
667 | /* Decrement pages to read */ |
668 | nbpages--; |
668 | nbpages--; |
669 | 669 | ||
670 | /* Increment the NAND address */ |
670 | /* Increment the NAND address */ |
671 | nandaddress = (uint32_t)(nandaddress + 1U); |
671 | nandaddress = (uint32_t)(nandaddress + 1U); |
672 | } |
672 | } |
673 | 673 | ||
674 | /* Update the NAND controller state */ |
674 | /* Update the NAND controller state */ |
675 | hnand->State = HAL_NAND_STATE_READY; |
675 | hnand->State = HAL_NAND_STATE_READY; |
676 | 676 | ||
677 | /* Process unlocked */ |
677 | /* Process unlocked */ |
678 | __HAL_UNLOCK(hnand); |
678 | __HAL_UNLOCK(hnand); |
679 | } |
679 | } |
680 | else |
680 | else |
681 | { |
681 | { |
682 | return HAL_ERROR; |
682 | return HAL_ERROR; |
683 | } |
683 | } |
684 | 684 | ||
685 | return HAL_OK; |
685 | return HAL_OK; |
686 | } |
686 | } |
687 | 687 | ||
688 | /** |
688 | /** |
689 | * @brief Read Page(s) from NAND memory block (16-bits addressing) |
689 | * @brief Read Page(s) from NAND memory block (16-bits addressing) |
690 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
690 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
691 | * the configuration information for NAND module. |
691 | * the configuration information for NAND module. |
692 | * @param pAddress pointer to NAND address structure |
692 | * @param pAddress pointer to NAND address structure |
693 | * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned |
693 | * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned |
694 | * @param NumPageToRead number of pages to read from block |
694 | * @param NumPageToRead number of pages to read from block |
695 | * @retval HAL status |
695 | * @retval HAL status |
696 | */ |
696 | */ |
697 | HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, |
697 | HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
698 | uint32_t NumPageToRead) |
698 | uint16_t *pBuffer, uint32_t NumPageToRead) |
699 | { |
699 | { |
700 | uint32_t index; |
700 | uint32_t index; |
701 | uint32_t tickstart; |
701 | uint32_t tickstart; |
702 | uint32_t deviceaddress; |
702 | uint32_t deviceaddress; |
703 | uint32_t numpagesread = 0U; |
703 | uint32_t numpagesread = 0U; |
704 | uint32_t nandaddress; |
704 | uint32_t nandaddress; |
705 | uint32_t nbpages = NumPageToRead; |
705 | uint32_t nbpages = NumPageToRead; |
706 | uint16_t *buff = pBuffer; |
706 | uint16_t *buff = pBuffer; |
707 | 707 | ||
708 | /* Check the NAND controller state */ |
708 | /* Check the NAND controller state */ |
709 | if (hnand->State == HAL_NAND_STATE_BUSY) |
709 | if (hnand->State == HAL_NAND_STATE_BUSY) |
710 | { |
710 | { |
711 | return HAL_BUSY; |
711 | return HAL_BUSY; |
712 | } |
712 | } |
713 | else if (hnand->State == HAL_NAND_STATE_READY) |
713 | else if (hnand->State == HAL_NAND_STATE_READY) |
714 | { |
714 | { |
715 | /* Process Locked */ |
715 | /* Process Locked */ |
716 | __HAL_LOCK(hnand); |
716 | __HAL_LOCK(hnand); |
717 | 717 | ||
718 | /* Update the NAND controller state */ |
718 | /* Update the NAND controller state */ |
719 | hnand->State = HAL_NAND_STATE_BUSY; |
719 | hnand->State = HAL_NAND_STATE_BUSY; |
720 | 720 | ||
721 | /* Identify the device address */ |
721 | /* Identify the device address */ |
722 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
722 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
723 | { |
723 | { |
724 | deviceaddress = NAND_DEVICE1; |
724 | deviceaddress = NAND_DEVICE1; |
725 | } |
725 | } |
726 | else |
726 | else |
727 | { |
727 | { |
728 | deviceaddress = NAND_DEVICE2; |
728 | deviceaddress = NAND_DEVICE2; |
729 | } |
729 | } |
730 | 730 | ||
731 | /* NAND raw address calculation */ |
731 | /* NAND raw address calculation */ |
732 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
732 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
733 | 733 | ||
734 | /* Page(s) read loop */ |
734 | /* Page(s) read loop */ |
735 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
735 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
736 | { |
736 | { |
737 | /* Send read page command sequence */ |
737 | /* Send read page command sequence */ |
738 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
738 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
739 | __DSB(); |
739 | __DSB(); |
740 | 740 | ||
741 | /* Cards with page size <= 512 bytes */ |
741 | /* Cards with page size <= 512 bytes */ |
742 | if ((hnand->Config.PageSize) <= 512U) |
742 | if ((hnand->Config.PageSize) <= 512U) |
743 | { |
743 | { |
744 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
744 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
745 | { |
745 | { |
746 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
746 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
747 | __DSB(); |
747 | __DSB(); |
748 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
748 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
749 | __DSB(); |
749 | __DSB(); |
750 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
750 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
751 | __DSB(); |
751 | __DSB(); |
752 | } |
752 | } |
753 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
753 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
754 | { |
754 | { |
755 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
755 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
756 | __DSB(); |
756 | __DSB(); |
757 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
757 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
758 | __DSB(); |
758 | __DSB(); |
759 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
759 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
760 | __DSB(); |
760 | __DSB(); |
761 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
761 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
762 | __DSB(); |
762 | __DSB(); |
763 | } |
763 | } |
764 | } |
764 | } |
765 | else /* (hnand->Config.PageSize) > 512 */ |
765 | else /* (hnand->Config.PageSize) > 512 */ |
766 | { |
766 | { |
767 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
767 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
768 | { |
768 | { |
769 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
769 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
770 | __DSB(); |
770 | __DSB(); |
771 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
771 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
772 | __DSB(); |
772 | __DSB(); |
773 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
773 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
774 | __DSB(); |
774 | __DSB(); |
775 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
775 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
776 | __DSB(); |
776 | __DSB(); |
777 | } |
777 | } |
778 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
778 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
779 | { |
779 | { |
780 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
780 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
781 | __DSB(); |
781 | __DSB(); |
782 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
782 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
783 | __DSB(); |
783 | __DSB(); |
784 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
784 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
785 | __DSB(); |
785 | __DSB(); |
786 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
786 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
787 | __DSB(); |
787 | __DSB(); |
788 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
788 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
789 | __DSB(); |
789 | __DSB(); |
790 | } |
790 | } |
791 | } |
791 | } |
792 | 792 | ||
793 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
793 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
794 | __DSB(); |
794 | __DSB(); |
795 | 795 | ||
796 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
796 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
797 | { |
797 | { |
798 | /* Get tick */ |
798 | /* Get tick */ |
799 | tickstart = HAL_GetTick(); |
799 | tickstart = HAL_GetTick(); |
800 | 800 | ||
801 | /* Read status until NAND is ready */ |
801 | /* Read status until NAND is ready */ |
802 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
802 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
803 | { |
803 | { |
804 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
804 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
805 | { |
805 | { |
806 | /* Update the NAND controller state */ |
806 | /* Update the NAND controller state */ |
807 | hnand->State = HAL_NAND_STATE_ERROR; |
807 | hnand->State = HAL_NAND_STATE_ERROR; |
808 | 808 | ||
809 | /* Process unlocked */ |
809 | /* Process unlocked */ |
810 | __HAL_UNLOCK(hnand); |
810 | __HAL_UNLOCK(hnand); |
811 | 811 | ||
812 | return HAL_TIMEOUT; |
812 | return HAL_TIMEOUT; |
813 | } |
813 | } |
814 | } |
814 | } |
815 | 815 | ||
816 | /* Go back to read mode */ |
816 | /* Go back to read mode */ |
817 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
817 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
818 | __DSB(); |
818 | __DSB(); |
819 | } |
819 | } |
820 | 820 | ||
821 | /* Calculate PageSize */ |
821 | /* Calculate PageSize */ |
822 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
822 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
823 | { |
823 | { |
824 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
824 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
825 | } |
825 | } |
826 | else |
826 | else |
827 | { |
827 | { |
828 | /* Do nothing */ |
828 | /* Do nothing */ |
829 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
829 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
830 | } |
830 | } |
831 | 831 | ||
832 | /* Get Data into Buffer */ |
832 | /* Get Data into Buffer */ |
833 | for (index = 0U; index < hnand->Config.PageSize; index++) |
833 | for (index = 0U; index < hnand->Config.PageSize; index++) |
834 | { |
834 | { |
835 | *buff = *(uint16_t *)deviceaddress; |
835 | *buff = *(uint16_t *)deviceaddress; |
836 | buff++; |
836 | buff++; |
837 | } |
837 | } |
838 | 838 | ||
839 | /* Increment read pages number */ |
839 | /* Increment read pages number */ |
840 | numpagesread++; |
840 | numpagesread++; |
841 | 841 | ||
842 | /* Decrement pages to read */ |
842 | /* Decrement pages to read */ |
843 | nbpages--; |
843 | nbpages--; |
844 | 844 | ||
845 | /* Increment the NAND address */ |
845 | /* Increment the NAND address */ |
846 | nandaddress = (uint32_t)(nandaddress + 1U); |
846 | nandaddress = (uint32_t)(nandaddress + 1U); |
847 | } |
847 | } |
848 | 848 | ||
849 | /* Update the NAND controller state */ |
849 | /* Update the NAND controller state */ |
850 | hnand->State = HAL_NAND_STATE_READY; |
850 | hnand->State = HAL_NAND_STATE_READY; |
851 | 851 | ||
852 | /* Process unlocked */ |
852 | /* Process unlocked */ |
853 | __HAL_UNLOCK(hnand); |
853 | __HAL_UNLOCK(hnand); |
854 | } |
854 | } |
855 | else |
855 | else |
856 | { |
856 | { |
857 | return HAL_ERROR; |
857 | return HAL_ERROR; |
858 | } |
858 | } |
859 | 859 | ||
860 | return HAL_OK; |
860 | return HAL_OK; |
861 | } |
861 | } |
862 | 862 | ||
863 | /** |
863 | /** |
864 | * @brief Write Page(s) to NAND memory block (8-bits addressing) |
864 | * @brief Write Page(s) to NAND memory block (8-bits addressing) |
865 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
865 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
866 | * the configuration information for NAND module. |
866 | * the configuration information for NAND module. |
867 | * @param pAddress pointer to NAND address structure |
867 | * @param pAddress pointer to NAND address structure |
868 | * @param pBuffer pointer to source buffer to write |
868 | * @param pBuffer pointer to source buffer to write |
869 | * @param NumPageToWrite number of pages to write to block |
869 | * @param NumPageToWrite number of pages to write to block |
870 | * @retval HAL status |
870 | * @retval HAL status |
871 | */ |
871 | */ |
872 | HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
872 | HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
873 | uint32_t NumPageToWrite) |
873 | const uint8_t *pBuffer, uint32_t NumPageToWrite) |
874 | { |
874 | { |
875 | uint32_t index; |
875 | uint32_t index; |
876 | uint32_t tickstart; |
876 | uint32_t tickstart; |
877 | uint32_t deviceaddress; |
877 | uint32_t deviceaddress; |
878 | uint32_t numpageswritten = 0U; |
878 | uint32_t numpageswritten = 0U; |
879 | uint32_t nandaddress; |
879 | uint32_t nandaddress; |
880 | uint32_t nbpages = NumPageToWrite; |
880 | uint32_t nbpages = NumPageToWrite; |
881 | uint8_t *buff = pBuffer; |
881 | const uint8_t *buff = pBuffer; |
882 | 882 | ||
883 | /* Check the NAND controller state */ |
883 | /* Check the NAND controller state */ |
884 | if (hnand->State == HAL_NAND_STATE_BUSY) |
884 | if (hnand->State == HAL_NAND_STATE_BUSY) |
885 | { |
885 | { |
886 | return HAL_BUSY; |
886 | return HAL_BUSY; |
887 | } |
887 | } |
888 | else if (hnand->State == HAL_NAND_STATE_READY) |
888 | else if (hnand->State == HAL_NAND_STATE_READY) |
889 | { |
889 | { |
890 | /* Process Locked */ |
890 | /* Process Locked */ |
891 | __HAL_LOCK(hnand); |
891 | __HAL_LOCK(hnand); |
892 | 892 | ||
893 | /* Update the NAND controller state */ |
893 | /* Update the NAND controller state */ |
894 | hnand->State = HAL_NAND_STATE_BUSY; |
894 | hnand->State = HAL_NAND_STATE_BUSY; |
895 | 895 | ||
896 | /* Identify the device address */ |
896 | /* Identify the device address */ |
897 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
897 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
898 | { |
898 | { |
899 | deviceaddress = NAND_DEVICE1; |
899 | deviceaddress = NAND_DEVICE1; |
900 | } |
900 | } |
901 | else |
901 | else |
902 | { |
902 | { |
903 | deviceaddress = NAND_DEVICE2; |
903 | deviceaddress = NAND_DEVICE2; |
904 | } |
904 | } |
905 | 905 | ||
906 | /* NAND raw address calculation */ |
906 | /* NAND raw address calculation */ |
907 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
907 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
908 | 908 | ||
909 | /* Page(s) write loop */ |
909 | /* Page(s) write loop */ |
910 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
910 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
911 | { |
911 | { |
912 | /* Send write page command sequence */ |
912 | /* Send write page command sequence */ |
913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
914 | __DSB(); |
914 | __DSB(); |
915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
916 | __DSB(); |
916 | __DSB(); |
917 | 917 | ||
918 | /* Cards with page size <= 512 bytes */ |
918 | /* Cards with page size <= 512 bytes */ |
919 | if ((hnand->Config.PageSize) <= 512U) |
919 | if ((hnand->Config.PageSize) <= 512U) |
920 | { |
920 | { |
921 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
921 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
922 | { |
922 | { |
923 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
923 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
924 | __DSB(); |
924 | __DSB(); |
925 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
925 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
926 | __DSB(); |
926 | __DSB(); |
927 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
927 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
928 | __DSB(); |
928 | __DSB(); |
929 | } |
929 | } |
930 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
930 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
931 | { |
931 | { |
932 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
932 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
933 | __DSB(); |
933 | __DSB(); |
934 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
934 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
935 | __DSB(); |
935 | __DSB(); |
936 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
936 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
937 | __DSB(); |
937 | __DSB(); |
938 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
938 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
939 | __DSB(); |
939 | __DSB(); |
940 | } |
940 | } |
941 | } |
941 | } |
942 | else /* (hnand->Config.PageSize) > 512 */ |
942 | else /* (hnand->Config.PageSize) > 512 */ |
943 | { |
943 | { |
944 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
944 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
945 | { |
945 | { |
946 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
946 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
947 | __DSB(); |
947 | __DSB(); |
948 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
948 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
949 | __DSB(); |
949 | __DSB(); |
950 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
950 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
951 | __DSB(); |
951 | __DSB(); |
952 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
952 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
953 | __DSB(); |
953 | __DSB(); |
954 | } |
954 | } |
955 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
955 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
956 | { |
956 | { |
957 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
957 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
958 | __DSB(); |
958 | __DSB(); |
959 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
959 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
960 | __DSB(); |
960 | __DSB(); |
961 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
961 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
962 | __DSB(); |
962 | __DSB(); |
963 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
963 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
964 | __DSB(); |
964 | __DSB(); |
965 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
965 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
966 | __DSB(); |
966 | __DSB(); |
967 | } |
967 | } |
968 | } |
968 | } |
969 | 969 | ||
970 | /* Write data to memory */ |
970 | /* Write data to memory */ |
971 | for (index = 0U; index < hnand->Config.PageSize; index++) |
971 | for (index = 0U; index < hnand->Config.PageSize; index++) |
972 | { |
972 | { |
973 | *(__IO uint8_t *)deviceaddress = *buff; |
973 | *(__IO uint8_t *)deviceaddress = *buff; |
974 | buff++; |
974 | buff++; |
975 | __DSB(); |
975 | __DSB(); |
976 | } |
976 | } |
977 | 977 | ||
978 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
978 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
979 | __DSB(); |
979 | __DSB(); |
980 | 980 | ||
981 | /* Get tick */ |
981 | /* Get tick */ |
982 | tickstart = HAL_GetTick(); |
982 | tickstart = HAL_GetTick(); |
983 | 983 | ||
984 | /* Read status until NAND is ready */ |
984 | /* Read status until NAND is ready */ |
985 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
985 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
986 | { |
986 | { |
987 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
987 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
988 | { |
988 | { |
989 | /* Update the NAND controller state */ |
989 | /* Update the NAND controller state */ |
990 | hnand->State = HAL_NAND_STATE_ERROR; |
990 | hnand->State = HAL_NAND_STATE_ERROR; |
991 | 991 | ||
992 | /* Process unlocked */ |
992 | /* Process unlocked */ |
993 | __HAL_UNLOCK(hnand); |
993 | __HAL_UNLOCK(hnand); |
994 | 994 | ||
995 | return HAL_TIMEOUT; |
995 | return HAL_TIMEOUT; |
996 | } |
996 | } |
997 | } |
997 | } |
998 | 998 | ||
999 | /* Increment written pages number */ |
999 | /* Increment written pages number */ |
1000 | numpageswritten++; |
1000 | numpageswritten++; |
1001 | 1001 | ||
1002 | /* Decrement pages to write */ |
1002 | /* Decrement pages to write */ |
1003 | nbpages--; |
1003 | nbpages--; |
1004 | 1004 | ||
1005 | /* Increment the NAND address */ |
1005 | /* Increment the NAND address */ |
1006 | nandaddress = (uint32_t)(nandaddress + 1U); |
1006 | nandaddress = (uint32_t)(nandaddress + 1U); |
1007 | } |
1007 | } |
1008 | 1008 | ||
1009 | /* Update the NAND controller state */ |
1009 | /* Update the NAND controller state */ |
1010 | hnand->State = HAL_NAND_STATE_READY; |
1010 | hnand->State = HAL_NAND_STATE_READY; |
1011 | 1011 | ||
1012 | /* Process unlocked */ |
1012 | /* Process unlocked */ |
1013 | __HAL_UNLOCK(hnand); |
1013 | __HAL_UNLOCK(hnand); |
1014 | } |
1014 | } |
1015 | else |
1015 | else |
1016 | { |
1016 | { |
1017 | return HAL_ERROR; |
1017 | return HAL_ERROR; |
1018 | } |
1018 | } |
1019 | 1019 | ||
1020 | return HAL_OK; |
1020 | return HAL_OK; |
1021 | } |
1021 | } |
1022 | 1022 | ||
1023 | /** |
1023 | /** |
1024 | * @brief Write Page(s) to NAND memory block (16-bits addressing) |
1024 | * @brief Write Page(s) to NAND memory block (16-bits addressing) |
1025 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1025 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1026 | * the configuration information for NAND module. |
1026 | * the configuration information for NAND module. |
1027 | * @param pAddress pointer to NAND address structure |
1027 | * @param pAddress pointer to NAND address structure |
1028 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned |
1028 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned |
1029 | * @param NumPageToWrite number of pages to write to block |
1029 | * @param NumPageToWrite number of pages to write to block |
1030 | * @retval HAL status |
1030 | * @retval HAL status |
1031 | */ |
1031 | */ |
1032 | HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, |
1032 | HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
1033 | uint32_t NumPageToWrite) |
1033 | const uint16_t *pBuffer, uint32_t NumPageToWrite) |
1034 | { |
1034 | { |
1035 | uint32_t index; |
1035 | uint32_t index; |
1036 | uint32_t tickstart; |
1036 | uint32_t tickstart; |
1037 | uint32_t deviceaddress; |
1037 | uint32_t deviceaddress; |
1038 | uint32_t numpageswritten = 0U; |
1038 | uint32_t numpageswritten = 0U; |
1039 | uint32_t nandaddress; |
1039 | uint32_t nandaddress; |
1040 | uint32_t nbpages = NumPageToWrite; |
1040 | uint32_t nbpages = NumPageToWrite; |
1041 | uint16_t *buff = pBuffer; |
1041 | const uint16_t *buff = pBuffer; |
1042 | 1042 | ||
1043 | /* Check the NAND controller state */ |
1043 | /* Check the NAND controller state */ |
1044 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1044 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1045 | { |
1045 | { |
1046 | return HAL_BUSY; |
1046 | return HAL_BUSY; |
1047 | } |
1047 | } |
1048 | else if (hnand->State == HAL_NAND_STATE_READY) |
1048 | else if (hnand->State == HAL_NAND_STATE_READY) |
1049 | { |
1049 | { |
1050 | /* Process Locked */ |
1050 | /* Process Locked */ |
1051 | __HAL_LOCK(hnand); |
1051 | __HAL_LOCK(hnand); |
1052 | 1052 | ||
1053 | /* Update the NAND controller state */ |
1053 | /* Update the NAND controller state */ |
1054 | hnand->State = HAL_NAND_STATE_BUSY; |
1054 | hnand->State = HAL_NAND_STATE_BUSY; |
1055 | 1055 | ||
1056 | /* Identify the device address */ |
1056 | /* Identify the device address */ |
1057 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1057 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1058 | { |
1058 | { |
1059 | deviceaddress = NAND_DEVICE1; |
1059 | deviceaddress = NAND_DEVICE1; |
1060 | } |
1060 | } |
1061 | else |
1061 | else |
1062 | { |
1062 | { |
1063 | deviceaddress = NAND_DEVICE2; |
1063 | deviceaddress = NAND_DEVICE2; |
1064 | } |
1064 | } |
1065 | 1065 | ||
1066 | /* NAND raw address calculation */ |
1066 | /* NAND raw address calculation */ |
1067 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1067 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1068 | 1068 | ||
1069 | /* Page(s) write loop */ |
1069 | /* Page(s) write loop */ |
1070 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1070 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1071 | { |
1071 | { |
1072 | /* Send write page command sequence */ |
1072 | /* Send write page command sequence */ |
1073 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1073 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1074 | __DSB(); |
1074 | __DSB(); |
1075 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1075 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1076 | __DSB(); |
1076 | __DSB(); |
1077 | 1077 | ||
1078 | /* Cards with page size <= 512 bytes */ |
1078 | /* Cards with page size <= 512 bytes */ |
1079 | if ((hnand->Config.PageSize) <= 512U) |
1079 | if ((hnand->Config.PageSize) <= 512U) |
1080 | { |
1080 | { |
1081 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1081 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1082 | { |
1082 | { |
1083 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1083 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1084 | __DSB(); |
1084 | __DSB(); |
1085 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1085 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1086 | __DSB(); |
1086 | __DSB(); |
1087 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1087 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1088 | __DSB(); |
1088 | __DSB(); |
1089 | } |
1089 | } |
1090 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1090 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1091 | { |
1091 | { |
1092 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1092 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1093 | __DSB(); |
1093 | __DSB(); |
1094 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1094 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1095 | __DSB(); |
1095 | __DSB(); |
1096 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1096 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1097 | __DSB(); |
1097 | __DSB(); |
1098 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1098 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1099 | __DSB(); |
1099 | __DSB(); |
1100 | } |
1100 | } |
1101 | } |
1101 | } |
1102 | else /* (hnand->Config.PageSize) > 512 */ |
1102 | else /* (hnand->Config.PageSize) > 512 */ |
1103 | { |
1103 | { |
1104 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1104 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1105 | { |
1105 | { |
1106 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1106 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1107 | __DSB(); |
1107 | __DSB(); |
1108 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1108 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1109 | __DSB(); |
1109 | __DSB(); |
1110 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1110 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1111 | __DSB(); |
1111 | __DSB(); |
1112 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1112 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1113 | __DSB(); |
1113 | __DSB(); |
1114 | } |
1114 | } |
1115 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1115 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1116 | { |
1116 | { |
1117 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1117 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1118 | __DSB(); |
1118 | __DSB(); |
1119 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1119 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1120 | __DSB(); |
1120 | __DSB(); |
1121 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1121 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1122 | __DSB(); |
1122 | __DSB(); |
1123 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1123 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1124 | __DSB(); |
1124 | __DSB(); |
1125 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1125 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1126 | __DSB(); |
1126 | __DSB(); |
1127 | } |
1127 | } |
1128 | } |
1128 | } |
1129 | 1129 | ||
1130 | /* Calculate PageSize */ |
1130 | /* Calculate PageSize */ |
1131 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
1131 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
1132 | { |
1132 | { |
1133 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
1133 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
1134 | } |
1134 | } |
1135 | else |
1135 | else |
1136 | { |
1136 | { |
1137 | /* Do nothing */ |
1137 | /* Do nothing */ |
1138 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
1138 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
1139 | } |
1139 | } |
1140 | 1140 | ||
1141 | /* Write data to memory */ |
1141 | /* Write data to memory */ |
1142 | for (index = 0U; index < hnand->Config.PageSize; index++) |
1142 | for (index = 0U; index < hnand->Config.PageSize; index++) |
1143 | { |
1143 | { |
1144 | *(__IO uint16_t *)deviceaddress = *buff; |
1144 | *(__IO uint16_t *)deviceaddress = *buff; |
1145 | buff++; |
1145 | buff++; |
1146 | __DSB(); |
1146 | __DSB(); |
1147 | } |
1147 | } |
1148 | 1148 | ||
1149 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1149 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1150 | __DSB(); |
1150 | __DSB(); |
1151 | 1151 | ||
1152 | /* Get tick */ |
1152 | /* Get tick */ |
1153 | tickstart = HAL_GetTick(); |
1153 | tickstart = HAL_GetTick(); |
1154 | 1154 | ||
1155 | /* Read status until NAND is ready */ |
1155 | /* Read status until NAND is ready */ |
1156 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1156 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1157 | { |
1157 | { |
1158 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1158 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1159 | { |
1159 | { |
1160 | /* Update the NAND controller state */ |
1160 | /* Update the NAND controller state */ |
1161 | hnand->State = HAL_NAND_STATE_ERROR; |
1161 | hnand->State = HAL_NAND_STATE_ERROR; |
1162 | 1162 | ||
1163 | /* Process unlocked */ |
1163 | /* Process unlocked */ |
1164 | __HAL_UNLOCK(hnand); |
1164 | __HAL_UNLOCK(hnand); |
1165 | 1165 | ||
1166 | return HAL_TIMEOUT; |
1166 | return HAL_TIMEOUT; |
1167 | } |
1167 | } |
1168 | } |
1168 | } |
1169 | 1169 | ||
1170 | /* Increment written pages number */ |
1170 | /* Increment written pages number */ |
1171 | numpageswritten++; |
1171 | numpageswritten++; |
1172 | 1172 | ||
1173 | /* Decrement pages to write */ |
1173 | /* Decrement pages to write */ |
1174 | nbpages--; |
1174 | nbpages--; |
1175 | 1175 | ||
1176 | /* Increment the NAND address */ |
1176 | /* Increment the NAND address */ |
1177 | nandaddress = (uint32_t)(nandaddress + 1U); |
1177 | nandaddress = (uint32_t)(nandaddress + 1U); |
1178 | } |
1178 | } |
1179 | 1179 | ||
1180 | /* Update the NAND controller state */ |
1180 | /* Update the NAND controller state */ |
1181 | hnand->State = HAL_NAND_STATE_READY; |
1181 | hnand->State = HAL_NAND_STATE_READY; |
1182 | 1182 | ||
1183 | /* Process unlocked */ |
1183 | /* Process unlocked */ |
1184 | __HAL_UNLOCK(hnand); |
1184 | __HAL_UNLOCK(hnand); |
1185 | } |
1185 | } |
1186 | else |
1186 | else |
1187 | { |
1187 | { |
1188 | return HAL_ERROR; |
1188 | return HAL_ERROR; |
1189 | } |
1189 | } |
1190 | 1190 | ||
1191 | return HAL_OK; |
1191 | return HAL_OK; |
1192 | } |
1192 | } |
1193 | 1193 | ||
1194 | /** |
1194 | /** |
1195 | * @brief Read Spare area(s) from NAND memory (8-bits addressing) |
1195 | * @brief Read Spare area(s) from NAND memory (8-bits addressing) |
1196 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1196 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1197 | * the configuration information for NAND module. |
1197 | * the configuration information for NAND module. |
1198 | * @param pAddress pointer to NAND address structure |
1198 | * @param pAddress pointer to NAND address structure |
1199 | * @param pBuffer pointer to source buffer to write |
1199 | * @param pBuffer pointer to source buffer to write |
1200 | * @param NumSpareAreaToRead Number of spare area to read |
1200 | * @param NumSpareAreaToRead Number of spare area to read |
1201 | * @retval HAL status |
1201 | * @retval HAL status |
1202 | */ |
1202 | */ |
1203 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, |
1203 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
1204 | uint32_t NumSpareAreaToRead) |
1204 | uint8_t *pBuffer, uint32_t NumSpareAreaToRead) |
1205 | { |
1205 | { |
1206 | uint32_t index; |
1206 | uint32_t index; |
1207 | uint32_t tickstart; |
1207 | uint32_t tickstart; |
1208 | uint32_t deviceaddress; |
1208 | uint32_t deviceaddress; |
1209 | uint32_t numsparearearead = 0U; |
1209 | uint32_t numsparearearead = 0U; |
1210 | uint32_t nandaddress; |
1210 | uint32_t nandaddress; |
1211 | uint32_t columnaddress; |
1211 | uint32_t columnaddress; |
1212 | uint32_t nbspare = NumSpareAreaToRead; |
1212 | uint32_t nbspare = NumSpareAreaToRead; |
1213 | uint8_t *buff = pBuffer; |
1213 | uint8_t *buff = pBuffer; |
1214 | 1214 | ||
1215 | /* Check the NAND controller state */ |
1215 | /* Check the NAND controller state */ |
1216 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1216 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1217 | { |
1217 | { |
1218 | return HAL_BUSY; |
1218 | return HAL_BUSY; |
1219 | } |
1219 | } |
1220 | else if (hnand->State == HAL_NAND_STATE_READY) |
1220 | else if (hnand->State == HAL_NAND_STATE_READY) |
1221 | { |
1221 | { |
1222 | /* Process Locked */ |
1222 | /* Process Locked */ |
1223 | __HAL_LOCK(hnand); |
1223 | __HAL_LOCK(hnand); |
1224 | 1224 | ||
1225 | /* Update the NAND controller state */ |
1225 | /* Update the NAND controller state */ |
1226 | hnand->State = HAL_NAND_STATE_BUSY; |
1226 | hnand->State = HAL_NAND_STATE_BUSY; |
1227 | 1227 | ||
1228 | /* Identify the device address */ |
1228 | /* Identify the device address */ |
1229 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1229 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1230 | { |
1230 | { |
1231 | deviceaddress = NAND_DEVICE1; |
1231 | deviceaddress = NAND_DEVICE1; |
1232 | } |
1232 | } |
1233 | else |
1233 | else |
1234 | { |
1234 | { |
1235 | deviceaddress = NAND_DEVICE2; |
1235 | deviceaddress = NAND_DEVICE2; |
1236 | } |
1236 | } |
1237 | 1237 | ||
1238 | /* NAND raw address calculation */ |
1238 | /* NAND raw address calculation */ |
1239 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1239 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1240 | 1240 | ||
1241 | /* Column in page address */ |
1241 | /* Column in page address */ |
1242 | columnaddress = COLUMN_ADDRESS(hnand); |
1242 | columnaddress = COLUMN_ADDRESS(hnand); |
1243 | 1243 | ||
1244 | /* Spare area(s) read loop */ |
1244 | /* Spare area(s) read loop */ |
1245 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1245 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1246 | { |
1246 | { |
1247 | /* Cards with page size <= 512 bytes */ |
1247 | /* Cards with page size <= 512 bytes */ |
1248 | if ((hnand->Config.PageSize) <= 512U) |
1248 | if ((hnand->Config.PageSize) <= 512U) |
1249 | { |
1249 | { |
1250 | /* Send read spare area command sequence */ |
1250 | /* Send read spare area command sequence */ |
1251 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1251 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1252 | __DSB(); |
1252 | __DSB(); |
1253 | 1253 | ||
1254 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1254 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1255 | { |
1255 | { |
1256 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1256 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1257 | __DSB(); |
1257 | __DSB(); |
1258 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1258 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1259 | __DSB(); |
1259 | __DSB(); |
1260 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1260 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1261 | __DSB(); |
1261 | __DSB(); |
1262 | } |
1262 | } |
1263 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1263 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1264 | { |
1264 | { |
1265 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1265 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1266 | __DSB(); |
1266 | __DSB(); |
1267 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1267 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1268 | __DSB(); |
1268 | __DSB(); |
1269 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1269 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1270 | __DSB(); |
1270 | __DSB(); |
1271 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1271 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1272 | __DSB(); |
1272 | __DSB(); |
1273 | } |
1273 | } |
1274 | } |
1274 | } |
1275 | else /* (hnand->Config.PageSize) > 512 */ |
1275 | else /* (hnand->Config.PageSize) > 512 */ |
1276 | { |
1276 | { |
1277 | /* Send read spare area command sequence */ |
1277 | /* Send read spare area command sequence */ |
1278 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1278 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1279 | __DSB(); |
1279 | __DSB(); |
1280 | 1280 | ||
1281 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1281 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1282 | { |
1282 | { |
1283 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1283 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1284 | __DSB(); |
1284 | __DSB(); |
1285 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1285 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1286 | __DSB(); |
1286 | __DSB(); |
1287 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1287 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1288 | __DSB(); |
1288 | __DSB(); |
1289 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1289 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1290 | __DSB(); |
1290 | __DSB(); |
1291 | } |
1291 | } |
1292 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1292 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1293 | { |
1293 | { |
1294 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1294 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1295 | __DSB(); |
1295 | __DSB(); |
1296 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1296 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1297 | __DSB(); |
1297 | __DSB(); |
1298 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1298 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1299 | __DSB(); |
1299 | __DSB(); |
1300 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1300 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1301 | __DSB(); |
1301 | __DSB(); |
1302 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1302 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1303 | __DSB(); |
1303 | __DSB(); |
1304 | } |
1304 | } |
1305 | } |
1305 | } |
1306 | 1306 | ||
1307 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
1307 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
1308 | __DSB(); |
1308 | __DSB(); |
1309 | 1309 | ||
1310 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
1310 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
1311 | { |
1311 | { |
1312 | /* Get tick */ |
1312 | /* Get tick */ |
1313 | tickstart = HAL_GetTick(); |
1313 | tickstart = HAL_GetTick(); |
1314 | 1314 | ||
1315 | /* Read status until NAND is ready */ |
1315 | /* Read status until NAND is ready */ |
1316 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1316 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1317 | { |
1317 | { |
1318 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1318 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1319 | { |
1319 | { |
1320 | /* Update the NAND controller state */ |
1320 | /* Update the NAND controller state */ |
1321 | hnand->State = HAL_NAND_STATE_ERROR; |
1321 | hnand->State = HAL_NAND_STATE_ERROR; |
1322 | 1322 | ||
1323 | /* Process unlocked */ |
1323 | /* Process unlocked */ |
1324 | __HAL_UNLOCK(hnand); |
1324 | __HAL_UNLOCK(hnand); |
1325 | 1325 | ||
1326 | return HAL_TIMEOUT; |
1326 | return HAL_TIMEOUT; |
1327 | } |
1327 | } |
1328 | } |
1328 | } |
1329 | 1329 | ||
1330 | /* Go back to read mode */ |
1330 | /* Go back to read mode */ |
1331 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
1331 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
1332 | __DSB(); |
1332 | __DSB(); |
1333 | } |
1333 | } |
1334 | 1334 | ||
1335 | /* Get Data into Buffer */ |
1335 | /* Get Data into Buffer */ |
1336 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1336 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1337 | { |
1337 | { |
1338 | *buff = *(uint8_t *)deviceaddress; |
1338 | *buff = *(uint8_t *)deviceaddress; |
1339 | buff++; |
1339 | buff++; |
1340 | } |
1340 | } |
1341 | 1341 | ||
1342 | /* Increment read spare areas number */ |
1342 | /* Increment read spare areas number */ |
1343 | numsparearearead++; |
1343 | numsparearearead++; |
1344 | 1344 | ||
1345 | /* Decrement spare areas to read */ |
1345 | /* Decrement spare areas to read */ |
1346 | nbspare--; |
1346 | nbspare--; |
1347 | 1347 | ||
1348 | /* Increment the NAND address */ |
1348 | /* Increment the NAND address */ |
1349 | nandaddress = (uint32_t)(nandaddress + 1U); |
1349 | nandaddress = (uint32_t)(nandaddress + 1U); |
1350 | } |
1350 | } |
1351 | 1351 | ||
1352 | /* Update the NAND controller state */ |
1352 | /* Update the NAND controller state */ |
1353 | hnand->State = HAL_NAND_STATE_READY; |
1353 | hnand->State = HAL_NAND_STATE_READY; |
1354 | 1354 | ||
1355 | /* Process unlocked */ |
1355 | /* Process unlocked */ |
1356 | __HAL_UNLOCK(hnand); |
1356 | __HAL_UNLOCK(hnand); |
1357 | } |
1357 | } |
1358 | else |
1358 | else |
1359 | { |
1359 | { |
1360 | return HAL_ERROR; |
1360 | return HAL_ERROR; |
1361 | } |
1361 | } |
1362 | 1362 | ||
1363 | return HAL_OK; |
1363 | return HAL_OK; |
1364 | } |
1364 | } |
1365 | 1365 | ||
1366 | /** |
1366 | /** |
1367 | * @brief Read Spare area(s) from NAND memory (16-bits addressing) |
1367 | * @brief Read Spare area(s) from NAND memory (16-bits addressing) |
1368 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1368 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1369 | * the configuration information for NAND module. |
1369 | * the configuration information for NAND module. |
1370 | * @param pAddress pointer to NAND address structure |
1370 | * @param pAddress pointer to NAND address structure |
1371 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
1371 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
1372 | * @param NumSpareAreaToRead Number of spare area to read |
1372 | * @param NumSpareAreaToRead Number of spare area to read |
1373 | * @retval HAL status |
1373 | * @retval HAL status |
1374 | */ |
1374 | */ |
1375 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
1375 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
1376 | uint16_t *pBuffer, uint32_t NumSpareAreaToRead) |
1376 | uint16_t *pBuffer, uint32_t NumSpareAreaToRead) |
1377 | { |
1377 | { |
1378 | uint32_t index; |
1378 | uint32_t index; |
1379 | uint32_t tickstart; |
1379 | uint32_t tickstart; |
1380 | uint32_t deviceaddress; |
1380 | uint32_t deviceaddress; |
1381 | uint32_t numsparearearead = 0U; |
1381 | uint32_t numsparearearead = 0U; |
1382 | uint32_t nandaddress; |
1382 | uint32_t nandaddress; |
1383 | uint32_t columnaddress; |
1383 | uint32_t columnaddress; |
1384 | uint32_t nbspare = NumSpareAreaToRead; |
1384 | uint32_t nbspare = NumSpareAreaToRead; |
1385 | uint16_t *buff = pBuffer; |
1385 | uint16_t *buff = pBuffer; |
1386 | 1386 | ||
1387 | /* Check the NAND controller state */ |
1387 | /* Check the NAND controller state */ |
1388 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1388 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1389 | { |
1389 | { |
1390 | return HAL_BUSY; |
1390 | return HAL_BUSY; |
1391 | } |
1391 | } |
1392 | else if (hnand->State == HAL_NAND_STATE_READY) |
1392 | else if (hnand->State == HAL_NAND_STATE_READY) |
1393 | { |
1393 | { |
1394 | /* Process Locked */ |
1394 | /* Process Locked */ |
1395 | __HAL_LOCK(hnand); |
1395 | __HAL_LOCK(hnand); |
1396 | 1396 | ||
1397 | /* Update the NAND controller state */ |
1397 | /* Update the NAND controller state */ |
1398 | hnand->State = HAL_NAND_STATE_BUSY; |
1398 | hnand->State = HAL_NAND_STATE_BUSY; |
1399 | 1399 | ||
1400 | /* Identify the device address */ |
1400 | /* Identify the device address */ |
1401 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1401 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1402 | { |
1402 | { |
1403 | deviceaddress = NAND_DEVICE1; |
1403 | deviceaddress = NAND_DEVICE1; |
1404 | } |
1404 | } |
1405 | else |
1405 | else |
1406 | { |
1406 | { |
1407 | deviceaddress = NAND_DEVICE2; |
1407 | deviceaddress = NAND_DEVICE2; |
1408 | } |
1408 | } |
1409 | 1409 | ||
1410 | /* NAND raw address calculation */ |
1410 | /* NAND raw address calculation */ |
1411 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1411 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1412 | 1412 | ||
1413 | /* Column in page address */ |
1413 | /* Column in page address */ |
1414 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
1414 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
1415 | 1415 | ||
1416 | /* Spare area(s) read loop */ |
1416 | /* Spare area(s) read loop */ |
1417 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1417 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1418 | { |
1418 | { |
1419 | /* Cards with page size <= 512 bytes */ |
1419 | /* Cards with page size <= 512 bytes */ |
1420 | if ((hnand->Config.PageSize) <= 512U) |
1420 | if ((hnand->Config.PageSize) <= 512U) |
1421 | { |
1421 | { |
1422 | /* Send read spare area command sequence */ |
1422 | /* Send read spare area command sequence */ |
1423 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1423 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1424 | __DSB(); |
1424 | __DSB(); |
1425 | 1425 | ||
1426 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1426 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1427 | { |
1427 | { |
1428 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1428 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1429 | __DSB(); |
1429 | __DSB(); |
1430 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1430 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1431 | __DSB(); |
1431 | __DSB(); |
1432 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1432 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1433 | __DSB(); |
1433 | __DSB(); |
1434 | } |
1434 | } |
1435 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1435 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1436 | { |
1436 | { |
1437 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1437 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1438 | __DSB(); |
1438 | __DSB(); |
1439 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1439 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1440 | __DSB(); |
1440 | __DSB(); |
1441 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1441 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1442 | __DSB(); |
1442 | __DSB(); |
1443 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1443 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1444 | __DSB(); |
1444 | __DSB(); |
1445 | } |
1445 | } |
1446 | } |
1446 | } |
1447 | else /* (hnand->Config.PageSize) > 512 */ |
1447 | else /* (hnand->Config.PageSize) > 512 */ |
1448 | { |
1448 | { |
1449 | /* Send read spare area command sequence */ |
1449 | /* Send read spare area command sequence */ |
1450 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1450 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1451 | __DSB(); |
1451 | __DSB(); |
1452 | 1452 | ||
1453 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1453 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1454 | { |
1454 | { |
1455 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1455 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1456 | __DSB(); |
1456 | __DSB(); |
1457 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1457 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1458 | __DSB(); |
1458 | __DSB(); |
1459 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1459 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1460 | __DSB(); |
1460 | __DSB(); |
1461 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1461 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1462 | __DSB(); |
1462 | __DSB(); |
1463 | } |
1463 | } |
1464 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1464 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1465 | { |
1465 | { |
1466 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1466 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1467 | __DSB(); |
1467 | __DSB(); |
1468 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1468 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1469 | __DSB(); |
1469 | __DSB(); |
1470 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1470 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1471 | __DSB(); |
1471 | __DSB(); |
1472 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1472 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1473 | __DSB(); |
1473 | __DSB(); |
1474 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1474 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1475 | __DSB(); |
1475 | __DSB(); |
1476 | } |
1476 | } |
1477 | } |
1477 | } |
1478 | 1478 | ||
1479 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
1479 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
1480 | __DSB(); |
1480 | __DSB(); |
1481 | 1481 | ||
1482 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
1482 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
1483 | { |
1483 | { |
1484 | /* Get tick */ |
1484 | /* Get tick */ |
1485 | tickstart = HAL_GetTick(); |
1485 | tickstart = HAL_GetTick(); |
1486 | 1486 | ||
1487 | /* Read status until NAND is ready */ |
1487 | /* Read status until NAND is ready */ |
1488 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1488 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1489 | { |
1489 | { |
1490 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1490 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1491 | { |
1491 | { |
1492 | /* Update the NAND controller state */ |
1492 | /* Update the NAND controller state */ |
1493 | hnand->State = HAL_NAND_STATE_ERROR; |
1493 | hnand->State = HAL_NAND_STATE_ERROR; |
1494 | 1494 | ||
1495 | /* Process unlocked */ |
1495 | /* Process unlocked */ |
1496 | __HAL_UNLOCK(hnand); |
1496 | __HAL_UNLOCK(hnand); |
1497 | 1497 | ||
1498 | return HAL_TIMEOUT; |
1498 | return HAL_TIMEOUT; |
1499 | } |
1499 | } |
1500 | } |
1500 | } |
1501 | 1501 | ||
1502 | /* Go back to read mode */ |
1502 | /* Go back to read mode */ |
1503 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
1503 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
1504 | __DSB(); |
1504 | __DSB(); |
1505 | } |
1505 | } |
1506 | 1506 | ||
1507 | /* Get Data into Buffer */ |
1507 | /* Get Data into Buffer */ |
1508 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1508 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1509 | { |
1509 | { |
1510 | *buff = *(uint16_t *)deviceaddress; |
1510 | *buff = *(uint16_t *)deviceaddress; |
1511 | buff++; |
1511 | buff++; |
1512 | } |
1512 | } |
1513 | 1513 | ||
1514 | /* Increment read spare areas number */ |
1514 | /* Increment read spare areas number */ |
1515 | numsparearearead++; |
1515 | numsparearearead++; |
1516 | 1516 | ||
1517 | /* Decrement spare areas to read */ |
1517 | /* Decrement spare areas to read */ |
1518 | nbspare--; |
1518 | nbspare--; |
1519 | 1519 | ||
1520 | /* Increment the NAND address */ |
1520 | /* Increment the NAND address */ |
1521 | nandaddress = (uint32_t)(nandaddress + 1U); |
1521 | nandaddress = (uint32_t)(nandaddress + 1U); |
1522 | } |
1522 | } |
1523 | 1523 | ||
1524 | /* Update the NAND controller state */ |
1524 | /* Update the NAND controller state */ |
1525 | hnand->State = HAL_NAND_STATE_READY; |
1525 | hnand->State = HAL_NAND_STATE_READY; |
1526 | 1526 | ||
1527 | /* Process unlocked */ |
1527 | /* Process unlocked */ |
1528 | __HAL_UNLOCK(hnand); |
1528 | __HAL_UNLOCK(hnand); |
1529 | } |
1529 | } |
1530 | else |
1530 | else |
1531 | { |
1531 | { |
1532 | return HAL_ERROR; |
1532 | return HAL_ERROR; |
1533 | } |
1533 | } |
1534 | 1534 | ||
1535 | return HAL_OK; |
1535 | return HAL_OK; |
1536 | } |
1536 | } |
1537 | 1537 | ||
1538 | /** |
1538 | /** |
1539 | * @brief Write Spare area(s) to NAND memory (8-bits addressing) |
1539 | * @brief Write Spare area(s) to NAND memory (8-bits addressing) |
1540 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1540 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1541 | * the configuration information for NAND module. |
1541 | * the configuration information for NAND module. |
1542 | * @param pAddress pointer to NAND address structure |
1542 | * @param pAddress pointer to NAND address structure |
1543 | * @param pBuffer pointer to source buffer to write |
1543 | * @param pBuffer pointer to source buffer to write |
1544 | * @param NumSpareAreaTowrite number of spare areas to write to block |
1544 | * @param NumSpareAreaTowrite number of spare areas to write to block |
1545 | * @retval HAL status |
1545 | * @retval HAL status |
1546 | */ |
1546 | */ |
1547 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
1547 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
1548 | uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) |
1548 | const uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) |
1549 | { |
1549 | { |
1550 | uint32_t index; |
1550 | uint32_t index; |
1551 | uint32_t tickstart; |
1551 | uint32_t tickstart; |
1552 | uint32_t deviceaddress; |
1552 | uint32_t deviceaddress; |
1553 | uint32_t numspareareawritten = 0U; |
1553 | uint32_t numspareareawritten = 0U; |
1554 | uint32_t nandaddress; |
1554 | uint32_t nandaddress; |
1555 | uint32_t columnaddress; |
1555 | uint32_t columnaddress; |
1556 | uint32_t nbspare = NumSpareAreaTowrite; |
1556 | uint32_t nbspare = NumSpareAreaTowrite; |
1557 | uint8_t *buff = pBuffer; |
1557 | const uint8_t *buff = pBuffer; |
1558 | 1558 | ||
1559 | /* Check the NAND controller state */ |
1559 | /* Check the NAND controller state */ |
1560 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1560 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1561 | { |
1561 | { |
1562 | return HAL_BUSY; |
1562 | return HAL_BUSY; |
1563 | } |
1563 | } |
1564 | else if (hnand->State == HAL_NAND_STATE_READY) |
1564 | else if (hnand->State == HAL_NAND_STATE_READY) |
1565 | { |
1565 | { |
1566 | /* Process Locked */ |
1566 | /* Process Locked */ |
1567 | __HAL_LOCK(hnand); |
1567 | __HAL_LOCK(hnand); |
1568 | 1568 | ||
1569 | /* Update the NAND controller state */ |
1569 | /* Update the NAND controller state */ |
1570 | hnand->State = HAL_NAND_STATE_BUSY; |
1570 | hnand->State = HAL_NAND_STATE_BUSY; |
1571 | 1571 | ||
1572 | /* Identify the device address */ |
1572 | /* Identify the device address */ |
1573 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1573 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1574 | { |
1574 | { |
1575 | deviceaddress = NAND_DEVICE1; |
1575 | deviceaddress = NAND_DEVICE1; |
1576 | } |
1576 | } |
1577 | else |
1577 | else |
1578 | { |
1578 | { |
1579 | deviceaddress = NAND_DEVICE2; |
1579 | deviceaddress = NAND_DEVICE2; |
1580 | } |
1580 | } |
1581 | 1581 | ||
1582 | /* Page address calculation */ |
1582 | /* Page address calculation */ |
1583 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1583 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1584 | 1584 | ||
1585 | /* Column in page address */ |
1585 | /* Column in page address */ |
1586 | columnaddress = COLUMN_ADDRESS(hnand); |
1586 | columnaddress = COLUMN_ADDRESS(hnand); |
1587 | 1587 | ||
1588 | /* Spare area(s) write loop */ |
1588 | /* Spare area(s) write loop */ |
1589 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1589 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1590 | { |
1590 | { |
1591 | /* Cards with page size <= 512 bytes */ |
1591 | /* Cards with page size <= 512 bytes */ |
1592 | if ((hnand->Config.PageSize) <= 512U) |
1592 | if ((hnand->Config.PageSize) <= 512U) |
1593 | { |
1593 | { |
1594 | /* Send write Spare area command sequence */ |
1594 | /* Send write Spare area command sequence */ |
1595 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1595 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1596 | __DSB(); |
1596 | __DSB(); |
1597 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1597 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1598 | __DSB(); |
1598 | __DSB(); |
1599 | 1599 | ||
1600 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1600 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1601 | { |
1601 | { |
1602 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1602 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1603 | __DSB(); |
1603 | __DSB(); |
1604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1605 | __DSB(); |
1605 | __DSB(); |
1606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1607 | __DSB(); |
1607 | __DSB(); |
1608 | } |
1608 | } |
1609 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1609 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1610 | { |
1610 | { |
1611 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1611 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1612 | __DSB(); |
1612 | __DSB(); |
1613 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1613 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1614 | __DSB(); |
1614 | __DSB(); |
1615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1616 | __DSB(); |
1616 | __DSB(); |
1617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1618 | __DSB(); |
1618 | __DSB(); |
1619 | } |
1619 | } |
1620 | } |
1620 | } |
1621 | else /* (hnand->Config.PageSize) > 512 */ |
1621 | else /* (hnand->Config.PageSize) > 512 */ |
1622 | { |
1622 | { |
1623 | /* Send write Spare area command sequence */ |
1623 | /* Send write Spare area command sequence */ |
1624 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1624 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1625 | __DSB(); |
1625 | __DSB(); |
1626 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1626 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1627 | __DSB(); |
1627 | __DSB(); |
1628 | 1628 | ||
1629 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1629 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1630 | { |
1630 | { |
1631 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1631 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1632 | __DSB(); |
1632 | __DSB(); |
1633 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1633 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1634 | __DSB(); |
1634 | __DSB(); |
1635 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1635 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1636 | __DSB(); |
1636 | __DSB(); |
1637 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1637 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1638 | __DSB(); |
1638 | __DSB(); |
1639 | } |
1639 | } |
1640 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1640 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1641 | { |
1641 | { |
1642 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1642 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1643 | __DSB(); |
1643 | __DSB(); |
1644 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1644 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1645 | __DSB(); |
1645 | __DSB(); |
1646 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1646 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1647 | __DSB(); |
1647 | __DSB(); |
1648 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1648 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1649 | __DSB(); |
1649 | __DSB(); |
1650 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1650 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1651 | __DSB(); |
1651 | __DSB(); |
1652 | } |
1652 | } |
1653 | } |
1653 | } |
1654 | 1654 | ||
1655 | /* Write data to memory */ |
1655 | /* Write data to memory */ |
1656 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1656 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1657 | { |
1657 | { |
1658 | *(__IO uint8_t *)deviceaddress = *buff; |
1658 | *(__IO uint8_t *)deviceaddress = *buff; |
1659 | buff++; |
1659 | buff++; |
1660 | __DSB(); |
1660 | __DSB(); |
1661 | } |
1661 | } |
1662 | 1662 | ||
1663 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1663 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1664 | __DSB(); |
1664 | __DSB(); |
1665 | 1665 | ||
1666 | /* Get tick */ |
1666 | /* Get tick */ |
1667 | tickstart = HAL_GetTick(); |
1667 | tickstart = HAL_GetTick(); |
1668 | 1668 | ||
1669 | /* Read status until NAND is ready */ |
1669 | /* Read status until NAND is ready */ |
1670 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1670 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1671 | { |
1671 | { |
1672 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1672 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1673 | { |
1673 | { |
1674 | /* Update the NAND controller state */ |
1674 | /* Update the NAND controller state */ |
1675 | hnand->State = HAL_NAND_STATE_ERROR; |
1675 | hnand->State = HAL_NAND_STATE_ERROR; |
1676 | 1676 | ||
1677 | /* Process unlocked */ |
1677 | /* Process unlocked */ |
1678 | __HAL_UNLOCK(hnand); |
1678 | __HAL_UNLOCK(hnand); |
1679 | 1679 | ||
1680 | return HAL_TIMEOUT; |
1680 | return HAL_TIMEOUT; |
1681 | } |
1681 | } |
1682 | } |
1682 | } |
1683 | 1683 | ||
1684 | /* Increment written spare areas number */ |
1684 | /* Increment written spare areas number */ |
1685 | numspareareawritten++; |
1685 | numspareareawritten++; |
1686 | 1686 | ||
1687 | /* Decrement spare areas to write */ |
1687 | /* Decrement spare areas to write */ |
1688 | nbspare--; |
1688 | nbspare--; |
1689 | 1689 | ||
1690 | /* Increment the NAND address */ |
1690 | /* Increment the NAND address */ |
1691 | nandaddress = (uint32_t)(nandaddress + 1U); |
1691 | nandaddress = (uint32_t)(nandaddress + 1U); |
1692 | } |
1692 | } |
1693 | 1693 | ||
1694 | /* Update the NAND controller state */ |
1694 | /* Update the NAND controller state */ |
1695 | hnand->State = HAL_NAND_STATE_READY; |
1695 | hnand->State = HAL_NAND_STATE_READY; |
1696 | 1696 | ||
1697 | /* Process unlocked */ |
1697 | /* Process unlocked */ |
1698 | __HAL_UNLOCK(hnand); |
1698 | __HAL_UNLOCK(hnand); |
1699 | } |
1699 | } |
1700 | else |
1700 | else |
1701 | { |
1701 | { |
1702 | return HAL_ERROR; |
1702 | return HAL_ERROR; |
1703 | } |
1703 | } |
1704 | 1704 | ||
1705 | return HAL_OK; |
1705 | return HAL_OK; |
1706 | } |
1706 | } |
1707 | 1707 | ||
1708 | /** |
1708 | /** |
1709 | * @brief Write Spare area(s) to NAND memory (16-bits addressing) |
1709 | * @brief Write Spare area(s) to NAND memory (16-bits addressing) |
1710 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1710 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1711 | * the configuration information for NAND module. |
1711 | * the configuration information for NAND module. |
1712 | * @param pAddress pointer to NAND address structure |
1712 | * @param pAddress pointer to NAND address structure |
1713 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
1713 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
1714 | * @param NumSpareAreaTowrite number of spare areas to write to block |
1714 | * @param NumSpareAreaTowrite number of spare areas to write to block |
1715 | * @retval HAL status |
1715 | * @retval HAL status |
1716 | */ |
1716 | */ |
1717 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, |
1717 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
1718 | uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) |
1718 | const uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) |
1719 | { |
1719 | { |
1720 | uint32_t index; |
1720 | uint32_t index; |
1721 | uint32_t tickstart; |
1721 | uint32_t tickstart; |
1722 | uint32_t deviceaddress; |
1722 | uint32_t deviceaddress; |
1723 | uint32_t numspareareawritten = 0U; |
1723 | uint32_t numspareareawritten = 0U; |
1724 | uint32_t nandaddress; |
1724 | uint32_t nandaddress; |
1725 | uint32_t columnaddress; |
1725 | uint32_t columnaddress; |
1726 | uint32_t nbspare = NumSpareAreaTowrite; |
1726 | uint32_t nbspare = NumSpareAreaTowrite; |
1727 | uint16_t *buff = pBuffer; |
1727 | const uint16_t *buff = pBuffer; |
1728 | 1728 | ||
1729 | /* Check the NAND controller state */ |
1729 | /* Check the NAND controller state */ |
1730 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1730 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1731 | { |
1731 | { |
1732 | return HAL_BUSY; |
1732 | return HAL_BUSY; |
1733 | } |
1733 | } |
1734 | else if (hnand->State == HAL_NAND_STATE_READY) |
1734 | else if (hnand->State == HAL_NAND_STATE_READY) |
1735 | { |
1735 | { |
1736 | /* Process Locked */ |
1736 | /* Process Locked */ |
1737 | __HAL_LOCK(hnand); |
1737 | __HAL_LOCK(hnand); |
1738 | 1738 | ||
1739 | /* Update the NAND controller state */ |
1739 | /* Update the NAND controller state */ |
1740 | hnand->State = HAL_NAND_STATE_BUSY; |
1740 | hnand->State = HAL_NAND_STATE_BUSY; |
1741 | 1741 | ||
1742 | /* Identify the device address */ |
1742 | /* Identify the device address */ |
1743 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1743 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1744 | { |
1744 | { |
1745 | deviceaddress = NAND_DEVICE1; |
1745 | deviceaddress = NAND_DEVICE1; |
1746 | } |
1746 | } |
1747 | else |
1747 | else |
1748 | { |
1748 | { |
1749 | deviceaddress = NAND_DEVICE2; |
1749 | deviceaddress = NAND_DEVICE2; |
1750 | } |
1750 | } |
1751 | 1751 | ||
1752 | /* NAND raw address calculation */ |
1752 | /* NAND raw address calculation */ |
1753 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1753 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
1754 | 1754 | ||
1755 | /* Column in page address */ |
1755 | /* Column in page address */ |
1756 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
1756 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
1757 | 1757 | ||
1758 | /* Spare area(s) write loop */ |
1758 | /* Spare area(s) write loop */ |
1759 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1759 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
1760 | { |
1760 | { |
1761 | /* Cards with page size <= 512 bytes */ |
1761 | /* Cards with page size <= 512 bytes */ |
1762 | if ((hnand->Config.PageSize) <= 512U) |
1762 | if ((hnand->Config.PageSize) <= 512U) |
1763 | { |
1763 | { |
1764 | /* Send write Spare area command sequence */ |
1764 | /* Send write Spare area command sequence */ |
1765 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1765 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
1766 | __DSB(); |
1766 | __DSB(); |
1767 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1767 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1768 | __DSB(); |
1768 | __DSB(); |
1769 | 1769 | ||
1770 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1770 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1771 | { |
1771 | { |
1772 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1772 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1773 | __DSB(); |
1773 | __DSB(); |
1774 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1774 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1775 | __DSB(); |
1775 | __DSB(); |
1776 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1776 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1777 | __DSB(); |
1777 | __DSB(); |
1778 | } |
1778 | } |
1779 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1779 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1780 | { |
1780 | { |
1781 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1781 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
1782 | __DSB(); |
1782 | __DSB(); |
1783 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1783 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1784 | __DSB(); |
1784 | __DSB(); |
1785 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1785 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1786 | __DSB(); |
1786 | __DSB(); |
1787 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1787 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1788 | __DSB(); |
1788 | __DSB(); |
1789 | } |
1789 | } |
1790 | } |
1790 | } |
1791 | else /* (hnand->Config.PageSize) > 512 */ |
1791 | else /* (hnand->Config.PageSize) > 512 */ |
1792 | { |
1792 | { |
1793 | /* Send write Spare area command sequence */ |
1793 | /* Send write Spare area command sequence */ |
1794 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1794 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
1795 | __DSB(); |
1795 | __DSB(); |
1796 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1796 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
1797 | __DSB(); |
1797 | __DSB(); |
1798 | 1798 | ||
1799 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1799 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
1800 | { |
1800 | { |
1801 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1801 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1802 | __DSB(); |
1802 | __DSB(); |
1803 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1803 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1804 | __DSB(); |
1804 | __DSB(); |
1805 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1805 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1806 | __DSB(); |
1806 | __DSB(); |
1807 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1807 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1808 | __DSB(); |
1808 | __DSB(); |
1809 | } |
1809 | } |
1810 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1810 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
1811 | { |
1811 | { |
1812 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1812 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
1813 | __DSB(); |
1813 | __DSB(); |
1814 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1814 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
1815 | __DSB(); |
1815 | __DSB(); |
1816 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1816 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
1817 | __DSB(); |
1817 | __DSB(); |
1818 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1818 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
1819 | __DSB(); |
1819 | __DSB(); |
1820 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1820 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
1821 | __DSB(); |
1821 | __DSB(); |
1822 | } |
1822 | } |
1823 | } |
1823 | } |
1824 | 1824 | ||
1825 | /* Write data to memory */ |
1825 | /* Write data to memory */ |
1826 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1826 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
1827 | { |
1827 | { |
1828 | *(__IO uint16_t *)deviceaddress = *buff; |
1828 | *(__IO uint16_t *)deviceaddress = *buff; |
1829 | buff++; |
1829 | buff++; |
1830 | __DSB(); |
1830 | __DSB(); |
1831 | } |
1831 | } |
1832 | 1832 | ||
1833 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1833 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
1834 | __DSB(); |
1834 | __DSB(); |
1835 | 1835 | ||
1836 | /* Get tick */ |
1836 | /* Get tick */ |
1837 | tickstart = HAL_GetTick(); |
1837 | tickstart = HAL_GetTick(); |
1838 | 1838 | ||
1839 | /* Read status until NAND is ready */ |
1839 | /* Read status until NAND is ready */ |
1840 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1840 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
1841 | { |
1841 | { |
1842 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1842 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
1843 | { |
1843 | { |
1844 | /* Update the NAND controller state */ |
1844 | /* Update the NAND controller state */ |
1845 | hnand->State = HAL_NAND_STATE_ERROR; |
1845 | hnand->State = HAL_NAND_STATE_ERROR; |
1846 | 1846 | ||
1847 | /* Process unlocked */ |
1847 | /* Process unlocked */ |
1848 | __HAL_UNLOCK(hnand); |
1848 | __HAL_UNLOCK(hnand); |
1849 | 1849 | ||
1850 | return HAL_TIMEOUT; |
1850 | return HAL_TIMEOUT; |
1851 | } |
1851 | } |
1852 | } |
1852 | } |
1853 | 1853 | ||
1854 | /* Increment written spare areas number */ |
1854 | /* Increment written spare areas number */ |
1855 | numspareareawritten++; |
1855 | numspareareawritten++; |
1856 | 1856 | ||
1857 | /* Decrement spare areas to write */ |
1857 | /* Decrement spare areas to write */ |
1858 | nbspare--; |
1858 | nbspare--; |
1859 | 1859 | ||
1860 | /* Increment the NAND address */ |
1860 | /* Increment the NAND address */ |
1861 | nandaddress = (uint32_t)(nandaddress + 1U); |
1861 | nandaddress = (uint32_t)(nandaddress + 1U); |
1862 | } |
1862 | } |
1863 | 1863 | ||
1864 | /* Update the NAND controller state */ |
1864 | /* Update the NAND controller state */ |
1865 | hnand->State = HAL_NAND_STATE_READY; |
1865 | hnand->State = HAL_NAND_STATE_READY; |
1866 | 1866 | ||
1867 | /* Process unlocked */ |
1867 | /* Process unlocked */ |
1868 | __HAL_UNLOCK(hnand); |
1868 | __HAL_UNLOCK(hnand); |
1869 | } |
1869 | } |
1870 | else |
1870 | else |
1871 | { |
1871 | { |
1872 | return HAL_ERROR; |
1872 | return HAL_ERROR; |
1873 | } |
1873 | } |
1874 | 1874 | ||
1875 | return HAL_OK; |
1875 | return HAL_OK; |
1876 | } |
1876 | } |
1877 | 1877 | ||
1878 | /** |
1878 | /** |
1879 | * @brief NAND memory Block erase |
1879 | * @brief NAND memory Block erase |
1880 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1880 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1881 | * the configuration information for NAND module. |
1881 | * the configuration information for NAND module. |
1882 | * @param pAddress pointer to NAND address structure |
1882 | * @param pAddress pointer to NAND address structure |
1883 | * @retval HAL status |
1883 | * @retval HAL status |
1884 | */ |
1884 | */ |
1885 | HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
1885 | HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress) |
1886 | { |
1886 | { |
1887 | uint32_t deviceaddress; |
1887 | uint32_t deviceaddress; |
1888 | 1888 | ||
1889 | /* Check the NAND controller state */ |
1889 | /* Check the NAND controller state */ |
1890 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1890 | if (hnand->State == HAL_NAND_STATE_BUSY) |
1891 | { |
1891 | { |
1892 | return HAL_BUSY; |
1892 | return HAL_BUSY; |
1893 | } |
1893 | } |
1894 | else if (hnand->State == HAL_NAND_STATE_READY) |
1894 | else if (hnand->State == HAL_NAND_STATE_READY) |
1895 | { |
1895 | { |
1896 | /* Process Locked */ |
1896 | /* Process Locked */ |
1897 | __HAL_LOCK(hnand); |
1897 | __HAL_LOCK(hnand); |
1898 | 1898 | ||
1899 | /* Update the NAND controller state */ |
1899 | /* Update the NAND controller state */ |
1900 | hnand->State = HAL_NAND_STATE_BUSY; |
1900 | hnand->State = HAL_NAND_STATE_BUSY; |
1901 | 1901 | ||
1902 | /* Identify the device address */ |
1902 | /* Identify the device address */ |
1903 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1903 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
1904 | { |
1904 | { |
1905 | deviceaddress = NAND_DEVICE1; |
1905 | deviceaddress = NAND_DEVICE1; |
1906 | } |
1906 | } |
1907 | else |
1907 | else |
1908 | { |
1908 | { |
1909 | deviceaddress = NAND_DEVICE2; |
1909 | deviceaddress = NAND_DEVICE2; |
1910 | } |
1910 | } |
1911 | 1911 | ||
1912 | /* Send Erase block command sequence */ |
1912 | /* Send Erase block command sequence */ |
1913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; |
1913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; |
1914 | __DSB(); |
1914 | __DSB(); |
1915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1916 | __DSB(); |
1916 | __DSB(); |
1917 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1917 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1918 | __DSB(); |
1918 | __DSB(); |
1919 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1919 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
1920 | __DSB(); |
1920 | __DSB(); |
1921 | 1921 | ||
1922 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; |
1922 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; |
1923 | __DSB(); |
1923 | __DSB(); |
1924 | 1924 | ||
1925 | /* Update the NAND controller state */ |
1925 | /* Update the NAND controller state */ |
1926 | hnand->State = HAL_NAND_STATE_READY; |
1926 | hnand->State = HAL_NAND_STATE_READY; |
1927 | 1927 | ||
1928 | /* Process unlocked */ |
1928 | /* Process unlocked */ |
1929 | __HAL_UNLOCK(hnand); |
1929 | __HAL_UNLOCK(hnand); |
1930 | } |
1930 | } |
1931 | else |
1931 | else |
1932 | { |
1932 | { |
1933 | return HAL_ERROR; |
1933 | return HAL_ERROR; |
1934 | } |
1934 | } |
1935 | 1935 | ||
1936 | return HAL_OK; |
1936 | return HAL_OK; |
1937 | } |
1937 | } |
1938 | 1938 | ||
1939 | /** |
1939 | /** |
1940 | * @brief Increment the NAND memory address |
1940 | * @brief Increment the NAND memory address |
1941 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1941 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
1942 | * the configuration information for NAND module. |
1942 | * the configuration information for NAND module. |
1943 | * @param pAddress pointer to NAND address structure |
1943 | * @param pAddress pointer to NAND address structure |
1944 | * @retval The new status of the increment address operation. It can be: |
1944 | * @retval The new status of the increment address operation. It can be: |
1945 | * - NAND_VALID_ADDRESS: When the new address is valid address |
1945 | * - NAND_VALID_ADDRESS: When the new address is valid address |
1946 | * - NAND_INVALID_ADDRESS: When the new address is invalid address |
1946 | * - NAND_INVALID_ADDRESS: When the new address is invalid address |
1947 | */ |
1947 | */ |
1948 | uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
1948 | uint32_t HAL_NAND_Address_Inc(const NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
1949 | { |
1949 | { |
1950 | uint32_t status = NAND_VALID_ADDRESS; |
1950 | uint32_t status = NAND_VALID_ADDRESS; |
1951 | 1951 | ||
1952 | /* Increment page address */ |
1952 | /* Increment page address */ |
1953 | pAddress->Page++; |
1953 | pAddress->Page++; |
1954 | 1954 | ||
1955 | /* Check NAND address is valid */ |
1955 | /* Check NAND address is valid */ |
1956 | if (pAddress->Page == hnand->Config.BlockSize) |
1956 | if (pAddress->Page == hnand->Config.BlockSize) |
1957 | { |
1957 | { |
1958 | pAddress->Page = 0; |
1958 | pAddress->Page = 0; |
1959 | pAddress->Block++; |
1959 | pAddress->Block++; |
1960 | 1960 | ||
1961 | if (pAddress->Block == hnand->Config.PlaneSize) |
1961 | if (pAddress->Block == hnand->Config.PlaneSize) |
1962 | { |
1962 | { |
1963 | pAddress->Block = 0; |
1963 | pAddress->Block = 0; |
1964 | pAddress->Plane++; |
1964 | pAddress->Plane++; |
1965 | 1965 | ||
1966 | if (pAddress->Plane == (hnand->Config.PlaneNbr)) |
1966 | if (pAddress->Plane == (hnand->Config.PlaneNbr)) |
1967 | { |
1967 | { |
1968 | status = NAND_INVALID_ADDRESS; |
1968 | status = NAND_INVALID_ADDRESS; |
1969 | } |
1969 | } |
1970 | } |
1970 | } |
1971 | } |
1971 | } |
1972 | 1972 | ||
1973 | return (status); |
1973 | return (status); |
1974 | } |
1974 | } |
1975 | 1975 | ||
1976 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
1976 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
1977 | /** |
1977 | /** |
1978 | * @brief Register a User NAND Callback |
1978 | * @brief Register a User NAND Callback |
1979 | * To be used instead of the weak (surcharged) predefined callback |
1979 | * To be used to override the weak predefined callback |
1980 | * @param hnand : NAND handle |
1980 | * @param hnand : NAND handle |
1981 | * @param CallbackId : ID of the callback to be registered |
1981 | * @param CallbackId : ID of the callback to be registered |
1982 | * This parameter can be one of the following values: |
1982 | * This parameter can be one of the following values: |
1983 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
1983 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
1984 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
1984 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
1985 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
1985 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
1986 | * @param pCallback : pointer to the Callback function |
1986 | * @param pCallback : pointer to the Callback function |
1987 | * @retval status |
1987 | * @retval status |
1988 | */ |
1988 | */ |
1989 | HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId, |
1989 | HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId, |
1990 | pNAND_CallbackTypeDef pCallback) |
1990 | pNAND_CallbackTypeDef pCallback) |
1991 | { |
1991 | { |
1992 | HAL_StatusTypeDef status = HAL_OK; |
1992 | HAL_StatusTypeDef status = HAL_OK; |
1993 | 1993 | ||
1994 | if (pCallback == NULL) |
1994 | if (pCallback == NULL) |
1995 | { |
1995 | { |
1996 | return HAL_ERROR; |
1996 | return HAL_ERROR; |
1997 | } |
1997 | } |
1998 | 1998 | ||
1999 | /* Process locked */ |
1999 | if (hnand->State == HAL_NAND_STATE_READY) |
2000 | __HAL_LOCK(hnand); |
2000 | { |
2001 | 2001 | switch (CallbackId) |
|
2002 | if (hnand->State == HAL_NAND_STATE_READY) |
2002 | { |
2003 | { |
2003 | case HAL_NAND_MSP_INIT_CB_ID : |
2004 | switch (CallbackId) |
2004 | hnand->MspInitCallback = pCallback; |
2005 | { |
2005 | break; |
2006 | case HAL_NAND_MSP_INIT_CB_ID : |
2006 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2007 | hnand->MspInitCallback = pCallback; |
2007 | hnand->MspDeInitCallback = pCallback; |
2008 | break; |
2008 | break; |
2009 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2009 | case HAL_NAND_IT_CB_ID : |
2010 | hnand->MspDeInitCallback = pCallback; |
2010 | hnand->ItCallback = pCallback; |
2011 | break; |
2011 | break; |
2012 | case HAL_NAND_IT_CB_ID : |
2012 | default : |
2013 | hnand->ItCallback = pCallback; |
2013 | /* update return status */ |
2014 | break; |
2014 | status = HAL_ERROR; |
2015 | default : |
2015 | break; |
2016 | /* update return status */ |
2016 | } |
2017 | status = HAL_ERROR; |
2017 | } |
2018 | break; |
2018 | else if (hnand->State == HAL_NAND_STATE_RESET) |
2019 | } |
2019 | { |
2020 | } |
2020 | switch (CallbackId) |
2021 | else if (hnand->State == HAL_NAND_STATE_RESET) |
2021 | { |
2022 | { |
2022 | case HAL_NAND_MSP_INIT_CB_ID : |
2023 | switch (CallbackId) |
2023 | hnand->MspInitCallback = pCallback; |
2024 | { |
2024 | break; |
2025 | case HAL_NAND_MSP_INIT_CB_ID : |
2025 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2026 | hnand->MspInitCallback = pCallback; |
2026 | hnand->MspDeInitCallback = pCallback; |
2027 | break; |
2027 | break; |
2028 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2028 | default : |
2029 | hnand->MspDeInitCallback = pCallback; |
2029 | /* update return status */ |
2030 | break; |
2030 | status = HAL_ERROR; |
2031 | default : |
2031 | break; |
2032 | /* update return status */ |
2032 | } |
2033 | status = HAL_ERROR; |
2033 | } |
2034 | break; |
2034 | else |
2035 | } |
2035 | { |
2036 | } |
2036 | /* update return status */ |
2037 | else |
2037 | status = HAL_ERROR; |
2038 | { |
2038 | } |
2039 | /* update return status */ |
2039 | |
2040 | status = HAL_ERROR; |
2040 | } |
2041 | } |
2041 | |
2042 | 2042 | /** |
|
2043 | /* Release Lock */ |
2043 | * @brief Unregister a User NAND Callback |
2044 | __HAL_UNLOCK(hnand); |
2044 | * NAND Callback is redirected to the weak predefined callback |
2045 | return status; |
2045 | * @param hnand : NAND handle |
2046 | } |
2046 | * @param CallbackId : ID of the callback to be unregistered |
2047 | 2047 | * This parameter can be one of the following values: |
|
2048 | /** |
2048 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
2049 | * @brief Unregister a User NAND Callback |
2049 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
2050 | * NAND Callback is redirected to the weak (surcharged) predefined callback |
2050 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
2051 | * @param hnand : NAND handle |
2051 | * @retval status |
2052 | * @param CallbackId : ID of the callback to be unregistered |
2052 | */ |
2053 | * This parameter can be one of the following values: |
2053 | HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId) |
2054 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
2054 | { |
2055 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
2055 | HAL_StatusTypeDef status = HAL_OK; |
2056 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
2056 | |
2057 | * @retval status |
2057 | if (hnand->State == HAL_NAND_STATE_READY) |
2058 | */ |
2058 | { |
2059 | HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId) |
2059 | switch (CallbackId) |
2060 | { |
2060 | { |
2061 | HAL_StatusTypeDef status = HAL_OK; |
2061 | case HAL_NAND_MSP_INIT_CB_ID : |
2062 | 2062 | hnand->MspInitCallback = HAL_NAND_MspInit; |
|
2063 | /* Process locked */ |
2063 | break; |
2064 | __HAL_LOCK(hnand); |
2064 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2065 | 2065 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
|
2066 | if (hnand->State == HAL_NAND_STATE_READY) |
2066 | break; |
2067 | { |
2067 | case HAL_NAND_IT_CB_ID : |
2068 | switch (CallbackId) |
2068 | hnand->ItCallback = HAL_NAND_ITCallback; |
2069 | { |
2069 | break; |
2070 | case HAL_NAND_MSP_INIT_CB_ID : |
2070 | default : |
2071 | hnand->MspInitCallback = HAL_NAND_MspInit; |
2071 | /* update return status */ |
2072 | break; |
2072 | status = HAL_ERROR; |
2073 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2073 | break; |
2074 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
2074 | } |
2075 | break; |
2075 | } |
2076 | case HAL_NAND_IT_CB_ID : |
2076 | else if (hnand->State == HAL_NAND_STATE_RESET) |
2077 | hnand->ItCallback = HAL_NAND_ITCallback; |
2077 | { |
2078 | break; |
2078 | switch (CallbackId) |
2079 | default : |
2079 | { |
2080 | /* update return status */ |
2080 | case HAL_NAND_MSP_INIT_CB_ID : |
2081 | status = HAL_ERROR; |
2081 | hnand->MspInitCallback = HAL_NAND_MspInit; |
2082 | break; |
2082 | break; |
2083 | } |
2083 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2084 | } |
2084 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
2085 | else if (hnand->State == HAL_NAND_STATE_RESET) |
2085 | break; |
2086 | { |
2086 | default : |
2087 | switch (CallbackId) |
2087 | /* update return status */ |
2088 | { |
2088 | status = HAL_ERROR; |
2089 | case HAL_NAND_MSP_INIT_CB_ID : |
2089 | break; |
2090 | hnand->MspInitCallback = HAL_NAND_MspInit; |
2090 | } |
2091 | break; |
2091 | } |
2092 | case HAL_NAND_MSP_DEINIT_CB_ID : |
2092 | else |
2093 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
2093 | { |
2094 | break; |
2094 | /* update return status */ |
2095 | default : |
2095 | status = HAL_ERROR; |
2096 | /* update return status */ |
2096 | } |
2097 | status = HAL_ERROR; |
2097 | |
2098 | break; |
2098 | } |
2099 | } |
2099 | #endif /* USE_HAL_NAND_REGISTER_CALLBACKS */ |
2100 | } |
2100 | |
2101 | else |
2101 | /** |
2102 | { |
2102 | * @} |
2103 | /* update return status */ |
2103 | */ |
2104 | status = HAL_ERROR; |
2104 | |
2105 | } |
2105 | /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions |
2106 | 2106 | * @brief management functions |
|
2107 | /* Release Lock */ |
2107 | * |
2108 | __HAL_UNLOCK(hnand); |
2108 | @verbatim |
2109 | return status; |
2109 | ============================================================================== |
2110 | } |
2110 | ##### NAND Control functions ##### |
2111 | #endif /* USE_HAL_NAND_REGISTER_CALLBACKS */ |
2111 | ============================================================================== |
2112 | 2112 | [..] |
|
2113 | /** |
2113 | This subsection provides a set of functions allowing to control dynamically |
2114 | * @} |
2114 | the NAND interface. |
2115 | */ |
2115 | |
2116 | 2116 | @endverbatim |
|
2117 | /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions |
2117 | * @{ |
2118 | * @brief management functions |
2118 | */ |
2119 | * |
2119 | |
2120 | @verbatim |
2120 | |
2121 | ============================================================================== |
2121 | /** |
2122 | ##### NAND Control functions ##### |
2122 | * @brief Enables dynamically NAND ECC feature. |
2123 | ============================================================================== |
2123 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2124 | [..] |
2124 | * the configuration information for NAND module. |
2125 | This subsection provides a set of functions allowing to control dynamically |
2125 | * @retval HAL status |
2126 | the NAND interface. |
2126 | */ |
2127 | 2127 | HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) |
|
2128 | @endverbatim |
2128 | { |
2129 | * @{ |
2129 | /* Check the NAND controller state */ |
2130 | */ |
2130 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2131 | 2131 | { |
|
2132 | 2132 | return HAL_BUSY; |
|
2133 | /** |
2133 | } |
2134 | * @brief Enables dynamically NAND ECC feature. |
2134 | else if (hnand->State == HAL_NAND_STATE_READY) |
2135 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2135 | { |
2136 | * the configuration information for NAND module. |
2136 | /* Update the NAND state */ |
2137 | * @retval HAL status |
2137 | hnand->State = HAL_NAND_STATE_BUSY; |
2138 | */ |
2138 | |
2139 | HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) |
2139 | /* Enable ECC feature */ |
2140 | { |
2140 | (void)FSMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); |
2141 | /* Check the NAND controller state */ |
2141 | |
2142 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2142 | /* Update the NAND state */ |
2143 | { |
2143 | hnand->State = HAL_NAND_STATE_READY; |
2144 | return HAL_BUSY; |
2144 | } |
2145 | } |
2145 | else |
2146 | else if (hnand->State == HAL_NAND_STATE_READY) |
2146 | { |
2147 | { |
2147 | return HAL_ERROR; |
2148 | /* Update the NAND state */ |
2148 | } |
2149 | hnand->State = HAL_NAND_STATE_BUSY; |
2149 | |
2150 | 2150 | return HAL_OK; |
|
2151 | /* Enable ECC feature */ |
2151 | } |
2152 | (void)FSMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); |
2152 | |
2153 | 2153 | /** |
|
2154 | /* Update the NAND state */ |
2154 | * @brief Disables dynamically FSMC_NAND ECC feature. |
2155 | hnand->State = HAL_NAND_STATE_READY; |
2155 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2156 | } |
2156 | * the configuration information for NAND module. |
2157 | else |
2157 | * @retval HAL status |
2158 | { |
2158 | */ |
2159 | return HAL_ERROR; |
2159 | HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) |
2160 | } |
2160 | { |
2161 | 2161 | /* Check the NAND controller state */ |
|
2162 | return HAL_OK; |
2162 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2163 | } |
2163 | { |
2164 | 2164 | return HAL_BUSY; |
|
2165 | /** |
2165 | } |
2166 | * @brief Disables dynamically FSMC_NAND ECC feature. |
2166 | else if (hnand->State == HAL_NAND_STATE_READY) |
2167 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2167 | { |
2168 | * the configuration information for NAND module. |
2168 | /* Update the NAND state */ |
2169 | * @retval HAL status |
2169 | hnand->State = HAL_NAND_STATE_BUSY; |
2170 | */ |
2170 | |
2171 | HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) |
2171 | /* Disable ECC feature */ |
2172 | { |
2172 | (void)FSMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); |
2173 | /* Check the NAND controller state */ |
2173 | |
2174 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2174 | /* Update the NAND state */ |
2175 | { |
2175 | hnand->State = HAL_NAND_STATE_READY; |
2176 | return HAL_BUSY; |
2176 | } |
2177 | } |
2177 | else |
2178 | else if (hnand->State == HAL_NAND_STATE_READY) |
2178 | { |
2179 | { |
2179 | return HAL_ERROR; |
2180 | /* Update the NAND state */ |
2180 | } |
2181 | hnand->State = HAL_NAND_STATE_BUSY; |
2181 | |
2182 | 2182 | return HAL_OK; |
|
2183 | /* Disable ECC feature */ |
2183 | } |
2184 | (void)FSMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); |
2184 | |
2185 | 2185 | /** |
|
2186 | /* Update the NAND state */ |
2186 | * @brief Disables dynamically NAND ECC feature. |
2187 | hnand->State = HAL_NAND_STATE_READY; |
2187 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2188 | } |
2188 | * the configuration information for NAND module. |
2189 | else |
2189 | * @param ECCval pointer to ECC value |
2190 | { |
2190 | * @param Timeout maximum timeout to wait |
2191 | return HAL_ERROR; |
2191 | * @retval HAL status |
2192 | } |
2192 | */ |
2193 | 2193 | HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) |
|
2194 | return HAL_OK; |
2194 | { |
2195 | } |
2195 | HAL_StatusTypeDef status; |
2196 | 2196 | ||
2197 | /** |
2197 | /* Check the NAND controller state */ |
2198 | * @brief Disables dynamically NAND ECC feature. |
2198 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2199 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2199 | { |
2200 | * the configuration information for NAND module. |
2200 | return HAL_BUSY; |
2201 | * @param ECCval pointer to ECC value |
2201 | } |
2202 | * @param Timeout maximum timeout to wait |
2202 | else if (hnand->State == HAL_NAND_STATE_READY) |
2203 | * @retval HAL status |
2203 | { |
2204 | */ |
2204 | /* Update the NAND state */ |
2205 | HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) |
2205 | hnand->State = HAL_NAND_STATE_BUSY; |
2206 | { |
2206 | |
2207 | HAL_StatusTypeDef status; |
2207 | /* Get NAND ECC value */ |
2208 | 2208 | status = FSMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); |
|
2209 | /* Check the NAND controller state */ |
2209 | |
2210 | if (hnand->State == HAL_NAND_STATE_BUSY) |
2210 | /* Update the NAND state */ |
2211 | { |
2211 | hnand->State = HAL_NAND_STATE_READY; |
2212 | return HAL_BUSY; |
2212 | } |
2213 | } |
2213 | else |
2214 | else if (hnand->State == HAL_NAND_STATE_READY) |
2214 | { |
2215 | { |
2215 | return HAL_ERROR; |
2216 | /* Update the NAND state */ |
2216 | } |
2217 | hnand->State = HAL_NAND_STATE_BUSY; |
2217 | |
2218 | 2218 | return status; |
|
2219 | /* Get NAND ECC value */ |
2219 | } |
2220 | status = FSMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); |
2220 | |
2221 | 2221 | /** |
|
2222 | /* Update the NAND state */ |
2222 | * @} |
2223 | hnand->State = HAL_NAND_STATE_READY; |
2223 | */ |
2224 | } |
2224 | |
2225 | else |
2225 | |
2226 | { |
2226 | /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions |
2227 | return HAL_ERROR; |
2227 | * @brief Peripheral State functions |
2228 | } |
2228 | * |
2229 | 2229 | @verbatim |
|
2230 | return status; |
2230 | ============================================================================== |
2231 | } |
2231 | ##### NAND State functions ##### |
2232 | 2232 | ============================================================================== |
|
2233 | /** |
2233 | [..] |
2234 | * @} |
2234 | This subsection permits to get in run-time the status of the NAND controller |
2235 | */ |
2235 | and the data flow. |
2236 | 2236 | ||
2237 | 2237 | @endverbatim |
|
2238 | /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions |
2238 | * @{ |
2239 | * @brief Peripheral State functions |
2239 | */ |
2240 | * |
2240 | |
2241 | @verbatim |
2241 | /** |
2242 | ============================================================================== |
2242 | * @brief return the NAND state |
2243 | ##### NAND State functions ##### |
2243 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2244 | ============================================================================== |
2244 | * the configuration information for NAND module. |
2245 | [..] |
2245 | * @retval HAL state |
2246 | This subsection permits to get in run-time the status of the NAND controller |
2246 | */ |
2247 | and the data flow. |
2247 | HAL_NAND_StateTypeDef HAL_NAND_GetState(const NAND_HandleTypeDef *hnand) |
2248 | 2248 | { |
|
2249 | @endverbatim |
2249 | return hnand->State; |
2250 | * @{ |
2250 | } |
2251 | */ |
2251 | |
2252 | 2252 | /** |
|
2253 | /** |
2253 | * @brief NAND memory read status |
2254 | * @brief return the NAND state |
2254 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2255 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2255 | * the configuration information for NAND module. |
2256 | * the configuration information for NAND module. |
2256 | * @retval NAND status |
2257 | * @retval HAL state |
2257 | */ |
2258 | */ |
2258 | uint32_t HAL_NAND_Read_Status(const NAND_HandleTypeDef *hnand) |
2259 | HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) |
2259 | { |
2260 | { |
2260 | uint32_t data; |
2261 | return hnand->State; |
2261 | uint32_t deviceaddress; |
2262 | } |
2262 | UNUSED(hnand); |
2263 | 2263 | ||
2264 | /** |
2264 | /* Identify the device address */ |
2265 | * @brief NAND memory read status |
2265 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
2266 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
2266 | { |
2267 | * the configuration information for NAND module. |
2267 | deviceaddress = NAND_DEVICE1; |
2268 | * @retval NAND status |
2268 | } |
2269 | */ |
2269 | else |
2270 | uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) |
2270 | { |
2271 | { |
2271 | deviceaddress = NAND_DEVICE2; |
2272 | uint32_t data; |
2272 | } |
2273 | uint32_t deviceaddress; |
2273 | |
2274 | UNUSED(hnand); |
2274 | /* Send Read status operation command */ |
2275 | 2275 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; |
|
2276 | /* Identify the device address */ |
2276 | |
2277 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
2277 | /* Read status register data */ |
2278 | { |
2278 | data = *(__IO uint8_t *)deviceaddress; |
2279 | deviceaddress = NAND_DEVICE1; |
2279 | |
2280 | } |
2280 | /* Return the status */ |
2281 | else |
2281 | if ((data & NAND_ERROR) == NAND_ERROR) |
2282 | { |
2282 | { |
2283 | deviceaddress = NAND_DEVICE2; |
2283 | return NAND_ERROR; |
2284 | } |
2284 | } |
2285 | 2285 | else if ((data & NAND_READY) == NAND_READY) |
|
2286 | /* Send Read status operation command */ |
2286 | { |
2287 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; |
2287 | return NAND_READY; |
2288 | 2288 | } |
|
2289 | /* Read status register data */ |
2289 | else |
2290 | data = *(__IO uint8_t *)deviceaddress; |
2290 | { |
2291 | 2291 | return NAND_BUSY; |
|
2292 | /* Return the status */ |
2292 | } |
2293 | if ((data & NAND_ERROR) == NAND_ERROR) |
2293 | } |
2294 | { |
2294 | |
2295 | return NAND_ERROR; |
2295 | /** |
2296 | } |
2296 | * @} |
2297 | else if ((data & NAND_READY) == NAND_READY) |
2297 | */ |
2298 | { |
2298 | |
2299 | return NAND_READY; |
2299 | /** |
2300 | } |
2300 | * @} |
2301 | else |
2301 | */ |
2302 | { |
2302 | |
2303 | return NAND_BUSY; |
2303 | /** |
2304 | } |
2304 | * @} |
2305 | } |
2305 | */ |
2306 | 2306 | ||
2307 | /** |
2307 | #endif /* HAL_NAND_MODULE_ENABLED */ |
2308 | * @} |
2308 | |
2309 | */ |
2309 | /** |
2310 | 2310 | * @} |
|
2311 | /** |
2311 | */ |
2312 | * @} |
2312 | |
2313 | */ |
2313 | #endif /* FSMC_BANK3 */ |
2314 | - | ||
2315 | /** |
- | |
2316 | * @} |
- | |
2317 | */ |
- | |
2318 | - | ||
2319 | #endif /* HAL_NAND_MODULE_ENABLED */ |
- | |
2320 | - | ||
2321 | /** |
- | |
2322 | * @} |
- | |
2323 | */ |
- | |
2324 | - | ||
2325 | #endif /* FSMC_BANK3 */ |
- | |
2326 | - | ||
2327 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
- |