Rev 61 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 61 | Rev 77 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | /** |
1 | /** |
2 | ****************************************************************************** |
2 | ****************************************************************************** |
3 | * @file stm32l1xx_hal_tim.c |
3 | * @file stm32l1xx_hal_tim.c |
4 | * @author MCD Application Team |
4 | * @author MCD Application Team |
5 | * @brief TIM HAL module driver. |
5 | * @brief TIM HAL module driver. |
6 | * This file provides firmware functions to manage the following |
6 | * This file provides firmware functions to manage the following |
7 | * functionalities of the Timer (TIM) peripheral: |
7 | * functionalities of the Timer (TIM) peripheral: |
8 | * + TIM Time Base Initialization |
8 | * + TIM Time Base Initialization |
9 | * + TIM Time Base Start |
9 | * + TIM Time Base Start |
10 | * + TIM Time Base Start Interruption |
10 | * + TIM Time Base Start Interruption |
11 | * + TIM Time Base Start DMA |
11 | * + TIM Time Base Start DMA |
12 | * + TIM Output Compare/PWM Initialization |
12 | * + TIM Output Compare/PWM Initialization |
13 | * + TIM Output Compare/PWM Channel Configuration |
13 | * + TIM Output Compare/PWM Channel Configuration |
14 | * + TIM Output Compare/PWM Start |
14 | * + TIM Output Compare/PWM Start |
15 | * + TIM Output Compare/PWM Start Interruption |
15 | * + TIM Output Compare/PWM Start Interruption |
16 | * + TIM Output Compare/PWM Start DMA |
16 | * + TIM Output Compare/PWM Start DMA |
17 | * + TIM Input Capture Initialization |
17 | * + TIM Input Capture Initialization |
18 | * + TIM Input Capture Channel Configuration |
18 | * + TIM Input Capture Channel Configuration |
19 | * + TIM Input Capture Start |
19 | * + TIM Input Capture Start |
20 | * + TIM Input Capture Start Interruption |
20 | * + TIM Input Capture Start Interruption |
21 | * + TIM Input Capture Start DMA |
21 | * + TIM Input Capture Start DMA |
22 | * + TIM One Pulse Initialization |
22 | * + TIM One Pulse Initialization |
23 | * + TIM One Pulse Channel Configuration |
23 | * + TIM One Pulse Channel Configuration |
24 | * + TIM One Pulse Start |
24 | * + TIM One Pulse Start |
25 | * + TIM Encoder Interface Initialization |
25 | * + TIM Encoder Interface Initialization |
26 | * + TIM Encoder Interface Start |
26 | * + TIM Encoder Interface Start |
27 | * + TIM Encoder Interface Start Interruption |
27 | * + TIM Encoder Interface Start Interruption |
28 | * + TIM Encoder Interface Start DMA |
28 | * + TIM Encoder Interface Start DMA |
29 | * + Commutation Event configuration with Interruption and DMA |
29 | * + Commutation Event configuration with Interruption and DMA |
30 | * + TIM OCRef clear configuration |
30 | * + TIM OCRef clear configuration |
31 | * + TIM External Clock configuration |
31 | * + TIM External Clock configuration |
32 | @verbatim |
32 | ****************************************************************************** |
33 | ============================================================================== |
33 | * @attention |
34 | ##### TIMER Generic features ##### |
34 | * |
35 | ============================================================================== |
35 | * Copyright (c) 2016 STMicroelectronics. |
36 | [..] The Timer features include: |
36 | * All rights reserved. |
37 | (#) 16-bit up, down, up/down auto-reload counter. |
37 | * |
38 | (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
38 | * This software is licensed under terms that can be found in the LICENSE file |
39 | counter clock frequency either by any factor between 1 and 65536. |
39 | * in the root directory of this software component. |
40 | (#) Up to 4 independent channels for: |
40 | * If no LICENSE file comes with this software, it is provided AS-IS. |
41 | (++) Input Capture |
41 | * |
42 | (++) Output Compare |
42 | ****************************************************************************** |
43 | (++) PWM generation (Edge and Center-aligned Mode) |
43 | @verbatim |
44 | (++) One-pulse mode output |
44 | ============================================================================== |
45 | (#) Synchronization circuit to control the timer with external signals and to interconnect |
45 | ##### TIMER Generic features ##### |
46 | several timers together. |
46 | ============================================================================== |
47 | (#) Supports incremental encoder for positioning purposes |
47 | [..] The Timer features include: |
48 | 48 | (#) 16-bit up, down, up/down auto-reload counter. |
|
49 | ##### How to use this driver ##### |
49 | (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
50 | ============================================================================== |
50 | counter clock frequency either by any factor between 1 and 65536. |
51 | [..] |
51 | (#) Up to 4 independent channels for: |
52 | (#) Initialize the TIM low level resources by implementing the following functions |
52 | (++) Input Capture |
53 | depending on the selected feature: |
53 | (++) Output Compare |
54 | (++) Time Base : HAL_TIM_Base_MspInit() |
54 | (++) PWM generation (Edge and Center-aligned Mode) |
55 | (++) Input Capture : HAL_TIM_IC_MspInit() |
55 | (++) One-pulse mode output |
56 | (++) Output Compare : HAL_TIM_OC_MspInit() |
56 | (#) Synchronization circuit to control the timer with external signals and to interconnect |
57 | (++) PWM generation : HAL_TIM_PWM_MspInit() |
57 | several timers together. |
58 | (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
58 | (#) Supports incremental encoder for positioning purposes |
59 | (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
59 | |
60 | 60 | ##### How to use this driver ##### |
|
61 | (#) Initialize the TIM low level resources : |
61 | ============================================================================== |
62 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
62 | [..] |
63 | (##) TIM pins configuration |
63 | (#) Initialize the TIM low level resources by implementing the following functions |
64 | (+++) Enable the clock for the TIM GPIOs using the following function: |
64 | depending on the selected feature: |
65 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
65 | (++) Time Base : HAL_TIM_Base_MspInit() |
66 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
66 | (++) Input Capture : HAL_TIM_IC_MspInit() |
67 | 67 | (++) Output Compare : HAL_TIM_OC_MspInit() |
|
68 | (#) The external Clock can be configured, if needed (the default clock is the |
68 | (++) PWM generation : HAL_TIM_PWM_MspInit() |
69 | internal clock from the APBx), using the following function: |
69 | (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
70 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
70 | (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
71 | any start function. |
71 | |
72 | 72 | (#) Initialize the TIM low level resources : |
|
73 | (#) Configure the TIM in the desired functioning mode using one of the |
73 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
74 | Initialization function of this driver: |
74 | (##) TIM pins configuration |
75 | (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
75 | (+++) Enable the clock for the TIM GPIOs using the following function: |
76 | (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
76 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
77 | Output Compare signal. |
77 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
78 | (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
78 | |
79 | PWM signal. |
79 | (#) The external Clock can be configured, if needed (the default clock is the |
80 | (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
80 | internal clock from the APBx), using the following function: |
81 | external signal. |
81 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
82 | (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
82 | any start function. |
83 | in One Pulse Mode. |
83 | |
84 | (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
84 | (#) Configure the TIM in the desired functioning mode using one of the |
85 | 85 | Initialization function of this driver: |
|
86 | (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
86 | (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
87 | (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
87 | (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
88 | (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
88 | Output Compare signal. |
89 | (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
89 | (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
90 | (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
90 | PWM signal. |
91 | (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
91 | (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
92 | (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
92 | external signal. |
93 | 93 | (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
|
94 | (#) The DMA Burst is managed with the two following functions: |
94 | in One Pulse Mode. |
95 | HAL_TIM_DMABurst_WriteStart() |
95 | (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
96 | HAL_TIM_DMABurst_ReadStart() |
96 | |
97 | 97 | (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
|
98 | *** Callback registration *** |
98 | (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
99 | ============================================= |
99 | (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
100 | 100 | (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
|
101 | [..] |
101 | (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
102 | The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
102 | (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
103 | allows the user to configure dynamically the driver callbacks. |
103 | (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
104 | 104 | ||
105 | [..] |
105 | (#) The DMA Burst is managed with the two following functions: |
106 | Use Function @ref HAL_TIM_RegisterCallback() to register a callback. |
106 | HAL_TIM_DMABurst_WriteStart() |
107 | @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
107 | HAL_TIM_DMABurst_ReadStart() |
108 | the Callback ID and a pointer to the user callback function. |
108 | |
109 | 109 | *** Callback registration *** |
|
110 | [..] |
110 | ============================================= |
111 | Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default |
111 | |
112 | weak function. |
112 | [..] |
113 | @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
113 | The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
114 | and the Callback ID. |
114 | allows the user to configure dynamically the driver callbacks. |
115 | 115 | ||
116 | [..] |
116 | [..] |
117 | These functions allow to register/unregister following callbacks: |
117 | Use Function HAL_TIM_RegisterCallback() to register a callback. |
118 | (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
118 | HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
119 | (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
119 | the Callback ID and a pointer to the user callback function. |
120 | (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
120 | |
121 | (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
121 | [..] |
122 | (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
122 | Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default |
123 | (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
123 | weak function. |
124 | (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
124 | HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
125 | (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
125 | and the Callback ID. |
126 | (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
126 | |
127 | (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
127 | [..] |
128 | (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
128 | These functions allow to register/unregister following callbacks: |
129 | (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
129 | (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
130 | (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
130 | (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
131 | (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
131 | (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
132 | (+) TriggerCallback : TIM Trigger Callback. |
132 | (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
133 | (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
133 | (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
134 | (+) IC_CaptureCallback : TIM Input Capture Callback. |
134 | (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
135 | (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
135 | (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
136 | (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
136 | (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
137 | (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
137 | (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
138 | (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
138 | (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
139 | (+) ErrorCallback : TIM Error Callback. |
139 | (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
140 | 140 | (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
|
141 | [..] |
141 | (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
142 | By default, after the Init and when the state is HAL_TIM_STATE_RESET |
142 | (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
143 | all interrupt callbacks are set to the corresponding weak functions: |
143 | (+) TriggerCallback : TIM Trigger Callback. |
144 | examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). |
144 | (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
145 | 145 | (+) IC_CaptureCallback : TIM Input Capture Callback. |
|
146 | [..] |
146 | (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
147 | Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
147 | (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
148 | functionalities in the Init / DeInit only when these callbacks are null |
148 | (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
149 | (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
149 | (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
150 | keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
150 | (+) ErrorCallback : TIM Error Callback. |
151 | 151 | ||
152 | [..] |
152 | [..] |
153 | Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
153 | By default, after the Init and when the state is HAL_TIM_STATE_RESET |
154 | Exception done MspInit / MspDeInit that can be registered / unregistered |
154 | all interrupt callbacks are set to the corresponding weak functions: |
155 | in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
155 | examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). |
156 | thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
156 | |
157 | In that case first register the MspInit/MspDeInit user callbacks |
157 | [..] |
158 | using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
158 | Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
159 | 159 | functionalities in the Init / DeInit only when these callbacks are null |
|
160 | [..] |
160 | (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
161 | When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
161 | keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
162 | not defined, the callback registration feature is not available and all callbacks |
162 | |
163 | are set to the corresponding weak functions. |
163 | [..] |
164 | 164 | Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
|
165 | @endverbatim |
165 | Exception done MspInit / MspDeInit that can be registered / unregistered |
166 | ****************************************************************************** |
166 | in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
167 | * @attention |
167 | thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
168 | * |
168 | In that case first register the MspInit/MspDeInit user callbacks |
169 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
169 | using HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
170 | * All rights reserved.</center></h2> |
170 | |
171 | * |
171 | [..] |
172 | * This software component is licensed by ST under BSD 3-Clause license, |
172 | When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
173 | * the "License"; You may not use this file except in compliance with the |
173 | not defined, the callback registration feature is not available and all callbacks |
174 | * License. You may obtain a copy of the License at: |
174 | are set to the corresponding weak functions. |
175 | * opensource.org/licenses/BSD-3-Clause |
175 | |
176 | * |
176 | @endverbatim |
177 | ****************************************************************************** |
177 | ****************************************************************************** |
178 | */ |
178 | */ |
179 | 179 | ||
180 | /* Includes ------------------------------------------------------------------*/ |
180 | /* Includes ------------------------------------------------------------------*/ |
181 | #include "stm32l1xx_hal.h" |
181 | #include "stm32l1xx_hal.h" |
182 | 182 | ||
183 | /** @addtogroup STM32L1xx_HAL_Driver |
183 | /** @addtogroup STM32L1xx_HAL_Driver |
184 | * @{ |
184 | * @{ |
185 | */ |
185 | */ |
186 | 186 | ||
187 | /** @defgroup TIM TIM |
187 | /** @defgroup TIM TIM |
188 | * @brief TIM HAL module driver |
188 | * @brief TIM HAL module driver |
189 | * @{ |
189 | * @{ |
190 | */ |
190 | */ |
191 | 191 | ||
192 | #ifdef HAL_TIM_MODULE_ENABLED |
192 | #ifdef HAL_TIM_MODULE_ENABLED |
193 | 193 | ||
194 | /* Private typedef -----------------------------------------------------------*/ |
194 | /* Private typedef -----------------------------------------------------------*/ |
195 | /* Private define ------------------------------------------------------------*/ |
195 | /* Private define ------------------------------------------------------------*/ |
196 | /* Private macros ------------------------------------------------------------*/ |
196 | /* Private macros ------------------------------------------------------------*/ |
197 | /* Private variables ---------------------------------------------------------*/ |
197 | /* Private variables ---------------------------------------------------------*/ |
198 | /* Private function prototypes -----------------------------------------------*/ |
198 | /* Private function prototypes -----------------------------------------------*/ |
199 | /** @addtogroup TIM_Private_Functions |
199 | /** @addtogroup TIM_Private_Functions |
200 | * @{ |
200 | * @{ |
201 | */ |
201 | */ |
202 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure); |
202 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure); |
203 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
203 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
204 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
204 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
205 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
205 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
206 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
206 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
207 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
207 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
208 | uint32_t TIM_ICFilter); |
208 | uint32_t TIM_ICFilter); |
209 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
209 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
210 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
210 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
211 | uint32_t TIM_ICFilter); |
211 | uint32_t TIM_ICFilter); |
212 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
212 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
213 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
213 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
214 | uint32_t TIM_ICFilter); |
214 | uint32_t TIM_ICFilter); |
215 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
215 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
216 | uint32_t TIM_ICFilter); |
216 | uint32_t TIM_ICFilter); |
217 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
217 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
218 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
218 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
219 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); |
219 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); |
220 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); |
220 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); |
221 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
221 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
222 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
222 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
223 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
223 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
224 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); |
224 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); |
225 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
225 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
226 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
226 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
227 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
227 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
228 | TIM_SlaveConfigTypeDef *sSlaveConfig); |
228 | const TIM_SlaveConfigTypeDef *sSlaveConfig); |
229 | /** |
229 | /** |
230 | * @} |
230 | * @} |
231 | */ |
231 | */ |
232 | /* Exported functions --------------------------------------------------------*/ |
232 | /* Exported functions --------------------------------------------------------*/ |
233 | 233 | ||
234 | /** @defgroup TIM_Exported_Functions TIM Exported Functions |
234 | /** @defgroup TIM_Exported_Functions TIM Exported Functions |
235 | * @{ |
235 | * @{ |
236 | */ |
236 | */ |
237 | 237 | ||
238 | /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
238 | /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
239 | * @brief Time Base functions |
239 | * @brief Time Base functions |
240 | * |
240 | * |
241 | @verbatim |
241 | @verbatim |
242 | ============================================================================== |
242 | ============================================================================== |
243 | ##### Time Base functions ##### |
243 | ##### Time Base functions ##### |
244 | ============================================================================== |
244 | ============================================================================== |
245 | [..] |
245 | [..] |
246 | This section provides functions allowing to: |
246 | This section provides functions allowing to: |
247 | (+) Initialize and configure the TIM base. |
247 | (+) Initialize and configure the TIM base. |
248 | (+) De-initialize the TIM base. |
248 | (+) De-initialize the TIM base. |
249 | (+) Start the Time Base. |
249 | (+) Start the Time Base. |
250 | (+) Stop the Time Base. |
250 | (+) Stop the Time Base. |
251 | (+) Start the Time Base and enable interrupt. |
251 | (+) Start the Time Base and enable interrupt. |
252 | (+) Stop the Time Base and disable interrupt. |
252 | (+) Stop the Time Base and disable interrupt. |
253 | (+) Start the Time Base and enable DMA transfer. |
253 | (+) Start the Time Base and enable DMA transfer. |
254 | (+) Stop the Time Base and disable DMA transfer. |
254 | (+) Stop the Time Base and disable DMA transfer. |
255 | 255 | ||
256 | @endverbatim |
256 | @endverbatim |
257 | * @{ |
257 | * @{ |
258 | */ |
258 | */ |
259 | /** |
259 | /** |
260 | * @brief Initializes the TIM Time base Unit according to the specified |
260 | * @brief Initializes the TIM Time base Unit according to the specified |
261 | * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
261 | * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
262 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
262 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
263 | * requires a timer reset to avoid unexpected direction |
263 | * requires a timer reset to avoid unexpected direction |
264 | * due to DIR bit readonly in center aligned mode. |
264 | * due to DIR bit readonly in center aligned mode. |
265 | * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
265 | * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
266 | * @param htim TIM Base handle |
266 | * @param htim TIM Base handle |
267 | * @retval HAL status |
267 | * @retval HAL status |
268 | */ |
268 | */ |
269 | HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
269 | HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
270 | { |
270 | { |
271 | /* Check the TIM handle allocation */ |
271 | /* Check the TIM handle allocation */ |
272 | if (htim == NULL) |
272 | if (htim == NULL) |
273 | { |
273 | { |
274 | return HAL_ERROR; |
274 | return HAL_ERROR; |
275 | } |
275 | } |
276 | 276 | ||
277 | /* Check the parameters */ |
277 | /* Check the parameters */ |
278 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
278 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
279 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
279 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
280 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
280 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
281 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
281 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
282 | 282 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
283 | if (htim->State == HAL_TIM_STATE_RESET) |
283 | |
284 | { |
284 | if (htim->State == HAL_TIM_STATE_RESET) |
285 | /* Allocate lock resource and initialize it */ |
285 | { |
286 | htim->Lock = HAL_UNLOCKED; |
286 | /* Allocate lock resource and initialize it */ |
287 | 287 | htim->Lock = HAL_UNLOCKED; |
|
288 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
288 | |
289 | /* Reset interrupt callbacks to legacy weak callbacks */ |
289 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
290 | TIM_ResetCallback(htim); |
290 | /* Reset interrupt callbacks to legacy weak callbacks */ |
291 | 291 | TIM_ResetCallback(htim); |
|
292 | if (htim->Base_MspInitCallback == NULL) |
292 | |
293 | { |
293 | if (htim->Base_MspInitCallback == NULL) |
294 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
294 | { |
295 | } |
295 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
296 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
296 | } |
297 | htim->Base_MspInitCallback(htim); |
297 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
298 | #else |
298 | htim->Base_MspInitCallback(htim); |
299 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
299 | #else |
300 | HAL_TIM_Base_MspInit(htim); |
300 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
301 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
301 | HAL_TIM_Base_MspInit(htim); |
302 | } |
302 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
303 | 303 | } |
|
304 | /* Set the TIM state */ |
304 | |
305 | htim->State = HAL_TIM_STATE_BUSY; |
305 | /* Set the TIM state */ |
306 | 306 | htim->State = HAL_TIM_STATE_BUSY; |
|
307 | /* Set the Time Base configuration */ |
307 | |
308 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
308 | /* Set the Time Base configuration */ |
309 | 309 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
310 | /* Initialize the DMA burst operation state */ |
310 | |
311 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
311 | /* Initialize the DMA burst operation state */ |
312 | 312 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
313 | /* Initialize the TIM channels state */ |
313 | |
314 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
314 | /* Initialize the TIM channels state */ |
315 | 315 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
316 | /* Initialize the TIM state*/ |
316 | |
317 | htim->State = HAL_TIM_STATE_READY; |
317 | /* Initialize the TIM state*/ |
318 | 318 | htim->State = HAL_TIM_STATE_READY; |
|
319 | return HAL_OK; |
319 | |
320 | } |
320 | return HAL_OK; |
321 | 321 | } |
|
322 | /** |
322 | |
323 | * @brief DeInitializes the TIM Base peripheral |
323 | /** |
324 | * @param htim TIM Base handle |
324 | * @brief DeInitializes the TIM Base peripheral |
325 | * @retval HAL status |
325 | * @param htim TIM Base handle |
326 | */ |
326 | * @retval HAL status |
327 | HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
327 | */ |
328 | { |
328 | HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
329 | /* Check the parameters */ |
329 | { |
330 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
330 | /* Check the parameters */ |
331 | 331 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
332 | htim->State = HAL_TIM_STATE_BUSY; |
332 | |
333 | 333 | htim->State = HAL_TIM_STATE_BUSY; |
|
334 | /* Disable the TIM Peripheral Clock */ |
334 | |
335 | __HAL_TIM_DISABLE(htim); |
335 | /* Disable the TIM Peripheral Clock */ |
336 | 336 | __HAL_TIM_DISABLE(htim); |
|
337 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
337 | |
338 | if (htim->Base_MspDeInitCallback == NULL) |
338 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
339 | { |
339 | if (htim->Base_MspDeInitCallback == NULL) |
340 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
340 | { |
341 | } |
341 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
342 | /* DeInit the low level hardware */ |
342 | } |
343 | htim->Base_MspDeInitCallback(htim); |
343 | /* DeInit the low level hardware */ |
344 | #else |
344 | htim->Base_MspDeInitCallback(htim); |
345 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
345 | #else |
346 | HAL_TIM_Base_MspDeInit(htim); |
346 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
347 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
347 | HAL_TIM_Base_MspDeInit(htim); |
348 | 348 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
349 | /* Change the DMA burst operation state */ |
349 | |
350 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
350 | /* Change the DMA burst operation state */ |
351 | 351 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
352 | /* Change the TIM channels state */ |
352 | |
353 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
353 | /* Change the TIM channels state */ |
354 | 354 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
355 | /* Change TIM state */ |
355 | |
356 | htim->State = HAL_TIM_STATE_RESET; |
356 | /* Change TIM state */ |
357 | 357 | htim->State = HAL_TIM_STATE_RESET; |
|
358 | /* Release Lock */ |
358 | |
359 | __HAL_UNLOCK(htim); |
359 | /* Release Lock */ |
360 | 360 | __HAL_UNLOCK(htim); |
|
361 | return HAL_OK; |
361 | |
362 | } |
362 | return HAL_OK; |
363 | 363 | } |
|
364 | /** |
364 | |
365 | * @brief Initializes the TIM Base MSP. |
365 | /** |
366 | * @param htim TIM Base handle |
366 | * @brief Initializes the TIM Base MSP. |
367 | * @retval None |
367 | * @param htim TIM Base handle |
368 | */ |
368 | * @retval None |
369 | __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
369 | */ |
370 | { |
370 | __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
371 | /* Prevent unused argument(s) compilation warning */ |
371 | { |
372 | UNUSED(htim); |
372 | /* Prevent unused argument(s) compilation warning */ |
373 | 373 | UNUSED(htim); |
|
374 | /* NOTE : This function should not be modified, when the callback is needed, |
374 | |
375 | the HAL_TIM_Base_MspInit could be implemented in the user file |
375 | /* NOTE : This function should not be modified, when the callback is needed, |
376 | */ |
376 | the HAL_TIM_Base_MspInit could be implemented in the user file |
377 | } |
377 | */ |
378 | 378 | } |
|
379 | /** |
379 | |
380 | * @brief DeInitializes TIM Base MSP. |
380 | /** |
381 | * @param htim TIM Base handle |
381 | * @brief DeInitializes TIM Base MSP. |
382 | * @retval None |
382 | * @param htim TIM Base handle |
383 | */ |
383 | * @retval None |
384 | __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
384 | */ |
385 | { |
385 | __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
386 | /* Prevent unused argument(s) compilation warning */ |
386 | { |
387 | UNUSED(htim); |
387 | /* Prevent unused argument(s) compilation warning */ |
388 | 388 | UNUSED(htim); |
|
389 | /* NOTE : This function should not be modified, when the callback is needed, |
389 | |
390 | the HAL_TIM_Base_MspDeInit could be implemented in the user file |
390 | /* NOTE : This function should not be modified, when the callback is needed, |
391 | */ |
391 | the HAL_TIM_Base_MspDeInit could be implemented in the user file |
392 | } |
392 | */ |
393 | 393 | } |
|
394 | 394 | ||
395 | /** |
395 | |
396 | * @brief Starts the TIM Base generation. |
396 | /** |
397 | * @param htim TIM Base handle |
397 | * @brief Starts the TIM Base generation. |
398 | * @retval HAL status |
398 | * @param htim TIM Base handle |
399 | */ |
399 | * @retval HAL status |
400 | HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
400 | */ |
401 | { |
401 | HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
402 | uint32_t tmpsmcr; |
402 | { |
403 | 403 | uint32_t tmpsmcr; |
|
404 | /* Check the parameters */ |
404 | |
405 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
405 | /* Check the parameters */ |
406 | 406 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
407 | /* Check the TIM state */ |
407 | |
408 | if (htim->State != HAL_TIM_STATE_READY) |
408 | /* Check the TIM state */ |
409 | { |
409 | if (htim->State != HAL_TIM_STATE_READY) |
410 | return HAL_ERROR; |
410 | { |
411 | } |
411 | return HAL_ERROR; |
412 | 412 | } |
|
413 | /* Set the TIM state */ |
413 | |
414 | htim->State = HAL_TIM_STATE_BUSY; |
414 | /* Set the TIM state */ |
415 | 415 | htim->State = HAL_TIM_STATE_BUSY; |
|
416 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
416 | |
417 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
417 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
418 | { |
418 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
419 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
419 | { |
420 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
420 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
421 | { |
421 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
422 | __HAL_TIM_ENABLE(htim); |
422 | { |
423 | } |
423 | __HAL_TIM_ENABLE(htim); |
424 | } |
424 | } |
425 | else |
425 | } |
426 | { |
426 | else |
427 | __HAL_TIM_ENABLE(htim); |
427 | { |
428 | } |
428 | __HAL_TIM_ENABLE(htim); |
429 | 429 | } |
|
430 | /* Return function status */ |
430 | |
431 | return HAL_OK; |
431 | /* Return function status */ |
432 | } |
432 | return HAL_OK; |
433 | 433 | } |
|
434 | /** |
434 | |
435 | * @brief Stops the TIM Base generation. |
435 | /** |
436 | * @param htim TIM Base handle |
436 | * @brief Stops the TIM Base generation. |
437 | * @retval HAL status |
437 | * @param htim TIM Base handle |
438 | */ |
438 | * @retval HAL status |
439 | HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
439 | */ |
440 | { |
440 | HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
441 | /* Check the parameters */ |
441 | { |
442 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
442 | /* Check the parameters */ |
443 | 443 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
444 | /* Disable the Peripheral */ |
444 | |
445 | __HAL_TIM_DISABLE(htim); |
445 | /* Disable the Peripheral */ |
446 | 446 | __HAL_TIM_DISABLE(htim); |
|
447 | /* Set the TIM state */ |
447 | |
448 | htim->State = HAL_TIM_STATE_READY; |
448 | /* Set the TIM state */ |
449 | 449 | htim->State = HAL_TIM_STATE_READY; |
|
450 | /* Return function status */ |
450 | |
451 | return HAL_OK; |
451 | /* Return function status */ |
452 | } |
452 | return HAL_OK; |
453 | 453 | } |
|
454 | /** |
454 | |
455 | * @brief Starts the TIM Base generation in interrupt mode. |
455 | /** |
456 | * @param htim TIM Base handle |
456 | * @brief Starts the TIM Base generation in interrupt mode. |
457 | * @retval HAL status |
457 | * @param htim TIM Base handle |
458 | */ |
458 | * @retval HAL status |
459 | HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
459 | */ |
460 | { |
460 | HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
461 | uint32_t tmpsmcr; |
461 | { |
462 | 462 | uint32_t tmpsmcr; |
|
463 | /* Check the parameters */ |
463 | |
464 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
464 | /* Check the parameters */ |
465 | 465 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
466 | /* Check the TIM state */ |
466 | |
467 | if (htim->State != HAL_TIM_STATE_READY) |
467 | /* Check the TIM state */ |
468 | { |
468 | if (htim->State != HAL_TIM_STATE_READY) |
469 | return HAL_ERROR; |
469 | { |
470 | } |
470 | return HAL_ERROR; |
471 | 471 | } |
|
472 | /* Set the TIM state */ |
472 | |
473 | htim->State = HAL_TIM_STATE_BUSY; |
473 | /* Set the TIM state */ |
474 | 474 | htim->State = HAL_TIM_STATE_BUSY; |
|
475 | /* Enable the TIM Update interrupt */ |
475 | |
476 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
476 | /* Enable the TIM Update interrupt */ |
477 | 477 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
|
478 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
478 | |
479 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
479 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
480 | { |
480 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
481 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
481 | { |
482 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
482 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
483 | { |
483 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
484 | __HAL_TIM_ENABLE(htim); |
484 | { |
485 | } |
485 | __HAL_TIM_ENABLE(htim); |
486 | } |
486 | } |
487 | else |
487 | } |
488 | { |
488 | else |
489 | __HAL_TIM_ENABLE(htim); |
489 | { |
490 | } |
490 | __HAL_TIM_ENABLE(htim); |
491 | 491 | } |
|
492 | /* Return function status */ |
492 | |
493 | return HAL_OK; |
493 | /* Return function status */ |
494 | } |
494 | return HAL_OK; |
495 | 495 | } |
|
496 | /** |
496 | |
497 | * @brief Stops the TIM Base generation in interrupt mode. |
497 | /** |
498 | * @param htim TIM Base handle |
498 | * @brief Stops the TIM Base generation in interrupt mode. |
499 | * @retval HAL status |
499 | * @param htim TIM Base handle |
500 | */ |
500 | * @retval HAL status |
501 | HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
501 | */ |
502 | { |
502 | HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
503 | /* Check the parameters */ |
503 | { |
504 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
504 | /* Check the parameters */ |
505 | 505 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
506 | /* Disable the TIM Update interrupt */ |
506 | |
507 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
507 | /* Disable the TIM Update interrupt */ |
508 | 508 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
|
509 | /* Disable the Peripheral */ |
509 | |
510 | __HAL_TIM_DISABLE(htim); |
510 | /* Disable the Peripheral */ |
511 | 511 | __HAL_TIM_DISABLE(htim); |
|
512 | /* Set the TIM state */ |
512 | |
513 | htim->State = HAL_TIM_STATE_READY; |
513 | /* Set the TIM state */ |
514 | 514 | htim->State = HAL_TIM_STATE_READY; |
|
515 | /* Return function status */ |
515 | |
516 | return HAL_OK; |
516 | /* Return function status */ |
517 | } |
517 | return HAL_OK; |
518 | 518 | } |
|
519 | /** |
519 | |
520 | * @brief Starts the TIM Base generation in DMA mode. |
520 | /** |
521 | * @param htim TIM Base handle |
521 | * @brief Starts the TIM Base generation in DMA mode. |
522 | * @param pData The source Buffer address. |
522 | * @param htim TIM Base handle |
523 | * @param Length The length of data to be transferred from memory to peripheral. |
523 | * @param pData The source Buffer address. |
524 | * @retval HAL status |
524 | * @param Length The length of data to be transferred from memory to peripheral. |
525 | */ |
525 | * @retval HAL status |
526 | HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
526 | */ |
527 | { |
527 | HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length) |
528 | uint32_t tmpsmcr; |
528 | { |
529 | 529 | uint32_t tmpsmcr; |
|
530 | /* Check the parameters */ |
530 | |
531 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
531 | /* Check the parameters */ |
532 | 532 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
533 | /* Set the TIM state */ |
533 | |
534 | if (htim->State == HAL_TIM_STATE_BUSY) |
534 | /* Set the TIM state */ |
535 | { |
535 | if (htim->State == HAL_TIM_STATE_BUSY) |
536 | return HAL_BUSY; |
536 | { |
537 | } |
537 | return HAL_BUSY; |
538 | else if (htim->State == HAL_TIM_STATE_READY) |
538 | } |
539 | { |
539 | else if (htim->State == HAL_TIM_STATE_READY) |
540 | if ((pData == NULL) && (Length > 0U)) |
540 | { |
541 | { |
541 | if ((pData == NULL) || (Length == 0U)) |
542 | return HAL_ERROR; |
542 | { |
543 | } |
543 | return HAL_ERROR; |
544 | else |
544 | } |
545 | { |
545 | else |
546 | htim->State = HAL_TIM_STATE_BUSY; |
546 | { |
547 | } |
547 | htim->State = HAL_TIM_STATE_BUSY; |
548 | } |
548 | } |
549 | else |
549 | } |
550 | { |
550 | else |
551 | return HAL_ERROR; |
551 | { |
552 | } |
552 | return HAL_ERROR; |
553 | 553 | } |
|
554 | /* Set the DMA Period elapsed callbacks */ |
554 | |
555 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
555 | /* Set the DMA Period elapsed callbacks */ |
556 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
556 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
557 | 557 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
|
558 | /* Set the DMA error callback */ |
558 | |
559 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
559 | /* Set the DMA error callback */ |
560 | 560 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
|
561 | /* Enable the DMA channel */ |
561 | |
562 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
562 | /* Enable the DMA channel */ |
563 | Length) != HAL_OK) |
563 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
564 | { |
564 | Length) != HAL_OK) |
565 | /* Return error status */ |
565 | { |
566 | return HAL_ERROR; |
566 | /* Return error status */ |
567 | } |
567 | return HAL_ERROR; |
568 | 568 | } |
|
569 | /* Enable the TIM Update DMA request */ |
569 | |
570 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
570 | /* Enable the TIM Update DMA request */ |
571 | 571 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
|
572 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
572 | |
573 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
573 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
574 | { |
574 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
575 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
575 | { |
576 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
576 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
577 | { |
577 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
578 | __HAL_TIM_ENABLE(htim); |
578 | { |
579 | } |
579 | __HAL_TIM_ENABLE(htim); |
580 | } |
580 | } |
581 | else |
581 | } |
582 | { |
582 | else |
583 | __HAL_TIM_ENABLE(htim); |
583 | { |
584 | } |
584 | __HAL_TIM_ENABLE(htim); |
585 | 585 | } |
|
586 | /* Return function status */ |
586 | |
587 | return HAL_OK; |
587 | /* Return function status */ |
588 | } |
588 | return HAL_OK; |
589 | 589 | } |
|
590 | /** |
590 | |
591 | * @brief Stops the TIM Base generation in DMA mode. |
591 | /** |
592 | * @param htim TIM Base handle |
592 | * @brief Stops the TIM Base generation in DMA mode. |
593 | * @retval HAL status |
593 | * @param htim TIM Base handle |
594 | */ |
594 | * @retval HAL status |
595 | HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
595 | */ |
596 | { |
596 | HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
597 | /* Check the parameters */ |
597 | { |
598 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
598 | /* Check the parameters */ |
599 | 599 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
600 | /* Disable the TIM Update DMA request */ |
600 | |
601 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
601 | /* Disable the TIM Update DMA request */ |
602 | 602 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
|
603 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
603 | |
604 | 604 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
|
605 | /* Disable the Peripheral */ |
605 | |
606 | __HAL_TIM_DISABLE(htim); |
606 | /* Disable the Peripheral */ |
607 | 607 | __HAL_TIM_DISABLE(htim); |
|
608 | /* Set the TIM state */ |
608 | |
609 | htim->State = HAL_TIM_STATE_READY; |
609 | /* Set the TIM state */ |
610 | 610 | htim->State = HAL_TIM_STATE_READY; |
|
611 | /* Return function status */ |
611 | |
612 | return HAL_OK; |
612 | /* Return function status */ |
613 | } |
613 | return HAL_OK; |
614 | 614 | } |
|
615 | /** |
615 | |
616 | * @} |
616 | /** |
617 | */ |
617 | * @} |
618 | 618 | */ |
|
619 | /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
619 | |
620 | * @brief TIM Output Compare functions |
620 | /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
621 | * |
621 | * @brief TIM Output Compare functions |
622 | @verbatim |
622 | * |
623 | ============================================================================== |
623 | @verbatim |
624 | ##### TIM Output Compare functions ##### |
624 | ============================================================================== |
625 | ============================================================================== |
625 | ##### TIM Output Compare functions ##### |
626 | [..] |
626 | ============================================================================== |
627 | This section provides functions allowing to: |
627 | [..] |
628 | (+) Initialize and configure the TIM Output Compare. |
628 | This section provides functions allowing to: |
629 | (+) De-initialize the TIM Output Compare. |
629 | (+) Initialize and configure the TIM Output Compare. |
630 | (+) Start the TIM Output Compare. |
630 | (+) De-initialize the TIM Output Compare. |
631 | (+) Stop the TIM Output Compare. |
631 | (+) Start the TIM Output Compare. |
632 | (+) Start the TIM Output Compare and enable interrupt. |
632 | (+) Stop the TIM Output Compare. |
633 | (+) Stop the TIM Output Compare and disable interrupt. |
633 | (+) Start the TIM Output Compare and enable interrupt. |
634 | (+) Start the TIM Output Compare and enable DMA transfer. |
634 | (+) Stop the TIM Output Compare and disable interrupt. |
635 | (+) Stop the TIM Output Compare and disable DMA transfer. |
635 | (+) Start the TIM Output Compare and enable DMA transfer. |
636 | 636 | (+) Stop the TIM Output Compare and disable DMA transfer. |
|
637 | @endverbatim |
637 | |
638 | * @{ |
638 | @endverbatim |
639 | */ |
639 | * @{ |
640 | /** |
640 | */ |
641 | * @brief Initializes the TIM Output Compare according to the specified |
641 | /** |
642 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
642 | * @brief Initializes the TIM Output Compare according to the specified |
643 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
643 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
644 | * requires a timer reset to avoid unexpected direction |
644 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
645 | * due to DIR bit readonly in center aligned mode. |
645 | * requires a timer reset to avoid unexpected direction |
646 | * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
646 | * due to DIR bit readonly in center aligned mode. |
647 | * @param htim TIM Output Compare handle |
647 | * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
648 | * @retval HAL status |
648 | * @param htim TIM Output Compare handle |
649 | */ |
649 | * @retval HAL status |
650 | HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
650 | */ |
651 | { |
651 | HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
652 | /* Check the TIM handle allocation */ |
652 | { |
653 | if (htim == NULL) |
653 | /* Check the TIM handle allocation */ |
654 | { |
654 | if (htim == NULL) |
655 | return HAL_ERROR; |
655 | { |
656 | } |
656 | return HAL_ERROR; |
657 | 657 | } |
|
658 | /* Check the parameters */ |
658 | |
659 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
659 | /* Check the parameters */ |
660 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
660 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
661 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
661 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
662 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
662 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
663 | 663 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
664 | if (htim->State == HAL_TIM_STATE_RESET) |
664 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
665 | { |
665 | |
666 | /* Allocate lock resource and initialize it */ |
666 | if (htim->State == HAL_TIM_STATE_RESET) |
667 | htim->Lock = HAL_UNLOCKED; |
667 | { |
668 | 668 | /* Allocate lock resource and initialize it */ |
|
669 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
669 | htim->Lock = HAL_UNLOCKED; |
670 | /* Reset interrupt callbacks to legacy weak callbacks */ |
670 | |
671 | TIM_ResetCallback(htim); |
671 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
672 | 672 | /* Reset interrupt callbacks to legacy weak callbacks */ |
|
673 | if (htim->OC_MspInitCallback == NULL) |
673 | TIM_ResetCallback(htim); |
674 | { |
674 | |
675 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
675 | if (htim->OC_MspInitCallback == NULL) |
676 | } |
676 | { |
677 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
677 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
678 | htim->OC_MspInitCallback(htim); |
678 | } |
679 | #else |
679 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
680 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
680 | htim->OC_MspInitCallback(htim); |
681 | HAL_TIM_OC_MspInit(htim); |
681 | #else |
682 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
682 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
683 | } |
683 | HAL_TIM_OC_MspInit(htim); |
684 | 684 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
685 | /* Set the TIM state */ |
685 | } |
686 | htim->State = HAL_TIM_STATE_BUSY; |
686 | |
687 | 687 | /* Set the TIM state */ |
|
688 | /* Init the base time for the Output Compare */ |
688 | htim->State = HAL_TIM_STATE_BUSY; |
689 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
689 | |
690 | 690 | /* Init the base time for the Output Compare */ |
|
691 | /* Initialize the DMA burst operation state */ |
691 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
692 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
692 | |
693 | 693 | /* Initialize the DMA burst operation state */ |
|
694 | /* Initialize the TIM channels state */ |
694 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
695 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
695 | |
696 | 696 | /* Initialize the TIM channels state */ |
|
697 | /* Initialize the TIM state*/ |
697 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
698 | htim->State = HAL_TIM_STATE_READY; |
698 | |
699 | 699 | /* Initialize the TIM state*/ |
|
700 | return HAL_OK; |
700 | htim->State = HAL_TIM_STATE_READY; |
701 | } |
701 | |
702 | 702 | return HAL_OK; |
|
703 | /** |
703 | } |
704 | * @brief DeInitializes the TIM peripheral |
704 | |
705 | * @param htim TIM Output Compare handle |
705 | /** |
706 | * @retval HAL status |
706 | * @brief DeInitializes the TIM peripheral |
707 | */ |
707 | * @param htim TIM Output Compare handle |
708 | HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
708 | * @retval HAL status |
709 | { |
709 | */ |
710 | /* Check the parameters */ |
710 | HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
711 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
711 | { |
712 | 712 | /* Check the parameters */ |
|
713 | htim->State = HAL_TIM_STATE_BUSY; |
713 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
714 | 714 | ||
715 | /* Disable the TIM Peripheral Clock */ |
715 | htim->State = HAL_TIM_STATE_BUSY; |
716 | __HAL_TIM_DISABLE(htim); |
716 | |
717 | 717 | /* Disable the TIM Peripheral Clock */ |
|
718 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
718 | __HAL_TIM_DISABLE(htim); |
719 | if (htim->OC_MspDeInitCallback == NULL) |
719 | |
720 | { |
720 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
721 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
721 | if (htim->OC_MspDeInitCallback == NULL) |
722 | } |
722 | { |
723 | /* DeInit the low level hardware */ |
723 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
724 | htim->OC_MspDeInitCallback(htim); |
724 | } |
725 | #else |
725 | /* DeInit the low level hardware */ |
726 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
726 | htim->OC_MspDeInitCallback(htim); |
727 | HAL_TIM_OC_MspDeInit(htim); |
727 | #else |
728 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
728 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
729 | 729 | HAL_TIM_OC_MspDeInit(htim); |
|
730 | /* Change the DMA burst operation state */ |
730 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
731 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
731 | |
732 | 732 | /* Change the DMA burst operation state */ |
|
733 | /* Change the TIM channels state */ |
733 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
734 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
734 | |
735 | 735 | /* Change the TIM channels state */ |
|
736 | /* Change TIM state */ |
736 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
737 | htim->State = HAL_TIM_STATE_RESET; |
737 | |
738 | 738 | /* Change TIM state */ |
|
739 | /* Release Lock */ |
739 | htim->State = HAL_TIM_STATE_RESET; |
740 | __HAL_UNLOCK(htim); |
740 | |
741 | 741 | /* Release Lock */ |
|
742 | return HAL_OK; |
742 | __HAL_UNLOCK(htim); |
743 | } |
743 | |
744 | 744 | return HAL_OK; |
|
745 | /** |
745 | } |
746 | * @brief Initializes the TIM Output Compare MSP. |
746 | |
747 | * @param htim TIM Output Compare handle |
747 | /** |
748 | * @retval None |
748 | * @brief Initializes the TIM Output Compare MSP. |
749 | */ |
749 | * @param htim TIM Output Compare handle |
750 | __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
750 | * @retval None |
751 | { |
751 | */ |
752 | /* Prevent unused argument(s) compilation warning */ |
752 | __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
753 | UNUSED(htim); |
753 | { |
754 | 754 | /* Prevent unused argument(s) compilation warning */ |
|
755 | /* NOTE : This function should not be modified, when the callback is needed, |
755 | UNUSED(htim); |
756 | the HAL_TIM_OC_MspInit could be implemented in the user file |
756 | |
757 | */ |
757 | /* NOTE : This function should not be modified, when the callback is needed, |
758 | } |
758 | the HAL_TIM_OC_MspInit could be implemented in the user file |
759 | 759 | */ |
|
760 | /** |
760 | } |
761 | * @brief DeInitializes TIM Output Compare MSP. |
761 | |
762 | * @param htim TIM Output Compare handle |
762 | /** |
763 | * @retval None |
763 | * @brief DeInitializes TIM Output Compare MSP. |
764 | */ |
764 | * @param htim TIM Output Compare handle |
765 | __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
765 | * @retval None |
766 | { |
766 | */ |
767 | /* Prevent unused argument(s) compilation warning */ |
767 | __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
768 | UNUSED(htim); |
768 | { |
769 | 769 | /* Prevent unused argument(s) compilation warning */ |
|
770 | /* NOTE : This function should not be modified, when the callback is needed, |
770 | UNUSED(htim); |
771 | the HAL_TIM_OC_MspDeInit could be implemented in the user file |
771 | |
772 | */ |
772 | /* NOTE : This function should not be modified, when the callback is needed, |
773 | } |
773 | the HAL_TIM_OC_MspDeInit could be implemented in the user file |
774 | 774 | */ |
|
775 | /** |
775 | } |
776 | * @brief Starts the TIM Output Compare signal generation. |
776 | |
777 | * @param htim TIM Output Compare handle |
777 | /** |
778 | * @param Channel TIM Channel to be enabled |
778 | * @brief Starts the TIM Output Compare signal generation. |
779 | * This parameter can be one of the following values: |
779 | * @param htim TIM Output Compare handle |
780 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
780 | * @param Channel TIM Channel to be enabled |
781 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
781 | * This parameter can be one of the following values: |
782 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
782 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
783 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
783 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
784 | * @retval HAL status |
784 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
785 | */ |
785 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
786 | HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
786 | * @retval HAL status |
787 | { |
787 | */ |
788 | uint32_t tmpsmcr; |
788 | HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
789 | 789 | { |
|
790 | /* Check the parameters */ |
790 | uint32_t tmpsmcr; |
791 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
791 | |
792 | 792 | /* Check the parameters */ |
|
793 | /* Check the TIM channel state */ |
793 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
794 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
794 | |
795 | { |
795 | /* Check the TIM channel state */ |
796 | return HAL_ERROR; |
796 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
797 | } |
797 | { |
798 | 798 | return HAL_ERROR; |
|
799 | /* Set the TIM channel state */ |
799 | } |
800 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
800 | |
801 | 801 | /* Set the TIM channel state */ |
|
802 | /* Enable the Output compare channel */ |
802 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
803 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
803 | |
804 | 804 | /* Enable the Output compare channel */ |
|
805 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
805 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
806 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
806 | |
807 | { |
807 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
808 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
808 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
809 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
809 | { |
810 | { |
810 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
811 | __HAL_TIM_ENABLE(htim); |
811 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
812 | } |
812 | { |
813 | } |
813 | __HAL_TIM_ENABLE(htim); |
814 | else |
814 | } |
815 | { |
815 | } |
816 | __HAL_TIM_ENABLE(htim); |
816 | else |
817 | } |
817 | { |
818 | 818 | __HAL_TIM_ENABLE(htim); |
|
819 | /* Return function status */ |
819 | } |
820 | return HAL_OK; |
820 | |
821 | } |
821 | /* Return function status */ |
822 | 822 | return HAL_OK; |
|
823 | /** |
823 | } |
824 | * @brief Stops the TIM Output Compare signal generation. |
824 | |
825 | * @param htim TIM Output Compare handle |
825 | /** |
826 | * @param Channel TIM Channel to be disabled |
826 | * @brief Stops the TIM Output Compare signal generation. |
827 | * This parameter can be one of the following values: |
827 | * @param htim TIM Output Compare handle |
828 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
828 | * @param Channel TIM Channel to be disabled |
829 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
829 | * This parameter can be one of the following values: |
830 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
830 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
831 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
831 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
832 | * @retval HAL status |
832 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
833 | */ |
833 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
834 | HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
834 | * @retval HAL status |
835 | { |
835 | */ |
836 | /* Check the parameters */ |
836 | HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
837 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
837 | { |
838 | 838 | /* Check the parameters */ |
|
839 | /* Disable the Output compare channel */ |
839 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
840 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
840 | |
841 | 841 | /* Disable the Output compare channel */ |
|
842 | /* Disable the Peripheral */ |
842 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
843 | __HAL_TIM_DISABLE(htim); |
843 | |
844 | 844 | /* Disable the Peripheral */ |
|
845 | /* Set the TIM channel state */ |
845 | __HAL_TIM_DISABLE(htim); |
846 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
846 | |
847 | 847 | /* Set the TIM channel state */ |
|
848 | /* Return function status */ |
848 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
849 | return HAL_OK; |
849 | |
850 | } |
850 | /* Return function status */ |
851 | 851 | return HAL_OK; |
|
852 | /** |
852 | } |
853 | * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
853 | |
854 | * @param htim TIM Output Compare handle |
854 | /** |
855 | * @param Channel TIM Channel to be enabled |
855 | * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
856 | * This parameter can be one of the following values: |
856 | * @param htim TIM Output Compare handle |
857 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
857 | * @param Channel TIM Channel to be enabled |
858 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
858 | * This parameter can be one of the following values: |
859 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
859 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
860 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
860 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
861 | * @retval HAL status |
861 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
862 | */ |
862 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
863 | HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
863 | * @retval HAL status |
864 | { |
864 | */ |
865 | uint32_t tmpsmcr; |
865 | HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
866 | 866 | { |
|
867 | /* Check the parameters */ |
867 | HAL_StatusTypeDef status = HAL_OK; |
868 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
868 | uint32_t tmpsmcr; |
869 | 869 | ||
870 | /* Check the TIM channel state */ |
870 | /* Check the parameters */ |
871 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
871 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
872 | { |
872 | |
873 | return HAL_ERROR; |
873 | /* Check the TIM channel state */ |
874 | } |
874 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
875 | 875 | { |
|
876 | /* Set the TIM channel state */ |
876 | return HAL_ERROR; |
877 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
877 | } |
878 | 878 | ||
879 | switch (Channel) |
879 | /* Set the TIM channel state */ |
880 | { |
880 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
881 | case TIM_CHANNEL_1: |
881 | |
882 | { |
882 | switch (Channel) |
883 | /* Enable the TIM Capture/Compare 1 interrupt */ |
883 | { |
884 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
884 | case TIM_CHANNEL_1: |
885 | break; |
885 | { |
886 | } |
886 | /* Enable the TIM Capture/Compare 1 interrupt */ |
887 | 887 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
888 | case TIM_CHANNEL_2: |
888 | break; |
889 | { |
889 | } |
890 | /* Enable the TIM Capture/Compare 2 interrupt */ |
890 | |
891 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
891 | case TIM_CHANNEL_2: |
892 | break; |
892 | { |
893 | } |
893 | /* Enable the TIM Capture/Compare 2 interrupt */ |
894 | 894 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
895 | case TIM_CHANNEL_3: |
895 | break; |
896 | { |
896 | } |
897 | /* Enable the TIM Capture/Compare 3 interrupt */ |
897 | |
898 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
898 | case TIM_CHANNEL_3: |
899 | break; |
899 | { |
900 | } |
900 | /* Enable the TIM Capture/Compare 3 interrupt */ |
901 | 901 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
|
902 | case TIM_CHANNEL_4: |
902 | break; |
903 | { |
903 | } |
904 | /* Enable the TIM Capture/Compare 4 interrupt */ |
904 | |
905 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
905 | case TIM_CHANNEL_4: |
906 | break; |
906 | { |
907 | } |
907 | /* Enable the TIM Capture/Compare 4 interrupt */ |
908 | 908 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
909 | default: |
909 | break; |
910 | break; |
910 | } |
911 | } |
911 | |
912 | 912 | default: |
|
913 | /* Enable the Output compare channel */ |
913 | status = HAL_ERROR; |
914 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
914 | break; |
915 | 915 | } |
|
916 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
916 | |
917 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
917 | if (status == HAL_OK) |
918 | { |
918 | { |
919 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
919 | /* Enable the Output compare channel */ |
920 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
920 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
921 | { |
921 | |
922 | __HAL_TIM_ENABLE(htim); |
922 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
923 | } |
923 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
924 | } |
924 | { |
925 | else |
925 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
926 | { |
926 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
927 | __HAL_TIM_ENABLE(htim); |
927 | { |
928 | } |
928 | __HAL_TIM_ENABLE(htim); |
929 | 929 | } |
|
930 | /* Return function status */ |
930 | } |
931 | return HAL_OK; |
931 | else |
932 | } |
932 | { |
933 | 933 | __HAL_TIM_ENABLE(htim); |
|
934 | /** |
934 | } |
935 | * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
935 | } |
936 | * @param htim TIM Output Compare handle |
936 | |
937 | * @param Channel TIM Channel to be disabled |
937 | /* Return function status */ |
938 | * This parameter can be one of the following values: |
938 | return status; |
939 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
939 | } |
940 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
940 | |
941 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
941 | /** |
942 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
942 | * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
943 | * @retval HAL status |
943 | * @param htim TIM Output Compare handle |
944 | */ |
944 | * @param Channel TIM Channel to be disabled |
945 | HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
945 | * This parameter can be one of the following values: |
946 | { |
946 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
947 | /* Check the parameters */ |
947 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
948 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
948 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
949 | 949 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
950 | switch (Channel) |
950 | * @retval HAL status |
951 | { |
951 | */ |
952 | case TIM_CHANNEL_1: |
952 | HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
953 | { |
953 | { |
954 | /* Disable the TIM Capture/Compare 1 interrupt */ |
954 | HAL_StatusTypeDef status = HAL_OK; |
955 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
955 | |
956 | break; |
956 | /* Check the parameters */ |
957 | } |
957 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
958 | 958 | ||
959 | case TIM_CHANNEL_2: |
959 | switch (Channel) |
960 | { |
960 | { |
961 | /* Disable the TIM Capture/Compare 2 interrupt */ |
961 | case TIM_CHANNEL_1: |
962 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
962 | { |
963 | break; |
963 | /* Disable the TIM Capture/Compare 1 interrupt */ |
964 | } |
964 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
965 | 965 | break; |
|
966 | case TIM_CHANNEL_3: |
966 | } |
967 | { |
967 | |
968 | /* Disable the TIM Capture/Compare 3 interrupt */ |
968 | case TIM_CHANNEL_2: |
969 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
969 | { |
970 | break; |
970 | /* Disable the TIM Capture/Compare 2 interrupt */ |
971 | } |
971 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
972 | 972 | break; |
|
973 | case TIM_CHANNEL_4: |
973 | } |
974 | { |
974 | |
975 | /* Disable the TIM Capture/Compare 4 interrupt */ |
975 | case TIM_CHANNEL_3: |
976 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
976 | { |
977 | break; |
977 | /* Disable the TIM Capture/Compare 3 interrupt */ |
978 | } |
978 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
979 | 979 | break; |
|
980 | default: |
980 | } |
981 | break; |
981 | |
982 | } |
982 | case TIM_CHANNEL_4: |
983 | 983 | { |
|
984 | /* Disable the Output compare channel */ |
984 | /* Disable the TIM Capture/Compare 4 interrupt */ |
985 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
985 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
986 | 986 | break; |
|
987 | /* Disable the Peripheral */ |
987 | } |
988 | __HAL_TIM_DISABLE(htim); |
988 | |
989 | 989 | default: |
|
990 | /* Set the TIM channel state */ |
990 | status = HAL_ERROR; |
991 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
991 | break; |
992 | 992 | } |
|
993 | /* Return function status */ |
993 | |
994 | return HAL_OK; |
994 | if (status == HAL_OK) |
995 | } |
995 | { |
996 | 996 | /* Disable the Output compare channel */ |
|
997 | /** |
997 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
998 | * @brief Starts the TIM Output Compare signal generation in DMA mode. |
998 | |
999 | * @param htim TIM Output Compare handle |
999 | /* Disable the Peripheral */ |
1000 | * @param Channel TIM Channel to be enabled |
1000 | __HAL_TIM_DISABLE(htim); |
1001 | * This parameter can be one of the following values: |
1001 | |
1002 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1002 | /* Set the TIM channel state */ |
1003 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1003 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1004 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1004 | } |
1005 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1005 | |
1006 | * @param pData The source Buffer address. |
1006 | /* Return function status */ |
1007 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1007 | return status; |
1008 | * @retval HAL status |
1008 | } |
1009 | */ |
1009 | |
1010 | HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
1010 | /** |
1011 | { |
1011 | * @brief Starts the TIM Output Compare signal generation in DMA mode. |
1012 | uint32_t tmpsmcr; |
1012 | * @param htim TIM Output Compare handle |
1013 | 1013 | * @param Channel TIM Channel to be enabled |
|
1014 | /* Check the parameters */ |
1014 | * This parameter can be one of the following values: |
1015 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1015 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1016 | 1016 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
1017 | /* Set the TIM channel state */ |
1017 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1018 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1018 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1019 | { |
1019 | * @param pData The source Buffer address. |
1020 | return HAL_BUSY; |
1020 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1021 | } |
1021 | * @retval HAL status |
1022 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1022 | */ |
1023 | { |
1023 | HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
1024 | if ((pData == NULL) && (Length > 0U)) |
1024 | uint16_t Length) |
1025 | { |
1025 | { |
1026 | return HAL_ERROR; |
1026 | HAL_StatusTypeDef status = HAL_OK; |
1027 | } |
1027 | uint32_t tmpsmcr; |
1028 | else |
1028 | |
1029 | { |
1029 | /* Check the parameters */ |
1030 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1030 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1031 | } |
1031 | |
1032 | } |
1032 | /* Set the TIM channel state */ |
1033 | else |
1033 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1034 | { |
1034 | { |
1035 | return HAL_ERROR; |
1035 | return HAL_BUSY; |
1036 | } |
1036 | } |
1037 | 1037 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
|
1038 | switch (Channel) |
1038 | { |
1039 | { |
1039 | if ((pData == NULL) || (Length == 0U)) |
1040 | case TIM_CHANNEL_1: |
1040 | { |
1041 | { |
1041 | return HAL_ERROR; |
1042 | /* Set the DMA compare callbacks */ |
1042 | } |
1043 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1043 | else |
1044 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1044 | { |
1045 | 1045 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
1046 | /* Set the DMA error callback */ |
1046 | } |
1047 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1047 | } |
1048 | 1048 | else |
|
1049 | /* Enable the DMA channel */ |
1049 | { |
1050 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1050 | return HAL_ERROR; |
1051 | Length) != HAL_OK) |
1051 | } |
1052 | { |
1052 | |
1053 | /* Return error status */ |
1053 | switch (Channel) |
1054 | return HAL_ERROR; |
1054 | { |
1055 | } |
1055 | case TIM_CHANNEL_1: |
1056 | 1056 | { |
|
1057 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1057 | /* Set the DMA compare callbacks */ |
1058 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1058 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1059 | break; |
1059 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1060 | } |
1060 | |
1061 | 1061 | /* Set the DMA error callback */ |
|
1062 | case TIM_CHANNEL_2: |
1062 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1063 | { |
1063 | |
1064 | /* Set the DMA compare callbacks */ |
1064 | /* Enable the DMA channel */ |
1065 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1065 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1066 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1066 | Length) != HAL_OK) |
1067 | 1067 | { |
|
1068 | /* Set the DMA error callback */ |
1068 | /* Return error status */ |
1069 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
1069 | return HAL_ERROR; |
1070 | 1070 | } |
|
1071 | /* Enable the DMA channel */ |
1071 | |
1072 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1072 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1073 | Length) != HAL_OK) |
1073 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1074 | { |
1074 | break; |
1075 | /* Return error status */ |
1075 | } |
1076 | return HAL_ERROR; |
1076 | |
1077 | } |
1077 | case TIM_CHANNEL_2: |
1078 | 1078 | { |
|
1079 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1079 | /* Set the DMA compare callbacks */ |
1080 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1080 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1081 | break; |
1081 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1082 | } |
1082 | |
1083 | 1083 | /* Set the DMA error callback */ |
|
1084 | case TIM_CHANNEL_3: |
1084 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
1085 | { |
1085 | |
1086 | /* Set the DMA compare callbacks */ |
1086 | /* Enable the DMA channel */ |
1087 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1087 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1088 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1088 | Length) != HAL_OK) |
1089 | 1089 | { |
|
1090 | /* Set the DMA error callback */ |
1090 | /* Return error status */ |
1091 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1091 | return HAL_ERROR; |
1092 | 1092 | } |
|
1093 | /* Enable the DMA channel */ |
1093 | |
1094 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1094 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1095 | Length) != HAL_OK) |
1095 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1096 | { |
1096 | break; |
1097 | /* Return error status */ |
1097 | } |
1098 | return HAL_ERROR; |
1098 | |
1099 | } |
1099 | case TIM_CHANNEL_3: |
1100 | /* Enable the TIM Capture/Compare 3 DMA request */ |
1100 | { |
1101 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1101 | /* Set the DMA compare callbacks */ |
1102 | break; |
1102 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1103 | } |
1103 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1104 | 1104 | ||
1105 | case TIM_CHANNEL_4: |
1105 | /* Set the DMA error callback */ |
1106 | { |
1106 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1107 | /* Set the DMA compare callbacks */ |
1107 | |
1108 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1108 | /* Enable the DMA channel */ |
1109 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1109 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1110 | 1110 | Length) != HAL_OK) |
|
1111 | /* Set the DMA error callback */ |
1111 | { |
1112 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1112 | /* Return error status */ |
1113 | 1113 | return HAL_ERROR; |
|
1114 | /* Enable the DMA channel */ |
1114 | } |
1115 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1115 | /* Enable the TIM Capture/Compare 3 DMA request */ |
1116 | Length) != HAL_OK) |
1116 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1117 | { |
1117 | break; |
1118 | /* Return error status */ |
1118 | } |
1119 | return HAL_ERROR; |
1119 | |
1120 | } |
1120 | case TIM_CHANNEL_4: |
1121 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1121 | { |
1122 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1122 | /* Set the DMA compare callbacks */ |
1123 | break; |
1123 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1124 | } |
1124 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1125 | 1125 | ||
1126 | default: |
1126 | /* Set the DMA error callback */ |
1127 | break; |
1127 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1128 | } |
1128 | |
1129 | 1129 | /* Enable the DMA channel */ |
|
1130 | /* Enable the Output compare channel */ |
1130 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1131 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1131 | Length) != HAL_OK) |
1132 | 1132 | { |
|
1133 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1133 | /* Return error status */ |
1134 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1134 | return HAL_ERROR; |
1135 | { |
1135 | } |
1136 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1136 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1137 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1137 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1138 | { |
1138 | break; |
1139 | __HAL_TIM_ENABLE(htim); |
1139 | } |
1140 | } |
1140 | |
1141 | } |
1141 | default: |
1142 | else |
1142 | status = HAL_ERROR; |
1143 | { |
1143 | break; |
1144 | __HAL_TIM_ENABLE(htim); |
1144 | } |
1145 | } |
1145 | |
1146 | 1146 | if (status == HAL_OK) |
|
1147 | /* Return function status */ |
1147 | { |
1148 | return HAL_OK; |
1148 | /* Enable the Output compare channel */ |
1149 | } |
1149 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1150 | 1150 | ||
1151 | /** |
1151 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1152 | * @brief Stops the TIM Output Compare signal generation in DMA mode. |
1152 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1153 | * @param htim TIM Output Compare handle |
1153 | { |
1154 | * @param Channel TIM Channel to be disabled |
1154 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1155 | * This parameter can be one of the following values: |
1155 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1156 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1156 | { |
1157 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1157 | __HAL_TIM_ENABLE(htim); |
1158 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1158 | } |
1159 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1159 | } |
1160 | * @retval HAL status |
1160 | else |
1161 | */ |
1161 | { |
1162 | HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1162 | __HAL_TIM_ENABLE(htim); |
1163 | { |
1163 | } |
1164 | /* Check the parameters */ |
1164 | } |
1165 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1165 | |
1166 | 1166 | /* Return function status */ |
|
1167 | switch (Channel) |
1167 | return status; |
1168 | { |
1168 | } |
1169 | case TIM_CHANNEL_1: |
1169 | |
1170 | { |
1170 | /** |
1171 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1171 | * @brief Stops the TIM Output Compare signal generation in DMA mode. |
1172 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1172 | * @param htim TIM Output Compare handle |
1173 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1173 | * @param Channel TIM Channel to be disabled |
1174 | break; |
1174 | * This parameter can be one of the following values: |
1175 | } |
1175 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1176 | 1176 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
1177 | case TIM_CHANNEL_2: |
1177 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1178 | { |
1178 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1179 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1179 | * @retval HAL status |
1180 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1180 | */ |
1181 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1181 | HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1182 | break; |
1182 | { |
1183 | } |
1183 | HAL_StatusTypeDef status = HAL_OK; |
1184 | 1184 | ||
1185 | case TIM_CHANNEL_3: |
1185 | /* Check the parameters */ |
1186 | { |
1186 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1187 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1187 | |
1188 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1188 | switch (Channel) |
1189 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1189 | { |
1190 | break; |
1190 | case TIM_CHANNEL_1: |
1191 | } |
1191 | { |
1192 | 1192 | /* Disable the TIM Capture/Compare 1 DMA request */ |
|
1193 | case TIM_CHANNEL_4: |
1193 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1194 | { |
1194 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1195 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1195 | break; |
1196 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
1196 | } |
1197 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1197 | |
1198 | break; |
1198 | case TIM_CHANNEL_2: |
1199 | } |
1199 | { |
1200 | 1200 | /* Disable the TIM Capture/Compare 2 DMA request */ |
|
1201 | default: |
1201 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1202 | break; |
1202 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1203 | } |
1203 | break; |
1204 | 1204 | } |
|
1205 | /* Disable the Output compare channel */ |
1205 | |
1206 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1206 | case TIM_CHANNEL_3: |
1207 | 1207 | { |
|
1208 | /* Disable the Peripheral */ |
1208 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1209 | __HAL_TIM_DISABLE(htim); |
1209 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1210 | 1210 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
1211 | /* Set the TIM channel state */ |
1211 | break; |
1212 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1212 | } |
1213 | 1213 | ||
1214 | /* Return function status */ |
1214 | case TIM_CHANNEL_4: |
1215 | return HAL_OK; |
1215 | { |
1216 | } |
1216 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1217 | 1217 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
|
1218 | /** |
1218 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1219 | * @} |
1219 | break; |
1220 | */ |
1220 | } |
1221 | 1221 | ||
1222 | /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
1222 | default: |
1223 | * @brief TIM PWM functions |
1223 | status = HAL_ERROR; |
1224 | * |
1224 | break; |
1225 | @verbatim |
1225 | } |
1226 | ============================================================================== |
1226 | |
1227 | ##### TIM PWM functions ##### |
1227 | if (status == HAL_OK) |
1228 | ============================================================================== |
1228 | { |
1229 | [..] |
1229 | /* Disable the Output compare channel */ |
1230 | This section provides functions allowing to: |
1230 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1231 | (+) Initialize and configure the TIM PWM. |
1231 | |
1232 | (+) De-initialize the TIM PWM. |
1232 | /* Disable the Peripheral */ |
1233 | (+) Start the TIM PWM. |
1233 | __HAL_TIM_DISABLE(htim); |
1234 | (+) Stop the TIM PWM. |
1234 | |
1235 | (+) Start the TIM PWM and enable interrupt. |
1235 | /* Set the TIM channel state */ |
1236 | (+) Stop the TIM PWM and disable interrupt. |
1236 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1237 | (+) Start the TIM PWM and enable DMA transfer. |
1237 | } |
1238 | (+) Stop the TIM PWM and disable DMA transfer. |
1238 | |
1239 | 1239 | /* Return function status */ |
|
1240 | @endverbatim |
1240 | return status; |
1241 | * @{ |
1241 | } |
1242 | */ |
1242 | |
1243 | /** |
1243 | /** |
1244 | * @brief Initializes the TIM PWM Time Base according to the specified |
1244 | * @} |
1245 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1245 | */ |
1246 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
1246 | |
1247 | * requires a timer reset to avoid unexpected direction |
1247 | /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
1248 | * due to DIR bit readonly in center aligned mode. |
1248 | * @brief TIM PWM functions |
1249 | * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
1249 | * |
1250 | * @param htim TIM PWM handle |
1250 | @verbatim |
1251 | * @retval HAL status |
1251 | ============================================================================== |
1252 | */ |
1252 | ##### TIM PWM functions ##### |
1253 | HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
1253 | ============================================================================== |
1254 | { |
1254 | [..] |
1255 | /* Check the TIM handle allocation */ |
1255 | This section provides functions allowing to: |
1256 | if (htim == NULL) |
1256 | (+) Initialize and configure the TIM PWM. |
1257 | { |
1257 | (+) De-initialize the TIM PWM. |
1258 | return HAL_ERROR; |
1258 | (+) Start the TIM PWM. |
1259 | } |
1259 | (+) Stop the TIM PWM. |
1260 | 1260 | (+) Start the TIM PWM and enable interrupt. |
|
1261 | /* Check the parameters */ |
1261 | (+) Stop the TIM PWM and disable interrupt. |
1262 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1262 | (+) Start the TIM PWM and enable DMA transfer. |
1263 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1263 | (+) Stop the TIM PWM and disable DMA transfer. |
1264 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1264 | |
1265 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1265 | @endverbatim |
1266 | 1266 | * @{ |
|
1267 | if (htim->State == HAL_TIM_STATE_RESET) |
1267 | */ |
1268 | { |
1268 | /** |
1269 | /* Allocate lock resource and initialize it */ |
1269 | * @brief Initializes the TIM PWM Time Base according to the specified |
1270 | htim->Lock = HAL_UNLOCKED; |
1270 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1271 | 1271 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
1272 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1272 | * requires a timer reset to avoid unexpected direction |
1273 | /* Reset interrupt callbacks to legacy weak callbacks */ |
1273 | * due to DIR bit readonly in center aligned mode. |
1274 | TIM_ResetCallback(htim); |
1274 | * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
1275 | 1275 | * @param htim TIM PWM handle |
|
1276 | if (htim->PWM_MspInitCallback == NULL) |
1276 | * @retval HAL status |
1277 | { |
1277 | */ |
1278 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
1278 | HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
1279 | } |
1279 | { |
1280 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1280 | /* Check the TIM handle allocation */ |
1281 | htim->PWM_MspInitCallback(htim); |
1281 | if (htim == NULL) |
1282 | #else |
1282 | { |
1283 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1283 | return HAL_ERROR; |
1284 | HAL_TIM_PWM_MspInit(htim); |
1284 | } |
1285 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1285 | |
1286 | } |
1286 | /* Check the parameters */ |
1287 | 1287 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
1288 | /* Set the TIM state */ |
1288 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1289 | htim->State = HAL_TIM_STATE_BUSY; |
1289 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1290 | 1290 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
1291 | /* Init the base time for the PWM */ |
1291 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1292 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1292 | |
1293 | 1293 | if (htim->State == HAL_TIM_STATE_RESET) |
|
1294 | /* Initialize the DMA burst operation state */ |
1294 | { |
1295 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1295 | /* Allocate lock resource and initialize it */ |
1296 | 1296 | htim->Lock = HAL_UNLOCKED; |
|
1297 | /* Initialize the TIM channels state */ |
1297 | |
1298 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1298 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1299 | 1299 | /* Reset interrupt callbacks to legacy weak callbacks */ |
|
1300 | /* Initialize the TIM state*/ |
1300 | TIM_ResetCallback(htim); |
1301 | htim->State = HAL_TIM_STATE_READY; |
1301 | |
1302 | 1302 | if (htim->PWM_MspInitCallback == NULL) |
|
1303 | return HAL_OK; |
1303 | { |
1304 | } |
1304 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
1305 | 1305 | } |
|
1306 | /** |
1306 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1307 | * @brief DeInitializes the TIM peripheral |
1307 | htim->PWM_MspInitCallback(htim); |
1308 | * @param htim TIM PWM handle |
1308 | #else |
1309 | * @retval HAL status |
1309 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1310 | */ |
1310 | HAL_TIM_PWM_MspInit(htim); |
1311 | HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
1311 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1312 | { |
1312 | } |
1313 | /* Check the parameters */ |
1313 | |
1314 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1314 | /* Set the TIM state */ |
1315 | 1315 | htim->State = HAL_TIM_STATE_BUSY; |
|
1316 | htim->State = HAL_TIM_STATE_BUSY; |
1316 | |
1317 | 1317 | /* Init the base time for the PWM */ |
|
1318 | /* Disable the TIM Peripheral Clock */ |
1318 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1319 | __HAL_TIM_DISABLE(htim); |
1319 | |
1320 | 1320 | /* Initialize the DMA burst operation state */ |
|
1321 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1321 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1322 | if (htim->PWM_MspDeInitCallback == NULL) |
1322 | |
1323 | { |
1323 | /* Initialize the TIM channels state */ |
1324 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
1324 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1325 | } |
1325 | |
1326 | /* DeInit the low level hardware */ |
1326 | /* Initialize the TIM state*/ |
1327 | htim->PWM_MspDeInitCallback(htim); |
1327 | htim->State = HAL_TIM_STATE_READY; |
1328 | #else |
1328 | |
1329 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1329 | return HAL_OK; |
1330 | HAL_TIM_PWM_MspDeInit(htim); |
1330 | } |
1331 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1331 | |
1332 | 1332 | /** |
|
1333 | /* Change the DMA burst operation state */ |
1333 | * @brief DeInitializes the TIM peripheral |
1334 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1334 | * @param htim TIM PWM handle |
1335 | 1335 | * @retval HAL status |
|
1336 | /* Change the TIM channels state */ |
1336 | */ |
1337 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1337 | HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
1338 | 1338 | { |
|
1339 | /* Change TIM state */ |
1339 | /* Check the parameters */ |
1340 | htim->State = HAL_TIM_STATE_RESET; |
1340 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1341 | 1341 | ||
1342 | /* Release Lock */ |
1342 | htim->State = HAL_TIM_STATE_BUSY; |
1343 | __HAL_UNLOCK(htim); |
1343 | |
1344 | 1344 | /* Disable the TIM Peripheral Clock */ |
|
1345 | return HAL_OK; |
1345 | __HAL_TIM_DISABLE(htim); |
1346 | } |
1346 | |
1347 | 1347 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
1348 | /** |
1348 | if (htim->PWM_MspDeInitCallback == NULL) |
1349 | * @brief Initializes the TIM PWM MSP. |
1349 | { |
1350 | * @param htim TIM PWM handle |
1350 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
1351 | * @retval None |
1351 | } |
1352 | */ |
1352 | /* DeInit the low level hardware */ |
1353 | __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
1353 | htim->PWM_MspDeInitCallback(htim); |
1354 | { |
1354 | #else |
1355 | /* Prevent unused argument(s) compilation warning */ |
1355 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1356 | UNUSED(htim); |
1356 | HAL_TIM_PWM_MspDeInit(htim); |
1357 | 1357 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
1358 | /* NOTE : This function should not be modified, when the callback is needed, |
1358 | |
1359 | the HAL_TIM_PWM_MspInit could be implemented in the user file |
1359 | /* Change the DMA burst operation state */ |
1360 | */ |
1360 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1361 | } |
1361 | |
1362 | 1362 | /* Change the TIM channels state */ |
|
1363 | /** |
1363 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1364 | * @brief DeInitializes TIM PWM MSP. |
1364 | |
1365 | * @param htim TIM PWM handle |
1365 | /* Change TIM state */ |
1366 | * @retval None |
1366 | htim->State = HAL_TIM_STATE_RESET; |
1367 | */ |
1367 | |
1368 | __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
1368 | /* Release Lock */ |
1369 | { |
1369 | __HAL_UNLOCK(htim); |
1370 | /* Prevent unused argument(s) compilation warning */ |
1370 | |
1371 | UNUSED(htim); |
1371 | return HAL_OK; |
1372 | 1372 | } |
|
1373 | /* NOTE : This function should not be modified, when the callback is needed, |
1373 | |
1374 | the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
1374 | /** |
1375 | */ |
1375 | * @brief Initializes the TIM PWM MSP. |
1376 | } |
1376 | * @param htim TIM PWM handle |
1377 | 1377 | * @retval None |
|
1378 | /** |
1378 | */ |
1379 | * @brief Starts the PWM signal generation. |
1379 | __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
1380 | * @param htim TIM handle |
1380 | { |
1381 | * @param Channel TIM Channels to be enabled |
1381 | /* Prevent unused argument(s) compilation warning */ |
1382 | * This parameter can be one of the following values: |
1382 | UNUSED(htim); |
1383 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1383 | |
1384 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1384 | /* NOTE : This function should not be modified, when the callback is needed, |
1385 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1385 | the HAL_TIM_PWM_MspInit could be implemented in the user file |
1386 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1386 | */ |
1387 | * @retval HAL status |
1387 | } |
1388 | */ |
1388 | |
1389 | HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1389 | /** |
1390 | { |
1390 | * @brief DeInitializes TIM PWM MSP. |
1391 | uint32_t tmpsmcr; |
1391 | * @param htim TIM PWM handle |
1392 | 1392 | * @retval None |
|
1393 | /* Check the parameters */ |
1393 | */ |
1394 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1394 | __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
1395 | 1395 | { |
|
1396 | /* Check the TIM channel state */ |
1396 | /* Prevent unused argument(s) compilation warning */ |
1397 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1397 | UNUSED(htim); |
1398 | { |
1398 | |
1399 | return HAL_ERROR; |
1399 | /* NOTE : This function should not be modified, when the callback is needed, |
1400 | } |
1400 | the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
1401 | 1401 | */ |
|
1402 | /* Set the TIM channel state */ |
1402 | } |
1403 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1403 | |
1404 | 1404 | /** |
|
1405 | /* Enable the Capture compare channel */ |
1405 | * @brief Starts the PWM signal generation. |
1406 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1406 | * @param htim TIM handle |
1407 | 1407 | * @param Channel TIM Channels to be enabled |
|
1408 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1408 | * This parameter can be one of the following values: |
1409 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1409 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1410 | { |
1410 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1411 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1411 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1412 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1412 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1413 | { |
1413 | * @retval HAL status |
1414 | __HAL_TIM_ENABLE(htim); |
1414 | */ |
1415 | } |
1415 | HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1416 | } |
1416 | { |
1417 | else |
1417 | uint32_t tmpsmcr; |
1418 | { |
1418 | |
1419 | __HAL_TIM_ENABLE(htim); |
1419 | /* Check the parameters */ |
1420 | } |
1420 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1421 | 1421 | ||
1422 | /* Return function status */ |
1422 | /* Check the TIM channel state */ |
1423 | return HAL_OK; |
1423 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1424 | } |
1424 | { |
1425 | 1425 | return HAL_ERROR; |
|
1426 | /** |
1426 | } |
1427 | * @brief Stops the PWM signal generation. |
1427 | |
1428 | * @param htim TIM PWM handle |
1428 | /* Set the TIM channel state */ |
1429 | * @param Channel TIM Channels to be disabled |
1429 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1430 | * This parameter can be one of the following values: |
1430 | |
1431 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1431 | /* Enable the Capture compare channel */ |
1432 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1432 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1433 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1433 | |
1434 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1434 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1435 | * @retval HAL status |
1435 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1436 | */ |
1436 | { |
1437 | HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
1437 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1438 | { |
1438 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1439 | /* Check the parameters */ |
1439 | { |
1440 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1440 | __HAL_TIM_ENABLE(htim); |
1441 | 1441 | } |
|
1442 | /* Disable the Capture compare channel */ |
1442 | } |
1443 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1443 | else |
1444 | 1444 | { |
|
1445 | /* Disable the Peripheral */ |
1445 | __HAL_TIM_ENABLE(htim); |
1446 | __HAL_TIM_DISABLE(htim); |
1446 | } |
1447 | 1447 | ||
1448 | /* Set the TIM channel state */ |
1448 | /* Return function status */ |
1449 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1449 | return HAL_OK; |
1450 | 1450 | } |
|
1451 | /* Return function status */ |
1451 | |
1452 | return HAL_OK; |
1452 | /** |
1453 | } |
1453 | * @brief Stops the PWM signal generation. |
1454 | 1454 | * @param htim TIM PWM handle |
|
1455 | /** |
1455 | * @param Channel TIM Channels to be disabled |
1456 | * @brief Starts the PWM signal generation in interrupt mode. |
1456 | * This parameter can be one of the following values: |
1457 | * @param htim TIM PWM handle |
1457 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1458 | * @param Channel TIM Channel to be enabled |
1458 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1459 | * This parameter can be one of the following values: |
1459 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1460 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1460 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1461 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1461 | * @retval HAL status |
1462 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1462 | */ |
1463 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1463 | HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
1464 | * @retval HAL status |
1464 | { |
1465 | */ |
1465 | /* Check the parameters */ |
1466 | HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1466 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1467 | { |
1467 | |
1468 | uint32_t tmpsmcr; |
1468 | /* Disable the Capture compare channel */ |
1469 | /* Check the parameters */ |
1469 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1470 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1470 | |
1471 | 1471 | /* Disable the Peripheral */ |
|
1472 | /* Check the TIM channel state */ |
1472 | __HAL_TIM_DISABLE(htim); |
1473 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1473 | |
1474 | { |
1474 | /* Set the TIM channel state */ |
1475 | return HAL_ERROR; |
1475 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1476 | } |
1476 | |
1477 | 1477 | /* Return function status */ |
|
1478 | /* Set the TIM channel state */ |
1478 | return HAL_OK; |
1479 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1479 | } |
1480 | 1480 | ||
1481 | switch (Channel) |
1481 | /** |
1482 | { |
1482 | * @brief Starts the PWM signal generation in interrupt mode. |
1483 | case TIM_CHANNEL_1: |
1483 | * @param htim TIM PWM handle |
1484 | { |
1484 | * @param Channel TIM Channel to be enabled |
1485 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1485 | * This parameter can be one of the following values: |
1486 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1486 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1487 | break; |
1487 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1488 | } |
1488 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1489 | 1489 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
1490 | case TIM_CHANNEL_2: |
1490 | * @retval HAL status |
1491 | { |
1491 | */ |
1492 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1492 | HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1493 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1493 | { |
1494 | break; |
1494 | HAL_StatusTypeDef status = HAL_OK; |
1495 | } |
1495 | uint32_t tmpsmcr; |
1496 | 1496 | ||
1497 | case TIM_CHANNEL_3: |
1497 | /* Check the parameters */ |
1498 | { |
1498 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1499 | /* Enable the TIM Capture/Compare 3 interrupt */ |
1499 | |
1500 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
1500 | /* Check the TIM channel state */ |
1501 | break; |
1501 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1502 | } |
1502 | { |
1503 | 1503 | return HAL_ERROR; |
|
1504 | case TIM_CHANNEL_4: |
1504 | } |
1505 | { |
1505 | |
1506 | /* Enable the TIM Capture/Compare 4 interrupt */ |
1506 | /* Set the TIM channel state */ |
1507 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
1507 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1508 | break; |
1508 | |
1509 | } |
1509 | switch (Channel) |
1510 | 1510 | { |
|
1511 | default: |
1511 | case TIM_CHANNEL_1: |
1512 | break; |
1512 | { |
1513 | } |
1513 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1514 | 1514 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
1515 | /* Enable the Capture compare channel */ |
1515 | break; |
1516 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1516 | } |
1517 | 1517 | ||
1518 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1518 | case TIM_CHANNEL_2: |
1519 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1519 | { |
1520 | { |
1520 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1521 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1521 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1522 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1522 | break; |
1523 | { |
1523 | } |
1524 | __HAL_TIM_ENABLE(htim); |
1524 | |
1525 | } |
1525 | case TIM_CHANNEL_3: |
1526 | } |
1526 | { |
1527 | else |
1527 | /* Enable the TIM Capture/Compare 3 interrupt */ |
1528 | { |
1528 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
1529 | __HAL_TIM_ENABLE(htim); |
1529 | break; |
1530 | } |
1530 | } |
1531 | 1531 | ||
1532 | /* Return function status */ |
1532 | case TIM_CHANNEL_4: |
1533 | return HAL_OK; |
1533 | { |
1534 | } |
1534 | /* Enable the TIM Capture/Compare 4 interrupt */ |
1535 | 1535 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
1536 | /** |
1536 | break; |
1537 | * @brief Stops the PWM signal generation in interrupt mode. |
1537 | } |
1538 | * @param htim TIM PWM handle |
1538 | |
1539 | * @param Channel TIM Channels to be disabled |
1539 | default: |
1540 | * This parameter can be one of the following values: |
1540 | status = HAL_ERROR; |
1541 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1541 | break; |
1542 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1542 | } |
1543 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1543 | |
1544 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1544 | if (status == HAL_OK) |
1545 | * @retval HAL status |
1545 | { |
1546 | */ |
1546 | /* Enable the Capture compare channel */ |
1547 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1547 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1548 | { |
1548 | |
1549 | /* Check the parameters */ |
1549 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1550 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1550 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1551 | 1551 | { |
|
1552 | switch (Channel) |
1552 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1553 | { |
1553 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1554 | case TIM_CHANNEL_1: |
1554 | { |
1555 | { |
1555 | __HAL_TIM_ENABLE(htim); |
1556 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1556 | } |
1557 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1557 | } |
1558 | break; |
1558 | else |
1559 | } |
1559 | { |
1560 | 1560 | __HAL_TIM_ENABLE(htim); |
|
1561 | case TIM_CHANNEL_2: |
1561 | } |
1562 | { |
1562 | } |
1563 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1563 | |
1564 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
1564 | /* Return function status */ |
1565 | break; |
1565 | return status; |
1566 | } |
1566 | } |
1567 | 1567 | ||
1568 | case TIM_CHANNEL_3: |
1568 | /** |
1569 | { |
1569 | * @brief Stops the PWM signal generation in interrupt mode. |
1570 | /* Disable the TIM Capture/Compare 3 interrupt */ |
1570 | * @param htim TIM PWM handle |
1571 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
1571 | * @param Channel TIM Channels to be disabled |
1572 | break; |
1572 | * This parameter can be one of the following values: |
1573 | } |
1573 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1574 | 1574 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
1575 | case TIM_CHANNEL_4: |
1575 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1576 | { |
1576 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1577 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1577 | * @retval HAL status |
1578 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
1578 | */ |
1579 | break; |
1579 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1580 | } |
1580 | { |
1581 | 1581 | HAL_StatusTypeDef status = HAL_OK; |
|
1582 | default: |
1582 | |
1583 | break; |
1583 | /* Check the parameters */ |
1584 | } |
1584 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1585 | 1585 | ||
1586 | /* Disable the Capture compare channel */ |
1586 | switch (Channel) |
1587 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1587 | { |
1588 | 1588 | case TIM_CHANNEL_1: |
|
1589 | /* Disable the Peripheral */ |
1589 | { |
1590 | __HAL_TIM_DISABLE(htim); |
1590 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1591 | 1591 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
1592 | /* Set the TIM channel state */ |
1592 | break; |
1593 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1593 | } |
1594 | 1594 | ||
1595 | /* Return function status */ |
1595 | case TIM_CHANNEL_2: |
1596 | return HAL_OK; |
1596 | { |
1597 | } |
1597 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1598 | 1598 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
1599 | /** |
1599 | break; |
1600 | * @brief Starts the TIM PWM signal generation in DMA mode. |
1600 | } |
1601 | * @param htim TIM PWM handle |
1601 | |
1602 | * @param Channel TIM Channels to be enabled |
1602 | case TIM_CHANNEL_3: |
1603 | * This parameter can be one of the following values: |
1603 | { |
1604 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1604 | /* Disable the TIM Capture/Compare 3 interrupt */ |
1605 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1605 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
1606 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1606 | break; |
1607 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1607 | } |
1608 | * @param pData The source Buffer address. |
1608 | |
1609 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1609 | case TIM_CHANNEL_4: |
1610 | * @retval HAL status |
1610 | { |
1611 | */ |
1611 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1612 | HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
1612 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
1613 | { |
1613 | break; |
1614 | uint32_t tmpsmcr; |
1614 | } |
1615 | 1615 | ||
1616 | /* Check the parameters */ |
1616 | default: |
1617 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1617 | status = HAL_ERROR; |
1618 | 1618 | break; |
|
1619 | /* Set the TIM channel state */ |
1619 | } |
1620 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1620 | |
1621 | { |
1621 | if (status == HAL_OK) |
1622 | return HAL_BUSY; |
1622 | { |
1623 | } |
1623 | /* Disable the Capture compare channel */ |
1624 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1624 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1625 | { |
1625 | |
1626 | if ((pData == NULL) && (Length > 0U)) |
1626 | /* Disable the Peripheral */ |
1627 | { |
1627 | __HAL_TIM_DISABLE(htim); |
1628 | return HAL_ERROR; |
1628 | |
1629 | } |
1629 | /* Set the TIM channel state */ |
1630 | else |
1630 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1631 | { |
1631 | } |
1632 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1632 | |
1633 | } |
1633 | /* Return function status */ |
1634 | } |
1634 | return status; |
1635 | else |
1635 | } |
1636 | { |
1636 | |
1637 | return HAL_ERROR; |
1637 | /** |
1638 | } |
1638 | * @brief Starts the TIM PWM signal generation in DMA mode. |
1639 | 1639 | * @param htim TIM PWM handle |
|
1640 | switch (Channel) |
1640 | * @param Channel TIM Channels to be enabled |
1641 | { |
1641 | * This parameter can be one of the following values: |
1642 | case TIM_CHANNEL_1: |
1642 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1643 | { |
1643 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1644 | /* Set the DMA compare callbacks */ |
1644 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1645 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1645 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1646 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1646 | * @param pData The source Buffer address. |
1647 | 1647 | * @param Length The length of data to be transferred from memory to TIM peripheral |
|
1648 | /* Set the DMA error callback */ |
1648 | * @retval HAL status |
1649 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1649 | */ |
1650 | 1650 | HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
|
1651 | /* Enable the DMA channel */ |
1651 | uint16_t Length) |
1652 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1652 | { |
1653 | Length) != HAL_OK) |
1653 | HAL_StatusTypeDef status = HAL_OK; |
1654 | { |
1654 | uint32_t tmpsmcr; |
1655 | /* Return error status */ |
1655 | |
1656 | return HAL_ERROR; |
1656 | /* Check the parameters */ |
1657 | } |
1657 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1658 | 1658 | ||
1659 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1659 | /* Set the TIM channel state */ |
1660 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1660 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1661 | break; |
1661 | { |
1662 | } |
1662 | return HAL_BUSY; |
1663 | 1663 | } |
|
1664 | case TIM_CHANNEL_2: |
1664 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1665 | { |
1665 | { |
1666 | /* Set the DMA compare callbacks */ |
1666 | if ((pData == NULL) || (Length == 0U)) |
1667 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1667 | { |
1668 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1668 | return HAL_ERROR; |
1669 | 1669 | } |
|
1670 | /* Set the DMA error callback */ |
1670 | else |
1671 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
1671 | { |
1672 | 1672 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
1673 | /* Enable the DMA channel */ |
1673 | } |
1674 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1674 | } |
1675 | Length) != HAL_OK) |
1675 | else |
1676 | { |
1676 | { |
1677 | /* Return error status */ |
1677 | return HAL_ERROR; |
1678 | return HAL_ERROR; |
1678 | } |
1679 | } |
1679 | |
1680 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1680 | switch (Channel) |
1681 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1681 | { |
1682 | break; |
1682 | case TIM_CHANNEL_1: |
1683 | } |
1683 | { |
1684 | 1684 | /* Set the DMA compare callbacks */ |
|
1685 | case TIM_CHANNEL_3: |
1685 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1686 | { |
1686 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1687 | /* Set the DMA compare callbacks */ |
1687 | |
1688 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1688 | /* Set the DMA error callback */ |
1689 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1689 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1690 | 1690 | ||
1691 | /* Set the DMA error callback */ |
1691 | /* Enable the DMA channel */ |
1692 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1692 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1693 | 1693 | Length) != HAL_OK) |
|
1694 | /* Enable the DMA channel */ |
1694 | { |
1695 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1695 | /* Return error status */ |
1696 | Length) != HAL_OK) |
1696 | return HAL_ERROR; |
1697 | { |
1697 | } |
1698 | /* Return error status */ |
1698 | |
1699 | return HAL_ERROR; |
1699 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1700 | } |
1700 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1701 | /* Enable the TIM Output Capture/Compare 3 request */ |
1701 | break; |
1702 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1702 | } |
1703 | break; |
1703 | |
1704 | } |
1704 | case TIM_CHANNEL_2: |
1705 | 1705 | { |
|
1706 | case TIM_CHANNEL_4: |
1706 | /* Set the DMA compare callbacks */ |
1707 | { |
1707 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1708 | /* Set the DMA compare callbacks */ |
1708 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1709 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1709 | |
1710 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1710 | /* Set the DMA error callback */ |
1711 | 1711 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
1712 | /* Set the DMA error callback */ |
1712 | |
1713 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1713 | /* Enable the DMA channel */ |
1714 | 1714 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
|
1715 | /* Enable the DMA channel */ |
1715 | Length) != HAL_OK) |
1716 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1716 | { |
1717 | Length) != HAL_OK) |
1717 | /* Return error status */ |
1718 | { |
1718 | return HAL_ERROR; |
1719 | /* Return error status */ |
1719 | } |
1720 | return HAL_ERROR; |
1720 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1721 | } |
1721 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1722 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1722 | break; |
1723 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1723 | } |
1724 | break; |
1724 | |
1725 | } |
1725 | case TIM_CHANNEL_3: |
1726 | 1726 | { |
|
1727 | default: |
1727 | /* Set the DMA compare callbacks */ |
1728 | break; |
1728 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1729 | } |
1729 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1730 | 1730 | ||
1731 | /* Enable the Capture compare channel */ |
1731 | /* Set the DMA error callback */ |
1732 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1732 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1733 | 1733 | ||
1734 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1734 | /* Enable the DMA channel */ |
1735 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1735 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1736 | { |
1736 | Length) != HAL_OK) |
1737 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1737 | { |
1738 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1738 | /* Return error status */ |
1739 | { |
1739 | return HAL_ERROR; |
1740 | __HAL_TIM_ENABLE(htim); |
1740 | } |
1741 | } |
1741 | /* Enable the TIM Output Capture/Compare 3 request */ |
1742 | } |
1742 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1743 | else |
1743 | break; |
1744 | { |
1744 | } |
1745 | __HAL_TIM_ENABLE(htim); |
1745 | |
1746 | } |
1746 | case TIM_CHANNEL_4: |
1747 | 1747 | { |
|
1748 | /* Return function status */ |
1748 | /* Set the DMA compare callbacks */ |
1749 | return HAL_OK; |
1749 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1750 | } |
1750 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1751 | 1751 | ||
1752 | /** |
1752 | /* Set the DMA error callback */ |
1753 | * @brief Stops the TIM PWM signal generation in DMA mode. |
1753 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1754 | * @param htim TIM PWM handle |
1754 | |
1755 | * @param Channel TIM Channels to be disabled |
1755 | /* Enable the DMA channel */ |
1756 | * This parameter can be one of the following values: |
1756 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1757 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1757 | Length) != HAL_OK) |
1758 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1758 | { |
1759 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1759 | /* Return error status */ |
1760 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1760 | return HAL_ERROR; |
1761 | * @retval HAL status |
1761 | } |
1762 | */ |
1762 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1763 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1763 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1764 | { |
1764 | break; |
1765 | /* Check the parameters */ |
1765 | } |
1766 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1766 | |
1767 | 1767 | default: |
|
1768 | switch (Channel) |
1768 | status = HAL_ERROR; |
1769 | { |
1769 | break; |
1770 | case TIM_CHANNEL_1: |
1770 | } |
1771 | { |
1771 | |
1772 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1772 | if (status == HAL_OK) |
1773 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1773 | { |
1774 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1774 | /* Enable the Capture compare channel */ |
1775 | break; |
1775 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1776 | } |
1776 | |
1777 | 1777 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
1778 | case TIM_CHANNEL_2: |
1778 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1779 | { |
1779 | { |
1780 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1780 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1781 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1781 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1782 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1782 | { |
1783 | break; |
1783 | __HAL_TIM_ENABLE(htim); |
1784 | } |
1784 | } |
1785 | 1785 | } |
|
1786 | case TIM_CHANNEL_3: |
1786 | else |
1787 | { |
1787 | { |
1788 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1788 | __HAL_TIM_ENABLE(htim); |
1789 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1789 | } |
1790 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1790 | } |
1791 | break; |
1791 | |
1792 | } |
1792 | /* Return function status */ |
1793 | 1793 | return status; |
|
1794 | case TIM_CHANNEL_4: |
1794 | } |
1795 | { |
1795 | |
1796 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1796 | /** |
1797 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
1797 | * @brief Stops the TIM PWM signal generation in DMA mode. |
1798 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1798 | * @param htim TIM PWM handle |
1799 | break; |
1799 | * @param Channel TIM Channels to be disabled |
1800 | } |
1800 | * This parameter can be one of the following values: |
1801 | 1801 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
1802 | default: |
1802 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1803 | break; |
1803 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1804 | } |
1804 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1805 | 1805 | * @retval HAL status |
|
1806 | /* Disable the Capture compare channel */ |
1806 | */ |
1807 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1807 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1808 | 1808 | { |
|
1809 | /* Disable the Peripheral */ |
1809 | HAL_StatusTypeDef status = HAL_OK; |
1810 | __HAL_TIM_DISABLE(htim); |
1810 | |
1811 | 1811 | /* Check the parameters */ |
|
1812 | /* Set the TIM channel state */ |
1812 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1813 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1813 | |
1814 | 1814 | switch (Channel) |
|
1815 | /* Return function status */ |
1815 | { |
1816 | return HAL_OK; |
1816 | case TIM_CHANNEL_1: |
1817 | } |
1817 | { |
1818 | 1818 | /* Disable the TIM Capture/Compare 1 DMA request */ |
|
1819 | /** |
1819 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1820 | * @} |
1820 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1821 | */ |
1821 | break; |
1822 | 1822 | } |
|
1823 | /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
1823 | |
1824 | * @brief TIM Input Capture functions |
1824 | case TIM_CHANNEL_2: |
1825 | * |
1825 | { |
1826 | @verbatim |
1826 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1827 | ============================================================================== |
1827 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1828 | ##### TIM Input Capture functions ##### |
1828 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1829 | ============================================================================== |
1829 | break; |
1830 | [..] |
1830 | } |
1831 | This section provides functions allowing to: |
1831 | |
1832 | (+) Initialize and configure the TIM Input Capture. |
1832 | case TIM_CHANNEL_3: |
1833 | (+) De-initialize the TIM Input Capture. |
1833 | { |
1834 | (+) Start the TIM Input Capture. |
1834 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1835 | (+) Stop the TIM Input Capture. |
1835 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1836 | (+) Start the TIM Input Capture and enable interrupt. |
1836 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1837 | (+) Stop the TIM Input Capture and disable interrupt. |
1837 | break; |
1838 | (+) Start the TIM Input Capture and enable DMA transfer. |
1838 | } |
1839 | (+) Stop the TIM Input Capture and disable DMA transfer. |
1839 | |
1840 | 1840 | case TIM_CHANNEL_4: |
|
1841 | @endverbatim |
1841 | { |
1842 | * @{ |
1842 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1843 | */ |
1843 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
1844 | /** |
1844 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1845 | * @brief Initializes the TIM Input Capture Time base according to the specified |
1845 | break; |
1846 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1846 | } |
1847 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
1847 | |
1848 | * requires a timer reset to avoid unexpected direction |
1848 | default: |
1849 | * due to DIR bit readonly in center aligned mode. |
1849 | status = HAL_ERROR; |
1850 | * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
1850 | break; |
1851 | * @param htim TIM Input Capture handle |
1851 | } |
1852 | * @retval HAL status |
1852 | |
1853 | */ |
1853 | if (status == HAL_OK) |
1854 | HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
1854 | { |
1855 | { |
1855 | /* Disable the Capture compare channel */ |
1856 | /* Check the TIM handle allocation */ |
1856 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1857 | if (htim == NULL) |
1857 | |
1858 | { |
1858 | /* Disable the Peripheral */ |
1859 | return HAL_ERROR; |
1859 | __HAL_TIM_DISABLE(htim); |
1860 | } |
1860 | |
1861 | 1861 | /* Set the TIM channel state */ |
|
1862 | /* Check the parameters */ |
1862 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1863 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1863 | } |
1864 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1864 | |
1865 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1865 | /* Return function status */ |
1866 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1866 | return status; |
1867 | 1867 | } |
|
1868 | if (htim->State == HAL_TIM_STATE_RESET) |
1868 | |
1869 | { |
1869 | /** |
1870 | /* Allocate lock resource and initialize it */ |
1870 | * @} |
1871 | htim->Lock = HAL_UNLOCKED; |
1871 | */ |
1872 | 1872 | ||
1873 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1873 | /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
1874 | /* Reset interrupt callbacks to legacy weak callbacks */ |
1874 | * @brief TIM Input Capture functions |
1875 | TIM_ResetCallback(htim); |
1875 | * |
1876 | 1876 | @verbatim |
|
1877 | if (htim->IC_MspInitCallback == NULL) |
1877 | ============================================================================== |
1878 | { |
1878 | ##### TIM Input Capture functions ##### |
1879 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
1879 | ============================================================================== |
1880 | } |
1880 | [..] |
1881 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1881 | This section provides functions allowing to: |
1882 | htim->IC_MspInitCallback(htim); |
1882 | (+) Initialize and configure the TIM Input Capture. |
1883 | #else |
1883 | (+) De-initialize the TIM Input Capture. |
1884 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1884 | (+) Start the TIM Input Capture. |
1885 | HAL_TIM_IC_MspInit(htim); |
1885 | (+) Stop the TIM Input Capture. |
1886 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1886 | (+) Start the TIM Input Capture and enable interrupt. |
1887 | } |
1887 | (+) Stop the TIM Input Capture and disable interrupt. |
1888 | 1888 | (+) Start the TIM Input Capture and enable DMA transfer. |
|
1889 | /* Set the TIM state */ |
1889 | (+) Stop the TIM Input Capture and disable DMA transfer. |
1890 | htim->State = HAL_TIM_STATE_BUSY; |
1890 | |
1891 | 1891 | @endverbatim |
|
1892 | /* Init the base time for the input capture */ |
1892 | * @{ |
1893 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1893 | */ |
1894 | 1894 | /** |
|
1895 | /* Initialize the DMA burst operation state */ |
1895 | * @brief Initializes the TIM Input Capture Time base according to the specified |
1896 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1896 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1897 | 1897 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
1898 | /* Initialize the TIM channels state */ |
1898 | * requires a timer reset to avoid unexpected direction |
1899 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1899 | * due to DIR bit readonly in center aligned mode. |
1900 | 1900 | * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
|
1901 | /* Initialize the TIM state*/ |
1901 | * @param htim TIM Input Capture handle |
1902 | htim->State = HAL_TIM_STATE_READY; |
1902 | * @retval HAL status |
1903 | 1903 | */ |
|
1904 | return HAL_OK; |
1904 | HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
1905 | } |
1905 | { |
1906 | 1906 | /* Check the TIM handle allocation */ |
|
1907 | /** |
1907 | if (htim == NULL) |
1908 | * @brief DeInitializes the TIM peripheral |
1908 | { |
1909 | * @param htim TIM Input Capture handle |
1909 | return HAL_ERROR; |
1910 | * @retval HAL status |
1910 | } |
1911 | */ |
1911 | |
1912 | HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
1912 | /* Check the parameters */ |
1913 | { |
1913 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1914 | /* Check the parameters */ |
1914 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1915 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1915 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1916 | 1916 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
1917 | htim->State = HAL_TIM_STATE_BUSY; |
1917 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1918 | 1918 | ||
1919 | /* Disable the TIM Peripheral Clock */ |
1919 | if (htim->State == HAL_TIM_STATE_RESET) |
1920 | __HAL_TIM_DISABLE(htim); |
1920 | { |
1921 | 1921 | /* Allocate lock resource and initialize it */ |
|
1922 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1922 | htim->Lock = HAL_UNLOCKED; |
1923 | if (htim->IC_MspDeInitCallback == NULL) |
1923 | |
1924 | { |
1924 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1925 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
1925 | /* Reset interrupt callbacks to legacy weak callbacks */ |
1926 | } |
1926 | TIM_ResetCallback(htim); |
1927 | /* DeInit the low level hardware */ |
1927 | |
1928 | htim->IC_MspDeInitCallback(htim); |
1928 | if (htim->IC_MspInitCallback == NULL) |
1929 | #else |
1929 | { |
1930 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1930 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
1931 | HAL_TIM_IC_MspDeInit(htim); |
1931 | } |
1932 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1932 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1933 | 1933 | htim->IC_MspInitCallback(htim); |
|
1934 | /* Change the DMA burst operation state */ |
1934 | #else |
1935 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1935 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1936 | 1936 | HAL_TIM_IC_MspInit(htim); |
|
1937 | /* Change the TIM channels state */ |
1937 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1938 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1938 | } |
1939 | 1939 | ||
1940 | /* Change TIM state */ |
1940 | /* Set the TIM state */ |
1941 | htim->State = HAL_TIM_STATE_RESET; |
1941 | htim->State = HAL_TIM_STATE_BUSY; |
1942 | 1942 | ||
1943 | /* Release Lock */ |
1943 | /* Init the base time for the input capture */ |
1944 | __HAL_UNLOCK(htim); |
1944 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1945 | 1945 | ||
1946 | return HAL_OK; |
1946 | /* Initialize the DMA burst operation state */ |
1947 | } |
1947 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1948 | 1948 | ||
1949 | /** |
1949 | /* Initialize the TIM channels state */ |
1950 | * @brief Initializes the TIM Input Capture MSP. |
1950 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1951 | * @param htim TIM Input Capture handle |
1951 | |
1952 | * @retval None |
1952 | /* Initialize the TIM state*/ |
1953 | */ |
1953 | htim->State = HAL_TIM_STATE_READY; |
1954 | __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
1954 | |
1955 | { |
1955 | return HAL_OK; |
1956 | /* Prevent unused argument(s) compilation warning */ |
1956 | } |
1957 | UNUSED(htim); |
1957 | |
1958 | 1958 | /** |
|
1959 | /* NOTE : This function should not be modified, when the callback is needed, |
1959 | * @brief DeInitializes the TIM peripheral |
1960 | the HAL_TIM_IC_MspInit could be implemented in the user file |
1960 | * @param htim TIM Input Capture handle |
1961 | */ |
1961 | * @retval HAL status |
1962 | } |
1962 | */ |
1963 | 1963 | HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
|
1964 | /** |
1964 | { |
1965 | * @brief DeInitializes TIM Input Capture MSP. |
1965 | /* Check the parameters */ |
1966 | * @param htim TIM handle |
1966 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1967 | * @retval None |
1967 | |
1968 | */ |
1968 | htim->State = HAL_TIM_STATE_BUSY; |
1969 | __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
1969 | |
1970 | { |
1970 | /* Disable the TIM Peripheral Clock */ |
1971 | /* Prevent unused argument(s) compilation warning */ |
1971 | __HAL_TIM_DISABLE(htim); |
1972 | UNUSED(htim); |
1972 | |
1973 | 1973 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
1974 | /* NOTE : This function should not be modified, when the callback is needed, |
1974 | if (htim->IC_MspDeInitCallback == NULL) |
1975 | the HAL_TIM_IC_MspDeInit could be implemented in the user file |
1975 | { |
1976 | */ |
1976 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
1977 | } |
1977 | } |
1978 | 1978 | /* DeInit the low level hardware */ |
|
1979 | /** |
1979 | htim->IC_MspDeInitCallback(htim); |
1980 | * @brief Starts the TIM Input Capture measurement. |
1980 | #else |
1981 | * @param htim TIM Input Capture handle |
1981 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1982 | * @param Channel TIM Channels to be enabled |
1982 | HAL_TIM_IC_MspDeInit(htim); |
1983 | * This parameter can be one of the following values: |
1983 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1984 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1984 | |
1985 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1985 | /* Change the DMA burst operation state */ |
1986 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1986 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1987 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1987 | |
1988 | * @retval HAL status |
1988 | /* Change the TIM channels state */ |
1989 | */ |
1989 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1990 | HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1990 | |
1991 | { |
1991 | /* Change TIM state */ |
1992 | uint32_t tmpsmcr; |
1992 | htim->State = HAL_TIM_STATE_RESET; |
1993 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
1993 | |
1994 | 1994 | /* Release Lock */ |
|
1995 | /* Check the parameters */ |
1995 | __HAL_UNLOCK(htim); |
1996 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1996 | |
1997 | 1997 | return HAL_OK; |
|
1998 | /* Check the TIM channel state */ |
1998 | } |
1999 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
1999 | |
2000 | { |
2000 | /** |
2001 | return HAL_ERROR; |
2001 | * @brief Initializes the TIM Input Capture MSP. |
2002 | } |
2002 | * @param htim TIM Input Capture handle |
2003 | 2003 | * @retval None |
|
2004 | /* Set the TIM channel state */ |
2004 | */ |
2005 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2005 | __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
2006 | 2006 | { |
|
2007 | /* Enable the Input Capture channel */ |
2007 | /* Prevent unused argument(s) compilation warning */ |
2008 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2008 | UNUSED(htim); |
2009 | 2009 | ||
2010 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2010 | /* NOTE : This function should not be modified, when the callback is needed, |
2011 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2011 | the HAL_TIM_IC_MspInit could be implemented in the user file |
2012 | { |
2012 | */ |
2013 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2013 | } |
2014 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2014 | |
2015 | { |
2015 | /** |
2016 | __HAL_TIM_ENABLE(htim); |
2016 | * @brief DeInitializes TIM Input Capture MSP. |
2017 | } |
2017 | * @param htim TIM handle |
2018 | } |
2018 | * @retval None |
2019 | else |
2019 | */ |
2020 | { |
2020 | __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
2021 | __HAL_TIM_ENABLE(htim); |
2021 | { |
2022 | } |
2022 | /* Prevent unused argument(s) compilation warning */ |
2023 | 2023 | UNUSED(htim); |
|
2024 | /* Return function status */ |
2024 | |
2025 | return HAL_OK; |
2025 | /* NOTE : This function should not be modified, when the callback is needed, |
2026 | } |
2026 | the HAL_TIM_IC_MspDeInit could be implemented in the user file |
2027 | 2027 | */ |
|
2028 | /** |
2028 | } |
2029 | * @brief Stops the TIM Input Capture measurement. |
2029 | |
2030 | * @param htim TIM Input Capture handle |
2030 | /** |
2031 | * @param Channel TIM Channels to be disabled |
2031 | * @brief Starts the TIM Input Capture measurement. |
2032 | * This parameter can be one of the following values: |
2032 | * @param htim TIM Input Capture handle |
2033 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2033 | * @param Channel TIM Channels to be enabled |
2034 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2034 | * This parameter can be one of the following values: |
2035 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2035 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2036 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2036 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2037 | * @retval HAL status |
2037 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2038 | */ |
2038 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2039 | HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
2039 | * @retval HAL status |
2040 | { |
2040 | */ |
2041 | /* Check the parameters */ |
2041 | HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
2042 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2042 | { |
2043 | 2043 | uint32_t tmpsmcr; |
|
2044 | /* Disable the Input Capture channel */ |
2044 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2045 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2045 | |
2046 | 2046 | /* Check the parameters */ |
|
2047 | /* Disable the Peripheral */ |
2047 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2048 | __HAL_TIM_DISABLE(htim); |
2048 | |
2049 | 2049 | /* Check the TIM channel state */ |
|
2050 | /* Set the TIM channel state */ |
2050 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
2051 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2051 | { |
2052 | 2052 | return HAL_ERROR; |
|
2053 | /* Return function status */ |
2053 | } |
2054 | return HAL_OK; |
2054 | |
2055 | } |
2055 | /* Set the TIM channel state */ |
2056 | 2056 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
2057 | /** |
2057 | |
2058 | * @brief Starts the TIM Input Capture measurement in interrupt mode. |
2058 | /* Enable the Input Capture channel */ |
2059 | * @param htim TIM Input Capture handle |
2059 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2060 | * @param Channel TIM Channels to be enabled |
2060 | |
2061 | * This parameter can be one of the following values: |
2061 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2062 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2062 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2063 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2063 | { |
2064 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2064 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2065 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2065 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2066 | * @retval HAL status |
2066 | { |
2067 | */ |
2067 | __HAL_TIM_ENABLE(htim); |
2068 | HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2068 | } |
2069 | { |
2069 | } |
2070 | uint32_t tmpsmcr; |
2070 | else |
2071 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2071 | { |
2072 | 2072 | __HAL_TIM_ENABLE(htim); |
|
2073 | /* Check the parameters */ |
2073 | } |
2074 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2074 | |
2075 | 2075 | /* Return function status */ |
|
2076 | /* Check the TIM channel state */ |
2076 | return HAL_OK; |
2077 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
2077 | } |
2078 | { |
2078 | |
2079 | return HAL_ERROR; |
2079 | /** |
2080 | } |
2080 | * @brief Stops the TIM Input Capture measurement. |
2081 | 2081 | * @param htim TIM Input Capture handle |
|
2082 | /* Set the TIM channel state */ |
2082 | * @param Channel TIM Channels to be disabled |
2083 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2083 | * This parameter can be one of the following values: |
2084 | 2084 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
2085 | switch (Channel) |
2085 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2086 | { |
2086 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2087 | case TIM_CHANNEL_1: |
2087 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2088 | { |
2088 | * @retval HAL status |
2089 | /* Enable the TIM Capture/Compare 1 interrupt */ |
2089 | */ |
2090 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2090 | HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
2091 | break; |
2091 | { |
2092 | } |
2092 | /* Check the parameters */ |
2093 | 2093 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
2094 | case TIM_CHANNEL_2: |
2094 | |
2095 | { |
2095 | /* Disable the Input Capture channel */ |
2096 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2096 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2097 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2097 | |
2098 | break; |
2098 | /* Disable the Peripheral */ |
2099 | } |
2099 | __HAL_TIM_DISABLE(htim); |
2100 | 2100 | ||
2101 | case TIM_CHANNEL_3: |
2101 | /* Set the TIM channel state */ |
2102 | { |
2102 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2103 | /* Enable the TIM Capture/Compare 3 interrupt */ |
2103 | |
2104 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
2104 | /* Return function status */ |
2105 | break; |
2105 | return HAL_OK; |
2106 | } |
2106 | } |
2107 | 2107 | ||
2108 | case TIM_CHANNEL_4: |
2108 | /** |
2109 | { |
2109 | * @brief Starts the TIM Input Capture measurement in interrupt mode. |
2110 | /* Enable the TIM Capture/Compare 4 interrupt */ |
2110 | * @param htim TIM Input Capture handle |
2111 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
2111 | * @param Channel TIM Channels to be enabled |
2112 | break; |
2112 | * This parameter can be one of the following values: |
2113 | } |
2113 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2114 | 2114 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
2115 | default: |
2115 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2116 | break; |
2116 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2117 | } |
2117 | * @retval HAL status |
2118 | /* Enable the Input Capture channel */ |
2118 | */ |
2119 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2119 | HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2120 | 2120 | { |
|
2121 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2121 | HAL_StatusTypeDef status = HAL_OK; |
2122 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2122 | uint32_t tmpsmcr; |
2123 | { |
2123 | |
2124 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2124 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2125 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2125 | |
2126 | { |
2126 | /* Check the parameters */ |
2127 | __HAL_TIM_ENABLE(htim); |
2127 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2128 | } |
2128 | |
2129 | } |
2129 | /* Check the TIM channel state */ |
2130 | else |
2130 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
2131 | { |
2131 | { |
2132 | __HAL_TIM_ENABLE(htim); |
2132 | return HAL_ERROR; |
2133 | } |
2133 | } |
2134 | 2134 | ||
2135 | /* Return function status */ |
2135 | /* Set the TIM channel state */ |
2136 | return HAL_OK; |
2136 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2137 | } |
2137 | |
2138 | 2138 | switch (Channel) |
|
2139 | /** |
2139 | { |
2140 | * @brief Stops the TIM Input Capture measurement in interrupt mode. |
2140 | case TIM_CHANNEL_1: |
2141 | * @param htim TIM Input Capture handle |
2141 | { |
2142 | * @param Channel TIM Channels to be disabled |
2142 | /* Enable the TIM Capture/Compare 1 interrupt */ |
2143 | * This parameter can be one of the following values: |
2143 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2144 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2144 | break; |
2145 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2145 | } |
2146 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2146 | |
2147 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2147 | case TIM_CHANNEL_2: |
2148 | * @retval HAL status |
2148 | { |
2149 | */ |
2149 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2150 | HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2150 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2151 | { |
2151 | break; |
2152 | /* Check the parameters */ |
2152 | } |
2153 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2153 | |
2154 | 2154 | case TIM_CHANNEL_3: |
|
2155 | switch (Channel) |
2155 | { |
2156 | { |
2156 | /* Enable the TIM Capture/Compare 3 interrupt */ |
2157 | case TIM_CHANNEL_1: |
2157 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
2158 | { |
2158 | break; |
2159 | /* Disable the TIM Capture/Compare 1 interrupt */ |
2159 | } |
2160 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2160 | |
2161 | break; |
2161 | case TIM_CHANNEL_4: |
2162 | } |
2162 | { |
2163 | 2163 | /* Enable the TIM Capture/Compare 4 interrupt */ |
|
2164 | case TIM_CHANNEL_2: |
2164 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
2165 | { |
2165 | break; |
2166 | /* Disable the TIM Capture/Compare 2 interrupt */ |
2166 | } |
2167 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2167 | |
2168 | break; |
2168 | default: |
2169 | } |
2169 | status = HAL_ERROR; |
2170 | 2170 | break; |
|
2171 | case TIM_CHANNEL_3: |
2171 | } |
2172 | { |
2172 | |
2173 | /* Disable the TIM Capture/Compare 3 interrupt */ |
2173 | if (status == HAL_OK) |
2174 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
2174 | { |
2175 | break; |
2175 | /* Enable the Input Capture channel */ |
2176 | } |
2176 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2177 | 2177 | ||
2178 | case TIM_CHANNEL_4: |
2178 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2179 | { |
2179 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2180 | /* Disable the TIM Capture/Compare 4 interrupt */ |
2180 | { |
2181 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
2181 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2182 | break; |
2182 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2183 | } |
2183 | { |
2184 | 2184 | __HAL_TIM_ENABLE(htim); |
|
2185 | default: |
2185 | } |
2186 | break; |
2186 | } |
2187 | } |
2187 | else |
2188 | 2188 | { |
|
2189 | /* Disable the Input Capture channel */ |
2189 | __HAL_TIM_ENABLE(htim); |
2190 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2190 | } |
2191 | 2191 | } |
|
2192 | /* Disable the Peripheral */ |
2192 | |
2193 | __HAL_TIM_DISABLE(htim); |
2193 | /* Return function status */ |
2194 | 2194 | return status; |
|
2195 | /* Set the TIM channel state */ |
2195 | } |
2196 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2196 | |
2197 | 2197 | /** |
|
2198 | /* Return function status */ |
2198 | * @brief Stops the TIM Input Capture measurement in interrupt mode. |
2199 | return HAL_OK; |
2199 | * @param htim TIM Input Capture handle |
2200 | } |
2200 | * @param Channel TIM Channels to be disabled |
2201 | 2201 | * This parameter can be one of the following values: |
|
2202 | /** |
2202 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2203 | * @brief Starts the TIM Input Capture measurement in DMA mode. |
2203 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2204 | * @param htim TIM Input Capture handle |
2204 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2205 | * @param Channel TIM Channels to be enabled |
2205 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2206 | * This parameter can be one of the following values: |
2206 | * @retval HAL status |
2207 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2207 | */ |
2208 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2208 | HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2209 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2209 | { |
2210 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2210 | HAL_StatusTypeDef status = HAL_OK; |
2211 | * @param pData The destination Buffer address. |
2211 | |
2212 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
2212 | /* Check the parameters */ |
2213 | * @retval HAL status |
2213 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2214 | */ |
2214 | |
2215 | HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
2215 | switch (Channel) |
2216 | { |
2216 | { |
2217 | uint32_t tmpsmcr; |
2217 | case TIM_CHANNEL_1: |
2218 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2218 | { |
2219 | 2219 | /* Disable the TIM Capture/Compare 1 interrupt */ |
|
2220 | /* Check the parameters */ |
2220 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2221 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2221 | break; |
2222 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2222 | } |
2223 | 2223 | ||
2224 | /* Set the TIM channel state */ |
2224 | case TIM_CHANNEL_2: |
2225 | if (channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
2225 | { |
2226 | { |
2226 | /* Disable the TIM Capture/Compare 2 interrupt */ |
2227 | return HAL_BUSY; |
2227 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2228 | } |
2228 | break; |
2229 | if (channel_state == HAL_TIM_CHANNEL_STATE_READY) |
2229 | } |
2230 | { |
2230 | |
2231 | if ((pData == NULL) && (Length > 0U)) |
2231 | case TIM_CHANNEL_3: |
2232 | { |
2232 | { |
2233 | return HAL_ERROR; |
2233 | /* Disable the TIM Capture/Compare 3 interrupt */ |
2234 | } |
2234 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
2235 | else |
2235 | break; |
2236 | { |
2236 | } |
2237 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2237 | |
2238 | } |
2238 | case TIM_CHANNEL_4: |
2239 | } |
2239 | { |
2240 | else |
2240 | /* Disable the TIM Capture/Compare 4 interrupt */ |
2241 | { |
2241 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
2242 | return HAL_ERROR; |
2242 | break; |
2243 | } |
2243 | } |
2244 | 2244 | ||
2245 | /* Enable the Input Capture channel */ |
2245 | default: |
2246 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2246 | status = HAL_ERROR; |
2247 | 2247 | break; |
|
2248 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2248 | } |
2249 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2249 | |
2250 | { |
2250 | if (status == HAL_OK) |
2251 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2251 | { |
2252 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2252 | /* Disable the Input Capture channel */ |
2253 | { |
2253 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2254 | __HAL_TIM_ENABLE(htim); |
2254 | |
2255 | } |
2255 | /* Disable the Peripheral */ |
2256 | } |
2256 | __HAL_TIM_DISABLE(htim); |
2257 | else |
2257 | |
2258 | { |
2258 | /* Set the TIM channel state */ |
2259 | __HAL_TIM_ENABLE(htim); |
2259 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2260 | } |
2260 | } |
2261 | 2261 | ||
2262 | switch (Channel) |
2262 | /* Return function status */ |
2263 | { |
2263 | return status; |
2264 | case TIM_CHANNEL_1: |
2264 | } |
2265 | { |
2265 | |
2266 | /* Set the DMA capture callbacks */ |
2266 | /** |
2267 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
2267 | * @brief Starts the TIM Input Capture measurement in DMA mode. |
2268 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2268 | * @param htim TIM Input Capture handle |
2269 | 2269 | * @param Channel TIM Channels to be enabled |
|
2270 | /* Set the DMA error callback */ |
2270 | * This parameter can be one of the following values: |
2271 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
2271 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2272 | 2272 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
2273 | /* Enable the DMA channel */ |
2273 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2274 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
2274 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2275 | Length) != HAL_OK) |
2275 | * @param pData The destination Buffer address. |
2276 | { |
2276 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
2277 | /* Return error status */ |
2277 | * @retval HAL status |
2278 | return HAL_ERROR; |
2278 | */ |
2279 | } |
2279 | HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
2280 | /* Enable the TIM Capture/Compare 1 DMA request */ |
2280 | { |
2281 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
2281 | HAL_StatusTypeDef status = HAL_OK; |
2282 | break; |
2282 | uint32_t tmpsmcr; |
2283 | } |
2283 | |
2284 | 2284 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
2285 | case TIM_CHANNEL_2: |
2285 | |
2286 | { |
2286 | /* Check the parameters */ |
2287 | /* Set the DMA capture callbacks */ |
2287 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2288 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
2288 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2289 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2289 | |
2290 | 2290 | /* Set the TIM channel state */ |
|
2291 | /* Set the DMA error callback */ |
2291 | if (channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
2292 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
2292 | { |
2293 | 2293 | return HAL_BUSY; |
|
2294 | /* Enable the DMA channel */ |
2294 | } |
2295 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
2295 | if (channel_state == HAL_TIM_CHANNEL_STATE_READY) |
2296 | Length) != HAL_OK) |
2296 | { |
2297 | { |
2297 | if ((pData == NULL) || (Length == 0U)) |
2298 | /* Return error status */ |
2298 | { |
2299 | return HAL_ERROR; |
2299 | return HAL_ERROR; |
2300 | } |
2300 | } |
2301 | /* Enable the TIM Capture/Compare 2 DMA request */ |
2301 | else |
2302 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
2302 | { |
2303 | break; |
2303 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2304 | } |
2304 | } |
2305 | 2305 | } |
|
2306 | case TIM_CHANNEL_3: |
2306 | else |
2307 | { |
2307 | { |
2308 | /* Set the DMA capture callbacks */ |
2308 | return HAL_ERROR; |
2309 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
2309 | } |
2310 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2310 | |
2311 | 2311 | /* Enable the Input Capture channel */ |
|
2312 | /* Set the DMA error callback */ |
2312 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2313 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
2313 | |
2314 | 2314 | switch (Channel) |
|
2315 | /* Enable the DMA channel */ |
2315 | { |
2316 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
2316 | case TIM_CHANNEL_1: |
2317 | Length) != HAL_OK) |
2317 | { |
2318 | { |
2318 | /* Set the DMA capture callbacks */ |
2319 | /* Return error status */ |
2319 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
2320 | return HAL_ERROR; |
2320 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2321 | } |
2321 | |
2322 | /* Enable the TIM Capture/Compare 3 DMA request */ |
2322 | /* Set the DMA error callback */ |
2323 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
2323 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
2324 | break; |
2324 | |
2325 | } |
2325 | /* Enable the DMA channel */ |
2326 | 2326 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
|
2327 | case TIM_CHANNEL_4: |
2327 | Length) != HAL_OK) |
2328 | { |
2328 | { |
2329 | /* Set the DMA capture callbacks */ |
2329 | /* Return error status */ |
2330 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
2330 | return HAL_ERROR; |
2331 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2331 | } |
2332 | 2332 | /* Enable the TIM Capture/Compare 1 DMA request */ |
|
2333 | /* Set the DMA error callback */ |
2333 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
2334 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
2334 | break; |
2335 | 2335 | } |
|
2336 | /* Enable the DMA channel */ |
2336 | |
2337 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
2337 | case TIM_CHANNEL_2: |
2338 | Length) != HAL_OK) |
2338 | { |
2339 | { |
2339 | /* Set the DMA capture callbacks */ |
2340 | /* Return error status */ |
2340 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
2341 | return HAL_ERROR; |
2341 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2342 | } |
2342 | |
2343 | /* Enable the TIM Capture/Compare 4 DMA request */ |
2343 | /* Set the DMA error callback */ |
2344 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
2344 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
2345 | break; |
2345 | |
2346 | } |
2346 | /* Enable the DMA channel */ |
2347 | 2347 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
|
2348 | default: |
2348 | Length) != HAL_OK) |
2349 | break; |
2349 | { |
2350 | } |
2350 | /* Return error status */ |
2351 | 2351 | return HAL_ERROR; |
|
2352 | /* Return function status */ |
2352 | } |
2353 | return HAL_OK; |
2353 | /* Enable the TIM Capture/Compare 2 DMA request */ |
2354 | } |
2354 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
2355 | 2355 | break; |
|
2356 | /** |
2356 | } |
2357 | * @brief Stops the TIM Input Capture measurement in DMA mode. |
2357 | |
2358 | * @param htim TIM Input Capture handle |
2358 | case TIM_CHANNEL_3: |
2359 | * @param Channel TIM Channels to be disabled |
2359 | { |
2360 | * This parameter can be one of the following values: |
2360 | /* Set the DMA capture callbacks */ |
2361 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2361 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
2362 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2362 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2363 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2363 | |
2364 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2364 | /* Set the DMA error callback */ |
2365 | * @retval HAL status |
2365 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
2366 | */ |
2366 | |
2367 | HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
2367 | /* Enable the DMA channel */ |
2368 | { |
2368 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
2369 | /* Check the parameters */ |
2369 | Length) != HAL_OK) |
2370 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2370 | { |
2371 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2371 | /* Return error status */ |
2372 | 2372 | return HAL_ERROR; |
|
2373 | /* Disable the Input Capture channel */ |
2373 | } |
2374 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2374 | /* Enable the TIM Capture/Compare 3 DMA request */ |
2375 | 2375 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
|
2376 | switch (Channel) |
2376 | break; |
2377 | { |
2377 | } |
2378 | case TIM_CHANNEL_1: |
2378 | |
2379 | { |
2379 | case TIM_CHANNEL_4: |
2380 | /* Disable the TIM Capture/Compare 1 DMA request */ |
2380 | { |
2381 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
2381 | /* Set the DMA capture callbacks */ |
2382 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
2382 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
2383 | break; |
2383 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2384 | } |
2384 | |
2385 | 2385 | /* Set the DMA error callback */ |
|
2386 | case TIM_CHANNEL_2: |
2386 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
2387 | { |
2387 | |
2388 | /* Disable the TIM Capture/Compare 2 DMA request */ |
2388 | /* Enable the DMA channel */ |
2389 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
2389 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
2390 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
2390 | Length) != HAL_OK) |
2391 | break; |
2391 | { |
2392 | } |
2392 | /* Return error status */ |
2393 | 2393 | return HAL_ERROR; |
|
2394 | case TIM_CHANNEL_3: |
2394 | } |
2395 | { |
2395 | /* Enable the TIM Capture/Compare 4 DMA request */ |
2396 | /* Disable the TIM Capture/Compare 3 DMA request */ |
2396 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
2397 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
2397 | break; |
2398 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
2398 | } |
2399 | break; |
2399 | |
2400 | } |
2400 | default: |
2401 | 2401 | status = HAL_ERROR; |
|
2402 | case TIM_CHANNEL_4: |
2402 | break; |
2403 | { |
2403 | } |
2404 | /* Disable the TIM Capture/Compare 4 DMA request */ |
2404 | |
2405 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
2405 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2406 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
2406 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2407 | break; |
2407 | { |
2408 | } |
2408 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2409 | 2409 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
2410 | default: |
2410 | { |
2411 | break; |
2411 | __HAL_TIM_ENABLE(htim); |
2412 | } |
2412 | } |
2413 | 2413 | } |
|
2414 | /* Disable the Peripheral */ |
2414 | else |
2415 | __HAL_TIM_DISABLE(htim); |
2415 | { |
2416 | 2416 | __HAL_TIM_ENABLE(htim); |
|
2417 | /* Set the TIM channel state */ |
2417 | } |
2418 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2418 | |
2419 | 2419 | /* Return function status */ |
|
2420 | /* Return function status */ |
2420 | return status; |
2421 | return HAL_OK; |
2421 | } |
2422 | } |
2422 | |
2423 | /** |
2423 | /** |
2424 | * @} |
2424 | * @brief Stops the TIM Input Capture measurement in DMA mode. |
2425 | */ |
2425 | * @param htim TIM Input Capture handle |
2426 | 2426 | * @param Channel TIM Channels to be disabled |
|
2427 | /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
2427 | * This parameter can be one of the following values: |
2428 | * @brief TIM One Pulse functions |
2428 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2429 | * |
2429 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2430 | @verbatim |
2430 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2431 | ============================================================================== |
2431 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2432 | ##### TIM One Pulse functions ##### |
2432 | * @retval HAL status |
2433 | ============================================================================== |
2433 | */ |
2434 | [..] |
2434 | HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
2435 | This section provides functions allowing to: |
2435 | { |
2436 | (+) Initialize and configure the TIM One Pulse. |
2436 | HAL_StatusTypeDef status = HAL_OK; |
2437 | (+) De-initialize the TIM One Pulse. |
2437 | |
2438 | (+) Start the TIM One Pulse. |
2438 | /* Check the parameters */ |
2439 | (+) Stop the TIM One Pulse. |
2439 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2440 | (+) Start the TIM One Pulse and enable interrupt. |
2440 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2441 | (+) Stop the TIM One Pulse and disable interrupt. |
2441 | |
2442 | (+) Start the TIM One Pulse and enable DMA transfer. |
2442 | /* Disable the Input Capture channel */ |
2443 | (+) Stop the TIM One Pulse and disable DMA transfer. |
2443 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2444 | 2444 | ||
2445 | @endverbatim |
2445 | switch (Channel) |
2446 | * @{ |
2446 | { |
2447 | */ |
2447 | case TIM_CHANNEL_1: |
2448 | /** |
2448 | { |
2449 | * @brief Initializes the TIM One Pulse Time Base according to the specified |
2449 | /* Disable the TIM Capture/Compare 1 DMA request */ |
2450 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
2450 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
2451 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2451 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
2452 | * requires a timer reset to avoid unexpected direction |
2452 | break; |
2453 | * due to DIR bit readonly in center aligned mode. |
2453 | } |
2454 | * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
2454 | |
2455 | * @note When the timer instance is initialized in One Pulse mode, timer |
2455 | case TIM_CHANNEL_2: |
2456 | * channels 1 and channel 2 are reserved and cannot be used for other |
2456 | { |
2457 | * purpose. |
2457 | /* Disable the TIM Capture/Compare 2 DMA request */ |
2458 | * @param htim TIM One Pulse handle |
2458 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
2459 | * @param OnePulseMode Select the One pulse mode. |
2459 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
2460 | * This parameter can be one of the following values: |
2460 | break; |
2461 | * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
2461 | } |
2462 | * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
2462 | |
2463 | * @retval HAL status |
2463 | case TIM_CHANNEL_3: |
2464 | */ |
2464 | { |
2465 | HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
2465 | /* Disable the TIM Capture/Compare 3 DMA request */ |
2466 | { |
2466 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
2467 | /* Check the TIM handle allocation */ |
2467 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
2468 | if (htim == NULL) |
2468 | break; |
2469 | { |
2469 | } |
2470 | return HAL_ERROR; |
2470 | |
2471 | } |
2471 | case TIM_CHANNEL_4: |
2472 | 2472 | { |
|
2473 | /* Check the parameters */ |
2473 | /* Disable the TIM Capture/Compare 4 DMA request */ |
2474 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2474 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
2475 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2475 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
2476 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
2476 | break; |
2477 | assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
2477 | } |
2478 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
2478 | |
2479 | 2479 | default: |
|
2480 | if (htim->State == HAL_TIM_STATE_RESET) |
2480 | status = HAL_ERROR; |
2481 | { |
2481 | break; |
2482 | /* Allocate lock resource and initialize it */ |
2482 | } |
2483 | htim->Lock = HAL_UNLOCKED; |
2483 | |
2484 | 2484 | if (status == HAL_OK) |
|
2485 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2485 | { |
2486 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2486 | /* Disable the Peripheral */ |
2487 | TIM_ResetCallback(htim); |
2487 | __HAL_TIM_DISABLE(htim); |
2488 | 2488 | ||
2489 | if (htim->OnePulse_MspInitCallback == NULL) |
2489 | /* Set the TIM channel state */ |
2490 | { |
2490 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2491 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
2491 | } |
2492 | } |
2492 | |
2493 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2493 | /* Return function status */ |
2494 | htim->OnePulse_MspInitCallback(htim); |
2494 | return status; |
2495 | #else |
2495 | } |
2496 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
2496 | /** |
2497 | HAL_TIM_OnePulse_MspInit(htim); |
2497 | * @} |
2498 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2498 | */ |
2499 | } |
2499 | |
2500 | 2500 | /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
|
2501 | /* Set the TIM state */ |
2501 | * @brief TIM One Pulse functions |
2502 | htim->State = HAL_TIM_STATE_BUSY; |
2502 | * |
2503 | 2503 | @verbatim |
|
2504 | /* Configure the Time base in the One Pulse Mode */ |
2504 | ============================================================================== |
2505 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2505 | ##### TIM One Pulse functions ##### |
2506 | 2506 | ============================================================================== |
|
2507 | /* Reset the OPM Bit */ |
2507 | [..] |
2508 | htim->Instance->CR1 &= ~TIM_CR1_OPM; |
2508 | This section provides functions allowing to: |
2509 | 2509 | (+) Initialize and configure the TIM One Pulse. |
|
2510 | /* Configure the OPM Mode */ |
2510 | (+) De-initialize the TIM One Pulse. |
2511 | htim->Instance->CR1 |= OnePulseMode; |
2511 | (+) Start the TIM One Pulse. |
2512 | 2512 | (+) Stop the TIM One Pulse. |
|
2513 | /* Initialize the DMA burst operation state */ |
2513 | (+) Start the TIM One Pulse and enable interrupt. |
2514 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2514 | (+) Stop the TIM One Pulse and disable interrupt. |
2515 | 2515 | (+) Start the TIM One Pulse and enable DMA transfer. |
|
2516 | /* Initialize the TIM channels state */ |
2516 | (+) Stop the TIM One Pulse and disable DMA transfer. |
2517 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2517 | |
2518 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2518 | @endverbatim |
2519 | 2519 | * @{ |
|
2520 | /* Initialize the TIM state*/ |
2520 | */ |
2521 | htim->State = HAL_TIM_STATE_READY; |
2521 | /** |
2522 | 2522 | * @brief Initializes the TIM One Pulse Time Base according to the specified |
|
2523 | return HAL_OK; |
2523 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
2524 | } |
2524 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2525 | 2525 | * requires a timer reset to avoid unexpected direction |
|
2526 | /** |
2526 | * due to DIR bit readonly in center aligned mode. |
2527 | * @brief DeInitializes the TIM One Pulse |
2527 | * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
2528 | * @param htim TIM One Pulse handle |
2528 | * @note When the timer instance is initialized in One Pulse mode, timer |
2529 | * @retval HAL status |
2529 | * channels 1 and channel 2 are reserved and cannot be used for other |
2530 | */ |
2530 | * purpose. |
2531 | HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
2531 | * @param htim TIM One Pulse handle |
2532 | { |
2532 | * @param OnePulseMode Select the One pulse mode. |
2533 | /* Check the parameters */ |
2533 | * This parameter can be one of the following values: |
2534 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2534 | * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
2535 | 2535 | * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
|
2536 | htim->State = HAL_TIM_STATE_BUSY; |
2536 | * @retval HAL status |
2537 | 2537 | */ |
|
2538 | /* Disable the TIM Peripheral Clock */ |
2538 | HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
2539 | __HAL_TIM_DISABLE(htim); |
2539 | { |
2540 | 2540 | /* Check the TIM handle allocation */ |
|
2541 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2541 | if (htim == NULL) |
2542 | if (htim->OnePulse_MspDeInitCallback == NULL) |
2542 | { |
2543 | { |
2543 | return HAL_ERROR; |
2544 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
2544 | } |
2545 | } |
2545 | |
2546 | /* DeInit the low level hardware */ |
2546 | /* Check the parameters */ |
2547 | htim->OnePulse_MspDeInitCallback(htim); |
2547 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2548 | #else |
2548 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2549 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
2549 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
2550 | HAL_TIM_OnePulse_MspDeInit(htim); |
2550 | assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
2551 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2551 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
2552 | 2552 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
2553 | /* Change the DMA burst operation state */ |
2553 | |
2554 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
2554 | if (htim->State == HAL_TIM_STATE_RESET) |
2555 | 2555 | { |
|
2556 | /* Set the TIM channel state */ |
2556 | /* Allocate lock resource and initialize it */ |
2557 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
2557 | htim->Lock = HAL_UNLOCKED; |
2558 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
2558 | |
2559 | 2559 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
2560 | /* Change TIM state */ |
2560 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2561 | htim->State = HAL_TIM_STATE_RESET; |
2561 | TIM_ResetCallback(htim); |
2562 | 2562 | ||
2563 | /* Release Lock */ |
2563 | if (htim->OnePulse_MspInitCallback == NULL) |
2564 | __HAL_UNLOCK(htim); |
2564 | { |
2565 | 2565 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
|
2566 | return HAL_OK; |
2566 | } |
2567 | } |
2567 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2568 | 2568 | htim->OnePulse_MspInitCallback(htim); |
|
2569 | /** |
2569 | #else |
2570 | * @brief Initializes the TIM One Pulse MSP. |
2570 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
2571 | * @param htim TIM One Pulse handle |
2571 | HAL_TIM_OnePulse_MspInit(htim); |
2572 | * @retval None |
2572 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2573 | */ |
2573 | } |
2574 | __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
2574 | |
2575 | { |
2575 | /* Set the TIM state */ |
2576 | /* Prevent unused argument(s) compilation warning */ |
2576 | htim->State = HAL_TIM_STATE_BUSY; |
2577 | UNUSED(htim); |
2577 | |
2578 | 2578 | /* Configure the Time base in the One Pulse Mode */ |
|
2579 | /* NOTE : This function should not be modified, when the callback is needed, |
2579 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2580 | the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
2580 | |
2581 | */ |
2581 | /* Reset the OPM Bit */ |
2582 | } |
2582 | htim->Instance->CR1 &= ~TIM_CR1_OPM; |
2583 | 2583 | ||
2584 | /** |
2584 | /* Configure the OPM Mode */ |
2585 | * @brief DeInitializes TIM One Pulse MSP. |
2585 | htim->Instance->CR1 |= OnePulseMode; |
2586 | * @param htim TIM One Pulse handle |
2586 | |
2587 | * @retval None |
2587 | /* Initialize the DMA burst operation state */ |
2588 | */ |
2588 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2589 | __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
2589 | |
2590 | { |
2590 | /* Initialize the TIM channels state */ |
2591 | /* Prevent unused argument(s) compilation warning */ |
2591 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2592 | UNUSED(htim); |
2592 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2593 | 2593 | ||
2594 | /* NOTE : This function should not be modified, when the callback is needed, |
2594 | /* Initialize the TIM state*/ |
2595 | the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
2595 | htim->State = HAL_TIM_STATE_READY; |
2596 | */ |
2596 | |
2597 | } |
2597 | return HAL_OK; |
2598 | 2598 | } |
|
2599 | /** |
2599 | |
2600 | * @brief Starts the TIM One Pulse signal generation. |
2600 | /** |
2601 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2601 | * @brief DeInitializes the TIM One Pulse |
2602 | * it has been kept to avoid HAL_TIM API compatibility break. |
2602 | * @param htim TIM One Pulse handle |
2603 | * @note The pulse output channel is determined when calling |
2603 | * @retval HAL status |
2604 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2604 | */ |
2605 | * @param htim TIM One Pulse handle |
2605 | HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
2606 | * @param OutputChannel See note above |
2606 | { |
2607 | * @retval HAL status |
2607 | /* Check the parameters */ |
2608 | */ |
2608 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2609 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2609 | |
2610 | { |
2610 | htim->State = HAL_TIM_STATE_BUSY; |
2611 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
2611 | |
2612 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2612 | /* Disable the TIM Peripheral Clock */ |
2613 | 2613 | __HAL_TIM_DISABLE(htim); |
|
2614 | /* Prevent unused argument(s) compilation warning */ |
2614 | |
2615 | UNUSED(OutputChannel); |
2615 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2616 | 2616 | if (htim->OnePulse_MspDeInitCallback == NULL) |
|
2617 | /* Check the TIM channels state */ |
2617 | { |
2618 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2618 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
2619 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
2619 | } |
2620 | { |
2620 | /* DeInit the low level hardware */ |
2621 | return HAL_ERROR; |
2621 | htim->OnePulse_MspDeInitCallback(htim); |
2622 | } |
2622 | #else |
2623 | 2623 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
|
2624 | /* Set the TIM channels state */ |
2624 | HAL_TIM_OnePulse_MspDeInit(htim); |
2625 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2625 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2626 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2626 | |
2627 | 2627 | /* Change the DMA burst operation state */ |
|
2628 | /* Enable the Capture compare and the Input Capture channels |
2628 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
2629 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2629 | |
2630 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2630 | /* Set the TIM channel state */ |
2631 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2631 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
2632 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2632 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
2633 | 2633 | ||
2634 | No need to enable the counter, it's enabled automatically by hardware |
2634 | /* Change TIM state */ |
2635 | (the counter starts in response to a stimulus and generate a pulse */ |
2635 | htim->State = HAL_TIM_STATE_RESET; |
2636 | 2636 | ||
2637 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2637 | /* Release Lock */ |
2638 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2638 | __HAL_UNLOCK(htim); |
2639 | 2639 | ||
2640 | /* Return function status */ |
2640 | return HAL_OK; |
2641 | return HAL_OK; |
2641 | } |
2642 | } |
2642 | |
2643 | 2643 | /** |
|
2644 | /** |
2644 | * @brief Initializes the TIM One Pulse MSP. |
2645 | * @brief Stops the TIM One Pulse signal generation. |
2645 | * @param htim TIM One Pulse handle |
2646 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2646 | * @retval None |
2647 | * it has been kept to avoid HAL_TIM API compatibility break. |
2647 | */ |
2648 | * @note The pulse output channel is determined when calling |
2648 | __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
2649 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2649 | { |
2650 | * @param htim TIM One Pulse handle |
2650 | /* Prevent unused argument(s) compilation warning */ |
2651 | * @param OutputChannel See note above |
2651 | UNUSED(htim); |
2652 | * @retval HAL status |
2652 | |
2653 | */ |
2653 | /* NOTE : This function should not be modified, when the callback is needed, |
2654 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2654 | the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
2655 | { |
2655 | */ |
2656 | /* Prevent unused argument(s) compilation warning */ |
2656 | } |
2657 | UNUSED(OutputChannel); |
2657 | |
2658 | 2658 | /** |
|
2659 | /* Disable the Capture compare and the Input Capture channels |
2659 | * @brief DeInitializes TIM One Pulse MSP. |
2660 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2660 | * @param htim TIM One Pulse handle |
2661 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2661 | * @retval None |
2662 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2662 | */ |
2663 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2663 | __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
2664 | 2664 | { |
|
2665 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2665 | /* Prevent unused argument(s) compilation warning */ |
2666 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2666 | UNUSED(htim); |
2667 | 2667 | ||
2668 | /* Disable the Peripheral */ |
2668 | /* NOTE : This function should not be modified, when the callback is needed, |
2669 | __HAL_TIM_DISABLE(htim); |
2669 | the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
2670 | 2670 | */ |
|
2671 | /* Set the TIM channels state */ |
2671 | } |
2672 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2672 | |
2673 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2673 | /** |
2674 | 2674 | * @brief Starts the TIM One Pulse signal generation. |
|
2675 | /* Return function status */ |
2675 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2676 | return HAL_OK; |
2676 | * it has been kept to avoid HAL_TIM API compatibility break. |
2677 | } |
2677 | * @note The pulse output channel is determined when calling |
2678 | 2678 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
2679 | /** |
2679 | * @param htim TIM One Pulse handle |
2680 | * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
2680 | * @param OutputChannel See note above |
2681 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2681 | * @retval HAL status |
2682 | * it has been kept to avoid HAL_TIM API compatibility break. |
2682 | */ |
2683 | * @note The pulse output channel is determined when calling |
2683 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2684 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2684 | { |
2685 | * @param htim TIM One Pulse handle |
2685 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
2686 | * @param OutputChannel See note above |
2686 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2687 | * @retval HAL status |
2687 | |
2688 | */ |
2688 | /* Prevent unused argument(s) compilation warning */ |
2689 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2689 | UNUSED(OutputChannel); |
2690 | { |
2690 | |
2691 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
2691 | /* Check the TIM channels state */ |
2692 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2692 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2693 | 2693 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
2694 | /* Prevent unused argument(s) compilation warning */ |
2694 | { |
2695 | UNUSED(OutputChannel); |
2695 | return HAL_ERROR; |
2696 | 2696 | } |
|
2697 | /* Check the TIM channels state */ |
2697 | |
2698 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2698 | /* Set the TIM channels state */ |
2699 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
2699 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2700 | { |
2700 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2701 | return HAL_ERROR; |
2701 | |
2702 | } |
2702 | /* Enable the Capture compare and the Input Capture channels |
2703 | 2703 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
2704 | /* Set the TIM channels state */ |
2704 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2705 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2705 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2706 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2706 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2707 | 2707 | ||
2708 | /* Enable the Capture compare and the Input Capture channels |
2708 | No need to enable the counter, it's enabled automatically by hardware |
2709 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2709 | (the counter starts in response to a stimulus and generate a pulse */ |
2710 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2710 | |
2711 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2711 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2712 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2712 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2713 | 2713 | ||
2714 | No need to enable the counter, it's enabled automatically by hardware |
2714 | /* Return function status */ |
2715 | (the counter starts in response to a stimulus and generate a pulse */ |
2715 | return HAL_OK; |
2716 | 2716 | } |
|
2717 | /* Enable the TIM Capture/Compare 1 interrupt */ |
2717 | |
2718 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2718 | /** |
2719 | 2719 | * @brief Stops the TIM One Pulse signal generation. |
|
2720 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2720 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2721 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2721 | * it has been kept to avoid HAL_TIM API compatibility break. |
2722 | 2722 | * @note The pulse output channel is determined when calling |
|
2723 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2723 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2724 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2724 | * @param htim TIM One Pulse handle |
2725 | 2725 | * @param OutputChannel See note above |
|
2726 | /* Return function status */ |
2726 | * @retval HAL status |
2727 | return HAL_OK; |
2727 | */ |
2728 | } |
2728 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2729 | 2729 | { |
|
2730 | /** |
2730 | /* Prevent unused argument(s) compilation warning */ |
2731 | * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
2731 | UNUSED(OutputChannel); |
2732 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2732 | |
2733 | * it has been kept to avoid HAL_TIM API compatibility break. |
2733 | /* Disable the Capture compare and the Input Capture channels |
2734 | * @note The pulse output channel is determined when calling |
2734 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2735 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2735 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2736 | * @param htim TIM One Pulse handle |
2736 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2737 | * @param OutputChannel See note above |
2737 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2738 | * @retval HAL status |
2738 | |
2739 | */ |
2739 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2740 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2740 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2741 | { |
2741 | |
2742 | /* Prevent unused argument(s) compilation warning */ |
2742 | /* Disable the Peripheral */ |
2743 | UNUSED(OutputChannel); |
2743 | __HAL_TIM_DISABLE(htim); |
2744 | 2744 | ||
2745 | /* Disable the TIM Capture/Compare 1 interrupt */ |
2745 | /* Set the TIM channels state */ |
2746 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2746 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2747 | 2747 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
2748 | /* Disable the TIM Capture/Compare 2 interrupt */ |
2748 | |
2749 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2749 | /* Return function status */ |
2750 | 2750 | return HAL_OK; |
|
2751 | /* Disable the Capture compare and the Input Capture channels |
2751 | } |
2752 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2752 | |
2753 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2753 | /** |
2754 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2754 | * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
2755 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2755 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2756 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2756 | * it has been kept to avoid HAL_TIM API compatibility break. |
2757 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2757 | * @note The pulse output channel is determined when calling |
2758 | 2758 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
2759 | /* Disable the Peripheral */ |
2759 | * @param htim TIM One Pulse handle |
2760 | __HAL_TIM_DISABLE(htim); |
2760 | * @param OutputChannel See note above |
2761 | 2761 | * @retval HAL status |
|
2762 | /* Set the TIM channels state */ |
2762 | */ |
2763 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2763 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2764 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2764 | { |
2765 | 2765 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
2766 | /* Return function status */ |
2766 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2767 | return HAL_OK; |
2767 | |
2768 | } |
2768 | /* Prevent unused argument(s) compilation warning */ |
2769 | 2769 | UNUSED(OutputChannel); |
|
2770 | /** |
2770 | |
2771 | * @} |
2771 | /* Check the TIM channels state */ |
2772 | */ |
2772 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2773 | 2773 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
2774 | /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
2774 | { |
2775 | * @brief TIM Encoder functions |
2775 | return HAL_ERROR; |
2776 | * |
2776 | } |
2777 | @verbatim |
2777 | |
2778 | ============================================================================== |
2778 | /* Set the TIM channels state */ |
2779 | ##### TIM Encoder functions ##### |
2779 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2780 | ============================================================================== |
2780 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2781 | [..] |
2781 | |
2782 | This section provides functions allowing to: |
2782 | /* Enable the Capture compare and the Input Capture channels |
2783 | (+) Initialize and configure the TIM Encoder. |
2783 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2784 | (+) De-initialize the TIM Encoder. |
2784 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2785 | (+) Start the TIM Encoder. |
2785 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2786 | (+) Stop the TIM Encoder. |
2786 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2787 | (+) Start the TIM Encoder and enable interrupt. |
2787 | |
2788 | (+) Stop the TIM Encoder and disable interrupt. |
2788 | No need to enable the counter, it's enabled automatically by hardware |
2789 | (+) Start the TIM Encoder and enable DMA transfer. |
2789 | (the counter starts in response to a stimulus and generate a pulse */ |
2790 | (+) Stop the TIM Encoder and disable DMA transfer. |
2790 | |
2791 | 2791 | /* Enable the TIM Capture/Compare 1 interrupt */ |
|
2792 | @endverbatim |
2792 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2793 | * @{ |
2793 | |
2794 | */ |
2794 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2795 | /** |
2795 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2796 | * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
2796 | |
2797 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2797 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2798 | * requires a timer reset to avoid unexpected direction |
2798 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2799 | * due to DIR bit readonly in center aligned mode. |
2799 | |
2800 | * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
2800 | /* Return function status */ |
2801 | * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
2801 | return HAL_OK; |
2802 | * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
2802 | } |
2803 | * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
2803 | |
2804 | * @note When the timer instance is initialized in Encoder mode, timer |
2804 | /** |
2805 | * channels 1 and channel 2 are reserved and cannot be used for other |
2805 | * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
2806 | * purpose. |
2806 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2807 | * @param htim TIM Encoder Interface handle |
2807 | * it has been kept to avoid HAL_TIM API compatibility break. |
2808 | * @param sConfig TIM Encoder Interface configuration structure |
2808 | * @note The pulse output channel is determined when calling |
2809 | * @retval HAL status |
2809 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2810 | */ |
2810 | * @param htim TIM One Pulse handle |
2811 | HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) |
2811 | * @param OutputChannel See note above |
2812 | { |
2812 | * @retval HAL status |
2813 | uint32_t tmpsmcr; |
2813 | */ |
2814 | uint32_t tmpccmr1; |
2814 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2815 | uint32_t tmpccer; |
2815 | { |
2816 | 2816 | /* Prevent unused argument(s) compilation warning */ |
|
2817 | /* Check the TIM handle allocation */ |
2817 | UNUSED(OutputChannel); |
2818 | if (htim == NULL) |
2818 | |
2819 | { |
2819 | /* Disable the TIM Capture/Compare 1 interrupt */ |
2820 | return HAL_ERROR; |
2820 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2821 | } |
2821 | |
2822 | 2822 | /* Disable the TIM Capture/Compare 2 interrupt */ |
|
2823 | /* Check the parameters */ |
2823 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2824 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
2824 | |
2825 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2825 | /* Disable the Capture compare and the Input Capture channels |
2826 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
2826 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2827 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
2827 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2828 | assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
2828 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2829 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
2829 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2830 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
2830 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2831 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
2831 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2832 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
2832 | |
2833 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
2833 | /* Disable the Peripheral */ |
2834 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
2834 | __HAL_TIM_DISABLE(htim); |
2835 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
2835 | |
2836 | assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
2836 | /* Set the TIM channels state */ |
2837 | 2837 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
2838 | if (htim->State == HAL_TIM_STATE_RESET) |
2838 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2839 | { |
2839 | |
2840 | /* Allocate lock resource and initialize it */ |
2840 | /* Return function status */ |
2841 | htim->Lock = HAL_UNLOCKED; |
2841 | return HAL_OK; |
2842 | 2842 | } |
|
2843 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2843 | |
2844 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2844 | /** |
2845 | TIM_ResetCallback(htim); |
2845 | * @} |
2846 | 2846 | */ |
|
2847 | if (htim->Encoder_MspInitCallback == NULL) |
2847 | |
2848 | { |
2848 | /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
2849 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
2849 | * @brief TIM Encoder functions |
2850 | } |
2850 | * |
2851 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2851 | @verbatim |
2852 | htim->Encoder_MspInitCallback(htim); |
2852 | ============================================================================== |
2853 | #else |
2853 | ##### TIM Encoder functions ##### |
2854 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
2854 | ============================================================================== |
2855 | HAL_TIM_Encoder_MspInit(htim); |
2855 | [..] |
2856 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2856 | This section provides functions allowing to: |
2857 | } |
2857 | (+) Initialize and configure the TIM Encoder. |
2858 | 2858 | (+) De-initialize the TIM Encoder. |
|
2859 | /* Set the TIM state */ |
2859 | (+) Start the TIM Encoder. |
2860 | htim->State = HAL_TIM_STATE_BUSY; |
2860 | (+) Stop the TIM Encoder. |
2861 | 2861 | (+) Start the TIM Encoder and enable interrupt. |
|
2862 | /* Reset the SMS and ECE bits */ |
2862 | (+) Stop the TIM Encoder and disable interrupt. |
2863 | htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
2863 | (+) Start the TIM Encoder and enable DMA transfer. |
2864 | 2864 | (+) Stop the TIM Encoder and disable DMA transfer. |
|
2865 | /* Configure the Time base in the Encoder Mode */ |
2865 | |
2866 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2866 | @endverbatim |
2867 | 2867 | * @{ |
|
2868 | /* Get the TIMx SMCR register value */ |
2868 | */ |
2869 | tmpsmcr = htim->Instance->SMCR; |
2869 | /** |
2870 | 2870 | * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
|
2871 | /* Get the TIMx CCMR1 register value */ |
2871 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2872 | tmpccmr1 = htim->Instance->CCMR1; |
2872 | * requires a timer reset to avoid unexpected direction |
2873 | 2873 | * due to DIR bit readonly in center aligned mode. |
|
2874 | /* Get the TIMx CCER register value */ |
2874 | * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
2875 | tmpccer = htim->Instance->CCER; |
2875 | * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
2876 | 2876 | * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
|
2877 | /* Set the encoder Mode */ |
2877 | * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
2878 | tmpsmcr |= sConfig->EncoderMode; |
2878 | * @note When the timer instance is initialized in Encoder mode, timer |
2879 | 2879 | * channels 1 and channel 2 are reserved and cannot be used for other |
|
2880 | /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
2880 | * purpose. |
2881 | tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
2881 | * @param htim TIM Encoder Interface handle |
2882 | tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
2882 | * @param sConfig TIM Encoder Interface configuration structure |
2883 | 2883 | * @retval HAL status |
|
2884 | /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
2884 | */ |
2885 | tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
2885 | HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig) |
2886 | tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
2886 | { |
2887 | tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
2887 | uint32_t tmpsmcr; |
2888 | tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
2888 | uint32_t tmpccmr1; |
2889 | 2889 | uint32_t tmpccer; |
|
2890 | /* Set the TI1 and the TI2 Polarities */ |
2890 | |
2891 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
2891 | /* Check the TIM handle allocation */ |
2892 | tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
2892 | if (htim == NULL) |
2893 | tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
2893 | { |
2894 | 2894 | return HAL_ERROR; |
|
2895 | /* Write to TIMx SMCR */ |
2895 | } |
2896 | htim->Instance->SMCR = tmpsmcr; |
2896 | |
2897 | 2897 | /* Check the parameters */ |
|
2898 | /* Write to TIMx CCMR1 */ |
2898 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
2899 | htim->Instance->CCMR1 = tmpccmr1; |
2899 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2900 | 2900 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
2901 | /* Write to TIMx CCER */ |
2901 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
2902 | htim->Instance->CCER = tmpccer; |
2902 | assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
2903 | 2903 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
|
2904 | /* Initialize the DMA burst operation state */ |
2904 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
2905 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2905 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
2906 | 2906 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
|
2907 | /* Set the TIM channels state */ |
2907 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
2908 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2908 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
2909 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2909 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
2910 | 2910 | assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
|
2911 | /* Initialize the TIM state*/ |
2911 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
2912 | htim->State = HAL_TIM_STATE_READY; |
2912 | |
2913 | 2913 | if (htim->State == HAL_TIM_STATE_RESET) |
|
2914 | return HAL_OK; |
2914 | { |
2915 | } |
2915 | /* Allocate lock resource and initialize it */ |
2916 | 2916 | htim->Lock = HAL_UNLOCKED; |
|
2917 | 2917 | ||
2918 | /** |
2918 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2919 | * @brief DeInitializes the TIM Encoder interface |
2919 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2920 | * @param htim TIM Encoder Interface handle |
2920 | TIM_ResetCallback(htim); |
2921 | * @retval HAL status |
2921 | |
2922 | */ |
2922 | if (htim->Encoder_MspInitCallback == NULL) |
2923 | HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
2923 | { |
2924 | { |
2924 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
2925 | /* Check the parameters */ |
2925 | } |
2926 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2926 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2927 | 2927 | htim->Encoder_MspInitCallback(htim); |
|
2928 | htim->State = HAL_TIM_STATE_BUSY; |
2928 | #else |
2929 | 2929 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
2930 | /* Disable the TIM Peripheral Clock */ |
2930 | HAL_TIM_Encoder_MspInit(htim); |
2931 | __HAL_TIM_DISABLE(htim); |
2931 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2932 | 2932 | } |
|
2933 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2933 | |
2934 | if (htim->Encoder_MspDeInitCallback == NULL) |
2934 | /* Set the TIM state */ |
2935 | { |
2935 | htim->State = HAL_TIM_STATE_BUSY; |
2936 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
2936 | |
2937 | } |
2937 | /* Reset the SMS and ECE bits */ |
2938 | /* DeInit the low level hardware */ |
2938 | htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
2939 | htim->Encoder_MspDeInitCallback(htim); |
2939 | |
2940 | #else |
2940 | /* Configure the Time base in the Encoder Mode */ |
2941 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
2941 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2942 | HAL_TIM_Encoder_MspDeInit(htim); |
2942 | |
2943 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2943 | /* Get the TIMx SMCR register value */ |
2944 | 2944 | tmpsmcr = htim->Instance->SMCR; |
|
2945 | /* Change the DMA burst operation state */ |
2945 | |
2946 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
2946 | /* Get the TIMx CCMR1 register value */ |
2947 | 2947 | tmpccmr1 = htim->Instance->CCMR1; |
|
2948 | /* Set the TIM channels state */ |
2948 | |
2949 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
2949 | /* Get the TIMx CCER register value */ |
2950 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
2950 | tmpccer = htim->Instance->CCER; |
2951 | 2951 | ||
2952 | /* Change TIM state */ |
2952 | /* Set the encoder Mode */ |
2953 | htim->State = HAL_TIM_STATE_RESET; |
2953 | tmpsmcr |= sConfig->EncoderMode; |
2954 | 2954 | ||
2955 | /* Release Lock */ |
2955 | /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
2956 | __HAL_UNLOCK(htim); |
2956 | tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
2957 | 2957 | tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
|
2958 | return HAL_OK; |
2958 | |
2959 | } |
2959 | /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
2960 | 2960 | tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
|
2961 | /** |
2961 | tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
2962 | * @brief Initializes the TIM Encoder Interface MSP. |
2962 | tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
2963 | * @param htim TIM Encoder Interface handle |
2963 | tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
2964 | * @retval None |
2964 | |
2965 | */ |
2965 | /* Set the TI1 and the TI2 Polarities */ |
2966 | __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
2966 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
2967 | { |
2967 | tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
2968 | /* Prevent unused argument(s) compilation warning */ |
2968 | tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
2969 | UNUSED(htim); |
2969 | |
2970 | 2970 | /* Write to TIMx SMCR */ |
|
2971 | /* NOTE : This function should not be modified, when the callback is needed, |
2971 | htim->Instance->SMCR = tmpsmcr; |
2972 | the HAL_TIM_Encoder_MspInit could be implemented in the user file |
2972 | |
2973 | */ |
2973 | /* Write to TIMx CCMR1 */ |
2974 | } |
2974 | htim->Instance->CCMR1 = tmpccmr1; |
2975 | 2975 | ||
2976 | /** |
2976 | /* Write to TIMx CCER */ |
2977 | * @brief DeInitializes TIM Encoder Interface MSP. |
2977 | htim->Instance->CCER = tmpccer; |
2978 | * @param htim TIM Encoder Interface handle |
2978 | |
2979 | * @retval None |
2979 | /* Initialize the DMA burst operation state */ |
2980 | */ |
2980 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2981 | __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
2981 | |
2982 | { |
2982 | /* Set the TIM channels state */ |
2983 | /* Prevent unused argument(s) compilation warning */ |
2983 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2984 | UNUSED(htim); |
2984 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2985 | 2985 | ||
2986 | /* NOTE : This function should not be modified, when the callback is needed, |
2986 | /* Initialize the TIM state*/ |
2987 | the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
2987 | htim->State = HAL_TIM_STATE_READY; |
2988 | */ |
2988 | |
2989 | } |
2989 | return HAL_OK; |
2990 | 2990 | } |
|
2991 | /** |
2991 | |
2992 | * @brief Starts the TIM Encoder Interface. |
2992 | |
2993 | * @param htim TIM Encoder Interface handle |
2993 | /** |
2994 | * @param Channel TIM Channels to be enabled |
2994 | * @brief DeInitializes the TIM Encoder interface |
2995 | * This parameter can be one of the following values: |
2995 | * @param htim TIM Encoder Interface handle |
2996 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2996 | * @retval HAL status |
2997 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2997 | */ |
2998 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
2998 | HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
2999 | * @retval HAL status |
2999 | { |
3000 | */ |
3000 | /* Check the parameters */ |
3001 | HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
3001 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
3002 | { |
3002 | |
3003 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3003 | htim->State = HAL_TIM_STATE_BUSY; |
3004 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3004 | |
3005 | 3005 | /* Disable the TIM Peripheral Clock */ |
|
3006 | /* Check the parameters */ |
3006 | __HAL_TIM_DISABLE(htim); |
3007 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3007 | |
3008 | 3008 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
3009 | /* Set the TIM channel(s) state */ |
3009 | if (htim->Encoder_MspDeInitCallback == NULL) |
3010 | if (Channel == TIM_CHANNEL_1) |
3010 | { |
3011 | { |
3011 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
3012 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3012 | } |
3013 | { |
3013 | /* DeInit the low level hardware */ |
3014 | return HAL_ERROR; |
3014 | htim->Encoder_MspDeInitCallback(htim); |
3015 | } |
3015 | #else |
3016 | else |
3016 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
3017 | { |
3017 | HAL_TIM_Encoder_MspDeInit(htim); |
3018 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3018 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3019 | } |
3019 | |
3020 | } |
3020 | /* Change the DMA burst operation state */ |
3021 | else if (Channel == TIM_CHANNEL_2) |
3021 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
3022 | { |
3022 | |
3023 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3023 | /* Set the TIM channels state */ |
3024 | { |
3024 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
3025 | return HAL_ERROR; |
3025 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
3026 | } |
3026 | |
3027 | else |
3027 | /* Change TIM state */ |
3028 | { |
3028 | htim->State = HAL_TIM_STATE_RESET; |
3029 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3029 | |
3030 | } |
3030 | /* Release Lock */ |
3031 | } |
3031 | __HAL_UNLOCK(htim); |
3032 | else |
3032 | |
3033 | { |
3033 | return HAL_OK; |
3034 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3034 | } |
3035 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3035 | |
3036 | { |
3036 | /** |
3037 | return HAL_ERROR; |
3037 | * @brief Initializes the TIM Encoder Interface MSP. |
3038 | } |
3038 | * @param htim TIM Encoder Interface handle |
3039 | else |
3039 | * @retval None |
3040 | { |
3040 | */ |
3041 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3041 | __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
3042 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3042 | { |
3043 | } |
3043 | /* Prevent unused argument(s) compilation warning */ |
3044 | } |
3044 | UNUSED(htim); |
3045 | 3045 | ||
3046 | /* Enable the encoder interface channels */ |
3046 | /* NOTE : This function should not be modified, when the callback is needed, |
3047 | switch (Channel) |
3047 | the HAL_TIM_Encoder_MspInit could be implemented in the user file |
3048 | { |
3048 | */ |
3049 | case TIM_CHANNEL_1: |
3049 | } |
3050 | { |
3050 | |
3051 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3051 | /** |
3052 | break; |
3052 | * @brief DeInitializes TIM Encoder Interface MSP. |
3053 | } |
3053 | * @param htim TIM Encoder Interface handle |
3054 | 3054 | * @retval None |
|
3055 | case TIM_CHANNEL_2: |
3055 | */ |
3056 | { |
3056 | __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
3057 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3057 | { |
3058 | break; |
3058 | /* Prevent unused argument(s) compilation warning */ |
3059 | } |
3059 | UNUSED(htim); |
3060 | 3060 | ||
3061 | default : |
3061 | /* NOTE : This function should not be modified, when the callback is needed, |
3062 | { |
3062 | the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
3063 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3063 | */ |
3064 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3064 | } |
3065 | break; |
3065 | |
3066 | } |
3066 | /** |
3067 | } |
3067 | * @brief Starts the TIM Encoder Interface. |
3068 | /* Enable the Peripheral */ |
3068 | * @param htim TIM Encoder Interface handle |
3069 | __HAL_TIM_ENABLE(htim); |
3069 | * @param Channel TIM Channels to be enabled |
3070 | 3070 | * This parameter can be one of the following values: |
|
3071 | /* Return function status */ |
3071 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3072 | return HAL_OK; |
3072 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3073 | } |
3073 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3074 | 3074 | * @retval HAL status |
|
3075 | /** |
3075 | */ |
3076 | * @brief Stops the TIM Encoder Interface. |
3076 | HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
3077 | * @param htim TIM Encoder Interface handle |
3077 | { |
3078 | * @param Channel TIM Channels to be disabled |
3078 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3079 | * This parameter can be one of the following values: |
3079 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3080 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3080 | |
3081 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3081 | /* Check the parameters */ |
3082 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3082 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3083 | * @retval HAL status |
3083 | |
3084 | */ |
3084 | /* Set the TIM channel(s) state */ |
3085 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
3085 | if (Channel == TIM_CHANNEL_1) |
3086 | { |
3086 | { |
3087 | /* Check the parameters */ |
3087 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3088 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3088 | { |
3089 | 3089 | return HAL_ERROR; |
|
3090 | /* Disable the Input Capture channels 1 and 2 |
3090 | } |
3091 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3091 | else |
3092 | switch (Channel) |
3092 | { |
3093 | { |
3093 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3094 | case TIM_CHANNEL_1: |
3094 | } |
3095 | { |
3095 | } |
3096 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3096 | else if (Channel == TIM_CHANNEL_2) |
3097 | break; |
3097 | { |
3098 | } |
3098 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3099 | 3099 | { |
|
3100 | case TIM_CHANNEL_2: |
3100 | return HAL_ERROR; |
3101 | { |
3101 | } |
3102 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3102 | else |
3103 | break; |
3103 | { |
3104 | } |
3104 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3105 | 3105 | } |
|
3106 | default : |
3106 | } |
3107 | { |
3107 | else |
3108 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3108 | { |
3109 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3109 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3110 | break; |
3110 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3111 | } |
3111 | { |
3112 | } |
3112 | return HAL_ERROR; |
3113 | 3113 | } |
|
3114 | /* Disable the Peripheral */ |
3114 | else |
3115 | __HAL_TIM_DISABLE(htim); |
3115 | { |
3116 | 3116 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
3117 | /* Set the TIM channel(s) state */ |
3117 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3118 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3118 | } |
3119 | { |
3119 | } |
3120 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3120 | |
3121 | } |
3121 | /* Enable the encoder interface channels */ |
3122 | else |
3122 | switch (Channel) |
3123 | { |
3123 | { |
3124 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3124 | case TIM_CHANNEL_1: |
3125 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3125 | { |
3126 | } |
3126 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3127 | 3127 | break; |
|
3128 | /* Return function status */ |
3128 | } |
3129 | return HAL_OK; |
3129 | |
3130 | } |
3130 | case TIM_CHANNEL_2: |
3131 | 3131 | { |
|
3132 | /** |
3132 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3133 | * @brief Starts the TIM Encoder Interface in interrupt mode. |
3133 | break; |
3134 | * @param htim TIM Encoder Interface handle |
3134 | } |
3135 | * @param Channel TIM Channels to be enabled |
3135 | |
3136 | * This parameter can be one of the following values: |
3136 | default : |
3137 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3137 | { |
3138 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3138 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3139 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3139 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3140 | * @retval HAL status |
3140 | break; |
3141 | */ |
3141 | } |
3142 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
3142 | } |
3143 | { |
3143 | /* Enable the Peripheral */ |
3144 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3144 | __HAL_TIM_ENABLE(htim); |
3145 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3145 | |
3146 | 3146 | /* Return function status */ |
|
3147 | /* Check the parameters */ |
3147 | return HAL_OK; |
3148 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3148 | } |
3149 | 3149 | ||
3150 | /* Set the TIM channel(s) state */ |
3150 | /** |
3151 | if (Channel == TIM_CHANNEL_1) |
3151 | * @brief Stops the TIM Encoder Interface. |
3152 | { |
3152 | * @param htim TIM Encoder Interface handle |
3153 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3153 | * @param Channel TIM Channels to be disabled |
3154 | { |
3154 | * This parameter can be one of the following values: |
3155 | return HAL_ERROR; |
3155 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3156 | } |
3156 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3157 | else |
3157 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3158 | { |
3158 | * @retval HAL status |
3159 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3159 | */ |
3160 | } |
3160 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
3161 | } |
3161 | { |
3162 | else if (Channel == TIM_CHANNEL_2) |
3162 | /* Check the parameters */ |
3163 | { |
3163 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3164 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3164 | |
3165 | { |
3165 | /* Disable the Input Capture channels 1 and 2 |
3166 | return HAL_ERROR; |
3166 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3167 | } |
3167 | switch (Channel) |
3168 | else |
3168 | { |
3169 | { |
3169 | case TIM_CHANNEL_1: |
3170 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3170 | { |
3171 | } |
3171 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3172 | } |
3172 | break; |
3173 | else |
3173 | } |
3174 | { |
3174 | |
3175 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3175 | case TIM_CHANNEL_2: |
3176 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3176 | { |
3177 | { |
3177 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3178 | return HAL_ERROR; |
3178 | break; |
3179 | } |
3179 | } |
3180 | else |
3180 | |
3181 | { |
3181 | default : |
3182 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3182 | { |
3183 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3183 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3184 | } |
3184 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3185 | } |
3185 | break; |
3186 | 3186 | } |
|
3187 | /* Enable the encoder interface channels */ |
3187 | } |
3188 | /* Enable the capture compare Interrupts 1 and/or 2 */ |
3188 | |
3189 | switch (Channel) |
3189 | /* Disable the Peripheral */ |
3190 | { |
3190 | __HAL_TIM_DISABLE(htim); |
3191 | case TIM_CHANNEL_1: |
3191 | |
3192 | { |
3192 | /* Set the TIM channel(s) state */ |
3193 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3193 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3194 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3194 | { |
3195 | break; |
3195 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3196 | } |
3196 | } |
3197 | 3197 | else |
|
3198 | case TIM_CHANNEL_2: |
3198 | { |
3199 | { |
3199 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3200 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3200 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3201 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
3201 | } |
3202 | break; |
3202 | |
3203 | } |
3203 | /* Return function status */ |
3204 | 3204 | return HAL_OK; |
|
3205 | default : |
3205 | } |
3206 | { |
3206 | |
3207 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3207 | /** |
3208 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3208 | * @brief Starts the TIM Encoder Interface in interrupt mode. |
3209 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3209 | * @param htim TIM Encoder Interface handle |
3210 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
3210 | * @param Channel TIM Channels to be enabled |
3211 | break; |
3211 | * This parameter can be one of the following values: |
3212 | } |
3212 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3213 | } |
3213 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3214 | 3214 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
3215 | /* Enable the Peripheral */ |
3215 | * @retval HAL status |
3216 | __HAL_TIM_ENABLE(htim); |
3216 | */ |
3217 | 3217 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
3218 | /* Return function status */ |
3218 | { |
3219 | return HAL_OK; |
3219 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3220 | } |
3220 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3221 | 3221 | ||
3222 | /** |
3222 | /* Check the parameters */ |
3223 | * @brief Stops the TIM Encoder Interface in interrupt mode. |
3223 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3224 | * @param htim TIM Encoder Interface handle |
3224 | |
3225 | * @param Channel TIM Channels to be disabled |
3225 | /* Set the TIM channel(s) state */ |
3226 | * This parameter can be one of the following values: |
3226 | if (Channel == TIM_CHANNEL_1) |
3227 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3227 | { |
3228 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3228 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3229 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3229 | { |
3230 | * @retval HAL status |
3230 | return HAL_ERROR; |
3231 | */ |
3231 | } |
3232 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
3232 | else |
3233 | { |
3233 | { |
3234 | /* Check the parameters */ |
3234 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3235 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3235 | } |
3236 | 3236 | } |
|
3237 | /* Disable the Input Capture channels 1 and 2 |
3237 | else if (Channel == TIM_CHANNEL_2) |
3238 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3238 | { |
3239 | if (Channel == TIM_CHANNEL_1) |
3239 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3240 | { |
3240 | { |
3241 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3241 | return HAL_ERROR; |
3242 | 3242 | } |
|
3243 | /* Disable the capture compare Interrupts 1 */ |
3243 | else |
3244 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3244 | { |
3245 | } |
3245 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3246 | else if (Channel == TIM_CHANNEL_2) |
3246 | } |
3247 | { |
3247 | } |
3248 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3248 | else |
3249 | 3249 | { |
|
3250 | /* Disable the capture compare Interrupts 2 */ |
3250 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3251 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3251 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3252 | } |
3252 | { |
3253 | else |
3253 | return HAL_ERROR; |
3254 | { |
3254 | } |
3255 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3255 | else |
3256 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3256 | { |
3257 | 3257 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
3258 | /* Disable the capture compare Interrupts 1 and 2 */ |
3258 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3259 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3259 | } |
3260 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3260 | } |
3261 | } |
3261 | |
3262 | 3262 | /* Enable the encoder interface channels */ |
|
3263 | /* Disable the Peripheral */ |
3263 | /* Enable the capture compare Interrupts 1 and/or 2 */ |
3264 | __HAL_TIM_DISABLE(htim); |
3264 | switch (Channel) |
3265 | 3265 | { |
|
3266 | /* Set the TIM channel(s) state */ |
3266 | case TIM_CHANNEL_1: |
3267 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3267 | { |
3268 | { |
3268 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3269 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3269 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3270 | } |
3270 | break; |
3271 | else |
3271 | } |
3272 | { |
3272 | |
3273 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3273 | case TIM_CHANNEL_2: |
3274 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3274 | { |
3275 | } |
3275 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3276 | 3276 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
3277 | /* Return function status */ |
3277 | break; |
3278 | return HAL_OK; |
3278 | } |
3279 | } |
3279 | |
3280 | 3280 | default : |
|
3281 | /** |
3281 | { |
3282 | * @brief Starts the TIM Encoder Interface in DMA mode. |
3282 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3283 | * @param htim TIM Encoder Interface handle |
3283 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3284 | * @param Channel TIM Channels to be enabled |
3284 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3285 | * This parameter can be one of the following values: |
3285 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
3286 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3286 | break; |
3287 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3287 | } |
3288 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3288 | } |
3289 | * @param pData1 The destination Buffer address for IC1. |
3289 | |
3290 | * @param pData2 The destination Buffer address for IC2. |
3290 | /* Enable the Peripheral */ |
3291 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
3291 | __HAL_TIM_ENABLE(htim); |
3292 | * @retval HAL status |
3292 | |
3293 | */ |
3293 | /* Return function status */ |
3294 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
3294 | return HAL_OK; |
3295 | uint32_t *pData2, uint16_t Length) |
3295 | } |
3296 | { |
3296 | |
3297 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3297 | /** |
3298 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3298 | * @brief Stops the TIM Encoder Interface in interrupt mode. |
3299 | 3299 | * @param htim TIM Encoder Interface handle |
|
3300 | /* Check the parameters */ |
3300 | * @param Channel TIM Channels to be disabled |
3301 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3301 | * This parameter can be one of the following values: |
3302 | 3302 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
3303 | /* Set the TIM channel(s) state */ |
3303 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3304 | if (Channel == TIM_CHANNEL_1) |
3304 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3305 | { |
3305 | * @retval HAL status |
3306 | if (channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3306 | */ |
3307 | { |
3307 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
3308 | return HAL_BUSY; |
3308 | { |
3309 | } |
3309 | /* Check the parameters */ |
3310 | else if (channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3310 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3311 | { |
3311 | |
3312 | if ((pData1 == NULL) && (Length > 0U)) |
3312 | /* Disable the Input Capture channels 1 and 2 |
3313 | { |
3313 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3314 | return HAL_ERROR; |
3314 | if (Channel == TIM_CHANNEL_1) |
3315 | } |
3315 | { |
3316 | else |
3316 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3317 | { |
3317 | |
3318 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3318 | /* Disable the capture compare Interrupts 1 */ |
3319 | } |
3319 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3320 | } |
3320 | } |
3321 | else |
3321 | else if (Channel == TIM_CHANNEL_2) |
3322 | { |
3322 | { |
3323 | return HAL_ERROR; |
3323 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3324 | } |
3324 | |
3325 | } |
3325 | /* Disable the capture compare Interrupts 2 */ |
3326 | else if (Channel == TIM_CHANNEL_2) |
3326 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3327 | { |
3327 | } |
3328 | if (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3328 | else |
3329 | { |
3329 | { |
3330 | return HAL_BUSY; |
3330 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3331 | } |
3331 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3332 | else if (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
3332 | |
3333 | { |
3333 | /* Disable the capture compare Interrupts 1 and 2 */ |
3334 | if ((pData2 == NULL) && (Length > 0U)) |
3334 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3335 | { |
3335 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3336 | return HAL_ERROR; |
3336 | } |
3337 | } |
3337 | |
3338 | else |
3338 | /* Disable the Peripheral */ |
3339 | { |
3339 | __HAL_TIM_DISABLE(htim); |
3340 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3340 | |
3341 | } |
3341 | /* Set the TIM channel(s) state */ |
3342 | } |
3342 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3343 | else |
3343 | { |
3344 | { |
3344 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3345 | return HAL_ERROR; |
3345 | } |
3346 | } |
3346 | else |
3347 | } |
3347 | { |
3348 | else |
3348 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3349 | { |
3349 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3350 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3350 | } |
3351 | || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
3351 | |
3352 | { |
3352 | /* Return function status */ |
3353 | return HAL_BUSY; |
3353 | return HAL_OK; |
3354 | } |
3354 | } |
3355 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3355 | |
3356 | && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
3356 | /** |
3357 | { |
3357 | * @brief Starts the TIM Encoder Interface in DMA mode. |
3358 | if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) |
3358 | * @param htim TIM Encoder Interface handle |
3359 | { |
3359 | * @param Channel TIM Channels to be enabled |
3360 | return HAL_ERROR; |
3360 | * This parameter can be one of the following values: |
3361 | } |
3361 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3362 | else |
3362 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3363 | { |
3363 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3364 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3364 | * @param pData1 The destination Buffer address for IC1. |
3365 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3365 | * @param pData2 The destination Buffer address for IC2. |
3366 | } |
3366 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
3367 | } |
3367 | * @retval HAL status |
3368 | else |
3368 | */ |
3369 | { |
3369 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
3370 | return HAL_ERROR; |
3370 | uint32_t *pData2, uint16_t Length) |
3371 | } |
3371 | { |
3372 | } |
3372 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3373 | 3373 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
3374 | switch (Channel) |
3374 | |
3375 | { |
3375 | /* Check the parameters */ |
3376 | case TIM_CHANNEL_1: |
3376 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3377 | { |
3377 | |
3378 | /* Set the DMA capture callbacks */ |
3378 | /* Set the TIM channel(s) state */ |
3379 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3379 | if (Channel == TIM_CHANNEL_1) |
3380 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3380 | { |
3381 | 3381 | if (channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
3382 | /* Set the DMA error callback */ |
3382 | { |
3383 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3383 | return HAL_BUSY; |
3384 | 3384 | } |
|
3385 | /* Enable the DMA channel */ |
3385 | else if (channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3386 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3386 | { |
3387 | Length) != HAL_OK) |
3387 | if ((pData1 == NULL) || (Length == 0U)) |
3388 | { |
3388 | { |
3389 | /* Return error status */ |
3389 | return HAL_ERROR; |
3390 | return HAL_ERROR; |
3390 | } |
3391 | } |
3391 | else |
3392 | /* Enable the TIM Input Capture DMA request */ |
3392 | { |
3393 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3393 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3394 | 3394 | } |
|
3395 | /* Enable the Peripheral */ |
3395 | } |
3396 | __HAL_TIM_ENABLE(htim); |
3396 | else |
3397 | 3397 | { |
|
3398 | /* Enable the Capture compare channel */ |
3398 | return HAL_ERROR; |
3399 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3399 | } |
3400 | break; |
3400 | } |
3401 | } |
3401 | else if (Channel == TIM_CHANNEL_2) |
3402 | 3402 | { |
|
3403 | case TIM_CHANNEL_2: |
3403 | if (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3404 | { |
3404 | { |
3405 | /* Set the DMA capture callbacks */ |
3405 | return HAL_BUSY; |
3406 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3406 | } |
3407 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3407 | else if (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
3408 | 3408 | { |
|
3409 | /* Set the DMA error callback */ |
3409 | if ((pData2 == NULL) || (Length == 0U)) |
3410 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
3410 | { |
3411 | /* Enable the DMA channel */ |
3411 | return HAL_ERROR; |
3412 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3412 | } |
3413 | Length) != HAL_OK) |
3413 | else |
3414 | { |
3414 | { |
3415 | /* Return error status */ |
3415 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3416 | return HAL_ERROR; |
3416 | } |
3417 | } |
3417 | } |
3418 | /* Enable the TIM Input Capture DMA request */ |
3418 | else |
3419 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3419 | { |
3420 | 3420 | return HAL_ERROR; |
|
3421 | /* Enable the Peripheral */ |
3421 | } |
3422 | __HAL_TIM_ENABLE(htim); |
3422 | } |
3423 | 3423 | else |
|
3424 | /* Enable the Capture compare channel */ |
3424 | { |
3425 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3425 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3426 | break; |
3426 | || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
3427 | } |
3427 | { |
3428 | 3428 | return HAL_BUSY; |
|
3429 | case TIM_CHANNEL_ALL: |
3429 | } |
3430 | { |
3430 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3431 | /* Set the DMA capture callbacks */ |
3431 | && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
3432 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3432 | { |
3433 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3433 | if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U)) |
3434 | 3434 | { |
|
3435 | /* Set the DMA error callback */ |
3435 | return HAL_ERROR; |
3436 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3436 | } |
3437 | 3437 | else |
|
3438 | /* Enable the DMA channel */ |
3438 | { |
3439 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3439 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3440 | Length) != HAL_OK) |
3440 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3441 | { |
3441 | } |
3442 | /* Return error status */ |
3442 | } |
3443 | return HAL_ERROR; |
3443 | else |
3444 | } |
3444 | { |
3445 | 3445 | return HAL_ERROR; |
|
3446 | /* Set the DMA capture callbacks */ |
3446 | } |
3447 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3447 | } |
3448 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3448 | |
3449 | 3449 | switch (Channel) |
|
3450 | /* Set the DMA error callback */ |
3450 | { |
3451 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
3451 | case TIM_CHANNEL_1: |
3452 | 3452 | { |
|
3453 | /* Enable the DMA channel */ |
3453 | /* Set the DMA capture callbacks */ |
3454 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3454 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3455 | Length) != HAL_OK) |
3455 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3456 | { |
3456 | |
3457 | /* Return error status */ |
3457 | /* Set the DMA error callback */ |
3458 | return HAL_ERROR; |
3458 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3459 | } |
3459 | |
3460 | /* Enable the Peripheral */ |
3460 | /* Enable the DMA channel */ |
3461 | __HAL_TIM_ENABLE(htim); |
3461 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3462 | 3462 | Length) != HAL_OK) |
|
3463 | /* Enable the Capture compare channel */ |
3463 | { |
3464 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3464 | /* Return error status */ |
3465 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3465 | return HAL_ERROR; |
3466 | 3466 | } |
|
3467 | /* Enable the TIM Input Capture DMA request */ |
3467 | /* Enable the TIM Input Capture DMA request */ |
3468 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3468 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3469 | /* Enable the TIM Input Capture DMA request */ |
3469 | |
3470 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3470 | /* Enable the Capture compare channel */ |
3471 | break; |
3471 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3472 | } |
3472 | |
3473 | 3473 | /* Enable the Peripheral */ |
|
3474 | default: |
3474 | __HAL_TIM_ENABLE(htim); |
3475 | break; |
3475 | |
3476 | } |
3476 | break; |
3477 | 3477 | } |
|
3478 | /* Return function status */ |
3478 | |
3479 | return HAL_OK; |
3479 | case TIM_CHANNEL_2: |
3480 | } |
3480 | { |
3481 | 3481 | /* Set the DMA capture callbacks */ |
|
3482 | /** |
3482 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3483 | * @brief Stops the TIM Encoder Interface in DMA mode. |
3483 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3484 | * @param htim TIM Encoder Interface handle |
3484 | |
3485 | * @param Channel TIM Channels to be enabled |
3485 | /* Set the DMA error callback */ |
3486 | * This parameter can be one of the following values: |
3486 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
3487 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3487 | /* Enable the DMA channel */ |
3488 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3488 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3489 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3489 | Length) != HAL_OK) |
3490 | * @retval HAL status |
3490 | { |
3491 | */ |
3491 | /* Return error status */ |
3492 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
3492 | return HAL_ERROR; |
3493 | { |
3493 | } |
3494 | /* Check the parameters */ |
3494 | /* Enable the TIM Input Capture DMA request */ |
3495 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3495 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3496 | 3496 | ||
3497 | /* Disable the Input Capture channels 1 and 2 |
3497 | /* Enable the Capture compare channel */ |
3498 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3498 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3499 | if (Channel == TIM_CHANNEL_1) |
3499 | |
3500 | { |
3500 | /* Enable the Peripheral */ |
3501 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3501 | __HAL_TIM_ENABLE(htim); |
3502 | 3502 | ||
3503 | /* Disable the capture compare DMA Request 1 */ |
3503 | break; |
3504 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3504 | } |
3505 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3505 | |
3506 | } |
3506 | default: |
3507 | else if (Channel == TIM_CHANNEL_2) |
3507 | { |
3508 | { |
3508 | /* Set the DMA capture callbacks */ |
3509 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3509 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3510 | 3510 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
3511 | /* Disable the capture compare DMA Request 2 */ |
3511 | |
3512 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3512 | /* Set the DMA error callback */ |
3513 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3513 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3514 | } |
3514 | |
3515 | else |
3515 | /* Enable the DMA channel */ |
3516 | { |
3516 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3517 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3517 | Length) != HAL_OK) |
3518 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3518 | { |
3519 | 3519 | /* Return error status */ |
|
3520 | /* Disable the capture compare DMA Request 1 and 2 */ |
3520 | return HAL_ERROR; |
3521 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3521 | } |
3522 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3522 | |
3523 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3523 | /* Set the DMA capture callbacks */ |
3524 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3524 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3525 | } |
3525 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3526 | 3526 | ||
3527 | /* Disable the Peripheral */ |
3527 | /* Set the DMA error callback */ |
3528 | __HAL_TIM_DISABLE(htim); |
3528 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
3529 | 3529 | ||
3530 | /* Set the TIM channel(s) state */ |
3530 | /* Enable the DMA channel */ |
3531 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3531 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3532 | { |
3532 | Length) != HAL_OK) |
3533 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3533 | { |
3534 | } |
3534 | /* Return error status */ |
3535 | else |
3535 | return HAL_ERROR; |
3536 | { |
3536 | } |
3537 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3537 | |
3538 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3538 | /* Enable the TIM Input Capture DMA request */ |
3539 | } |
3539 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3540 | 3540 | /* Enable the TIM Input Capture DMA request */ |
|
3541 | /* Return function status */ |
3541 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3542 | return HAL_OK; |
3542 | |
3543 | } |
3543 | /* Enable the Capture compare channel */ |
3544 | 3544 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
3545 | /** |
3545 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3546 | * @} |
3546 | |
3547 | */ |
3547 | /* Enable the Peripheral */ |
3548 | /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
3548 | __HAL_TIM_ENABLE(htim); |
3549 | * @brief TIM IRQ handler management |
3549 | |
3550 | * |
3550 | break; |
3551 | @verbatim |
3551 | } |
3552 | ============================================================================== |
3552 | } |
3553 | ##### IRQ handler management ##### |
3553 | |
3554 | ============================================================================== |
3554 | /* Return function status */ |
3555 | [..] |
3555 | return HAL_OK; |
3556 | This section provides Timer IRQ handler function. |
3556 | } |
3557 | 3557 | ||
3558 | @endverbatim |
3558 | /** |
3559 | * @{ |
3559 | * @brief Stops the TIM Encoder Interface in DMA mode. |
3560 | */ |
3560 | * @param htim TIM Encoder Interface handle |
3561 | /** |
3561 | * @param Channel TIM Channels to be enabled |
3562 | * @brief This function handles TIM interrupts requests. |
3562 | * This parameter can be one of the following values: |
3563 | * @param htim TIM handle |
3563 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3564 | * @retval None |
3564 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3565 | */ |
3565 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3566 | void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
3566 | * @retval HAL status |
3567 | { |
3567 | */ |
3568 | /* Capture compare 1 event */ |
3568 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
3569 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
3569 | { |
3570 | { |
3570 | /* Check the parameters */ |
3571 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
3571 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3572 | { |
3572 | |
3573 | { |
3573 | /* Disable the Input Capture channels 1 and 2 |
3574 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
3574 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3575 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
3575 | if (Channel == TIM_CHANNEL_1) |
3576 | 3576 | { |
|
3577 | /* Input capture event */ |
3577 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3578 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
3578 | |
3579 | { |
3579 | /* Disable the capture compare DMA Request 1 */ |
3580 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3580 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3581 | htim->IC_CaptureCallback(htim); |
3581 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3582 | #else |
3582 | } |
3583 | HAL_TIM_IC_CaptureCallback(htim); |
3583 | else if (Channel == TIM_CHANNEL_2) |
3584 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3584 | { |
3585 | } |
3585 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3586 | /* Output compare event */ |
3586 | |
3587 | else |
3587 | /* Disable the capture compare DMA Request 2 */ |
3588 | { |
3588 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3589 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3589 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3590 | htim->OC_DelayElapsedCallback(htim); |
3590 | } |
3591 | htim->PWM_PulseFinishedCallback(htim); |
3591 | else |
3592 | #else |
3592 | { |
3593 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3593 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3594 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3594 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3595 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3595 | |
3596 | } |
3596 | /* Disable the capture compare DMA Request 1 and 2 */ |
3597 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3597 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3598 | } |
3598 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3599 | } |
3599 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3600 | } |
3600 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3601 | /* Capture compare 2 event */ |
3601 | } |
3602 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
3602 | |
3603 | { |
3603 | /* Disable the Peripheral */ |
3604 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
3604 | __HAL_TIM_DISABLE(htim); |
3605 | { |
3605 | |
3606 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
3606 | /* Set the TIM channel(s) state */ |
3607 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
3607 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3608 | /* Input capture event */ |
3608 | { |
3609 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
3609 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3610 | { |
3610 | } |
3611 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3611 | else |
3612 | htim->IC_CaptureCallback(htim); |
3612 | { |
3613 | #else |
3613 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3614 | HAL_TIM_IC_CaptureCallback(htim); |
3614 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3615 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3615 | } |
3616 | } |
3616 | |
3617 | /* Output compare event */ |
3617 | /* Return function status */ |
3618 | else |
3618 | return HAL_OK; |
3619 | { |
3619 | } |
3620 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3620 | |
3621 | htim->OC_DelayElapsedCallback(htim); |
3621 | /** |
3622 | htim->PWM_PulseFinishedCallback(htim); |
3622 | * @} |
3623 | #else |
3623 | */ |
3624 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3624 | /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
3625 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3625 | * @brief TIM IRQ handler management |
3626 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3626 | * |
3627 | } |
3627 | @verbatim |
3628 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3628 | ============================================================================== |
3629 | } |
3629 | ##### IRQ handler management ##### |
3630 | } |
3630 | ============================================================================== |
3631 | /* Capture compare 3 event */ |
3631 | [..] |
3632 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
3632 | This section provides Timer IRQ handler function. |
3633 | { |
3633 | |
3634 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
3634 | @endverbatim |
3635 | { |
3635 | * @{ |
3636 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
3636 | */ |
3637 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
3637 | /** |
3638 | /* Input capture event */ |
3638 | * @brief This function handles TIM interrupts requests. |
3639 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
3639 | * @param htim TIM handle |
3640 | { |
3640 | * @retval None |
3641 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3641 | */ |
3642 | htim->IC_CaptureCallback(htim); |
3642 | void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
3643 | #else |
3643 | { |
3644 | HAL_TIM_IC_CaptureCallback(htim); |
3644 | /* Capture compare 1 event */ |
3645 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3645 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
3646 | } |
3646 | { |
3647 | /* Output compare event */ |
3647 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
3648 | else |
3648 | { |
3649 | { |
3649 | { |
3650 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3650 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
3651 | htim->OC_DelayElapsedCallback(htim); |
3651 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
3652 | htim->PWM_PulseFinishedCallback(htim); |
3652 | |
3653 | #else |
3653 | /* Input capture event */ |
3654 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3654 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
3655 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3655 | { |
3656 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3656 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3657 | } |
3657 | htim->IC_CaptureCallback(htim); |
3658 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3658 | #else |
3659 | } |
3659 | HAL_TIM_IC_CaptureCallback(htim); |
3660 | } |
3660 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3661 | /* Capture compare 4 event */ |
3661 | } |
3662 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
3662 | /* Output compare event */ |
3663 | { |
3663 | else |
3664 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
3664 | { |
3665 | { |
3665 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3666 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
3666 | htim->OC_DelayElapsedCallback(htim); |
3667 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
3667 | htim->PWM_PulseFinishedCallback(htim); |
3668 | /* Input capture event */ |
3668 | #else |
3669 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
3669 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3670 | { |
3670 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3671 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3671 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3672 | htim->IC_CaptureCallback(htim); |
3672 | } |
3673 | #else |
3673 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3674 | HAL_TIM_IC_CaptureCallback(htim); |
3674 | } |
3675 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3675 | } |
3676 | } |
3676 | } |
3677 | /* Output compare event */ |
3677 | /* Capture compare 2 event */ |
3678 | else |
3678 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
3679 | { |
3679 | { |
3680 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3680 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
3681 | htim->OC_DelayElapsedCallback(htim); |
3681 | { |
3682 | htim->PWM_PulseFinishedCallback(htim); |
3682 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
3683 | #else |
3683 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
3684 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3684 | /* Input capture event */ |
3685 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3685 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
3686 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3686 | { |
3687 | } |
3687 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3688 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3688 | htim->IC_CaptureCallback(htim); |
3689 | } |
3689 | #else |
3690 | } |
3690 | HAL_TIM_IC_CaptureCallback(htim); |
3691 | /* TIM Update event */ |
3691 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3692 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
3692 | } |
3693 | { |
3693 | /* Output compare event */ |
3694 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
3694 | else |
3695 | { |
3695 | { |
3696 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
3696 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3697 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3697 | htim->OC_DelayElapsedCallback(htim); |
3698 | htim->PeriodElapsedCallback(htim); |
3698 | htim->PWM_PulseFinishedCallback(htim); |
3699 | #else |
3699 | #else |
3700 | HAL_TIM_PeriodElapsedCallback(htim); |
3700 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3701 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3701 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3702 | } |
3702 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3703 | } |
3703 | } |
3704 | /* TIM Trigger detection event */ |
3704 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3705 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
3705 | } |
3706 | { |
3706 | } |
3707 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
3707 | /* Capture compare 3 event */ |
3708 | { |
3708 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
3709 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
3709 | { |
3710 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3710 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
3711 | htim->TriggerCallback(htim); |
3711 | { |
3712 | #else |
3712 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
3713 | HAL_TIM_TriggerCallback(htim); |
3713 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
3714 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3714 | /* Input capture event */ |
3715 | } |
3715 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
3716 | } |
3716 | { |
3717 | } |
3717 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3718 | 3718 | htim->IC_CaptureCallback(htim); |
|
3719 | /** |
3719 | #else |
3720 | * @} |
3720 | HAL_TIM_IC_CaptureCallback(htim); |
3721 | */ |
3721 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3722 | 3722 | } |
|
3723 | /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
3723 | /* Output compare event */ |
3724 | * @brief TIM Peripheral Control functions |
3724 | else |
3725 | * |
3725 | { |
3726 | @verbatim |
3726 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3727 | ============================================================================== |
3727 | htim->OC_DelayElapsedCallback(htim); |
3728 | ##### Peripheral Control functions ##### |
3728 | htim->PWM_PulseFinishedCallback(htim); |
3729 | ============================================================================== |
3729 | #else |
3730 | [..] |
3730 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3731 | This section provides functions allowing to: |
3731 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3732 | (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
3732 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3733 | (+) Configure External Clock source. |
3733 | } |
3734 | (+) Configure Master and the Slave synchronization. |
3734 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3735 | (+) Configure the DMA Burst Mode. |
3735 | } |
3736 | 3736 | } |
|
3737 | @endverbatim |
3737 | /* Capture compare 4 event */ |
3738 | * @{ |
3738 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
3739 | */ |
3739 | { |
3740 | 3740 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
|
3741 | /** |
3741 | { |
3742 | * @brief Initializes the TIM Output Compare Channels according to the specified |
3742 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
3743 | * parameters in the TIM_OC_InitTypeDef. |
3743 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
3744 | * @param htim TIM Output Compare handle |
3744 | /* Input capture event */ |
3745 | * @param sConfig TIM Output Compare configuration structure |
3745 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
3746 | * @param Channel TIM Channels to configure |
3746 | { |
3747 | * This parameter can be one of the following values: |
3747 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3748 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3748 | htim->IC_CaptureCallback(htim); |
3749 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3749 | #else |
3750 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3750 | HAL_TIM_IC_CaptureCallback(htim); |
3751 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3751 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3752 | * @retval HAL status |
3752 | } |
3753 | */ |
3753 | /* Output compare event */ |
3754 | HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
3754 | else |
3755 | TIM_OC_InitTypeDef *sConfig, |
3755 | { |
3756 | uint32_t Channel) |
3756 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3757 | { |
3757 | htim->OC_DelayElapsedCallback(htim); |
3758 | /* Check the parameters */ |
3758 | htim->PWM_PulseFinishedCallback(htim); |
3759 | assert_param(IS_TIM_CHANNELS(Channel)); |
3759 | #else |
3760 | assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
3760 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3761 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
3761 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3762 | 3762 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
3763 | /* Process Locked */ |
3763 | } |
3764 | __HAL_LOCK(htim); |
3764 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3765 | 3765 | } |
|
3766 | switch (Channel) |
3766 | } |
3767 | { |
3767 | /* TIM Update event */ |
3768 | case TIM_CHANNEL_1: |
3768 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
3769 | { |
3769 | { |
3770 | /* Check the parameters */ |
3770 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
3771 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3771 | { |
3772 | 3772 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
|
3773 | /* Configure the TIM Channel 1 in Output Compare */ |
3773 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3774 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
3774 | htim->PeriodElapsedCallback(htim); |
3775 | break; |
3775 | #else |
3776 | } |
3776 | HAL_TIM_PeriodElapsedCallback(htim); |
3777 | 3777 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
3778 | case TIM_CHANNEL_2: |
3778 | } |
3779 | { |
3779 | } |
3780 | /* Check the parameters */ |
3780 | /* TIM Trigger detection event */ |
3781 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3781 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
3782 | 3782 | { |
|
3783 | /* Configure the TIM Channel 2 in Output Compare */ |
3783 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
3784 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
3784 | { |
3785 | break; |
3785 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
3786 | } |
3786 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3787 | 3787 | htim->TriggerCallback(htim); |
|
3788 | case TIM_CHANNEL_3: |
3788 | #else |
3789 | { |
3789 | HAL_TIM_TriggerCallback(htim); |
3790 | /* Check the parameters */ |
3790 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3791 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3791 | } |
3792 | 3792 | } |
|
3793 | /* Configure the TIM Channel 3 in Output Compare */ |
3793 | } |
3794 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
3794 | |
3795 | break; |
3795 | /** |
3796 | } |
3796 | * @} |
3797 | 3797 | */ |
|
3798 | case TIM_CHANNEL_4: |
3798 | |
3799 | { |
3799 | /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
3800 | /* Check the parameters */ |
3800 | * @brief TIM Peripheral Control functions |
3801 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3801 | * |
3802 | 3802 | @verbatim |
|
3803 | /* Configure the TIM Channel 4 in Output Compare */ |
3803 | ============================================================================== |
3804 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
3804 | ##### Peripheral Control functions ##### |
3805 | break; |
3805 | ============================================================================== |
3806 | } |
3806 | [..] |
3807 | 3807 | This section provides functions allowing to: |
|
3808 | default: |
3808 | (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
3809 | break; |
3809 | (+) Configure External Clock source. |
3810 | } |
3810 | (+) Configure Master and the Slave synchronization. |
3811 | 3811 | (+) Configure the DMA Burst Mode. |
|
3812 | __HAL_UNLOCK(htim); |
3812 | |
3813 | 3813 | @endverbatim |
|
3814 | return HAL_OK; |
3814 | * @{ |
3815 | } |
3815 | */ |
3816 | 3816 | ||
3817 | /** |
3817 | /** |
3818 | * @brief Initializes the TIM Input Capture Channels according to the specified |
3818 | * @brief Initializes the TIM Output Compare Channels according to the specified |
3819 | * parameters in the TIM_IC_InitTypeDef. |
3819 | * parameters in the TIM_OC_InitTypeDef. |
3820 | * @param htim TIM IC handle |
3820 | * @param htim TIM Output Compare handle |
3821 | * @param sConfig TIM Input Capture configuration structure |
3821 | * @param sConfig TIM Output Compare configuration structure |
3822 | * @param Channel TIM Channel to configure |
3822 | * @param Channel TIM Channels to configure |
3823 | * This parameter can be one of the following values: |
3823 | * This parameter can be one of the following values: |
3824 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3824 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3825 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3825 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3826 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3826 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3827 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3827 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3828 | * @retval HAL status |
3828 | * @retval HAL status |
3829 | */ |
3829 | */ |
3830 | HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
3830 | HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
3831 | { |
3831 | const TIM_OC_InitTypeDef *sConfig, |
3832 | /* Check the parameters */ |
3832 | uint32_t Channel) |
3833 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3833 | { |
3834 | assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
3834 | HAL_StatusTypeDef status = HAL_OK; |
3835 | assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
3835 | |
3836 | assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
3836 | /* Check the parameters */ |
3837 | assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
3837 | assert_param(IS_TIM_CHANNELS(Channel)); |
3838 | 3838 | assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
|
3839 | /* Process Locked */ |
3839 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
3840 | __HAL_LOCK(htim); |
3840 | |
3841 | 3841 | /* Process Locked */ |
|
3842 | if (Channel == TIM_CHANNEL_1) |
3842 | __HAL_LOCK(htim); |
3843 | { |
3843 | |
3844 | /* TI1 Configuration */ |
3844 | switch (Channel) |
3845 | TIM_TI1_SetConfig(htim->Instance, |
3845 | { |
3846 | sConfig->ICPolarity, |
3846 | case TIM_CHANNEL_1: |
3847 | sConfig->ICSelection, |
3847 | { |
3848 | sConfig->ICFilter); |
3848 | /* Check the parameters */ |
3849 | 3849 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
3850 | /* Reset the IC1PSC Bits */ |
3850 | |
3851 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
3851 | /* Configure the TIM Channel 1 in Output Compare */ |
3852 | 3852 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
|
3853 | /* Set the IC1PSC value */ |
3853 | break; |
3854 | htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
3854 | } |
3855 | } |
3855 | |
3856 | else if (Channel == TIM_CHANNEL_2) |
3856 | case TIM_CHANNEL_2: |
3857 | { |
3857 | { |
3858 | /* TI2 Configuration */ |
3858 | /* Check the parameters */ |
3859 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3859 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3860 | 3860 | ||
3861 | TIM_TI2_SetConfig(htim->Instance, |
3861 | /* Configure the TIM Channel 2 in Output Compare */ |
3862 | sConfig->ICPolarity, |
3862 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
3863 | sConfig->ICSelection, |
3863 | break; |
3864 | sConfig->ICFilter); |
3864 | } |
3865 | 3865 | ||
3866 | /* Reset the IC2PSC Bits */ |
3866 | case TIM_CHANNEL_3: |
3867 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
3867 | { |
3868 | 3868 | /* Check the parameters */ |
|
3869 | /* Set the IC2PSC value */ |
3869 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3870 | htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
3870 | |
3871 | } |
3871 | /* Configure the TIM Channel 3 in Output Compare */ |
3872 | else if (Channel == TIM_CHANNEL_3) |
3872 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
3873 | { |
3873 | break; |
3874 | /* TI3 Configuration */ |
3874 | } |
3875 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3875 | |
3876 | 3876 | case TIM_CHANNEL_4: |
|
3877 | TIM_TI3_SetConfig(htim->Instance, |
3877 | { |
3878 | sConfig->ICPolarity, |
3878 | /* Check the parameters */ |
3879 | sConfig->ICSelection, |
3879 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3880 | sConfig->ICFilter); |
3880 | |
3881 | 3881 | /* Configure the TIM Channel 4 in Output Compare */ |
|
3882 | /* Reset the IC3PSC Bits */ |
3882 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
3883 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
3883 | break; |
3884 | 3884 | } |
|
3885 | /* Set the IC3PSC value */ |
3885 | |
3886 | htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
3886 | default: |
3887 | } |
3887 | status = HAL_ERROR; |
3888 | else |
3888 | break; |
3889 | { |
3889 | } |
3890 | /* TI4 Configuration */ |
3890 | |
3891 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3891 | __HAL_UNLOCK(htim); |
3892 | 3892 | ||
3893 | TIM_TI4_SetConfig(htim->Instance, |
3893 | return status; |
3894 | sConfig->ICPolarity, |
3894 | } |
3895 | sConfig->ICSelection, |
3895 | |
3896 | sConfig->ICFilter); |
3896 | /** |
3897 | 3897 | * @brief Initializes the TIM Input Capture Channels according to the specified |
|
3898 | /* Reset the IC4PSC Bits */ |
3898 | * parameters in the TIM_IC_InitTypeDef. |
3899 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
3899 | * @param htim TIM IC handle |
3900 | 3900 | * @param sConfig TIM Input Capture configuration structure |
|
3901 | /* Set the IC4PSC value */ |
3901 | * @param Channel TIM Channel to configure |
3902 | htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
3902 | * This parameter can be one of the following values: |
3903 | } |
3903 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3904 | 3904 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
3905 | __HAL_UNLOCK(htim); |
3905 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3906 | 3906 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
3907 | return HAL_OK; |
3907 | * @retval HAL status |
3908 | } |
3908 | */ |
3909 | 3909 | HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
|
3910 | /** |
3910 | { |
3911 | * @brief Initializes the TIM PWM channels according to the specified |
3911 | HAL_StatusTypeDef status = HAL_OK; |
3912 | * parameters in the TIM_OC_InitTypeDef. |
3912 | |
3913 | * @param htim TIM PWM handle |
3913 | /* Check the parameters */ |
3914 | * @param sConfig TIM PWM configuration structure |
3914 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3915 | * @param Channel TIM Channels to be configured |
3915 | assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
3916 | * This parameter can be one of the following values: |
3916 | assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
3917 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3917 | assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
3918 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3918 | assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
3919 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3919 | |
3920 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3920 | /* Process Locked */ |
3921 | * @retval HAL status |
3921 | __HAL_LOCK(htim); |
3922 | */ |
3922 | |
3923 | HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
3923 | if (Channel == TIM_CHANNEL_1) |
3924 | TIM_OC_InitTypeDef *sConfig, |
3924 | { |
3925 | uint32_t Channel) |
3925 | /* TI1 Configuration */ |
3926 | { |
3926 | TIM_TI1_SetConfig(htim->Instance, |
3927 | /* Check the parameters */ |
3927 | sConfig->ICPolarity, |
3928 | assert_param(IS_TIM_CHANNELS(Channel)); |
3928 | sConfig->ICSelection, |
3929 | assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
3929 | sConfig->ICFilter); |
3930 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
3930 | |
3931 | assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
3931 | /* Reset the IC1PSC Bits */ |
3932 | 3932 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
|
3933 | /* Process Locked */ |
3933 | |
3934 | __HAL_LOCK(htim); |
3934 | /* Set the IC1PSC value */ |
3935 | 3935 | htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
|
3936 | switch (Channel) |
3936 | } |
3937 | { |
3937 | else if (Channel == TIM_CHANNEL_2) |
3938 | case TIM_CHANNEL_1: |
3938 | { |
3939 | { |
3939 | /* TI2 Configuration */ |
3940 | /* Check the parameters */ |
3940 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3941 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3941 | |
3942 | 3942 | TIM_TI2_SetConfig(htim->Instance, |
|
3943 | /* Configure the Channel 1 in PWM mode */ |
3943 | sConfig->ICPolarity, |
3944 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
3944 | sConfig->ICSelection, |
3945 | 3945 | sConfig->ICFilter); |
|
3946 | /* Set the Preload enable bit for channel1 */ |
3946 | |
3947 | htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
3947 | /* Reset the IC2PSC Bits */ |
3948 | 3948 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
|
3949 | /* Configure the Output Fast mode */ |
3949 | |
3950 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
3950 | /* Set the IC2PSC value */ |
3951 | htim->Instance->CCMR1 |= sConfig->OCFastMode; |
3951 | htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
3952 | break; |
3952 | } |
3953 | } |
3953 | else if (Channel == TIM_CHANNEL_3) |
3954 | 3954 | { |
|
3955 | case TIM_CHANNEL_2: |
3955 | /* TI3 Configuration */ |
3956 | { |
3956 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3957 | /* Check the parameters */ |
3957 | |
3958 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3958 | TIM_TI3_SetConfig(htim->Instance, |
3959 | 3959 | sConfig->ICPolarity, |
|
3960 | /* Configure the Channel 2 in PWM mode */ |
3960 | sConfig->ICSelection, |
3961 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
3961 | sConfig->ICFilter); |
3962 | 3962 | ||
3963 | /* Set the Preload enable bit for channel2 */ |
3963 | /* Reset the IC3PSC Bits */ |
3964 | htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
3964 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
3965 | 3965 | ||
3966 | /* Configure the Output Fast mode */ |
3966 | /* Set the IC3PSC value */ |
3967 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
3967 | htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
3968 | htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
3968 | } |
3969 | break; |
3969 | else if (Channel == TIM_CHANNEL_4) |
3970 | } |
3970 | { |
3971 | 3971 | /* TI4 Configuration */ |
|
3972 | case TIM_CHANNEL_3: |
3972 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3973 | { |
3973 | |
3974 | /* Check the parameters */ |
3974 | TIM_TI4_SetConfig(htim->Instance, |
3975 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3975 | sConfig->ICPolarity, |
3976 | 3976 | sConfig->ICSelection, |
|
3977 | /* Configure the Channel 3 in PWM mode */ |
3977 | sConfig->ICFilter); |
3978 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
3978 | |
3979 | 3979 | /* Reset the IC4PSC Bits */ |
|
3980 | /* Set the Preload enable bit for channel3 */ |
3980 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
3981 | htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
3981 | |
3982 | 3982 | /* Set the IC4PSC value */ |
|
3983 | /* Configure the Output Fast mode */ |
3983 | htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
3984 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
3984 | } |
3985 | htim->Instance->CCMR2 |= sConfig->OCFastMode; |
3985 | else |
3986 | break; |
3986 | { |
3987 | } |
3987 | status = HAL_ERROR; |
3988 | 3988 | } |
|
3989 | case TIM_CHANNEL_4: |
3989 | |
3990 | { |
3990 | __HAL_UNLOCK(htim); |
3991 | /* Check the parameters */ |
3991 | |
3992 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3992 | return status; |
3993 | 3993 | } |
|
3994 | /* Configure the Channel 4 in PWM mode */ |
3994 | |
3995 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
3995 | /** |
3996 | 3996 | * @brief Initializes the TIM PWM channels according to the specified |
|
3997 | /* Set the Preload enable bit for channel4 */ |
3997 | * parameters in the TIM_OC_InitTypeDef. |
3998 | htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
3998 | * @param htim TIM PWM handle |
3999 | 3999 | * @param sConfig TIM PWM configuration structure |
|
4000 | /* Configure the Output Fast mode */ |
4000 | * @param Channel TIM Channels to be configured |
4001 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
4001 | * This parameter can be one of the following values: |
4002 | htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
4002 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4003 | break; |
4003 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4004 | } |
4004 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
4005 | 4005 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
4006 | default: |
4006 | * @retval HAL status |
4007 | break; |
4007 | */ |
4008 | } |
4008 | HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
4009 | 4009 | const TIM_OC_InitTypeDef *sConfig, |
|
4010 | __HAL_UNLOCK(htim); |
4010 | uint32_t Channel) |
4011 | 4011 | { |
|
4012 | return HAL_OK; |
4012 | HAL_StatusTypeDef status = HAL_OK; |
4013 | } |
4013 | |
4014 | 4014 | /* Check the parameters */ |
|
4015 | /** |
4015 | assert_param(IS_TIM_CHANNELS(Channel)); |
4016 | * @brief Initializes the TIM One Pulse Channels according to the specified |
4016 | assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
4017 | * parameters in the TIM_OnePulse_InitTypeDef. |
4017 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
4018 | * @param htim TIM One Pulse handle |
4018 | assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
4019 | * @param sConfig TIM One Pulse configuration structure |
4019 | |
4020 | * @param OutputChannel TIM output channel to configure |
4020 | /* Process Locked */ |
4021 | * This parameter can be one of the following values: |
4021 | __HAL_LOCK(htim); |
4022 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4022 | |
4023 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4023 | switch (Channel) |
4024 | * @param InputChannel TIM input Channel to configure |
4024 | { |
4025 | * This parameter can be one of the following values: |
4025 | case TIM_CHANNEL_1: |
4026 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4026 | { |
4027 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4027 | /* Check the parameters */ |
4028 | * @note To output a waveform with a minimum delay user can enable the fast |
4028 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4029 | * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
4029 | |
4030 | * output is forced in response to the edge detection on TIx input, |
4030 | /* Configure the Channel 1 in PWM mode */ |
4031 | * without taking in account the comparison. |
4031 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
4032 | * @retval HAL status |
4032 | |
4033 | */ |
4033 | /* Set the Preload enable bit for channel1 */ |
4034 | HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
4034 | htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
4035 | uint32_t OutputChannel, uint32_t InputChannel) |
4035 | |
4036 | { |
4036 | /* Configure the Output Fast mode */ |
4037 | TIM_OC_InitTypeDef temp1; |
4037 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
4038 | 4038 | htim->Instance->CCMR1 |= sConfig->OCFastMode; |
|
4039 | /* Check the parameters */ |
4039 | break; |
4040 | assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
4040 | } |
4041 | assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
4041 | |
4042 | 4042 | case TIM_CHANNEL_2: |
|
4043 | if (OutputChannel != InputChannel) |
4043 | { |
4044 | { |
4044 | /* Check the parameters */ |
4045 | /* Process Locked */ |
4045 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4046 | __HAL_LOCK(htim); |
4046 | |
4047 | 4047 | /* Configure the Channel 2 in PWM mode */ |
|
4048 | htim->State = HAL_TIM_STATE_BUSY; |
4048 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
4049 | 4049 | ||
4050 | /* Extract the Output compare configuration from sConfig structure */ |
4050 | /* Set the Preload enable bit for channel2 */ |
4051 | temp1.OCMode = sConfig->OCMode; |
4051 | htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
4052 | temp1.Pulse = sConfig->Pulse; |
4052 | |
4053 | temp1.OCPolarity = sConfig->OCPolarity; |
4053 | /* Configure the Output Fast mode */ |
4054 | 4054 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
|
4055 | switch (OutputChannel) |
4055 | htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
4056 | { |
4056 | break; |
4057 | case TIM_CHANNEL_1: |
4057 | } |
4058 | { |
4058 | |
4059 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4059 | case TIM_CHANNEL_3: |
4060 | 4060 | { |
|
4061 | TIM_OC1_SetConfig(htim->Instance, &temp1); |
4061 | /* Check the parameters */ |
4062 | break; |
4062 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
4063 | } |
4063 | |
4064 | case TIM_CHANNEL_2: |
4064 | /* Configure the Channel 3 in PWM mode */ |
4065 | { |
4065 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
4066 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4066 | |
4067 | 4067 | /* Set the Preload enable bit for channel3 */ |
|
4068 | TIM_OC2_SetConfig(htim->Instance, &temp1); |
4068 | htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
4069 | break; |
4069 | |
4070 | } |
4070 | /* Configure the Output Fast mode */ |
4071 | default: |
4071 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
4072 | break; |
4072 | htim->Instance->CCMR2 |= sConfig->OCFastMode; |
4073 | } |
4073 | break; |
4074 | 4074 | } |
|
4075 | switch (InputChannel) |
4075 | |
4076 | { |
4076 | case TIM_CHANNEL_4: |
4077 | case TIM_CHANNEL_1: |
4077 | { |
4078 | { |
4078 | /* Check the parameters */ |
4079 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4079 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
4080 | 4080 | ||
4081 | TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
4081 | /* Configure the Channel 4 in PWM mode */ |
4082 | sConfig->ICSelection, sConfig->ICFilter); |
4082 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
4083 | 4083 | ||
4084 | /* Reset the IC1PSC Bits */ |
4084 | /* Set the Preload enable bit for channel4 */ |
4085 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
4085 | htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
4086 | 4086 | ||
4087 | /* Select the Trigger source */ |
4087 | /* Configure the Output Fast mode */ |
4088 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4088 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
4089 | htim->Instance->SMCR |= TIM_TS_TI1FP1; |
4089 | htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
4090 | 4090 | break; |
|
4091 | /* Select the Slave Mode */ |
4091 | } |
4092 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4092 | |
4093 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4093 | default: |
4094 | break; |
4094 | status = HAL_ERROR; |
4095 | } |
4095 | break; |
4096 | case TIM_CHANNEL_2: |
4096 | } |
4097 | { |
4097 | |
4098 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4098 | __HAL_UNLOCK(htim); |
4099 | 4099 | ||
4100 | TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
4100 | return status; |
4101 | sConfig->ICSelection, sConfig->ICFilter); |
4101 | } |
4102 | 4102 | ||
4103 | /* Reset the IC2PSC Bits */ |
4103 | /** |
4104 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
4104 | * @brief Initializes the TIM One Pulse Channels according to the specified |
4105 | 4105 | * parameters in the TIM_OnePulse_InitTypeDef. |
|
4106 | /* Select the Trigger source */ |
4106 | * @param htim TIM One Pulse handle |
4107 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4107 | * @param sConfig TIM One Pulse configuration structure |
4108 | htim->Instance->SMCR |= TIM_TS_TI2FP2; |
4108 | * @param OutputChannel TIM output channel to configure |
4109 | 4109 | * This parameter can be one of the following values: |
|
4110 | /* Select the Slave Mode */ |
4110 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4111 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4111 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4112 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4112 | * @param InputChannel TIM input Channel to configure |
4113 | break; |
4113 | * This parameter can be one of the following values: |
4114 | } |
4114 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4115 | 4115 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
4116 | default: |
4116 | * @note To output a waveform with a minimum delay user can enable the fast |
4117 | break; |
4117 | * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
4118 | } |
4118 | * output is forced in response to the edge detection on TIx input, |
4119 | 4119 | * without taking in account the comparison. |
|
4120 | htim->State = HAL_TIM_STATE_READY; |
4120 | * @retval HAL status |
4121 | 4121 | */ |
|
4122 | __HAL_UNLOCK(htim); |
4122 | HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
4123 | 4123 | uint32_t OutputChannel, uint32_t InputChannel) |
|
4124 | return HAL_OK; |
4124 | { |
4125 | } |
4125 | HAL_StatusTypeDef status = HAL_OK; |
4126 | else |
4126 | TIM_OC_InitTypeDef temp1; |
4127 | { |
4127 | |
4128 | return HAL_ERROR; |
4128 | /* Check the parameters */ |
4129 | } |
4129 | assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
4130 | } |
4130 | assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
4131 | 4131 | ||
4132 | /** |
4132 | if (OutputChannel != InputChannel) |
4133 | * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
4133 | { |
4134 | * @param htim TIM handle |
4134 | /* Process Locked */ |
4135 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4135 | __HAL_LOCK(htim); |
4136 | * This parameter can be one of the following values: |
4136 | |
4137 | * @arg TIM_DMABASE_CR1 |
4137 | htim->State = HAL_TIM_STATE_BUSY; |
4138 | * @arg TIM_DMABASE_CR2 |
4138 | |
4139 | * @arg TIM_DMABASE_SMCR |
4139 | /* Extract the Output compare configuration from sConfig structure */ |
4140 | * @arg TIM_DMABASE_DIER |
4140 | temp1.OCMode = sConfig->OCMode; |
4141 | * @arg TIM_DMABASE_SR |
4141 | temp1.Pulse = sConfig->Pulse; |
4142 | * @arg TIM_DMABASE_EGR |
4142 | temp1.OCPolarity = sConfig->OCPolarity; |
4143 | * @arg TIM_DMABASE_CCMR1 |
4143 | |
4144 | * @arg TIM_DMABASE_CCMR2 |
4144 | switch (OutputChannel) |
4145 | * @arg TIM_DMABASE_CCER |
4145 | { |
4146 | * @arg TIM_DMABASE_CNT |
4146 | case TIM_CHANNEL_1: |
4147 | * @arg TIM_DMABASE_PSC |
4147 | { |
4148 | * @arg TIM_DMABASE_ARR |
4148 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4149 | * @arg TIM_DMABASE_CCR1 |
4149 | |
4150 | * @arg TIM_DMABASE_CCR2 |
4150 | TIM_OC1_SetConfig(htim->Instance, &temp1); |
4151 | * @arg TIM_DMABASE_CCR3 |
4151 | break; |
4152 | * @arg TIM_DMABASE_CCR4 |
4152 | } |
4153 | * @arg TIM_DMABASE_OR |
4153 | |
4154 | * @param BurstRequestSrc TIM DMA Request sources |
4154 | case TIM_CHANNEL_2: |
4155 | * This parameter can be one of the following values: |
4155 | { |
4156 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4156 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4157 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4157 | |
4158 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4158 | TIM_OC2_SetConfig(htim->Instance, &temp1); |
4159 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4159 | break; |
4160 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4160 | } |
4161 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4161 | |
4162 | * @param BurstBuffer The Buffer address. |
4162 | default: |
4163 | * @param BurstLength DMA Burst length. This parameter can be one value |
4163 | status = HAL_ERROR; |
4164 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4164 | break; |
4165 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4165 | } |
4166 | * @retval HAL status |
4166 | |
4167 | */ |
4167 | if (status == HAL_OK) |
4168 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4168 | { |
4169 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
4169 | switch (InputChannel) |
4170 | { |
4170 | { |
4171 | return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
4171 | case TIM_CHANNEL_1: |
4172 | ((BurstLength) >> 8U) + 1U); |
4172 | { |
4173 | } |
4173 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4174 | 4174 | ||
4175 | /** |
4175 | TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
4176 | * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
4176 | sConfig->ICSelection, sConfig->ICFilter); |
4177 | * @param htim TIM handle |
4177 | |
4178 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4178 | /* Reset the IC1PSC Bits */ |
4179 | * This parameter can be one of the following values: |
4179 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
4180 | * @arg TIM_DMABASE_CR1 |
4180 | |
4181 | * @arg TIM_DMABASE_CR2 |
4181 | /* Select the Trigger source */ |
4182 | * @arg TIM_DMABASE_SMCR |
4182 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4183 | * @arg TIM_DMABASE_DIER |
4183 | htim->Instance->SMCR |= TIM_TS_TI1FP1; |
4184 | * @arg TIM_DMABASE_SR |
4184 | |
4185 | * @arg TIM_DMABASE_EGR |
4185 | /* Select the Slave Mode */ |
4186 | * @arg TIM_DMABASE_CCMR1 |
4186 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4187 | * @arg TIM_DMABASE_CCMR2 |
4187 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4188 | * @arg TIM_DMABASE_CCER |
4188 | break; |
4189 | * @arg TIM_DMABASE_CNT |
4189 | } |
4190 | * @arg TIM_DMABASE_PSC |
4190 | |
4191 | * @arg TIM_DMABASE_ARR |
4191 | case TIM_CHANNEL_2: |
4192 | * @arg TIM_DMABASE_CCR1 |
4192 | { |
4193 | * @arg TIM_DMABASE_CCR2 |
4193 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4194 | * @arg TIM_DMABASE_CCR3 |
4194 | |
4195 | * @arg TIM_DMABASE_CCR4 |
4195 | TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
4196 | * @arg TIM_DMABASE_OR |
4196 | sConfig->ICSelection, sConfig->ICFilter); |
4197 | * @param BurstRequestSrc TIM DMA Request sources |
4197 | |
4198 | * This parameter can be one of the following values: |
4198 | /* Reset the IC2PSC Bits */ |
4199 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4199 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
4200 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4200 | |
4201 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4201 | /* Select the Trigger source */ |
4202 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4202 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4203 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4203 | htim->Instance->SMCR |= TIM_TS_TI2FP2; |
4204 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4204 | |
4205 | * @param BurstBuffer The Buffer address. |
4205 | /* Select the Slave Mode */ |
4206 | * @param BurstLength DMA Burst length. This parameter can be one value |
4206 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4207 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4207 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4208 | * @param DataLength Data length. This parameter can be one value |
4208 | break; |
4209 | * between 1 and 0xFFFF. |
4209 | } |
4210 | * @retval HAL status |
4210 | |
4211 | */ |
4211 | default: |
4212 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4212 | status = HAL_ERROR; |
4213 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
4213 | break; |
4214 | uint32_t BurstLength, uint32_t DataLength) |
4214 | } |
4215 | { |
4215 | } |
4216 | /* Check the parameters */ |
4216 | |
4217 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4217 | htim->State = HAL_TIM_STATE_READY; |
4218 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4218 | |
4219 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4219 | __HAL_UNLOCK(htim); |
4220 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4220 | |
4221 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4221 | return status; |
4222 | 4222 | } |
|
4223 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4223 | else |
4224 | { |
4224 | { |
4225 | return HAL_BUSY; |
4225 | return HAL_ERROR; |
4226 | } |
4226 | } |
4227 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4227 | } |
4228 | { |
4228 | |
4229 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4229 | /** |
4230 | { |
4230 | * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
4231 | return HAL_ERROR; |
4231 | * @param htim TIM handle |
4232 | } |
4232 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4233 | else |
4233 | * This parameter can be one of the following values: |
4234 | { |
4234 | * @arg TIM_DMABASE_CR1 |
4235 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
4235 | * @arg TIM_DMABASE_CR2 |
4236 | } |
4236 | * @arg TIM_DMABASE_SMCR |
4237 | } |
4237 | * @arg TIM_DMABASE_DIER |
4238 | else |
4238 | * @arg TIM_DMABASE_SR |
4239 | { |
4239 | * @arg TIM_DMABASE_EGR |
4240 | /* nothing to do */ |
4240 | * @arg TIM_DMABASE_CCMR1 |
4241 | } |
4241 | * @arg TIM_DMABASE_CCMR2 |
4242 | switch (BurstRequestSrc) |
4242 | * @arg TIM_DMABASE_CCER |
4243 | { |
4243 | * @arg TIM_DMABASE_CNT |
4244 | case TIM_DMA_UPDATE: |
4244 | * @arg TIM_DMABASE_PSC |
4245 | { |
4245 | * @arg TIM_DMABASE_ARR |
4246 | /* Set the DMA Period elapsed callbacks */ |
4246 | * @arg TIM_DMABASE_CCR1 |
4247 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4247 | * @arg TIM_DMABASE_CCR2 |
4248 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4248 | * @arg TIM_DMABASE_CCR3 |
4249 | 4249 | * @arg TIM_DMABASE_CCR4 |
|
4250 | /* Set the DMA error callback */ |
4250 | * @arg TIM_DMABASE_OR |
4251 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4251 | * @param BurstRequestSrc TIM DMA Request sources |
4252 | 4252 | * This parameter can be one of the following values: |
|
4253 | /* Enable the DMA channel */ |
4253 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4254 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
4254 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4255 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4255 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4256 | { |
4256 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4257 | /* Return error status */ |
4257 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4258 | return HAL_ERROR; |
4258 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4259 | } |
4259 | * @param BurstBuffer The Buffer address. |
4260 | break; |
4260 | * @param BurstLength DMA Burst length. This parameter can be one value |
4261 | } |
4261 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4262 | case TIM_DMA_CC1: |
4262 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4263 | { |
4263 | * @retval HAL status |
4264 | /* Set the DMA compare callbacks */ |
4264 | */ |
4265 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4265 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4266 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4266 | uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength) |
4267 | 4267 | { |
|
4268 | /* Set the DMA error callback */ |
4268 | HAL_StatusTypeDef status; |
4269 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
4269 | |
4270 | 4270 | status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
|
4271 | /* Enable the DMA channel */ |
4271 | ((BurstLength) >> 8U) + 1U); |
4272 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
4272 | |
4273 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4273 | |
4274 | { |
4274 | |
4275 | /* Return error status */ |
4275 | return status; |
4276 | return HAL_ERROR; |
4276 | } |
4277 | } |
4277 | |
4278 | break; |
4278 | /** |
4279 | } |
4279 | * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
4280 | case TIM_DMA_CC2: |
4280 | * @param htim TIM handle |
4281 | { |
4281 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4282 | /* Set the DMA compare callbacks */ |
4282 | * This parameter can be one of the following values: |
4283 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4283 | * @arg TIM_DMABASE_CR1 |
4284 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4284 | * @arg TIM_DMABASE_CR2 |
4285 | 4285 | * @arg TIM_DMABASE_SMCR |
|
4286 | /* Set the DMA error callback */ |
4286 | * @arg TIM_DMABASE_DIER |
4287 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4287 | * @arg TIM_DMABASE_SR |
4288 | 4288 | * @arg TIM_DMABASE_EGR |
|
4289 | /* Enable the DMA channel */ |
4289 | * @arg TIM_DMABASE_CCMR1 |
4290 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
4290 | * @arg TIM_DMABASE_CCMR2 |
4291 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4291 | * @arg TIM_DMABASE_CCER |
4292 | { |
4292 | * @arg TIM_DMABASE_CNT |
4293 | /* Return error status */ |
4293 | * @arg TIM_DMABASE_PSC |
4294 | return HAL_ERROR; |
4294 | * @arg TIM_DMABASE_ARR |
4295 | } |
4295 | * @arg TIM_DMABASE_CCR1 |
4296 | break; |
4296 | * @arg TIM_DMABASE_CCR2 |
4297 | } |
4297 | * @arg TIM_DMABASE_CCR3 |
4298 | case TIM_DMA_CC3: |
4298 | * @arg TIM_DMABASE_CCR4 |
4299 | { |
4299 | * @arg TIM_DMABASE_OR |
4300 | /* Set the DMA compare callbacks */ |
4300 | * @param BurstRequestSrc TIM DMA Request sources |
4301 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4301 | * This parameter can be one of the following values: |
4302 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4302 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4303 | 4303 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
4304 | /* Set the DMA error callback */ |
4304 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4305 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4305 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4306 | 4306 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
4307 | /* Enable the DMA channel */ |
4307 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4308 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
4308 | * @param BurstBuffer The Buffer address. |
4309 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4309 | * @param BurstLength DMA Burst length. This parameter can be one value |
4310 | { |
4310 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4311 | /* Return error status */ |
4311 | * @param DataLength Data length. This parameter can be one value |
4312 | return HAL_ERROR; |
4312 | * between 1 and 0xFFFF. |
4313 | } |
4313 | * @retval HAL status |
4314 | break; |
4314 | */ |
4315 | } |
4315 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4316 | case TIM_DMA_CC4: |
4316 | uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, |
4317 | { |
4317 | uint32_t BurstLength, uint32_t DataLength) |
4318 | /* Set the DMA compare callbacks */ |
4318 | { |
4319 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4319 | HAL_StatusTypeDef status = HAL_OK; |
4320 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4320 | |
4321 | 4321 | /* Check the parameters */ |
|
4322 | /* Set the DMA error callback */ |
4322 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4323 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4323 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4324 | 4324 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
4325 | /* Enable the DMA channel */ |
4325 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4326 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
4326 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4327 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4327 | |
4328 | { |
4328 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4329 | /* Return error status */ |
4329 | { |
4330 | return HAL_ERROR; |
4330 | return HAL_BUSY; |
4331 | } |
4331 | } |
4332 | break; |
4332 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4333 | } |
4333 | { |
4334 | case TIM_DMA_TRIGGER: |
4334 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4335 | { |
4335 | { |
4336 | /* Set the DMA trigger callbacks */ |
4336 | return HAL_ERROR; |
4337 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4337 | } |
4338 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4338 | else |
4339 | 4339 | { |
|
4340 | /* Set the DMA error callback */ |
4340 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
4341 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4341 | } |
4342 | 4342 | } |
|
4343 | /* Enable the DMA channel */ |
4343 | else |
4344 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
4344 | { |
4345 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4345 | /* nothing to do */ |
4346 | { |
4346 | } |
4347 | /* Return error status */ |
4347 | |
4348 | return HAL_ERROR; |
4348 | switch (BurstRequestSrc) |
4349 | } |
4349 | { |
4350 | break; |
4350 | case TIM_DMA_UPDATE: |
4351 | } |
4351 | { |
4352 | default: |
4352 | /* Set the DMA Period elapsed callbacks */ |
4353 | break; |
4353 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4354 | } |
4354 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4355 | 4355 | ||
4356 | /* Configure the DMA Burst Mode */ |
4356 | /* Set the DMA error callback */ |
4357 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
4357 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4358 | /* Enable the TIM DMA Request */ |
4358 | |
4359 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
4359 | /* Enable the DMA channel */ |
4360 | 4360 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
|
4361 | /* Return function status */ |
4361 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4362 | return HAL_OK; |
4362 | { |
4363 | } |
4363 | /* Return error status */ |
4364 | 4364 | return HAL_ERROR; |
|
4365 | /** |
4365 | } |
4366 | * @brief Stops the TIM DMA Burst mode |
4366 | break; |
4367 | * @param htim TIM handle |
4367 | } |
4368 | * @param BurstRequestSrc TIM DMA Request sources to disable |
4368 | case TIM_DMA_CC1: |
4369 | * @retval HAL status |
4369 | { |
4370 | */ |
4370 | /* Set the DMA compare callbacks */ |
4371 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4371 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4372 | { |
4372 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4373 | /* Check the parameters */ |
4373 | |
4374 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4374 | /* Set the DMA error callback */ |
4375 | 4375 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
4376 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4376 | |
4377 | switch (BurstRequestSrc) |
4377 | /* Enable the DMA channel */ |
4378 | { |
4378 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
4379 | case TIM_DMA_UPDATE: |
4379 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4380 | { |
4380 | { |
4381 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4381 | /* Return error status */ |
4382 | break; |
4382 | return HAL_ERROR; |
4383 | } |
4383 | } |
4384 | case TIM_DMA_CC1: |
4384 | break; |
4385 | { |
4385 | } |
4386 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4386 | case TIM_DMA_CC2: |
4387 | break; |
4387 | { |
4388 | } |
4388 | /* Set the DMA compare callbacks */ |
4389 | case TIM_DMA_CC2: |
4389 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4390 | { |
4390 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4391 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4391 | |
4392 | break; |
4392 | /* Set the DMA error callback */ |
4393 | } |
4393 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4394 | case TIM_DMA_CC3: |
4394 | |
4395 | { |
4395 | /* Enable the DMA channel */ |
4396 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4396 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
4397 | break; |
4397 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4398 | } |
4398 | { |
4399 | case TIM_DMA_CC4: |
4399 | /* Return error status */ |
4400 | { |
4400 | return HAL_ERROR; |
4401 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
4401 | } |
4402 | break; |
4402 | break; |
4403 | } |
4403 | } |
4404 | case TIM_DMA_TRIGGER: |
4404 | case TIM_DMA_CC3: |
4405 | { |
4405 | { |
4406 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4406 | /* Set the DMA compare callbacks */ |
4407 | break; |
4407 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4408 | } |
4408 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4409 | default: |
4409 | |
4410 | break; |
4410 | /* Set the DMA error callback */ |
4411 | } |
4411 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4412 | 4412 | ||
4413 | /* Disable the TIM Update DMA request */ |
4413 | /* Enable the DMA channel */ |
4414 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4414 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
4415 | 4415 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
4416 | /* Change the DMA burst operation state */ |
4416 | { |
4417 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4417 | /* Return error status */ |
4418 | 4418 | return HAL_ERROR; |
|
4419 | /* Return function status */ |
4419 | } |
4420 | return HAL_OK; |
4420 | break; |
4421 | } |
4421 | } |
4422 | 4422 | case TIM_DMA_CC4: |
|
4423 | /** |
4423 | { |
4424 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
4424 | /* Set the DMA compare callbacks */ |
4425 | * @param htim TIM handle |
4425 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4426 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4426 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4427 | * This parameter can be one of the following values: |
4427 | |
4428 | * @arg TIM_DMABASE_CR1 |
4428 | /* Set the DMA error callback */ |
4429 | * @arg TIM_DMABASE_CR2 |
4429 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4430 | * @arg TIM_DMABASE_SMCR |
4430 | |
4431 | * @arg TIM_DMABASE_DIER |
4431 | /* Enable the DMA channel */ |
4432 | * @arg TIM_DMABASE_SR |
4432 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
4433 | * @arg TIM_DMABASE_EGR |
4433 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4434 | * @arg TIM_DMABASE_CCMR1 |
4434 | { |
4435 | * @arg TIM_DMABASE_CCMR2 |
4435 | /* Return error status */ |
4436 | * @arg TIM_DMABASE_CCER |
4436 | return HAL_ERROR; |
4437 | * @arg TIM_DMABASE_CNT |
4437 | } |
4438 | * @arg TIM_DMABASE_PSC |
4438 | break; |
4439 | * @arg TIM_DMABASE_ARR |
4439 | } |
4440 | * @arg TIM_DMABASE_CCR1 |
4440 | case TIM_DMA_TRIGGER: |
4441 | * @arg TIM_DMABASE_CCR2 |
4441 | { |
4442 | * @arg TIM_DMABASE_CCR3 |
4442 | /* Set the DMA trigger callbacks */ |
4443 | * @arg TIM_DMABASE_CCR4 |
4443 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4444 | * @arg TIM_DMABASE_OR |
4444 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4445 | * @param BurstRequestSrc TIM DMA Request sources |
4445 | |
4446 | * This parameter can be one of the following values: |
4446 | /* Set the DMA error callback */ |
4447 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4447 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4448 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4448 | |
4449 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4449 | /* Enable the DMA channel */ |
4450 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4450 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
4451 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4451 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4452 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4452 | { |
4453 | * @param BurstBuffer The Buffer address. |
4453 | /* Return error status */ |
4454 | * @param BurstLength DMA Burst length. This parameter can be one value |
4454 | return HAL_ERROR; |
4455 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4455 | } |
4456 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4456 | break; |
4457 | * @retval HAL status |
4457 | } |
4458 | */ |
4458 | default: |
4459 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4459 | status = HAL_ERROR; |
4460 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
4460 | break; |
4461 | { |
4461 | } |
4462 | return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
4462 | |
4463 | ((BurstLength) >> 8U) + 1U); |
4463 | if (status == HAL_OK) |
4464 | } |
4464 | { |
4465 | 4465 | /* Configure the DMA Burst Mode */ |
|
4466 | /** |
4466 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
4467 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
4467 | /* Enable the TIM DMA Request */ |
4468 | * @param htim TIM handle |
4468 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
4469 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4469 | } |
4470 | * This parameter can be one of the following values: |
4470 | |
4471 | * @arg TIM_DMABASE_CR1 |
4471 | /* Return function status */ |
4472 | * @arg TIM_DMABASE_CR2 |
4472 | return status; |
4473 | * @arg TIM_DMABASE_SMCR |
4473 | } |
4474 | * @arg TIM_DMABASE_DIER |
4474 | |
4475 | * @arg TIM_DMABASE_SR |
4475 | /** |
4476 | * @arg TIM_DMABASE_EGR |
4476 | * @brief Stops the TIM DMA Burst mode |
4477 | * @arg TIM_DMABASE_CCMR1 |
4477 | * @param htim TIM handle |
4478 | * @arg TIM_DMABASE_CCMR2 |
4478 | * @param BurstRequestSrc TIM DMA Request sources to disable |
4479 | * @arg TIM_DMABASE_CCER |
4479 | * @retval HAL status |
4480 | * @arg TIM_DMABASE_CNT |
4480 | */ |
4481 | * @arg TIM_DMABASE_PSC |
4481 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4482 | * @arg TIM_DMABASE_ARR |
4482 | { |
4483 | * @arg TIM_DMABASE_CCR1 |
4483 | HAL_StatusTypeDef status = HAL_OK; |
4484 | * @arg TIM_DMABASE_CCR2 |
4484 | |
4485 | * @arg TIM_DMABASE_CCR3 |
4485 | /* Check the parameters */ |
4486 | * @arg TIM_DMABASE_CCR4 |
4486 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4487 | * @arg TIM_DMABASE_OR |
4487 | |
4488 | * @param BurstRequestSrc TIM DMA Request sources |
4488 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4489 | * This parameter can be one of the following values: |
4489 | switch (BurstRequestSrc) |
4490 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4490 | { |
4491 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4491 | case TIM_DMA_UPDATE: |
4492 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4492 | { |
4493 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4493 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4494 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4494 | break; |
4495 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4495 | } |
4496 | * @param BurstBuffer The Buffer address. |
4496 | case TIM_DMA_CC1: |
4497 | * @param BurstLength DMA Burst length. This parameter can be one value |
4497 | { |
4498 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4498 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4499 | * @param DataLength Data length. This parameter can be one value |
4499 | break; |
4500 | * between 1 and 0xFFFF. |
4500 | } |
4501 | * @retval HAL status |
4501 | case TIM_DMA_CC2: |
4502 | */ |
4502 | { |
4503 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4503 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4504 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
4504 | break; |
4505 | uint32_t BurstLength, uint32_t DataLength) |
4505 | } |
4506 | { |
4506 | case TIM_DMA_CC3: |
4507 | /* Check the parameters */ |
4507 | { |
4508 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4508 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4509 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4509 | break; |
4510 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4510 | } |
4511 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4511 | case TIM_DMA_CC4: |
4512 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4512 | { |
4513 | 4513 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
4514 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4514 | break; |
4515 | { |
4515 | } |
4516 | return HAL_BUSY; |
4516 | case TIM_DMA_TRIGGER: |
4517 | } |
4517 | { |
4518 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4518 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4519 | { |
4519 | break; |
4520 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4520 | } |
4521 | { |
4521 | default: |
4522 | return HAL_ERROR; |
4522 | status = HAL_ERROR; |
4523 | } |
4523 | break; |
4524 | else |
4524 | } |
4525 | { |
4525 | |
4526 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
4526 | if (status == HAL_OK) |
4527 | } |
4527 | { |
4528 | } |
4528 | /* Disable the TIM Update DMA request */ |
4529 | else |
4529 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4530 | { |
4530 | |
4531 | /* nothing to do */ |
4531 | /* Change the DMA burst operation state */ |
4532 | } |
4532 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4533 | switch (BurstRequestSrc) |
4533 | } |
4534 | { |
4534 | |
4535 | case TIM_DMA_UPDATE: |
4535 | /* Return function status */ |
4536 | { |
4536 | return status; |
4537 | /* Set the DMA Period elapsed callbacks */ |
4537 | } |
4538 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4538 | |
4539 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4539 | /** |
4540 | 4540 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
|
4541 | /* Set the DMA error callback */ |
4541 | * @param htim TIM handle |
4542 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4542 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4543 | 4543 | * This parameter can be one of the following values: |
|
4544 | /* Enable the DMA channel */ |
4544 | * @arg TIM_DMABASE_CR1 |
4545 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4545 | * @arg TIM_DMABASE_CR2 |
4546 | DataLength) != HAL_OK) |
4546 | * @arg TIM_DMABASE_SMCR |
4547 | { |
4547 | * @arg TIM_DMABASE_DIER |
4548 | /* Return error status */ |
4548 | * @arg TIM_DMABASE_SR |
4549 | return HAL_ERROR; |
4549 | * @arg TIM_DMABASE_EGR |
4550 | } |
4550 | * @arg TIM_DMABASE_CCMR1 |
4551 | break; |
4551 | * @arg TIM_DMABASE_CCMR2 |
4552 | } |
4552 | * @arg TIM_DMABASE_CCER |
4553 | case TIM_DMA_CC1: |
4553 | * @arg TIM_DMABASE_CNT |
4554 | { |
4554 | * @arg TIM_DMABASE_PSC |
4555 | /* Set the DMA capture callbacks */ |
4555 | * @arg TIM_DMABASE_ARR |
4556 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
4556 | * @arg TIM_DMABASE_CCR1 |
4557 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4557 | * @arg TIM_DMABASE_CCR2 |
4558 | 4558 | * @arg TIM_DMABASE_CCR3 |
|
4559 | /* Set the DMA error callback */ |
4559 | * @arg TIM_DMABASE_CCR4 |
4560 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
4560 | * @arg TIM_DMABASE_OR |
4561 | 4561 | * @param BurstRequestSrc TIM DMA Request sources |
|
4562 | /* Enable the DMA channel */ |
4562 | * This parameter can be one of the following values: |
4563 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4563 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4564 | DataLength) != HAL_OK) |
4564 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4565 | { |
4565 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4566 | /* Return error status */ |
4566 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4567 | return HAL_ERROR; |
4567 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4568 | } |
4568 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4569 | break; |
4569 | * @param BurstBuffer The Buffer address. |
4570 | } |
4570 | * @param BurstLength DMA Burst length. This parameter can be one value |
4571 | case TIM_DMA_CC2: |
4571 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4572 | { |
4572 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4573 | /* Set the DMA capture callbacks */ |
4573 | * @retval HAL status |
4574 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
4574 | */ |
4575 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4575 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4576 | 4576 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
|
4577 | /* Set the DMA error callback */ |
4577 | { |
4578 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4578 | HAL_StatusTypeDef status; |
4579 | 4579 | ||
4580 | /* Enable the DMA channel */ |
4580 | status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
4581 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4581 | ((BurstLength) >> 8U) + 1U); |
4582 | DataLength) != HAL_OK) |
4582 | |
4583 | { |
4583 | |
4584 | /* Return error status */ |
4584 | return status; |
4585 | return HAL_ERROR; |
4585 | } |
4586 | } |
4586 | |
4587 | break; |
4587 | /** |
4588 | } |
4588 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
4589 | case TIM_DMA_CC3: |
4589 | * @param htim TIM handle |
4590 | { |
4590 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4591 | /* Set the DMA capture callbacks */ |
4591 | * This parameter can be one of the following values: |
4592 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
4592 | * @arg TIM_DMABASE_CR1 |
4593 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4593 | * @arg TIM_DMABASE_CR2 |
4594 | 4594 | * @arg TIM_DMABASE_SMCR |
|
4595 | /* Set the DMA error callback */ |
4595 | * @arg TIM_DMABASE_DIER |
4596 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4596 | * @arg TIM_DMABASE_SR |
4597 | 4597 | * @arg TIM_DMABASE_EGR |
|
4598 | /* Enable the DMA channel */ |
4598 | * @arg TIM_DMABASE_CCMR1 |
4599 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4599 | * @arg TIM_DMABASE_CCMR2 |
4600 | DataLength) != HAL_OK) |
4600 | * @arg TIM_DMABASE_CCER |
4601 | { |
4601 | * @arg TIM_DMABASE_CNT |
4602 | /* Return error status */ |
4602 | * @arg TIM_DMABASE_PSC |
4603 | return HAL_ERROR; |
4603 | * @arg TIM_DMABASE_ARR |
4604 | } |
4604 | * @arg TIM_DMABASE_CCR1 |
4605 | break; |
4605 | * @arg TIM_DMABASE_CCR2 |
4606 | } |
4606 | * @arg TIM_DMABASE_CCR3 |
4607 | case TIM_DMA_CC4: |
4607 | * @arg TIM_DMABASE_CCR4 |
4608 | { |
4608 | * @arg TIM_DMABASE_OR |
4609 | /* Set the DMA capture callbacks */ |
4609 | * @param BurstRequestSrc TIM DMA Request sources |
4610 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
4610 | * This parameter can be one of the following values: |
4611 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4611 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4612 | 4612 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
4613 | /* Set the DMA error callback */ |
4613 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4614 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4614 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4615 | 4615 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
4616 | /* Enable the DMA channel */ |
4616 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4617 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4617 | * @param BurstBuffer The Buffer address. |
4618 | DataLength) != HAL_OK) |
4618 | * @param BurstLength DMA Burst length. This parameter can be one value |
4619 | { |
4619 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4620 | /* Return error status */ |
4620 | * @param DataLength Data length. This parameter can be one value |
4621 | return HAL_ERROR; |
4621 | * between 1 and 0xFFFF. |
4622 | } |
4622 | * @retval HAL status |
4623 | break; |
4623 | */ |
4624 | } |
4624 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4625 | case TIM_DMA_TRIGGER: |
4625 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
4626 | { |
4626 | uint32_t BurstLength, uint32_t DataLength) |
4627 | /* Set the DMA trigger callbacks */ |
4627 | { |
4628 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4628 | HAL_StatusTypeDef status = HAL_OK; |
4629 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4629 | |
4630 | 4630 | /* Check the parameters */ |
|
4631 | /* Set the DMA error callback */ |
4631 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4632 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4632 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4633 | 4633 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
4634 | /* Enable the DMA channel */ |
4634 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4635 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4635 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4636 | DataLength) != HAL_OK) |
4636 | |
4637 | { |
4637 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4638 | /* Return error status */ |
4638 | { |
4639 | return HAL_ERROR; |
4639 | return HAL_BUSY; |
4640 | } |
4640 | } |
4641 | break; |
4641 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4642 | } |
4642 | { |
4643 | default: |
4643 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4644 | break; |
4644 | { |
4645 | } |
4645 | return HAL_ERROR; |
4646 | 4646 | } |
|
4647 | /* Configure the DMA Burst Mode */ |
4647 | else |
4648 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
4648 | { |
4649 | 4649 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
|
4650 | /* Enable the TIM DMA Request */ |
4650 | } |
4651 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
4651 | } |
4652 | 4652 | else |
|
4653 | /* Return function status */ |
4653 | { |
4654 | return HAL_OK; |
4654 | /* nothing to do */ |
4655 | } |
4655 | } |
4656 | 4656 | switch (BurstRequestSrc) |
|
4657 | /** |
4657 | { |
4658 | * @brief Stop the DMA burst reading |
4658 | case TIM_DMA_UPDATE: |
4659 | * @param htim TIM handle |
4659 | { |
4660 | * @param BurstRequestSrc TIM DMA Request sources to disable. |
4660 | /* Set the DMA Period elapsed callbacks */ |
4661 | * @retval HAL status |
4661 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4662 | */ |
4662 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4663 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4663 | |
4664 | { |
4664 | /* Set the DMA error callback */ |
4665 | /* Check the parameters */ |
4665 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4666 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4666 | |
4667 | 4667 | /* Enable the DMA channel */ |
|
4668 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4668 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4669 | switch (BurstRequestSrc) |
4669 | DataLength) != HAL_OK) |
4670 | { |
4670 | { |
4671 | case TIM_DMA_UPDATE: |
4671 | /* Return error status */ |
4672 | { |
4672 | return HAL_ERROR; |
4673 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4673 | } |
4674 | break; |
4674 | break; |
4675 | } |
4675 | } |
4676 | case TIM_DMA_CC1: |
4676 | case TIM_DMA_CC1: |
4677 | { |
4677 | { |
4678 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4678 | /* Set the DMA capture callbacks */ |
4679 | break; |
4679 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
4680 | } |
4680 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4681 | case TIM_DMA_CC2: |
4681 | |
4682 | { |
4682 | /* Set the DMA error callback */ |
4683 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4683 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
4684 | break; |
4684 | |
4685 | } |
4685 | /* Enable the DMA channel */ |
4686 | case TIM_DMA_CC3: |
4686 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4687 | { |
4687 | DataLength) != HAL_OK) |
4688 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4688 | { |
4689 | break; |
4689 | /* Return error status */ |
4690 | } |
4690 | return HAL_ERROR; |
4691 | case TIM_DMA_CC4: |
4691 | } |
4692 | { |
4692 | break; |
4693 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
4693 | } |
4694 | break; |
4694 | case TIM_DMA_CC2: |
4695 | } |
4695 | { |
4696 | case TIM_DMA_TRIGGER: |
4696 | /* Set the DMA capture callbacks */ |
4697 | { |
4697 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
4698 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4698 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4699 | break; |
4699 | |
4700 | } |
4700 | /* Set the DMA error callback */ |
4701 | default: |
4701 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4702 | break; |
4702 | |
4703 | } |
4703 | /* Enable the DMA channel */ |
4704 | 4704 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
4705 | /* Disable the TIM Update DMA request */ |
4705 | DataLength) != HAL_OK) |
4706 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4706 | { |
4707 | 4707 | /* Return error status */ |
|
4708 | /* Change the DMA burst operation state */ |
4708 | return HAL_ERROR; |
4709 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4709 | } |
4710 | 4710 | break; |
|
4711 | /* Return function status */ |
4711 | } |
4712 | return HAL_OK; |
4712 | case TIM_DMA_CC3: |
4713 | } |
4713 | { |
4714 | 4714 | /* Set the DMA capture callbacks */ |
|
4715 | /** |
4715 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
4716 | * @brief Generate a software event |
4716 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4717 | * @param htim TIM handle |
4717 | |
4718 | * @param EventSource specifies the event source. |
4718 | /* Set the DMA error callback */ |
4719 | * This parameter can be one of the following values: |
4719 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4720 | * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
4720 | |
4721 | * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
4721 | /* Enable the DMA channel */ |
4722 | * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
4722 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4723 | * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
4723 | DataLength) != HAL_OK) |
4724 | * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
4724 | { |
4725 | * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
4725 | /* Return error status */ |
4726 | * @note Basic timers can only generate an update event. |
4726 | return HAL_ERROR; |
4727 | * @retval HAL status |
4727 | } |
4728 | */ |
4728 | break; |
4729 | 4729 | } |
|
4730 | HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
4730 | case TIM_DMA_CC4: |
4731 | { |
4731 | { |
4732 | /* Check the parameters */ |
4732 | /* Set the DMA capture callbacks */ |
4733 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
4733 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
4734 | assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
4734 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4735 | 4735 | ||
4736 | /* Process Locked */ |
4736 | /* Set the DMA error callback */ |
4737 | __HAL_LOCK(htim); |
4737 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4738 | 4738 | ||
4739 | /* Change the TIM state */ |
4739 | /* Enable the DMA channel */ |
4740 | htim->State = HAL_TIM_STATE_BUSY; |
4740 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4741 | 4741 | DataLength) != HAL_OK) |
|
4742 | /* Set the event sources */ |
4742 | { |
4743 | htim->Instance->EGR = EventSource; |
4743 | /* Return error status */ |
4744 | 4744 | return HAL_ERROR; |
|
4745 | /* Change the TIM state */ |
4745 | } |
4746 | htim->State = HAL_TIM_STATE_READY; |
4746 | break; |
4747 | 4747 | } |
|
4748 | __HAL_UNLOCK(htim); |
4748 | case TIM_DMA_TRIGGER: |
4749 | 4749 | { |
|
4750 | /* Return function status */ |
4750 | /* Set the DMA trigger callbacks */ |
4751 | return HAL_OK; |
4751 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4752 | } |
4752 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4753 | 4753 | ||
4754 | /** |
4754 | /* Set the DMA error callback */ |
4755 | * @brief Configures the OCRef clear feature |
4755 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4756 | * @param htim TIM handle |
4756 | |
4757 | * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
4757 | /* Enable the DMA channel */ |
4758 | * contains the OCREF clear feature and parameters for the TIM peripheral. |
4758 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4759 | * @param Channel specifies the TIM Channel |
4759 | DataLength) != HAL_OK) |
4760 | * This parameter can be one of the following values: |
4760 | { |
4761 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
4761 | /* Return error status */ |
4762 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
4762 | return HAL_ERROR; |
4763 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
4763 | } |
4764 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
4764 | break; |
4765 | * @retval HAL status |
4765 | } |
4766 | */ |
4766 | default: |
4767 | HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
4767 | status = HAL_ERROR; |
4768 | TIM_ClearInputConfigTypeDef *sClearInputConfig, |
4768 | break; |
4769 | uint32_t Channel) |
4769 | } |
4770 | { |
4770 | |
4771 | /* Check the parameters */ |
4771 | if (status == HAL_OK) |
4772 | assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
4772 | { |
4773 | assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
4773 | /* Configure the DMA Burst Mode */ |
4774 | 4774 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
|
4775 | /* Process Locked */ |
4775 | |
4776 | __HAL_LOCK(htim); |
4776 | /* Enable the TIM DMA Request */ |
4777 | 4777 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
|
4778 | htim->State = HAL_TIM_STATE_BUSY; |
4778 | } |
4779 | 4779 | ||
4780 | switch (sClearInputConfig->ClearInputSource) |
4780 | /* Return function status */ |
4781 | { |
4781 | return status; |
4782 | case TIM_CLEARINPUTSOURCE_NONE: |
4782 | } |
4783 | { |
4783 | |
4784 | /* Clear the OCREF clear selection bit and the the ETR Bits */ |
4784 | /** |
4785 | CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
4785 | * @brief Stop the DMA burst reading |
4786 | break; |
4786 | * @param htim TIM handle |
4787 | } |
4787 | * @param BurstRequestSrc TIM DMA Request sources to disable. |
4788 | case TIM_CLEARINPUTSOURCE_OCREFCLR: |
4788 | * @retval HAL status |
4789 | { |
4789 | */ |
4790 | /* Clear the OCREF clear selection bit */ |
4790 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4791 | CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4791 | { |
4792 | } |
4792 | HAL_StatusTypeDef status = HAL_OK; |
4793 | break; |
4793 | |
4794 | 4794 | /* Check the parameters */ |
|
4795 | case TIM_CLEARINPUTSOURCE_ETR: |
4795 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4796 | { |
4796 | |
4797 | /* Check the parameters */ |
4797 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4798 | assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
4798 | switch (BurstRequestSrc) |
4799 | assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
4799 | { |
4800 | assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
4800 | case TIM_DMA_UPDATE: |
4801 | 4801 | { |
|
4802 | /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
4802 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4803 | if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
4803 | break; |
4804 | { |
4804 | } |
4805 | htim->State = HAL_TIM_STATE_READY; |
4805 | case TIM_DMA_CC1: |
4806 | __HAL_UNLOCK(htim); |
4806 | { |
4807 | return HAL_ERROR; |
4807 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4808 | } |
4808 | break; |
4809 | 4809 | } |
|
4810 | TIM_ETR_SetConfig(htim->Instance, |
4810 | case TIM_DMA_CC2: |
4811 | sClearInputConfig->ClearInputPrescaler, |
4811 | { |
4812 | sClearInputConfig->ClearInputPolarity, |
4812 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4813 | sClearInputConfig->ClearInputFilter); |
4813 | break; |
4814 | 4814 | } |
|
4815 | /* Set the OCREF clear selection bit */ |
4815 | case TIM_DMA_CC3: |
4816 | SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4816 | { |
4817 | break; |
4817 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4818 | } |
4818 | break; |
4819 | 4819 | } |
|
4820 | default: |
4820 | case TIM_DMA_CC4: |
4821 | break; |
4821 | { |
4822 | } |
4822 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
4823 | 4823 | break; |
|
4824 | switch (Channel) |
4824 | } |
4825 | { |
4825 | case TIM_DMA_TRIGGER: |
4826 | case TIM_CHANNEL_1: |
4826 | { |
4827 | { |
4827 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4828 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4828 | break; |
4829 | { |
4829 | } |
4830 | /* Enable the OCREF clear feature for Channel 1 */ |
4830 | default: |
4831 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
4831 | status = HAL_ERROR; |
4832 | } |
4832 | break; |
4833 | else |
4833 | } |
4834 | { |
4834 | |
4835 | /* Disable the OCREF clear feature for Channel 1 */ |
4835 | if (status == HAL_OK) |
4836 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
4836 | { |
4837 | } |
4837 | /* Disable the TIM Update DMA request */ |
4838 | break; |
4838 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4839 | } |
4839 | |
4840 | case TIM_CHANNEL_2: |
4840 | /* Change the DMA burst operation state */ |
4841 | { |
4841 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4842 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4842 | } |
4843 | { |
4843 | |
4844 | /* Enable the OCREF clear feature for Channel 2 */ |
4844 | /* Return function status */ |
4845 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4845 | return status; |
4846 | } |
4846 | } |
4847 | else |
4847 | |
4848 | { |
4848 | /** |
4849 | /* Disable the OCREF clear feature for Channel 2 */ |
4849 | * @brief Generate a software event |
4850 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4850 | * @param htim TIM handle |
4851 | } |
4851 | * @param EventSource specifies the event source. |
4852 | break; |
4852 | * This parameter can be one of the following values: |
4853 | } |
4853 | * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
4854 | case TIM_CHANNEL_3: |
4854 | * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
4855 | { |
4855 | * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
4856 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4856 | * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
4857 | { |
4857 | * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
4858 | /* Enable the OCREF clear feature for Channel 3 */ |
4858 | * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
4859 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
4859 | * @note Basic timers can only generate an update event. |
4860 | } |
4860 | * @retval HAL status |
4861 | else |
4861 | */ |
4862 | { |
4862 | |
4863 | /* Disable the OCREF clear feature for Channel 3 */ |
4863 | HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
4864 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
4864 | { |
4865 | } |
4865 | /* Check the parameters */ |
4866 | break; |
4866 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
4867 | } |
4867 | assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
4868 | case TIM_CHANNEL_4: |
4868 | |
4869 | { |
4869 | /* Process Locked */ |
4870 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4870 | __HAL_LOCK(htim); |
4871 | { |
4871 | |
4872 | /* Enable the OCREF clear feature for Channel 4 */ |
4872 | /* Change the TIM state */ |
4873 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
4873 | htim->State = HAL_TIM_STATE_BUSY; |
4874 | } |
4874 | |
4875 | else |
4875 | /* Set the event sources */ |
4876 | { |
4876 | htim->Instance->EGR = EventSource; |
4877 | /* Disable the OCREF clear feature for Channel 4 */ |
4877 | |
4878 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
4878 | /* Change the TIM state */ |
4879 | } |
4879 | htim->State = HAL_TIM_STATE_READY; |
4880 | break; |
4880 | |
4881 | } |
4881 | __HAL_UNLOCK(htim); |
4882 | default: |
4882 | |
4883 | break; |
4883 | /* Return function status */ |
4884 | } |
4884 | return HAL_OK; |
4885 | 4885 | } |
|
4886 | htim->State = HAL_TIM_STATE_READY; |
4886 | |
4887 | 4887 | /** |
|
4888 | __HAL_UNLOCK(htim); |
4888 | * @brief Configures the OCRef clear feature |
4889 | 4889 | * @param htim TIM handle |
|
4890 | return HAL_OK; |
4890 | * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
4891 | } |
4891 | * contains the OCREF clear feature and parameters for the TIM peripheral. |
4892 | 4892 | * @param Channel specifies the TIM Channel |
|
4893 | /** |
4893 | * This parameter can be one of the following values: |
4894 | * @brief Configures the clock source to be used |
4894 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
4895 | * @param htim TIM handle |
4895 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
4896 | * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
4896 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
4897 | * contains the clock source information for the TIM peripheral. |
4897 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
4898 | * @retval HAL status |
4898 | * @retval HAL status |
4899 | */ |
4899 | */ |
4900 | HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) |
4900 | HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
4901 | { |
4901 | const TIM_ClearInputConfigTypeDef *sClearInputConfig, |
4902 | uint32_t tmpsmcr; |
4902 | uint32_t Channel) |
4903 | 4903 | { |
|
4904 | /* Process Locked */ |
4904 | HAL_StatusTypeDef status = HAL_OK; |
4905 | __HAL_LOCK(htim); |
4905 | |
4906 | 4906 | /* Check the parameters */ |
|
4907 | htim->State = HAL_TIM_STATE_BUSY; |
4907 | assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
4908 | 4908 | assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
|
4909 | /* Check the parameters */ |
4909 | |
4910 | assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
4910 | /* Process Locked */ |
4911 | 4911 | __HAL_LOCK(htim); |
|
4912 | /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
4912 | |
4913 | tmpsmcr = htim->Instance->SMCR; |
4913 | htim->State = HAL_TIM_STATE_BUSY; |
4914 | tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
4914 | |
4915 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
4915 | switch (sClearInputConfig->ClearInputSource) |
4916 | htim->Instance->SMCR = tmpsmcr; |
4916 | { |
4917 | 4917 | case TIM_CLEARINPUTSOURCE_NONE: |
|
4918 | switch (sClockSourceConfig->ClockSource) |
4918 | { |
4919 | { |
4919 | /* Clear the OCREF clear selection bit and the the ETR Bits */ |
4920 | case TIM_CLOCKSOURCE_INTERNAL: |
4920 | CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
4921 | { |
4921 | break; |
4922 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
4922 | } |
4923 | break; |
4923 | case TIM_CLEARINPUTSOURCE_OCREFCLR: |
4924 | } |
4924 | { |
4925 | 4925 | /* Clear the OCREF clear selection bit */ |
|
4926 | case TIM_CLOCKSOURCE_ETRMODE1: |
4926 | CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4927 | { |
4927 | break; |
4928 | /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
4928 | } |
4929 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
4929 | |
4930 | 4930 | case TIM_CLEARINPUTSOURCE_ETR: |
|
4931 | /* Check ETR input conditioning related parameters */ |
4931 | { |
4932 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
4932 | /* Check the parameters */ |
4933 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4933 | assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
4934 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4934 | assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
4935 | 4935 | assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
|
4936 | /* Configure the ETR Clock source */ |
4936 | |
4937 | TIM_ETR_SetConfig(htim->Instance, |
4937 | /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
4938 | sClockSourceConfig->ClockPrescaler, |
4938 | if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
4939 | sClockSourceConfig->ClockPolarity, |
4939 | { |
4940 | sClockSourceConfig->ClockFilter); |
4940 | htim->State = HAL_TIM_STATE_READY; |
4941 | 4941 | __HAL_UNLOCK(htim); |
|
4942 | /* Select the External clock mode1 and the ETRF trigger */ |
4942 | return HAL_ERROR; |
4943 | tmpsmcr = htim->Instance->SMCR; |
4943 | } |
4944 | tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
4944 | |
4945 | /* Write to TIMx SMCR */ |
4945 | TIM_ETR_SetConfig(htim->Instance, |
4946 | htim->Instance->SMCR = tmpsmcr; |
4946 | sClearInputConfig->ClearInputPrescaler, |
4947 | break; |
4947 | sClearInputConfig->ClearInputPolarity, |
4948 | } |
4948 | sClearInputConfig->ClearInputFilter); |
4949 | 4949 | ||
4950 | case TIM_CLOCKSOURCE_ETRMODE2: |
4950 | /* Set the OCREF clear selection bit */ |
4951 | { |
4951 | SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4952 | /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
4952 | break; |
4953 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
4953 | } |
4954 | 4954 | ||
4955 | /* Check ETR input conditioning related parameters */ |
4955 | default: |
4956 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
4956 | status = HAL_ERROR; |
4957 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4957 | break; |
4958 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4958 | } |
4959 | 4959 | ||
4960 | /* Configure the ETR Clock source */ |
4960 | if (status == HAL_OK) |
4961 | TIM_ETR_SetConfig(htim->Instance, |
4961 | { |
4962 | sClockSourceConfig->ClockPrescaler, |
4962 | switch (Channel) |
4963 | sClockSourceConfig->ClockPolarity, |
4963 | { |
4964 | sClockSourceConfig->ClockFilter); |
4964 | case TIM_CHANNEL_1: |
4965 | /* Enable the External clock mode2 */ |
4965 | { |
4966 | htim->Instance->SMCR |= TIM_SMCR_ECE; |
4966 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4967 | break; |
4967 | { |
4968 | } |
4968 | /* Enable the OCREF clear feature for Channel 1 */ |
4969 | 4969 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
4970 | case TIM_CLOCKSOURCE_TI1: |
4970 | } |
4971 | { |
4971 | else |
4972 | /* Check whether or not the timer instance supports external clock mode 1 */ |
4972 | { |
4973 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
4973 | /* Disable the OCREF clear feature for Channel 1 */ |
4974 | 4974 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
4975 | /* Check TI1 input conditioning related parameters */ |
4975 | } |
4976 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4976 | break; |
4977 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4977 | } |
4978 | 4978 | case TIM_CHANNEL_2: |
|
4979 | TIM_TI1_ConfigInputStage(htim->Instance, |
4979 | { |
4980 | sClockSourceConfig->ClockPolarity, |
4980 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4981 | sClockSourceConfig->ClockFilter); |
4981 | { |
4982 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
4982 | /* Enable the OCREF clear feature for Channel 2 */ |
4983 | break; |
4983 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4984 | } |
4984 | } |
4985 | 4985 | else |
|
4986 | case TIM_CLOCKSOURCE_TI2: |
4986 | { |
4987 | { |
4987 | /* Disable the OCREF clear feature for Channel 2 */ |
4988 | /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
4988 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4989 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
4989 | } |
4990 | 4990 | break; |
|
4991 | /* Check TI2 input conditioning related parameters */ |
4991 | } |
4992 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4992 | case TIM_CHANNEL_3: |
4993 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4993 | { |
4994 | 4994 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
4995 | TIM_TI2_ConfigInputStage(htim->Instance, |
4995 | { |
4996 | sClockSourceConfig->ClockPolarity, |
4996 | /* Enable the OCREF clear feature for Channel 3 */ |
4997 | sClockSourceConfig->ClockFilter); |
4997 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
4998 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
4998 | } |
4999 | break; |
4999 | else |
5000 | } |
5000 | { |
5001 | 5001 | /* Disable the OCREF clear feature for Channel 3 */ |
|
5002 | case TIM_CLOCKSOURCE_TI1ED: |
5002 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
5003 | { |
5003 | } |
5004 | /* Check whether or not the timer instance supports external clock mode 1 */ |
5004 | break; |
5005 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
5005 | } |
5006 | 5006 | case TIM_CHANNEL_4: |
|
5007 | /* Check TI1 input conditioning related parameters */ |
5007 | { |
5008 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5008 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
5009 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
5009 | { |
5010 | 5010 | /* Enable the OCREF clear feature for Channel 4 */ |
|
5011 | TIM_TI1_ConfigInputStage(htim->Instance, |
5011 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
5012 | sClockSourceConfig->ClockPolarity, |
5012 | } |
5013 | sClockSourceConfig->ClockFilter); |
5013 | else |
5014 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
5014 | { |
5015 | break; |
5015 | /* Disable the OCREF clear feature for Channel 4 */ |
5016 | } |
5016 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
5017 | 5017 | } |
|
5018 | case TIM_CLOCKSOURCE_ITR0: |
5018 | break; |
5019 | case TIM_CLOCKSOURCE_ITR1: |
5019 | } |
5020 | case TIM_CLOCKSOURCE_ITR2: |
5020 | default: |
5021 | case TIM_CLOCKSOURCE_ITR3: |
5021 | break; |
5022 | { |
5022 | } |
5023 | /* Check whether or not the timer instance supports internal trigger input */ |
5023 | } |
5024 | assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
5024 | |
5025 | 5025 | htim->State = HAL_TIM_STATE_READY; |
|
5026 | TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
5026 | |
5027 | break; |
5027 | __HAL_UNLOCK(htim); |
5028 | } |
5028 | |
5029 | 5029 | return status; |
|
5030 | default: |
5030 | } |
5031 | break; |
5031 | |
5032 | } |
5032 | /** |
5033 | htim->State = HAL_TIM_STATE_READY; |
5033 | * @brief Configures the clock source to be used |
5034 | 5034 | * @param htim TIM handle |
|
5035 | __HAL_UNLOCK(htim); |
5035 | * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
5036 | 5036 | * contains the clock source information for the TIM peripheral. |
|
5037 | return HAL_OK; |
5037 | * @retval HAL status |
5038 | } |
5038 | */ |
5039 | 5039 | HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig) |
|
5040 | /** |
5040 | { |
5041 | * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
5041 | HAL_StatusTypeDef status = HAL_OK; |
5042 | * or a XOR combination between CH1_input, CH2_input & CH3_input |
5042 | uint32_t tmpsmcr; |
5043 | * @param htim TIM handle. |
5043 | |
5044 | * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
5044 | /* Process Locked */ |
5045 | * output of a XOR gate. |
5045 | __HAL_LOCK(htim); |
5046 | * This parameter can be one of the following values: |
5046 | |
5047 | * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
5047 | htim->State = HAL_TIM_STATE_BUSY; |
5048 | * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
5048 | |
5049 | * pins are connected to the TI1 input (XOR combination) |
5049 | /* Check the parameters */ |
5050 | * @retval HAL status |
5050 | assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
5051 | */ |
5051 | |
5052 | HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
5052 | /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
5053 | { |
5053 | tmpsmcr = htim->Instance->SMCR; |
5054 | uint32_t tmpcr2; |
5054 | tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
5055 | 5055 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
5056 | /* Check the parameters */ |
5056 | htim->Instance->SMCR = tmpsmcr; |
5057 | assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
5057 | |
5058 | assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
5058 | switch (sClockSourceConfig->ClockSource) |
5059 | 5059 | { |
|
5060 | /* Get the TIMx CR2 register value */ |
5060 | case TIM_CLOCKSOURCE_INTERNAL: |
5061 | tmpcr2 = htim->Instance->CR2; |
5061 | { |
5062 | 5062 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
5063 | /* Reset the TI1 selection */ |
5063 | break; |
5064 | tmpcr2 &= ~TIM_CR2_TI1S; |
5064 | } |
5065 | 5065 | ||
5066 | /* Set the TI1 selection */ |
5066 | case TIM_CLOCKSOURCE_ETRMODE1: |
5067 | tmpcr2 |= TI1_Selection; |
5067 | { |
5068 | 5068 | /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
|
5069 | /* Write to TIMxCR2 */ |
5069 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
5070 | htim->Instance->CR2 = tmpcr2; |
5070 | |
5071 | 5071 | /* Check ETR input conditioning related parameters */ |
|
5072 | return HAL_OK; |
5072 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
5073 | } |
5073 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5074 | 5074 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
5075 | /** |
5075 | |
5076 | * @brief Configures the TIM in Slave mode |
5076 | /* Configure the ETR Clock source */ |
5077 | * @param htim TIM handle. |
5077 | TIM_ETR_SetConfig(htim->Instance, |
5078 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
5078 | sClockSourceConfig->ClockPrescaler, |
5079 | * contains the selected trigger (internal trigger input, filtered |
5079 | sClockSourceConfig->ClockPolarity, |
5080 | * timer input or external trigger input) and the Slave mode |
5080 | sClockSourceConfig->ClockFilter); |
5081 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
5081 | |
5082 | * @retval HAL status |
5082 | /* Select the External clock mode1 and the ETRF trigger */ |
5083 | */ |
5083 | tmpsmcr = htim->Instance->SMCR; |
5084 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) |
5084 | tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
5085 | { |
5085 | /* Write to TIMx SMCR */ |
5086 | /* Check the parameters */ |
5086 | htim->Instance->SMCR = tmpsmcr; |
5087 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5087 | break; |
5088 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
5088 | } |
5089 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5089 | |
5090 | 5090 | case TIM_CLOCKSOURCE_ETRMODE2: |
|
5091 | __HAL_LOCK(htim); |
5091 | { |
5092 | 5092 | /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
|
5093 | htim->State = HAL_TIM_STATE_BUSY; |
5093 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
5094 | 5094 | ||
5095 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5095 | /* Check ETR input conditioning related parameters */ |
5096 | { |
5096 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
5097 | htim->State = HAL_TIM_STATE_READY; |
5097 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5098 | __HAL_UNLOCK(htim); |
5098 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
5099 | return HAL_ERROR; |
5099 | |
5100 | } |
5100 | /* Configure the ETR Clock source */ |
5101 | 5101 | TIM_ETR_SetConfig(htim->Instance, |
|
5102 | /* Disable Trigger Interrupt */ |
5102 | sClockSourceConfig->ClockPrescaler, |
5103 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
5103 | sClockSourceConfig->ClockPolarity, |
5104 | 5104 | sClockSourceConfig->ClockFilter); |
|
5105 | /* Disable Trigger DMA request */ |
5105 | /* Enable the External clock mode2 */ |
5106 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5106 | htim->Instance->SMCR |= TIM_SMCR_ECE; |
5107 | 5107 | break; |
|
5108 | htim->State = HAL_TIM_STATE_READY; |
5108 | } |
5109 | 5109 | ||
5110 | __HAL_UNLOCK(htim); |
5110 | case TIM_CLOCKSOURCE_TI1: |
5111 | 5111 | { |
|
5112 | return HAL_OK; |
5112 | /* Check whether or not the timer instance supports external clock mode 1 */ |
5113 | } |
5113 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
5114 | 5114 | ||
5115 | /** |
5115 | /* Check TI1 input conditioning related parameters */ |
5116 | * @brief Configures the TIM in Slave mode in interrupt mode |
5116 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5117 | * @param htim TIM handle. |
5117 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
5118 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
5118 | |
5119 | * contains the selected trigger (internal trigger input, filtered |
5119 | TIM_TI1_ConfigInputStage(htim->Instance, |
5120 | * timer input or external trigger input) and the Slave mode |
5120 | sClockSourceConfig->ClockPolarity, |
5121 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
5121 | sClockSourceConfig->ClockFilter); |
5122 | * @retval HAL status |
5122 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
5123 | */ |
5123 | break; |
5124 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
5124 | } |
5125 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
5125 | |
5126 | { |
5126 | case TIM_CLOCKSOURCE_TI2: |
5127 | /* Check the parameters */ |
5127 | { |
5128 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5128 | /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
5129 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
5129 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
5130 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5130 | |
5131 | 5131 | /* Check TI2 input conditioning related parameters */ |
|
5132 | __HAL_LOCK(htim); |
5132 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5133 | 5133 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
5134 | htim->State = HAL_TIM_STATE_BUSY; |
5134 | |
5135 | 5135 | TIM_TI2_ConfigInputStage(htim->Instance, |
|
5136 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5136 | sClockSourceConfig->ClockPolarity, |
5137 | { |
5137 | sClockSourceConfig->ClockFilter); |
5138 | htim->State = HAL_TIM_STATE_READY; |
5138 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
5139 | __HAL_UNLOCK(htim); |
5139 | break; |
5140 | return HAL_ERROR; |
5140 | } |
5141 | } |
5141 | |
5142 | 5142 | case TIM_CLOCKSOURCE_TI1ED: |
|
5143 | /* Enable Trigger Interrupt */ |
5143 | { |
5144 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
5144 | /* Check whether or not the timer instance supports external clock mode 1 */ |
5145 | 5145 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
|
5146 | /* Disable Trigger DMA request */ |
5146 | |
5147 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5147 | /* Check TI1 input conditioning related parameters */ |
5148 | 5148 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
5149 | htim->State = HAL_TIM_STATE_READY; |
5149 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
5150 | 5150 | ||
5151 | __HAL_UNLOCK(htim); |
5151 | TIM_TI1_ConfigInputStage(htim->Instance, |
5152 | 5152 | sClockSourceConfig->ClockPolarity, |
|
5153 | return HAL_OK; |
5153 | sClockSourceConfig->ClockFilter); |
5154 | } |
5154 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
5155 | 5155 | break; |
|
5156 | /** |
5156 | } |
5157 | * @brief Read the captured value from Capture Compare unit |
5157 | |
5158 | * @param htim TIM handle. |
5158 | case TIM_CLOCKSOURCE_ITR0: |
5159 | * @param Channel TIM Channels to be enabled |
5159 | case TIM_CLOCKSOURCE_ITR1: |
5160 | * This parameter can be one of the following values: |
5160 | case TIM_CLOCKSOURCE_ITR2: |
5161 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
5161 | case TIM_CLOCKSOURCE_ITR3: |
5162 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
5162 | { |
5163 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
5163 | /* Check whether or not the timer instance supports internal trigger input */ |
5164 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
5164 | assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
5165 | * @retval Captured value |
5165 | |
5166 | */ |
5166 | TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
5167 | uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) |
5167 | break; |
5168 | { |
5168 | } |
5169 | uint32_t tmpreg = 0U; |
5169 | |
5170 | 5170 | default: |
|
5171 | switch (Channel) |
5171 | status = HAL_ERROR; |
5172 | { |
5172 | break; |
5173 | case TIM_CHANNEL_1: |
5173 | } |
5174 | { |
5174 | htim->State = HAL_TIM_STATE_READY; |
5175 | /* Check the parameters */ |
5175 | |
5176 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
5176 | __HAL_UNLOCK(htim); |
5177 | 5177 | ||
5178 | /* Return the capture 1 value */ |
5178 | return status; |
5179 | tmpreg = htim->Instance->CCR1; |
5179 | } |
5180 | 5180 | ||
5181 | break; |
5181 | /** |
5182 | } |
5182 | * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
5183 | case TIM_CHANNEL_2: |
5183 | * or a XOR combination between CH1_input, CH2_input & CH3_input |
5184 | { |
5184 | * @param htim TIM handle. |
5185 | /* Check the parameters */ |
5185 | * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
5186 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
5186 | * output of a XOR gate. |
5187 | 5187 | * This parameter can be one of the following values: |
|
5188 | /* Return the capture 2 value */ |
5188 | * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
5189 | tmpreg = htim->Instance->CCR2; |
5189 | * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
5190 | 5190 | * pins are connected to the TI1 input (XOR combination) |
|
5191 | break; |
5191 | * @retval HAL status |
5192 | } |
5192 | */ |
5193 | 5193 | HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
|
5194 | case TIM_CHANNEL_3: |
5194 | { |
5195 | { |
5195 | uint32_t tmpcr2; |
5196 | /* Check the parameters */ |
5196 | |
5197 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
5197 | /* Check the parameters */ |
5198 | 5198 | assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
|
5199 | /* Return the capture 3 value */ |
5199 | assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
5200 | tmpreg = htim->Instance->CCR3; |
5200 | |
5201 | 5201 | /* Get the TIMx CR2 register value */ |
|
5202 | break; |
5202 | tmpcr2 = htim->Instance->CR2; |
5203 | } |
5203 | |
5204 | 5204 | /* Reset the TI1 selection */ |
|
5205 | case TIM_CHANNEL_4: |
5205 | tmpcr2 &= ~TIM_CR2_TI1S; |
5206 | { |
5206 | |
5207 | /* Check the parameters */ |
5207 | /* Set the TI1 selection */ |
5208 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
5208 | tmpcr2 |= TI1_Selection; |
5209 | 5209 | ||
5210 | /* Return the capture 4 value */ |
5210 | /* Write to TIMxCR2 */ |
5211 | tmpreg = htim->Instance->CCR4; |
5211 | htim->Instance->CR2 = tmpcr2; |
5212 | 5212 | ||
5213 | break; |
5213 | return HAL_OK; |
5214 | } |
5214 | } |
5215 | 5215 | ||
5216 | default: |
5216 | /** |
5217 | break; |
5217 | * @brief Configures the TIM in Slave mode |
5218 | } |
5218 | * @param htim TIM handle. |
5219 | 5219 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
|
5220 | return tmpreg; |
5220 | * contains the selected trigger (internal trigger input, filtered |
5221 | } |
5221 | * timer input or external trigger input) and the Slave mode |
5222 | 5222 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
|
5223 | /** |
5223 | * @retval HAL status |
5224 | * @} |
5224 | */ |
5225 | */ |
5225 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) |
5226 | 5226 | { |
|
5227 | /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
5227 | /* Check the parameters */ |
5228 | * @brief TIM Callbacks functions |
5228 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5229 | * |
5229 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
5230 | @verbatim |
5230 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5231 | ============================================================================== |
5231 | |
5232 | ##### TIM Callbacks functions ##### |
5232 | __HAL_LOCK(htim); |
5233 | ============================================================================== |
5233 | |
5234 | [..] |
5234 | htim->State = HAL_TIM_STATE_BUSY; |
5235 | This section provides TIM callback functions: |
5235 | |
5236 | (+) TIM Period elapsed callback |
5236 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5237 | (+) TIM Output Compare callback |
5237 | { |
5238 | (+) TIM Input capture callback |
5238 | htim->State = HAL_TIM_STATE_READY; |
5239 | (+) TIM Trigger callback |
5239 | __HAL_UNLOCK(htim); |
5240 | (+) TIM Error callback |
5240 | return HAL_ERROR; |
5241 | 5241 | } |
|
5242 | @endverbatim |
5242 | |
5243 | * @{ |
5243 | /* Disable Trigger Interrupt */ |
5244 | */ |
5244 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
5245 | 5245 | ||
5246 | /** |
5246 | /* Disable Trigger DMA request */ |
5247 | * @brief Period elapsed callback in non-blocking mode |
5247 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5248 | * @param htim TIM handle |
5248 | |
5249 | * @retval None |
5249 | htim->State = HAL_TIM_STATE_READY; |
5250 | */ |
5250 | |
5251 | __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
5251 | __HAL_UNLOCK(htim); |
5252 | { |
5252 | |
5253 | /* Prevent unused argument(s) compilation warning */ |
5253 | return HAL_OK; |
5254 | UNUSED(htim); |
5254 | } |
5255 | 5255 | ||
5256 | /* NOTE : This function should not be modified, when the callback is needed, |
5256 | /** |
5257 | the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
5257 | * @brief Configures the TIM in Slave mode in interrupt mode |
5258 | */ |
5258 | * @param htim TIM handle. |
5259 | } |
5259 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
5260 | 5260 | * contains the selected trigger (internal trigger input, filtered |
|
5261 | /** |
5261 | * timer input or external trigger input) and the Slave mode |
5262 | * @brief Period elapsed half complete callback in non-blocking mode |
5262 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
5263 | * @param htim TIM handle |
5263 | * @retval HAL status |
5264 | * @retval None |
5264 | */ |
5265 | */ |
5265 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
5266 | __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
5266 | const TIM_SlaveConfigTypeDef *sSlaveConfig) |
5267 | { |
5267 | { |
5268 | /* Prevent unused argument(s) compilation warning */ |
5268 | /* Check the parameters */ |
5269 | UNUSED(htim); |
5269 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5270 | 5270 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
|
5271 | /* NOTE : This function should not be modified, when the callback is needed, |
5271 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5272 | the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
5272 | |
5273 | */ |
5273 | __HAL_LOCK(htim); |
5274 | } |
5274 | |
5275 | 5275 | htim->State = HAL_TIM_STATE_BUSY; |
|
5276 | /** |
5276 | |
5277 | * @brief Output Compare callback in non-blocking mode |
5277 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5278 | * @param htim TIM OC handle |
5278 | { |
5279 | * @retval None |
5279 | htim->State = HAL_TIM_STATE_READY; |
5280 | */ |
5280 | __HAL_UNLOCK(htim); |
5281 | __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
5281 | return HAL_ERROR; |
5282 | { |
5282 | } |
5283 | /* Prevent unused argument(s) compilation warning */ |
5283 | |
5284 | UNUSED(htim); |
5284 | /* Enable Trigger Interrupt */ |
5285 | 5285 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
|
5286 | /* NOTE : This function should not be modified, when the callback is needed, |
5286 | |
5287 | the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
5287 | /* Disable Trigger DMA request */ |
5288 | */ |
5288 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5289 | } |
5289 | |
5290 | 5290 | htim->State = HAL_TIM_STATE_READY; |
|
5291 | /** |
5291 | |
5292 | * @brief Input Capture callback in non-blocking mode |
5292 | __HAL_UNLOCK(htim); |
5293 | * @param htim TIM IC handle |
5293 | |
5294 | * @retval None |
5294 | return HAL_OK; |
5295 | */ |
5295 | } |
5296 | __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
5296 | |
5297 | { |
5297 | /** |
5298 | /* Prevent unused argument(s) compilation warning */ |
5298 | * @brief Read the captured value from Capture Compare unit |
5299 | UNUSED(htim); |
5299 | * @param htim TIM handle. |
5300 | 5300 | * @param Channel TIM Channels to be enabled |
|
5301 | /* NOTE : This function should not be modified, when the callback is needed, |
5301 | * This parameter can be one of the following values: |
5302 | the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
5302 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
5303 | */ |
5303 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
5304 | } |
5304 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
5305 | 5305 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
5306 | /** |
5306 | * @retval Captured value |
5307 | * @brief Input Capture half complete callback in non-blocking mode |
5307 | */ |
5308 | * @param htim TIM IC handle |
5308 | uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel) |
5309 | * @retval None |
5309 | { |
5310 | */ |
5310 | uint32_t tmpreg = 0U; |
5311 | __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
5311 | |
5312 | { |
5312 | switch (Channel) |
5313 | /* Prevent unused argument(s) compilation warning */ |
5313 | { |
5314 | UNUSED(htim); |
5314 | case TIM_CHANNEL_1: |
5315 | 5315 | { |
|
5316 | /* NOTE : This function should not be modified, when the callback is needed, |
5316 | /* Check the parameters */ |
5317 | the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
5317 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
5318 | */ |
5318 | |
5319 | } |
5319 | /* Return the capture 1 value */ |
5320 | 5320 | tmpreg = htim->Instance->CCR1; |
|
5321 | /** |
5321 | |
5322 | * @brief PWM Pulse finished callback in non-blocking mode |
5322 | break; |
5323 | * @param htim TIM handle |
5323 | } |
5324 | * @retval None |
5324 | case TIM_CHANNEL_2: |
5325 | */ |
5325 | { |
5326 | __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
5326 | /* Check the parameters */ |
5327 | { |
5327 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
5328 | /* Prevent unused argument(s) compilation warning */ |
5328 | |
5329 | UNUSED(htim); |
5329 | /* Return the capture 2 value */ |
5330 | 5330 | tmpreg = htim->Instance->CCR2; |
|
5331 | /* NOTE : This function should not be modified, when the callback is needed, |
5331 | |
5332 | the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
5332 | break; |
5333 | */ |
5333 | } |
5334 | } |
5334 | |
5335 | 5335 | case TIM_CHANNEL_3: |
|
5336 | /** |
5336 | { |
5337 | * @brief PWM Pulse finished half complete callback in non-blocking mode |
5337 | /* Check the parameters */ |
5338 | * @param htim TIM handle |
5338 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
5339 | * @retval None |
5339 | |
5340 | */ |
5340 | /* Return the capture 3 value */ |
5341 | __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
5341 | tmpreg = htim->Instance->CCR3; |
5342 | { |
5342 | |
5343 | /* Prevent unused argument(s) compilation warning */ |
5343 | break; |
5344 | UNUSED(htim); |
5344 | } |
5345 | 5345 | ||
5346 | /* NOTE : This function should not be modified, when the callback is needed, |
5346 | case TIM_CHANNEL_4: |
5347 | the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
5347 | { |
5348 | */ |
5348 | /* Check the parameters */ |
5349 | } |
5349 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
5350 | 5350 | ||
5351 | /** |
5351 | /* Return the capture 4 value */ |
5352 | * @brief Hall Trigger detection callback in non-blocking mode |
5352 | tmpreg = htim->Instance->CCR4; |
5353 | * @param htim TIM handle |
5353 | |
5354 | * @retval None |
5354 | break; |
5355 | */ |
5355 | } |
5356 | __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
5356 | |
5357 | { |
5357 | default: |
5358 | /* Prevent unused argument(s) compilation warning */ |
5358 | break; |
5359 | UNUSED(htim); |
5359 | } |
5360 | 5360 | ||
5361 | /* NOTE : This function should not be modified, when the callback is needed, |
5361 | return tmpreg; |
5362 | the HAL_TIM_TriggerCallback could be implemented in the user file |
5362 | } |
5363 | */ |
5363 | |
5364 | } |
5364 | /** |
5365 | 5365 | * @} |
|
5366 | /** |
5366 | */ |
5367 | * @brief Hall Trigger detection half complete callback in non-blocking mode |
5367 | |
5368 | * @param htim TIM handle |
5368 | /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
5369 | * @retval None |
5369 | * @brief TIM Callbacks functions |
5370 | */ |
5370 | * |
5371 | __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
5371 | @verbatim |
5372 | { |
5372 | ============================================================================== |
5373 | /* Prevent unused argument(s) compilation warning */ |
5373 | ##### TIM Callbacks functions ##### |
5374 | UNUSED(htim); |
5374 | ============================================================================== |
5375 | 5375 | [..] |
|
5376 | /* NOTE : This function should not be modified, when the callback is needed, |
5376 | This section provides TIM callback functions: |
5377 | the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
5377 | (+) TIM Period elapsed callback |
5378 | */ |
5378 | (+) TIM Output Compare callback |
5379 | } |
5379 | (+) TIM Input capture callback |
5380 | 5380 | (+) TIM Trigger callback |
|
5381 | /** |
5381 | (+) TIM Error callback |
5382 | * @brief Timer error callback in non-blocking mode |
5382 | |
5383 | * @param htim TIM handle |
5383 | @endverbatim |
5384 | * @retval None |
5384 | * @{ |
5385 | */ |
5385 | */ |
5386 | __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
5386 | |
5387 | { |
5387 | /** |
5388 | /* Prevent unused argument(s) compilation warning */ |
5388 | * @brief Period elapsed callback in non-blocking mode |
5389 | UNUSED(htim); |
5389 | * @param htim TIM handle |
5390 | 5390 | * @retval None |
|
5391 | /* NOTE : This function should not be modified, when the callback is needed, |
5391 | */ |
5392 | the HAL_TIM_ErrorCallback could be implemented in the user file |
5392 | __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
5393 | */ |
5393 | { |
5394 | } |
5394 | /* Prevent unused argument(s) compilation warning */ |
5395 | 5395 | UNUSED(htim); |
|
5396 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
5396 | |
5397 | /** |
5397 | /* NOTE : This function should not be modified, when the callback is needed, |
5398 | * @brief Register a User TIM callback to be used instead of the weak predefined callback |
5398 | the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
5399 | * @param htim tim handle |
5399 | */ |
5400 | * @param CallbackID ID of the callback to be registered |
5400 | } |
5401 | * This parameter can be one of the following values: |
5401 | |
5402 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5402 | /** |
5403 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
5403 | * @brief Period elapsed half complete callback in non-blocking mode |
5404 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5404 | * @param htim TIM handle |
5405 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
5405 | * @retval None |
5406 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5406 | */ |
5407 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
5407 | __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
5408 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5408 | { |
5409 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5409 | /* Prevent unused argument(s) compilation warning */ |
5410 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
5410 | UNUSED(htim); |
5411 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
5411 | |
5412 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5412 | /* NOTE : This function should not be modified, when the callback is needed, |
5413 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5413 | the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
5414 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5414 | */ |
5415 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
5415 | } |
5416 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5416 | |
5417 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5417 | /** |
5418 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5418 | * @brief Output Compare callback in non-blocking mode |
5419 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
5419 | * @param htim TIM OC handle |
5420 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5420 | * @retval None |
5421 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5421 | */ |
5422 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5422 | __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
5423 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
5423 | { |
5424 | * @param pCallback pointer to the callback function |
5424 | /* Prevent unused argument(s) compilation warning */ |
5425 | * @retval status |
5425 | UNUSED(htim); |
5426 | */ |
5426 | |
5427 | HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
5427 | /* NOTE : This function should not be modified, when the callback is needed, |
5428 | pTIM_CallbackTypeDef pCallback) |
5428 | the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
5429 | { |
5429 | */ |
5430 | HAL_StatusTypeDef status = HAL_OK; |
5430 | } |
5431 | 5431 | ||
5432 | if (pCallback == NULL) |
5432 | /** |
5433 | { |
5433 | * @brief Input Capture callback in non-blocking mode |
5434 | return HAL_ERROR; |
5434 | * @param htim TIM IC handle |
5435 | } |
5435 | * @retval None |
5436 | /* Process locked */ |
5436 | */ |
5437 | __HAL_LOCK(htim); |
5437 | __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
5438 | 5438 | { |
|
5439 | if (htim->State == HAL_TIM_STATE_READY) |
5439 | /* Prevent unused argument(s) compilation warning */ |
5440 | { |
5440 | UNUSED(htim); |
5441 | switch (CallbackID) |
5441 | |
5442 | { |
5442 | /* NOTE : This function should not be modified, when the callback is needed, |
5443 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5443 | the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
5444 | htim->Base_MspInitCallback = pCallback; |
5444 | */ |
5445 | break; |
5445 | } |
5446 | 5446 | ||
5447 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5447 | /** |
5448 | htim->Base_MspDeInitCallback = pCallback; |
5448 | * @brief Input Capture half complete callback in non-blocking mode |
5449 | break; |
5449 | * @param htim TIM IC handle |
5450 | 5450 | * @retval None |
|
5451 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5451 | */ |
5452 | htim->IC_MspInitCallback = pCallback; |
5452 | __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
5453 | break; |
5453 | { |
5454 | 5454 | /* Prevent unused argument(s) compilation warning */ |
|
5455 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5455 | UNUSED(htim); |
5456 | htim->IC_MspDeInitCallback = pCallback; |
5456 | |
5457 | break; |
5457 | /* NOTE : This function should not be modified, when the callback is needed, |
5458 | 5458 | the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
|
5459 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5459 | */ |
5460 | htim->OC_MspInitCallback = pCallback; |
5460 | } |
5461 | break; |
5461 | |
5462 | 5462 | /** |
|
5463 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5463 | * @brief PWM Pulse finished callback in non-blocking mode |
5464 | htim->OC_MspDeInitCallback = pCallback; |
5464 | * @param htim TIM handle |
5465 | break; |
5465 | * @retval None |
5466 | 5466 | */ |
|
5467 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5467 | __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
5468 | htim->PWM_MspInitCallback = pCallback; |
5468 | { |
5469 | break; |
5469 | /* Prevent unused argument(s) compilation warning */ |
5470 | 5470 | UNUSED(htim); |
|
5471 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5471 | |
5472 | htim->PWM_MspDeInitCallback = pCallback; |
5472 | /* NOTE : This function should not be modified, when the callback is needed, |
5473 | break; |
5473 | the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
5474 | 5474 | */ |
|
5475 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5475 | } |
5476 | htim->OnePulse_MspInitCallback = pCallback; |
5476 | |
5477 | break; |
5477 | /** |
5478 | 5478 | * @brief PWM Pulse finished half complete callback in non-blocking mode |
|
5479 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5479 | * @param htim TIM handle |
5480 | htim->OnePulse_MspDeInitCallback = pCallback; |
5480 | * @retval None |
5481 | break; |
5481 | */ |
5482 | 5482 | __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
5483 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5483 | { |
5484 | htim->Encoder_MspInitCallback = pCallback; |
5484 | /* Prevent unused argument(s) compilation warning */ |
5485 | break; |
5485 | UNUSED(htim); |
5486 | 5486 | ||
5487 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5487 | /* NOTE : This function should not be modified, when the callback is needed, |
5488 | htim->Encoder_MspDeInitCallback = pCallback; |
5488 | the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
5489 | break; |
5489 | */ |
5490 | 5490 | } |
|
5491 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5491 | |
5492 | htim->PeriodElapsedCallback = pCallback; |
5492 | /** |
5493 | break; |
5493 | * @brief Hall Trigger detection callback in non-blocking mode |
5494 | 5494 | * @param htim TIM handle |
|
5495 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
5495 | * @retval None |
5496 | htim->PeriodElapsedHalfCpltCallback = pCallback; |
5496 | */ |
5497 | break; |
5497 | __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
5498 | 5498 | { |
|
5499 | case HAL_TIM_TRIGGER_CB_ID : |
5499 | /* Prevent unused argument(s) compilation warning */ |
5500 | htim->TriggerCallback = pCallback; |
5500 | UNUSED(htim); |
5501 | break; |
5501 | |
5502 | 5502 | /* NOTE : This function should not be modified, when the callback is needed, |
|
5503 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5503 | the HAL_TIM_TriggerCallback could be implemented in the user file |
5504 | htim->TriggerHalfCpltCallback = pCallback; |
5504 | */ |
5505 | break; |
5505 | } |
5506 | 5506 | ||
5507 | case HAL_TIM_IC_CAPTURE_CB_ID : |
5507 | /** |
5508 | htim->IC_CaptureCallback = pCallback; |
5508 | * @brief Hall Trigger detection half complete callback in non-blocking mode |
5509 | break; |
5509 | * @param htim TIM handle |
5510 | 5510 | * @retval None |
|
5511 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5511 | */ |
5512 | htim->IC_CaptureHalfCpltCallback = pCallback; |
5512 | __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
5513 | break; |
5513 | { |
5514 | 5514 | /* Prevent unused argument(s) compilation warning */ |
|
5515 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5515 | UNUSED(htim); |
5516 | htim->OC_DelayElapsedCallback = pCallback; |
5516 | |
5517 | break; |
5517 | /* NOTE : This function should not be modified, when the callback is needed, |
5518 | 5518 | the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
|
5519 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5519 | */ |
5520 | htim->PWM_PulseFinishedCallback = pCallback; |
5520 | } |
5521 | break; |
5521 | |
5522 | 5522 | /** |
|
5523 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
5523 | * @brief Timer error callback in non-blocking mode |
5524 | htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
5524 | * @param htim TIM handle |
5525 | break; |
5525 | * @retval None |
5526 | 5526 | */ |
|
5527 | case HAL_TIM_ERROR_CB_ID : |
5527 | __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
5528 | htim->ErrorCallback = pCallback; |
5528 | { |
5529 | break; |
5529 | /* Prevent unused argument(s) compilation warning */ |
5530 | 5530 | UNUSED(htim); |
|
5531 | default : |
5531 | |
5532 | /* Return error status */ |
5532 | /* NOTE : This function should not be modified, when the callback is needed, |
5533 | status = HAL_ERROR; |
5533 | the HAL_TIM_ErrorCallback could be implemented in the user file |
5534 | break; |
5534 | */ |
5535 | } |
5535 | } |
5536 | } |
5536 | |
5537 | else if (htim->State == HAL_TIM_STATE_RESET) |
5537 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
5538 | { |
5538 | /** |
5539 | switch (CallbackID) |
5539 | * @brief Register a User TIM callback to be used instead of the weak predefined callback |
5540 | { |
5540 | * @param htim tim handle |
5541 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5541 | * @param CallbackID ID of the callback to be registered |
5542 | htim->Base_MspInitCallback = pCallback; |
5542 | * This parameter can be one of the following values: |
5543 | break; |
5543 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5544 | 5544 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
|
5545 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5545 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5546 | htim->Base_MspDeInitCallback = pCallback; |
5546 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
5547 | break; |
5547 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5548 | 5548 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
|
5549 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5549 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5550 | htim->IC_MspInitCallback = pCallback; |
5550 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5551 | break; |
5551 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
5552 | 5552 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
|
5553 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5553 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5554 | htim->IC_MspDeInitCallback = pCallback; |
5554 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5555 | break; |
5555 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5556 | 5556 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
|
5557 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5557 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5558 | htim->OC_MspInitCallback = pCallback; |
5558 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5559 | break; |
5559 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5560 | 5560 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
|
5561 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5561 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5562 | htim->OC_MspDeInitCallback = pCallback; |
5562 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5563 | break; |
5563 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5564 | 5564 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
|
5565 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5565 | * @param pCallback pointer to the callback function |
5566 | htim->PWM_MspInitCallback = pCallback; |
5566 | * @retval status |
5567 | break; |
5567 | */ |
5568 | 5568 | HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
|
5569 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5569 | pTIM_CallbackTypeDef pCallback) |
5570 | htim->PWM_MspDeInitCallback = pCallback; |
5570 | { |
5571 | break; |
5571 | HAL_StatusTypeDef status = HAL_OK; |
5572 | 5572 | ||
5573 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5573 | if (pCallback == NULL) |
5574 | htim->OnePulse_MspInitCallback = pCallback; |
5574 | { |
5575 | break; |
5575 | return HAL_ERROR; |
5576 | 5576 | } |
|
5577 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5577 | |
5578 | htim->OnePulse_MspDeInitCallback = pCallback; |
5578 | if (htim->State == HAL_TIM_STATE_READY) |
5579 | break; |
5579 | { |
5580 | 5580 | switch (CallbackID) |
|
5581 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5581 | { |
5582 | htim->Encoder_MspInitCallback = pCallback; |
5582 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5583 | break; |
5583 | htim->Base_MspInitCallback = pCallback; |
5584 | 5584 | break; |
|
5585 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5585 | |
5586 | htim->Encoder_MspDeInitCallback = pCallback; |
5586 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5587 | break; |
5587 | htim->Base_MspDeInitCallback = pCallback; |
5588 | 5588 | break; |
|
5589 | default : |
5589 | |
5590 | /* Return error status */ |
5590 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5591 | status = HAL_ERROR; |
5591 | htim->IC_MspInitCallback = pCallback; |
5592 | break; |
5592 | break; |
5593 | } |
5593 | |
5594 | } |
5594 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5595 | else |
5595 | htim->IC_MspDeInitCallback = pCallback; |
5596 | { |
5596 | break; |
5597 | /* Return error status */ |
5597 | |
5598 | status = HAL_ERROR; |
5598 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5599 | } |
5599 | htim->OC_MspInitCallback = pCallback; |
5600 | 5600 | break; |
|
5601 | /* Release Lock */ |
5601 | |
5602 | __HAL_UNLOCK(htim); |
5602 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5603 | 5603 | htim->OC_MspDeInitCallback = pCallback; |
|
5604 | return status; |
5604 | break; |
5605 | } |
5605 | |
5606 | 5606 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
5607 | /** |
5607 | htim->PWM_MspInitCallback = pCallback; |
5608 | * @brief Unregister a TIM callback |
5608 | break; |
5609 | * TIM callback is redirected to the weak predefined callback |
5609 | |
5610 | * @param htim tim handle |
5610 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5611 | * @param CallbackID ID of the callback to be unregistered |
5611 | htim->PWM_MspDeInitCallback = pCallback; |
5612 | * This parameter can be one of the following values: |
5612 | break; |
5613 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5613 | |
5614 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
5614 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5615 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5615 | htim->OnePulse_MspInitCallback = pCallback; |
5616 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
5616 | break; |
5617 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5617 | |
5618 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
5618 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5619 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5619 | htim->OnePulse_MspDeInitCallback = pCallback; |
5620 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5620 | break; |
5621 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
5621 | |
5622 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
5622 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5623 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5623 | htim->Encoder_MspInitCallback = pCallback; |
5624 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5624 | break; |
5625 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5625 | |
5626 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
5626 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5627 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5627 | htim->Encoder_MspDeInitCallback = pCallback; |
5628 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5628 | break; |
5629 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5629 | |
5630 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
5630 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5631 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5631 | htim->PeriodElapsedCallback = pCallback; |
5632 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5632 | break; |
5633 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5633 | |
5634 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
5634 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
5635 | * @retval status |
5635 | htim->PeriodElapsedHalfCpltCallback = pCallback; |
5636 | */ |
5636 | break; |
5637 | HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
5637 | |
5638 | { |
5638 | case HAL_TIM_TRIGGER_CB_ID : |
5639 | HAL_StatusTypeDef status = HAL_OK; |
5639 | htim->TriggerCallback = pCallback; |
5640 | 5640 | break; |
|
5641 | /* Process locked */ |
5641 | |
5642 | __HAL_LOCK(htim); |
5642 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5643 | 5643 | htim->TriggerHalfCpltCallback = pCallback; |
|
5644 | if (htim->State == HAL_TIM_STATE_READY) |
5644 | break; |
5645 | { |
5645 | |
5646 | switch (CallbackID) |
5646 | case HAL_TIM_IC_CAPTURE_CB_ID : |
5647 | { |
5647 | htim->IC_CaptureCallback = pCallback; |
5648 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5648 | break; |
5649 | /* Legacy weak Base MspInit Callback */ |
5649 | |
5650 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5650 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5651 | break; |
5651 | htim->IC_CaptureHalfCpltCallback = pCallback; |
5652 | 5652 | break; |
|
5653 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5653 | |
5654 | /* Legacy weak Base Msp DeInit Callback */ |
5654 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5655 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5655 | htim->OC_DelayElapsedCallback = pCallback; |
5656 | break; |
5656 | break; |
5657 | 5657 | ||
5658 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5658 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5659 | /* Legacy weak IC Msp Init Callback */ |
5659 | htim->PWM_PulseFinishedCallback = pCallback; |
5660 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5660 | break; |
5661 | break; |
5661 | |
5662 | 5662 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
|
5663 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5663 | htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
5664 | /* Legacy weak IC Msp DeInit Callback */ |
5664 | break; |
5665 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5665 | |
5666 | break; |
5666 | case HAL_TIM_ERROR_CB_ID : |
5667 | 5667 | htim->ErrorCallback = pCallback; |
|
5668 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5668 | break; |
5669 | /* Legacy weak OC Msp Init Callback */ |
5669 | |
5670 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5670 | default : |
5671 | break; |
5671 | /* Return error status */ |
5672 | 5672 | status = HAL_ERROR; |
|
5673 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5673 | break; |
5674 | /* Legacy weak OC Msp DeInit Callback */ |
5674 | } |
5675 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5675 | } |
5676 | break; |
5676 | else if (htim->State == HAL_TIM_STATE_RESET) |
5677 | 5677 | { |
|
5678 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5678 | switch (CallbackID) |
5679 | /* Legacy weak PWM Msp Init Callback */ |
5679 | { |
5680 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5680 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5681 | break; |
5681 | htim->Base_MspInitCallback = pCallback; |
5682 | 5682 | break; |
|
5683 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5683 | |
5684 | /* Legacy weak PWM Msp DeInit Callback */ |
5684 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5685 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5685 | htim->Base_MspDeInitCallback = pCallback; |
5686 | break; |
5686 | break; |
5687 | 5687 | ||
5688 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5688 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5689 | /* Legacy weak One Pulse Msp Init Callback */ |
5689 | htim->IC_MspInitCallback = pCallback; |
5690 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5690 | break; |
5691 | break; |
5691 | |
5692 | 5692 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
5693 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5693 | htim->IC_MspDeInitCallback = pCallback; |
5694 | /* Legacy weak One Pulse Msp DeInit Callback */ |
5694 | break; |
5695 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5695 | |
5696 | break; |
5696 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5697 | 5697 | htim->OC_MspInitCallback = pCallback; |
|
5698 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5698 | break; |
5699 | /* Legacy weak Encoder Msp Init Callback */ |
5699 | |
5700 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5700 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5701 | break; |
5701 | htim->OC_MspDeInitCallback = pCallback; |
5702 | 5702 | break; |
|
5703 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5703 | |
5704 | /* Legacy weak Encoder Msp DeInit Callback */ |
5704 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5705 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5705 | htim->PWM_MspInitCallback = pCallback; |
5706 | break; |
5706 | break; |
5707 | 5707 | ||
5708 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5708 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5709 | /* Legacy weak Period Elapsed Callback */ |
5709 | htim->PWM_MspDeInitCallback = pCallback; |
5710 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
5710 | break; |
5711 | break; |
5711 | |
5712 | 5712 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
5713 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
5713 | htim->OnePulse_MspInitCallback = pCallback; |
5714 | /* Legacy weak Period Elapsed half complete Callback */ |
5714 | break; |
5715 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
5715 | |
5716 | break; |
5716 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5717 | 5717 | htim->OnePulse_MspDeInitCallback = pCallback; |
|
5718 | case HAL_TIM_TRIGGER_CB_ID : |
5718 | break; |
5719 | /* Legacy weak Trigger Callback */ |
5719 | |
5720 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
5720 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5721 | break; |
5721 | htim->Encoder_MspInitCallback = pCallback; |
5722 | 5722 | break; |
|
5723 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5723 | |
5724 | /* Legacy weak Trigger half complete Callback */ |
5724 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5725 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
5725 | htim->Encoder_MspDeInitCallback = pCallback; |
5726 | break; |
5726 | break; |
5727 | 5727 | ||
5728 | case HAL_TIM_IC_CAPTURE_CB_ID : |
5728 | default : |
5729 | /* Legacy weak IC Capture Callback */ |
5729 | /* Return error status */ |
5730 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
5730 | status = HAL_ERROR; |
5731 | break; |
5731 | break; |
5732 | 5732 | } |
|
5733 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5733 | } |
5734 | /* Legacy weak IC Capture half complete Callback */ |
5734 | else |
5735 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
5735 | { |
5736 | break; |
5736 | /* Return error status */ |
5737 | 5737 | status = HAL_ERROR; |
|
5738 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5738 | } |
5739 | /* Legacy weak OC Delay Elapsed Callback */ |
5739 | |
5740 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
5740 | return status; |
5741 | break; |
5741 | } |
5742 | 5742 | ||
5743 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5743 | /** |
5744 | /* Legacy weak PWM Pulse Finished Callback */ |
5744 | * @brief Unregister a TIM callback |
5745 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
5745 | * TIM callback is redirected to the weak predefined callback |
5746 | break; |
5746 | * @param htim tim handle |
5747 | 5747 | * @param CallbackID ID of the callback to be unregistered |
|
5748 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
5748 | * This parameter can be one of the following values: |
5749 | /* Legacy weak PWM Pulse Finished half complete Callback */ |
5749 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5750 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
5750 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
5751 | break; |
5751 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5752 | 5752 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
|
5753 | case HAL_TIM_ERROR_CB_ID : |
5753 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5754 | /* Legacy weak Error Callback */ |
5754 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
5755 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
5755 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5756 | break; |
5756 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5757 | 5757 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
|
5758 | default : |
5758 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
5759 | /* Return error status */ |
5759 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5760 | status = HAL_ERROR; |
5760 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5761 | break; |
5761 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5762 | } |
5762 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
5763 | } |
5763 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5764 | else if (htim->State == HAL_TIM_STATE_RESET) |
5764 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5765 | { |
5765 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5766 | switch (CallbackID) |
5766 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
5767 | { |
5767 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5768 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5768 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5769 | /* Legacy weak Base MspInit Callback */ |
5769 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5770 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5770 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
5771 | break; |
5771 | * @retval status |
5772 | 5772 | */ |
|
5773 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5773 | HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
5774 | /* Legacy weak Base Msp DeInit Callback */ |
5774 | { |
5775 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5775 | HAL_StatusTypeDef status = HAL_OK; |
5776 | break; |
5776 | |
5777 | 5777 | if (htim->State == HAL_TIM_STATE_READY) |
|
5778 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5778 | { |
5779 | /* Legacy weak IC Msp Init Callback */ |
5779 | switch (CallbackID) |
5780 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5780 | { |
5781 | break; |
5781 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5782 | 5782 | /* Legacy weak Base MspInit Callback */ |
|
5783 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5783 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5784 | /* Legacy weak IC Msp DeInit Callback */ |
5784 | break; |
5785 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5785 | |
5786 | break; |
5786 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5787 | 5787 | /* Legacy weak Base Msp DeInit Callback */ |
|
5788 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5788 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5789 | /* Legacy weak OC Msp Init Callback */ |
5789 | break; |
5790 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5790 | |
5791 | break; |
5791 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5792 | 5792 | /* Legacy weak IC Msp Init Callback */ |
|
5793 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5793 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5794 | /* Legacy weak OC Msp DeInit Callback */ |
5794 | break; |
5795 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5795 | |
5796 | break; |
5796 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5797 | 5797 | /* Legacy weak IC Msp DeInit Callback */ |
|
5798 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5798 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5799 | /* Legacy weak PWM Msp Init Callback */ |
5799 | break; |
5800 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5800 | |
5801 | break; |
5801 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5802 | 5802 | /* Legacy weak OC Msp Init Callback */ |
|
5803 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5803 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5804 | /* Legacy weak PWM Msp DeInit Callback */ |
5804 | break; |
5805 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5805 | |
5806 | break; |
5806 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5807 | 5807 | /* Legacy weak OC Msp DeInit Callback */ |
|
5808 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5808 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5809 | /* Legacy weak One Pulse Msp Init Callback */ |
5809 | break; |
5810 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5810 | |
5811 | break; |
5811 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5812 | 5812 | /* Legacy weak PWM Msp Init Callback */ |
|
5813 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5813 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5814 | /* Legacy weak One Pulse Msp DeInit Callback */ |
5814 | break; |
5815 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5815 | |
5816 | break; |
5816 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5817 | 5817 | /* Legacy weak PWM Msp DeInit Callback */ |
|
5818 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5818 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5819 | /* Legacy weak Encoder Msp Init Callback */ |
5819 | break; |
5820 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5820 | |
5821 | break; |
5821 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5822 | 5822 | /* Legacy weak One Pulse Msp Init Callback */ |
|
5823 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5823 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5824 | /* Legacy weak Encoder Msp DeInit Callback */ |
5824 | break; |
5825 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5825 | |
5826 | break; |
5826 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5827 | 5827 | /* Legacy weak One Pulse Msp DeInit Callback */ |
|
5828 | default : |
5828 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5829 | /* Return error status */ |
5829 | break; |
5830 | status = HAL_ERROR; |
5830 | |
5831 | break; |
5831 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5832 | } |
5832 | /* Legacy weak Encoder Msp Init Callback */ |
5833 | } |
5833 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5834 | else |
5834 | break; |
5835 | { |
5835 | |
5836 | /* Return error status */ |
5836 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5837 | status = HAL_ERROR; |
5837 | /* Legacy weak Encoder Msp DeInit Callback */ |
5838 | } |
5838 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5839 | 5839 | break; |
|
5840 | /* Release Lock */ |
5840 | |
5841 | __HAL_UNLOCK(htim); |
5841 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5842 | 5842 | /* Legacy weak Period Elapsed Callback */ |
|
5843 | return status; |
5843 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
5844 | } |
5844 | break; |
5845 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
5845 | |
5846 | 5846 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
|
5847 | /** |
5847 | /* Legacy weak Period Elapsed half complete Callback */ |
5848 | * @} |
5848 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
5849 | */ |
5849 | break; |
5850 | 5850 | ||
5851 | /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
5851 | case HAL_TIM_TRIGGER_CB_ID : |
5852 | * @brief TIM Peripheral State functions |
5852 | /* Legacy weak Trigger Callback */ |
5853 | * |
5853 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
5854 | @verbatim |
5854 | break; |
5855 | ============================================================================== |
5855 | |
5856 | ##### Peripheral State functions ##### |
5856 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5857 | ============================================================================== |
5857 | /* Legacy weak Trigger half complete Callback */ |
5858 | [..] |
5858 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
5859 | This subsection permits to get in run-time the status of the peripheral |
5859 | break; |
5860 | and the data flow. |
5860 | |
5861 | 5861 | case HAL_TIM_IC_CAPTURE_CB_ID : |
|
5862 | @endverbatim |
5862 | /* Legacy weak IC Capture Callback */ |
5863 | * @{ |
5863 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
5864 | */ |
5864 | break; |
5865 | 5865 | ||
5866 | /** |
5866 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5867 | * @brief Return the TIM Base handle state. |
5867 | /* Legacy weak IC Capture half complete Callback */ |
5868 | * @param htim TIM Base handle |
5868 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
5869 | * @retval HAL state |
5869 | break; |
5870 | */ |
5870 | |
5871 | HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) |
5871 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5872 | { |
5872 | /* Legacy weak OC Delay Elapsed Callback */ |
5873 | return htim->State; |
5873 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
5874 | } |
5874 | break; |
5875 | 5875 | ||
5876 | /** |
5876 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5877 | * @brief Return the TIM OC handle state. |
5877 | /* Legacy weak PWM Pulse Finished Callback */ |
5878 | * @param htim TIM Output Compare handle |
5878 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
5879 | * @retval HAL state |
5879 | break; |
5880 | */ |
5880 | |
5881 | HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) |
5881 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
5882 | { |
5882 | /* Legacy weak PWM Pulse Finished half complete Callback */ |
5883 | return htim->State; |
5883 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
5884 | } |
5884 | break; |
5885 | 5885 | ||
5886 | /** |
5886 | case HAL_TIM_ERROR_CB_ID : |
5887 | * @brief Return the TIM PWM handle state. |
5887 | /* Legacy weak Error Callback */ |
5888 | * @param htim TIM handle |
5888 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
5889 | * @retval HAL state |
5889 | break; |
5890 | */ |
5890 | |
5891 | HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) |
5891 | default : |
5892 | { |
5892 | /* Return error status */ |
5893 | return htim->State; |
5893 | status = HAL_ERROR; |
5894 | } |
5894 | break; |
5895 | 5895 | } |
|
5896 | /** |
5896 | } |
5897 | * @brief Return the TIM Input Capture handle state. |
5897 | else if (htim->State == HAL_TIM_STATE_RESET) |
5898 | * @param htim TIM IC handle |
5898 | { |
5899 | * @retval HAL state |
5899 | switch (CallbackID) |
5900 | */ |
5900 | { |
5901 | HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) |
5901 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5902 | { |
5902 | /* Legacy weak Base MspInit Callback */ |
5903 | return htim->State; |
5903 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5904 | } |
5904 | break; |
5905 | 5905 | ||
5906 | /** |
5906 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5907 | * @brief Return the TIM One Pulse Mode handle state. |
5907 | /* Legacy weak Base Msp DeInit Callback */ |
5908 | * @param htim TIM OPM handle |
5908 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5909 | * @retval HAL state |
5909 | break; |
5910 | */ |
5910 | |
5911 | HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) |
5911 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5912 | { |
5912 | /* Legacy weak IC Msp Init Callback */ |
5913 | return htim->State; |
5913 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5914 | } |
5914 | break; |
5915 | 5915 | ||
5916 | /** |
5916 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5917 | * @brief Return the TIM Encoder Mode handle state. |
5917 | /* Legacy weak IC Msp DeInit Callback */ |
5918 | * @param htim TIM Encoder Interface handle |
5918 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5919 | * @retval HAL state |
5919 | break; |
5920 | */ |
5920 | |
5921 | HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) |
5921 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5922 | { |
5922 | /* Legacy weak OC Msp Init Callback */ |
5923 | return htim->State; |
5923 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5924 | } |
5924 | break; |
5925 | 5925 | ||
5926 | /** |
5926 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5927 | * @brief Return the TIM Encoder Mode handle state. |
5927 | /* Legacy weak OC Msp DeInit Callback */ |
5928 | * @param htim TIM handle |
5928 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5929 | * @retval Active channel |
5929 | break; |
5930 | */ |
5930 | |
5931 | HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) |
5931 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5932 | { |
5932 | /* Legacy weak PWM Msp Init Callback */ |
5933 | return htim->Channel; |
5933 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5934 | } |
5934 | break; |
5935 | 5935 | ||
5936 | /** |
5936 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5937 | * @brief Return actual state of the TIM channel. |
5937 | /* Legacy weak PWM Msp DeInit Callback */ |
5938 | * @param htim TIM handle |
5938 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5939 | * @param Channel TIM Channel |
5939 | break; |
5940 | * This parameter can be one of the following values: |
5940 | |
5941 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
5941 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5942 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
5942 | /* Legacy weak One Pulse Msp Init Callback */ |
5943 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
5943 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5944 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
5944 | break; |
5945 | * @arg TIM_CHANNEL_5: TIM Channel 5 |
5945 | |
5946 | * @arg TIM_CHANNEL_6: TIM Channel 6 |
5946 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5947 | * @retval TIM Channel state |
5947 | /* Legacy weak One Pulse Msp DeInit Callback */ |
5948 | */ |
5948 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5949 | HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) |
5949 | break; |
5950 | { |
5950 | |
5951 | HAL_TIM_ChannelStateTypeDef channel_state; |
5951 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5952 | 5952 | /* Legacy weak Encoder Msp Init Callback */ |
|
5953 | /* Check the parameters */ |
5953 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5954 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
5954 | break; |
5955 | 5955 | ||
5956 | channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
5956 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5957 | 5957 | /* Legacy weak Encoder Msp DeInit Callback */ |
|
5958 | return channel_state; |
5958 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5959 | } |
5959 | break; |
5960 | 5960 | ||
5961 | /** |
5961 | default : |
5962 | * @brief Return actual state of a DMA burst operation. |
5962 | /* Return error status */ |
5963 | * @param htim TIM handle |
5963 | status = HAL_ERROR; |
5964 | * @retval DMA burst state |
5964 | break; |
5965 | */ |
5965 | } |
5966 | HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) |
5966 | } |
5967 | { |
5967 | else |
5968 | /* Check the parameters */ |
5968 | { |
5969 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
5969 | /* Return error status */ |
5970 | 5970 | status = HAL_ERROR; |
|
5971 | return htim->DMABurstState; |
5971 | } |
5972 | } |
5972 | |
5973 | 5973 | return status; |
|
5974 | /** |
5974 | } |
5975 | * @} |
5975 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
5976 | */ |
5976 | |
5977 | 5977 | /** |
|
5978 | /** |
5978 | * @} |
5979 | * @} |
5979 | */ |
5980 | */ |
5980 | |
5981 | 5981 | /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
|
5982 | /** @defgroup TIM_Private_Functions TIM Private Functions |
5982 | * @brief TIM Peripheral State functions |
5983 | * @{ |
5983 | * |
5984 | */ |
5984 | @verbatim |
5985 | 5985 | ============================================================================== |
|
5986 | /** |
5986 | ##### Peripheral State functions ##### |
5987 | * @brief TIM DMA error callback |
5987 | ============================================================================== |
5988 | * @param hdma pointer to DMA handle. |
5988 | [..] |
5989 | * @retval None |
5989 | This subsection permits to get in run-time the status of the peripheral |
5990 | */ |
5990 | and the data flow. |
5991 | void TIM_DMAError(DMA_HandleTypeDef *hdma) |
5991 | |
5992 | { |
5992 | @endverbatim |
5993 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
5993 | * @{ |
5994 | 5994 | */ |
|
5995 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
5995 | |
5996 | { |
5996 | /** |
5997 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
5997 | * @brief Return the TIM Base handle state. |
5998 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
5998 | * @param htim TIM Base handle |
5999 | } |
5999 | * @retval HAL state |
6000 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6000 | */ |
6001 | { |
6001 | HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim) |
6002 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6002 | { |
6003 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6003 | return htim->State; |
6004 | } |
6004 | } |
6005 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6005 | |
6006 | { |
6006 | /** |
6007 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6007 | * @brief Return the TIM OC handle state. |
6008 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6008 | * @param htim TIM Output Compare handle |
6009 | } |
6009 | * @retval HAL state |
6010 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6010 | */ |
6011 | { |
6011 | HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim) |
6012 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6012 | { |
6013 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6013 | return htim->State; |
6014 | } |
6014 | } |
6015 | else |
6015 | |
6016 | { |
6016 | /** |
6017 | htim->State = HAL_TIM_STATE_READY; |
6017 | * @brief Return the TIM PWM handle state. |
6018 | } |
6018 | * @param htim TIM handle |
6019 | 6019 | * @retval HAL state |
|
6020 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6020 | */ |
6021 | htim->ErrorCallback(htim); |
6021 | HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim) |
6022 | #else |
6022 | { |
6023 | HAL_TIM_ErrorCallback(htim); |
6023 | return htim->State; |
6024 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6024 | } |
6025 | 6025 | ||
6026 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6026 | /** |
6027 | } |
6027 | * @brief Return the TIM Input Capture handle state. |
6028 | 6028 | * @param htim TIM IC handle |
|
6029 | /** |
6029 | * @retval HAL state |
6030 | * @brief TIM DMA Delay Pulse complete callback. |
6030 | */ |
6031 | * @param hdma pointer to DMA handle. |
6031 | HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim) |
6032 | * @retval None |
6032 | { |
6033 | */ |
6033 | return htim->State; |
6034 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
6034 | } |
6035 | { |
6035 | |
6036 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6036 | /** |
6037 | 6037 | * @brief Return the TIM One Pulse Mode handle state. |
|
6038 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6038 | * @param htim TIM OPM handle |
6039 | { |
6039 | * @retval HAL state |
6040 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6040 | */ |
6041 | 6041 | HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim) |
|
6042 | if (hdma->Init.Mode == DMA_NORMAL) |
6042 | { |
6043 | { |
6043 | return htim->State; |
6044 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6044 | } |
6045 | } |
6045 | |
6046 | } |
6046 | /** |
6047 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6047 | * @brief Return the TIM Encoder Mode handle state. |
6048 | { |
6048 | * @param htim TIM Encoder Interface handle |
6049 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6049 | * @retval HAL state |
6050 | 6050 | */ |
|
6051 | if (hdma->Init.Mode == DMA_NORMAL) |
6051 | HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim) |
6052 | { |
6052 | { |
6053 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6053 | return htim->State; |
6054 | } |
6054 | } |
6055 | } |
6055 | |
6056 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6056 | /** |
6057 | { |
6057 | * @brief Return the TIM Encoder Mode handle state. |
6058 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6058 | * @param htim TIM handle |
6059 | 6059 | * @retval Active channel |
|
6060 | if (hdma->Init.Mode == DMA_NORMAL) |
6060 | */ |
6061 | { |
6061 | HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim) |
6062 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6062 | { |
6063 | } |
6063 | return htim->Channel; |
6064 | } |
6064 | } |
6065 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6065 | |
6066 | { |
6066 | /** |
6067 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6067 | * @brief Return actual state of the TIM channel. |
6068 | 6068 | * @param htim TIM handle |
|
6069 | if (hdma->Init.Mode == DMA_NORMAL) |
6069 | * @param Channel TIM Channel |
6070 | { |
6070 | * This parameter can be one of the following values: |
6071 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6071 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
6072 | } |
6072 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
6073 | } |
6073 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
6074 | else |
6074 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
6075 | { |
6075 | * @arg TIM_CHANNEL_5: TIM Channel 5 |
6076 | /* nothing to do */ |
6076 | * @arg TIM_CHANNEL_6: TIM Channel 6 |
6077 | } |
6077 | * @retval TIM Channel state |
6078 | 6078 | */ |
|
6079 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6079 | HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel) |
6080 | htim->PWM_PulseFinishedCallback(htim); |
6080 | { |
6081 | #else |
6081 | HAL_TIM_ChannelStateTypeDef channel_state; |
6082 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
6082 | |
6083 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6083 | /* Check the parameters */ |
6084 | 6084 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
6085 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6085 | |
6086 | } |
6086 | channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
6087 | 6087 | ||
6088 | /** |
6088 | return channel_state; |
6089 | * @brief TIM DMA Delay Pulse half complete callback. |
6089 | } |
6090 | * @param hdma pointer to DMA handle. |
6090 | |
6091 | * @retval None |
6091 | /** |
6092 | */ |
6092 | * @brief Return actual state of a DMA burst operation. |
6093 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
6093 | * @param htim TIM handle |
6094 | { |
6094 | * @retval DMA burst state |
6095 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6095 | */ |
6096 | 6096 | HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim) |
|
6097 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6097 | { |
6098 | { |
6098 | /* Check the parameters */ |
6099 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6099 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
6100 | } |
6100 | |
6101 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6101 | return htim->DMABurstState; |
6102 | { |
6102 | } |
6103 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6103 | |
6104 | } |
6104 | /** |
6105 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6105 | * @} |
6106 | { |
6106 | */ |
6107 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6107 | |
6108 | } |
6108 | /** |
6109 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6109 | * @} |
6110 | { |
6110 | */ |
6111 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6111 | |
6112 | } |
6112 | /** @defgroup TIM_Private_Functions TIM Private Functions |
6113 | else |
6113 | * @{ |
6114 | { |
6114 | */ |
6115 | /* nothing to do */ |
6115 | |
6116 | } |
6116 | /** |
6117 | 6117 | * @brief TIM DMA error callback |
|
6118 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6118 | * @param hdma pointer to DMA handle. |
6119 | htim->PWM_PulseFinishedHalfCpltCallback(htim); |
6119 | * @retval None |
6120 | #else |
6120 | */ |
6121 | HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
6121 | void TIM_DMAError(DMA_HandleTypeDef *hdma) |
6122 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6122 | { |
6123 | 6123 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
6124 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6124 | |
6125 | } |
6125 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6126 | 6126 | { |
|
6127 | /** |
6127 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6128 | * @brief TIM DMA Capture complete callback. |
6128 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6129 | * @param hdma pointer to DMA handle. |
6129 | } |
6130 | * @retval None |
6130 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6131 | */ |
6131 | { |
6132 | void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
6132 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6133 | { |
6133 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6134 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6134 | } |
6135 | 6135 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
6136 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6136 | { |
6137 | { |
6137 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6138 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6138 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6139 | 6139 | } |
|
6140 | if (hdma->Init.Mode == DMA_NORMAL) |
6140 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6141 | { |
6141 | { |
6142 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6142 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6143 | } |
6143 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6144 | } |
6144 | } |
6145 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6145 | else |
6146 | { |
6146 | { |
6147 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6147 | htim->State = HAL_TIM_STATE_READY; |
6148 | 6148 | } |
|
6149 | if (hdma->Init.Mode == DMA_NORMAL) |
6149 | |
6150 | { |
6150 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6151 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6151 | htim->ErrorCallback(htim); |
6152 | } |
6152 | #else |
6153 | } |
6153 | HAL_TIM_ErrorCallback(htim); |
6154 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6154 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6155 | { |
6155 | |
6156 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6156 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6157 | 6157 | } |
|
6158 | if (hdma->Init.Mode == DMA_NORMAL) |
6158 | |
6159 | { |
6159 | /** |
6160 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6160 | * @brief TIM DMA Delay Pulse complete callback. |
6161 | } |
6161 | * @param hdma pointer to DMA handle. |
6162 | } |
6162 | * @retval None |
6163 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6163 | */ |
6164 | { |
6164 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
6165 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6165 | { |
6166 | 6166 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
6167 | if (hdma->Init.Mode == DMA_NORMAL) |
6167 | |
6168 | { |
6168 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6169 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6169 | { |
6170 | } |
6170 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6171 | } |
6171 | |
6172 | else |
6172 | if (hdma->Init.Mode == DMA_NORMAL) |
6173 | { |
6173 | { |
6174 | /* nothing to do */ |
6174 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6175 | } |
6175 | } |
6176 | 6176 | } |
|
6177 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6177 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6178 | htim->IC_CaptureCallback(htim); |
6178 | { |
6179 | #else |
6179 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6180 | HAL_TIM_IC_CaptureCallback(htim); |
6180 | |
6181 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6181 | if (hdma->Init.Mode == DMA_NORMAL) |
6182 | 6182 | { |
|
6183 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6183 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6184 | } |
6184 | } |
6185 | 6185 | } |
|
6186 | /** |
6186 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6187 | * @brief TIM DMA Capture half complete callback. |
6187 | { |
6188 | * @param hdma pointer to DMA handle. |
6188 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6189 | * @retval None |
6189 | |
6190 | */ |
6190 | if (hdma->Init.Mode == DMA_NORMAL) |
6191 | void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
6191 | { |
6192 | { |
6192 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6193 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6193 | } |
6194 | 6194 | } |
|
6195 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6195 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6196 | { |
6196 | { |
6197 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6197 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6198 | } |
6198 | |
6199 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6199 | if (hdma->Init.Mode == DMA_NORMAL) |
6200 | { |
6200 | { |
6201 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6201 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6202 | } |
6202 | } |
6203 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6203 | } |
6204 | { |
6204 | else |
6205 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6205 | { |
6206 | } |
6206 | /* nothing to do */ |
6207 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6207 | } |
6208 | { |
6208 | |
6209 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6209 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6210 | } |
6210 | htim->PWM_PulseFinishedCallback(htim); |
6211 | else |
6211 | #else |
6212 | { |
6212 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
6213 | /* nothing to do */ |
6213 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6214 | } |
6214 | |
6215 | 6215 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
6216 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6216 | } |
6217 | htim->IC_CaptureHalfCpltCallback(htim); |
6217 | |
6218 | #else |
6218 | /** |
6219 | HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
6219 | * @brief TIM DMA Delay Pulse half complete callback. |
6220 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6220 | * @param hdma pointer to DMA handle. |
6221 | 6221 | * @retval None |
|
6222 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6222 | */ |
6223 | } |
6223 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
6224 | 6224 | { |
|
6225 | /** |
6225 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6226 | * @brief TIM DMA Period Elapse complete callback. |
6226 | |
6227 | * @param hdma pointer to DMA handle. |
6227 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6228 | * @retval None |
6228 | { |
6229 | */ |
6229 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6230 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
6230 | } |
6231 | { |
6231 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6232 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6232 | { |
6233 | 6233 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
6234 | if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
6234 | } |
6235 | { |
6235 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6236 | htim->State = HAL_TIM_STATE_READY; |
6236 | { |
6237 | } |
6237 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6238 | 6238 | } |
|
6239 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6239 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6240 | htim->PeriodElapsedCallback(htim); |
6240 | { |
6241 | #else |
6241 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6242 | HAL_TIM_PeriodElapsedCallback(htim); |
6242 | } |
6243 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6243 | else |
6244 | } |
6244 | { |
6245 | 6245 | /* nothing to do */ |
|
6246 | /** |
6246 | } |
6247 | * @brief TIM DMA Period Elapse half complete callback. |
6247 | |
6248 | * @param hdma pointer to DMA handle. |
6248 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6249 | * @retval None |
6249 | htim->PWM_PulseFinishedHalfCpltCallback(htim); |
6250 | */ |
6250 | #else |
6251 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
6251 | HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
6252 | { |
6252 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6253 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6253 | |
6254 | 6254 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
6255 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6255 | } |
6256 | htim->PeriodElapsedHalfCpltCallback(htim); |
6256 | |
6257 | #else |
6257 | /** |
6258 | HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
6258 | * @brief TIM DMA Capture complete callback. |
6259 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6259 | * @param hdma pointer to DMA handle. |
6260 | } |
6260 | * @retval None |
6261 | 6261 | */ |
|
6262 | /** |
6262 | void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
6263 | * @brief TIM DMA Trigger callback. |
6263 | { |
6264 | * @param hdma pointer to DMA handle. |
6264 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6265 | * @retval None |
6265 | |
6266 | */ |
6266 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6267 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
6267 | { |
6268 | { |
6268 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6269 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6269 | |
6270 | 6270 | if (hdma->Init.Mode == DMA_NORMAL) |
|
6271 | if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
6271 | { |
6272 | { |
6272 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6273 | htim->State = HAL_TIM_STATE_READY; |
6273 | } |
6274 | } |
6274 | } |
6275 | 6275 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
6276 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6276 | { |
6277 | htim->TriggerCallback(htim); |
6277 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6278 | #else |
6278 | |
6279 | HAL_TIM_TriggerCallback(htim); |
6279 | if (hdma->Init.Mode == DMA_NORMAL) |
6280 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6280 | { |
6281 | } |
6281 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6282 | 6282 | } |
|
6283 | /** |
6283 | } |
6284 | * @brief TIM DMA Trigger half complete callback. |
6284 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6285 | * @param hdma pointer to DMA handle. |
6285 | { |
6286 | * @retval None |
6286 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6287 | */ |
6287 | |
6288 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
6288 | if (hdma->Init.Mode == DMA_NORMAL) |
6289 | { |
6289 | { |
6290 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6290 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6291 | 6291 | } |
|
6292 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6292 | } |
6293 | htim->TriggerHalfCpltCallback(htim); |
6293 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6294 | #else |
6294 | { |
6295 | HAL_TIM_TriggerHalfCpltCallback(htim); |
6295 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6296 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6296 | |
6297 | } |
6297 | if (hdma->Init.Mode == DMA_NORMAL) |
6298 | 6298 | { |
|
6299 | /** |
6299 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6300 | * @brief Time Base configuration |
6300 | } |
6301 | * @param TIMx TIM peripheral |
6301 | } |
6302 | * @param Structure TIM Base configuration structure |
6302 | else |
6303 | * @retval None |
6303 | { |
6304 | */ |
6304 | /* nothing to do */ |
6305 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) |
6305 | } |
6306 | { |
6306 | |
6307 | uint32_t tmpcr1; |
6307 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6308 | tmpcr1 = TIMx->CR1; |
6308 | htim->IC_CaptureCallback(htim); |
6309 | 6309 | #else |
|
6310 | /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
6310 | HAL_TIM_IC_CaptureCallback(htim); |
6311 | if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
6311 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6312 | { |
6312 | |
6313 | /* Select the Counter Mode */ |
6313 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6314 | tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
6314 | } |
6315 | tmpcr1 |= Structure->CounterMode; |
6315 | |
6316 | } |
6316 | /** |
6317 | 6317 | * @brief TIM DMA Capture half complete callback. |
|
6318 | if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
6318 | * @param hdma pointer to DMA handle. |
6319 | { |
6319 | * @retval None |
6320 | /* Set the clock division */ |
6320 | */ |
6321 | tmpcr1 &= ~TIM_CR1_CKD; |
6321 | void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
6322 | tmpcr1 |= (uint32_t)Structure->ClockDivision; |
6322 | { |
6323 | } |
6323 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6324 | 6324 | ||
6325 | /* Set the auto-reload preload */ |
6325 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6326 | MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
6326 | { |
6327 | 6327 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
6328 | TIMx->CR1 = tmpcr1; |
6328 | } |
6329 | 6329 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
6330 | /* Set the Autoreload value */ |
6330 | { |
6331 | TIMx->ARR = (uint32_t)Structure->Period ; |
6331 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6332 | 6332 | } |
|
6333 | /* Set the Prescaler value */ |
6333 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6334 | TIMx->PSC = Structure->Prescaler; |
6334 | { |
6335 | 6335 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
6336 | /* Generate an update event to reload the Prescaler |
6336 | } |
6337 | and the repetition counter (only for advanced timer) value immediately */ |
6337 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6338 | TIMx->EGR = TIM_EGR_UG; |
6338 | { |
6339 | } |
6339 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6340 | 6340 | } |
|
6341 | /** |
6341 | else |
6342 | * @brief Timer Output Compare 1 configuration |
6342 | { |
6343 | * @param TIMx to select the TIM peripheral |
6343 | /* nothing to do */ |
6344 | * @param OC_Config The output configuration structure |
6344 | } |
6345 | * @retval None |
6345 | |
6346 | */ |
6346 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6347 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6347 | htim->IC_CaptureHalfCpltCallback(htim); |
6348 | { |
6348 | #else |
6349 | uint32_t tmpccmrx; |
6349 | HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
6350 | uint32_t tmpccer; |
6350 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6351 | uint32_t tmpcr2; |
6351 | |
6352 | 6352 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
6353 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6353 | } |
6354 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6354 | |
6355 | 6355 | /** |
|
6356 | /* Get the TIMx CCER register value */ |
6356 | * @brief TIM DMA Period Elapse complete callback. |
6357 | tmpccer = TIMx->CCER; |
6357 | * @param hdma pointer to DMA handle. |
6358 | /* Get the TIMx CR2 register value */ |
6358 | * @retval None |
6359 | tmpcr2 = TIMx->CR2; |
6359 | */ |
6360 | 6360 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
|
6361 | /* Get the TIMx CCMR1 register value */ |
6361 | { |
6362 | tmpccmrx = TIMx->CCMR1; |
6362 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6363 | 6363 | ||
6364 | /* Reset the Output Compare Mode Bits */ |
6364 | if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
6365 | tmpccmrx &= ~TIM_CCMR1_OC1M; |
6365 | { |
6366 | tmpccmrx &= ~TIM_CCMR1_CC1S; |
6366 | htim->State = HAL_TIM_STATE_READY; |
6367 | /* Select the Output Compare Mode */ |
6367 | } |
6368 | tmpccmrx |= OC_Config->OCMode; |
6368 | |
6369 | 6369 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
6370 | /* Reset the Output Polarity level */ |
6370 | htim->PeriodElapsedCallback(htim); |
6371 | tmpccer &= ~TIM_CCER_CC1P; |
6371 | #else |
6372 | /* Set the Output Compare Polarity */ |
6372 | HAL_TIM_PeriodElapsedCallback(htim); |
6373 | tmpccer |= OC_Config->OCPolarity; |
6373 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6374 | 6374 | } |
|
6375 | /* Write to TIMx CR2 */ |
6375 | |
6376 | TIMx->CR2 = tmpcr2; |
6376 | /** |
6377 | 6377 | * @brief TIM DMA Period Elapse half complete callback. |
|
6378 | /* Write to TIMx CCMR1 */ |
6378 | * @param hdma pointer to DMA handle. |
6379 | TIMx->CCMR1 = tmpccmrx; |
6379 | * @retval None |
6380 | 6380 | */ |
|
6381 | /* Set the Capture Compare Register value */ |
6381 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
6382 | TIMx->CCR1 = OC_Config->Pulse; |
6382 | { |
6383 | 6383 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
6384 | /* Write to TIMx CCER */ |
6384 | |
6385 | TIMx->CCER = tmpccer; |
6385 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6386 | } |
6386 | htim->PeriodElapsedHalfCpltCallback(htim); |
6387 | 6387 | #else |
|
6388 | /** |
6388 | HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
6389 | * @brief Timer Output Compare 2 configuration |
6389 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6390 | * @param TIMx to select the TIM peripheral |
6390 | } |
6391 | * @param OC_Config The output configuration structure |
6391 | |
6392 | * @retval None |
6392 | /** |
6393 | */ |
6393 | * @brief TIM DMA Trigger callback. |
6394 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6394 | * @param hdma pointer to DMA handle. |
6395 | { |
6395 | * @retval None |
6396 | uint32_t tmpccmrx; |
6396 | */ |
6397 | uint32_t tmpccer; |
6397 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
6398 | uint32_t tmpcr2; |
6398 | { |
6399 | 6399 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
6400 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6400 | |
6401 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6401 | if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
6402 | 6402 | { |
|
6403 | /* Get the TIMx CCER register value */ |
6403 | htim->State = HAL_TIM_STATE_READY; |
6404 | tmpccer = TIMx->CCER; |
6404 | } |
6405 | /* Get the TIMx CR2 register value */ |
6405 | |
6406 | tmpcr2 = TIMx->CR2; |
6406 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6407 | 6407 | htim->TriggerCallback(htim); |
|
6408 | /* Get the TIMx CCMR1 register value */ |
6408 | #else |
6409 | tmpccmrx = TIMx->CCMR1; |
6409 | HAL_TIM_TriggerCallback(htim); |
6410 | 6410 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
6411 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6411 | } |
6412 | tmpccmrx &= ~TIM_CCMR1_OC2M; |
6412 | |
6413 | tmpccmrx &= ~TIM_CCMR1_CC2S; |
6413 | /** |
6414 | 6414 | * @brief TIM DMA Trigger half complete callback. |
|
6415 | /* Select the Output Compare Mode */ |
6415 | * @param hdma pointer to DMA handle. |
6416 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6416 | * @retval None |
6417 | 6417 | */ |
|
6418 | /* Reset the Output Polarity level */ |
6418 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
6419 | tmpccer &= ~TIM_CCER_CC2P; |
6419 | { |
6420 | /* Set the Output Compare Polarity */ |
6420 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6421 | tmpccer |= (OC_Config->OCPolarity << 4U); |
6421 | |
6422 | 6422 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
6423 | /* Write to TIMx CR2 */ |
6423 | htim->TriggerHalfCpltCallback(htim); |
6424 | TIMx->CR2 = tmpcr2; |
6424 | #else |
6425 | 6425 | HAL_TIM_TriggerHalfCpltCallback(htim); |
|
6426 | /* Write to TIMx CCMR1 */ |
6426 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6427 | TIMx->CCMR1 = tmpccmrx; |
6427 | } |
6428 | 6428 | ||
6429 | /* Set the Capture Compare Register value */ |
6429 | /** |
6430 | TIMx->CCR2 = OC_Config->Pulse; |
6430 | * @brief Time Base configuration |
6431 | 6431 | * @param TIMx TIM peripheral |
|
6432 | /* Write to TIMx CCER */ |
6432 | * @param Structure TIM Base configuration structure |
6433 | TIMx->CCER = tmpccer; |
6433 | * @retval None |
6434 | } |
6434 | */ |
6435 | 6435 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure) |
|
6436 | /** |
6436 | { |
6437 | * @brief Timer Output Compare 3 configuration |
6437 | uint32_t tmpcr1; |
6438 | * @param TIMx to select the TIM peripheral |
6438 | tmpcr1 = TIMx->CR1; |
6439 | * @param OC_Config The output configuration structure |
6439 | |
6440 | * @retval None |
6440 | /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
6441 | */ |
6441 | if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
6442 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6442 | { |
6443 | { |
6443 | /* Select the Counter Mode */ |
6444 | uint32_t tmpccmrx; |
6444 | tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
6445 | uint32_t tmpccer; |
6445 | tmpcr1 |= Structure->CounterMode; |
6446 | uint32_t tmpcr2; |
6446 | } |
6447 | 6447 | ||
6448 | /* Disable the Channel 3: Reset the CC2E Bit */ |
6448 | if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
6449 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6449 | { |
6450 | 6450 | /* Set the clock division */ |
|
6451 | /* Get the TIMx CCER register value */ |
6451 | tmpcr1 &= ~TIM_CR1_CKD; |
6452 | tmpccer = TIMx->CCER; |
6452 | tmpcr1 |= (uint32_t)Structure->ClockDivision; |
6453 | /* Get the TIMx CR2 register value */ |
6453 | } |
6454 | tmpcr2 = TIMx->CR2; |
6454 | |
6455 | 6455 | /* Set the auto-reload preload */ |
|
6456 | /* Get the TIMx CCMR2 register value */ |
6456 | MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
6457 | tmpccmrx = TIMx->CCMR2; |
6457 | |
6458 | 6458 | TIMx->CR1 = tmpcr1; |
|
6459 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6459 | |
6460 | tmpccmrx &= ~TIM_CCMR2_OC3M; |
6460 | /* Set the Autoreload value */ |
6461 | tmpccmrx &= ~TIM_CCMR2_CC3S; |
6461 | TIMx->ARR = (uint32_t)Structure->Period ; |
6462 | /* Select the Output Compare Mode */ |
6462 | |
6463 | tmpccmrx |= OC_Config->OCMode; |
6463 | /* Set the Prescaler value */ |
6464 | 6464 | TIMx->PSC = Structure->Prescaler; |
|
6465 | /* Reset the Output Polarity level */ |
6465 | |
6466 | tmpccer &= ~TIM_CCER_CC3P; |
6466 | /* Generate an update event to reload the Prescaler |
6467 | /* Set the Output Compare Polarity */ |
6467 | and the repetition counter (only for advanced timer) value immediately */ |
6468 | tmpccer |= (OC_Config->OCPolarity << 8U); |
6468 | TIMx->EGR = TIM_EGR_UG; |
6469 | 6469 | } |
|
6470 | /* Write to TIMx CR2 */ |
6470 | |
6471 | TIMx->CR2 = tmpcr2; |
6471 | /** |
6472 | 6472 | * @brief Timer Output Compare 1 configuration |
|
6473 | /* Write to TIMx CCMR2 */ |
6473 | * @param TIMx to select the TIM peripheral |
6474 | TIMx->CCMR2 = tmpccmrx; |
6474 | * @param OC_Config The output configuration structure |
6475 | 6475 | * @retval None |
|
6476 | /* Set the Capture Compare Register value */ |
6476 | */ |
6477 | TIMx->CCR3 = OC_Config->Pulse; |
6477 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
6478 | 6478 | { |
|
6479 | /* Write to TIMx CCER */ |
6479 | uint32_t tmpccmrx; |
6480 | TIMx->CCER = tmpccer; |
6480 | uint32_t tmpccer; |
6481 | } |
6481 | uint32_t tmpcr2; |
6482 | 6482 | ||
6483 | /** |
6483 | /* Get the TIMx CCER register value */ |
6484 | * @brief Timer Output Compare 4 configuration |
6484 | tmpccer = TIMx->CCER; |
6485 | * @param TIMx to select the TIM peripheral |
6485 | |
6486 | * @param OC_Config The output configuration structure |
6486 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6487 | * @retval None |
6487 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6488 | */ |
6488 | |
6489 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6489 | /* Get the TIMx CR2 register value */ |
6490 | { |
6490 | tmpcr2 = TIMx->CR2; |
6491 | uint32_t tmpccmrx; |
6491 | |
6492 | uint32_t tmpccer; |
6492 | /* Get the TIMx CCMR1 register value */ |
6493 | uint32_t tmpcr2; |
6493 | tmpccmrx = TIMx->CCMR1; |
6494 | 6494 | ||
6495 | /* Disable the Channel 4: Reset the CC4E Bit */ |
6495 | /* Reset the Output Compare Mode Bits */ |
6496 | TIMx->CCER &= ~TIM_CCER_CC4E; |
6496 | tmpccmrx &= ~TIM_CCMR1_OC1M; |
6497 | 6497 | tmpccmrx &= ~TIM_CCMR1_CC1S; |
|
6498 | /* Get the TIMx CCER register value */ |
6498 | /* Select the Output Compare Mode */ |
6499 | tmpccer = TIMx->CCER; |
6499 | tmpccmrx |= OC_Config->OCMode; |
6500 | /* Get the TIMx CR2 register value */ |
6500 | |
6501 | tmpcr2 = TIMx->CR2; |
6501 | /* Reset the Output Polarity level */ |
6502 | 6502 | tmpccer &= ~TIM_CCER_CC1P; |
|
6503 | /* Get the TIMx CCMR2 register value */ |
6503 | /* Set the Output Compare Polarity */ |
6504 | tmpccmrx = TIMx->CCMR2; |
6504 | tmpccer |= OC_Config->OCPolarity; |
6505 | 6505 | ||
6506 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6506 | /* Write to TIMx CR2 */ |
6507 | tmpccmrx &= ~TIM_CCMR2_OC4M; |
6507 | TIMx->CR2 = tmpcr2; |
6508 | tmpccmrx &= ~TIM_CCMR2_CC4S; |
6508 | |
6509 | 6509 | /* Write to TIMx CCMR1 */ |
|
6510 | /* Select the Output Compare Mode */ |
6510 | TIMx->CCMR1 = tmpccmrx; |
6511 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6511 | |
6512 | 6512 | /* Set the Capture Compare Register value */ |
|
6513 | /* Reset the Output Polarity level */ |
6513 | TIMx->CCR1 = OC_Config->Pulse; |
6514 | tmpccer &= ~TIM_CCER_CC4P; |
6514 | |
6515 | /* Set the Output Compare Polarity */ |
6515 | /* Write to TIMx CCER */ |
6516 | tmpccer |= (OC_Config->OCPolarity << 12U); |
6516 | TIMx->CCER = tmpccer; |
6517 | 6517 | } |
|
6518 | /* Write to TIMx CR2 */ |
6518 | |
6519 | TIMx->CR2 = tmpcr2; |
6519 | /** |
6520 | 6520 | * @brief Timer Output Compare 2 configuration |
|
6521 | /* Write to TIMx CCMR2 */ |
6521 | * @param TIMx to select the TIM peripheral |
6522 | TIMx->CCMR2 = tmpccmrx; |
6522 | * @param OC_Config The output configuration structure |
6523 | 6523 | * @retval None |
|
6524 | /* Set the Capture Compare Register value */ |
6524 | */ |
6525 | TIMx->CCR4 = OC_Config->Pulse; |
6525 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
6526 | 6526 | { |
|
6527 | /* Write to TIMx CCER */ |
6527 | uint32_t tmpccmrx; |
6528 | TIMx->CCER = tmpccer; |
6528 | uint32_t tmpccer; |
6529 | } |
6529 | uint32_t tmpcr2; |
6530 | 6530 | ||
6531 | /** |
6531 | /* Get the TIMx CCER register value */ |
6532 | * @brief Slave Timer configuration function |
6532 | tmpccer = TIMx->CCER; |
6533 | * @param htim TIM handle |
6533 | |
6534 | * @param sSlaveConfig Slave timer configuration |
6534 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6535 | * @retval None |
6535 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6536 | */ |
6536 | |
6537 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
6537 | /* Get the TIMx CR2 register value */ |
6538 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
6538 | tmpcr2 = TIMx->CR2; |
6539 | { |
6539 | |
6540 | uint32_t tmpsmcr; |
6540 | /* Get the TIMx CCMR1 register value */ |
6541 | uint32_t tmpccmr1; |
6541 | tmpccmrx = TIMx->CCMR1; |
6542 | uint32_t tmpccer; |
6542 | |
6543 | 6543 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
|
6544 | /* Get the TIMx SMCR register value */ |
6544 | tmpccmrx &= ~TIM_CCMR1_OC2M; |
6545 | tmpsmcr = htim->Instance->SMCR; |
6545 | tmpccmrx &= ~TIM_CCMR1_CC2S; |
6546 | 6546 | ||
6547 | /* Reset the Trigger Selection Bits */ |
6547 | /* Select the Output Compare Mode */ |
6548 | tmpsmcr &= ~TIM_SMCR_TS; |
6548 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6549 | /* Set the Input Trigger source */ |
6549 | |
6550 | tmpsmcr |= sSlaveConfig->InputTrigger; |
6550 | /* Reset the Output Polarity level */ |
6551 | 6551 | tmpccer &= ~TIM_CCER_CC2P; |
|
6552 | /* Reset the slave mode Bits */ |
6552 | /* Set the Output Compare Polarity */ |
6553 | tmpsmcr &= ~TIM_SMCR_SMS; |
6553 | tmpccer |= (OC_Config->OCPolarity << 4U); |
6554 | /* Set the slave mode */ |
6554 | |
6555 | tmpsmcr |= sSlaveConfig->SlaveMode; |
6555 | /* Write to TIMx CR2 */ |
6556 | 6556 | TIMx->CR2 = tmpcr2; |
|
6557 | /* Write to TIMx SMCR */ |
6557 | |
6558 | htim->Instance->SMCR = tmpsmcr; |
6558 | /* Write to TIMx CCMR1 */ |
6559 | 6559 | TIMx->CCMR1 = tmpccmrx; |
|
6560 | /* Configure the trigger prescaler, filter, and polarity */ |
6560 | |
6561 | switch (sSlaveConfig->InputTrigger) |
6561 | /* Set the Capture Compare Register value */ |
6562 | { |
6562 | TIMx->CCR2 = OC_Config->Pulse; |
6563 | case TIM_TS_ETRF: |
6563 | |
6564 | { |
6564 | /* Write to TIMx CCER */ |
6565 | /* Check the parameters */ |
6565 | TIMx->CCER = tmpccer; |
6566 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
6566 | } |
6567 | assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
6567 | |
6568 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6568 | /** |
6569 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6569 | * @brief Timer Output Compare 3 configuration |
6570 | /* Configure the ETR Trigger source */ |
6570 | * @param TIMx to select the TIM peripheral |
6571 | TIM_ETR_SetConfig(htim->Instance, |
6571 | * @param OC_Config The output configuration structure |
6572 | sSlaveConfig->TriggerPrescaler, |
6572 | * @retval None |
6573 | sSlaveConfig->TriggerPolarity, |
6573 | */ |
6574 | sSlaveConfig->TriggerFilter); |
6574 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
6575 | break; |
6575 | { |
6576 | } |
6576 | uint32_t tmpccmrx; |
6577 | 6577 | uint32_t tmpccer; |
|
6578 | case TIM_TS_TI1F_ED: |
6578 | uint32_t tmpcr2; |
6579 | { |
6579 | |
6580 | /* Check the parameters */ |
6580 | /* Get the TIMx CCER register value */ |
6581 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6581 | tmpccer = TIMx->CCER; |
6582 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6582 | |
6583 | 6583 | /* Disable the Channel 3: Reset the CC2E Bit */ |
|
6584 | if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
6584 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6585 | { |
6585 | |
6586 | return HAL_ERROR; |
6586 | /* Get the TIMx CR2 register value */ |
6587 | } |
6587 | tmpcr2 = TIMx->CR2; |
6588 | 6588 | ||
6589 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6589 | /* Get the TIMx CCMR2 register value */ |
6590 | tmpccer = htim->Instance->CCER; |
6590 | tmpccmrx = TIMx->CCMR2; |
6591 | htim->Instance->CCER &= ~TIM_CCER_CC1E; |
6591 | |
6592 | tmpccmr1 = htim->Instance->CCMR1; |
6592 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6593 | 6593 | tmpccmrx &= ~TIM_CCMR2_OC3M; |
|
6594 | /* Set the filter */ |
6594 | tmpccmrx &= ~TIM_CCMR2_CC3S; |
6595 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6595 | /* Select the Output Compare Mode */ |
6596 | tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
6596 | tmpccmrx |= OC_Config->OCMode; |
6597 | 6597 | ||
6598 | /* Write to TIMx CCMR1 and CCER registers */ |
6598 | /* Reset the Output Polarity level */ |
6599 | htim->Instance->CCMR1 = tmpccmr1; |
6599 | tmpccer &= ~TIM_CCER_CC3P; |
6600 | htim->Instance->CCER = tmpccer; |
6600 | /* Set the Output Compare Polarity */ |
6601 | break; |
6601 | tmpccer |= (OC_Config->OCPolarity << 8U); |
6602 | } |
6602 | |
6603 | 6603 | /* Write to TIMx CR2 */ |
|
6604 | case TIM_TS_TI1FP1: |
6604 | TIMx->CR2 = tmpcr2; |
6605 | { |
6605 | |
6606 | /* Check the parameters */ |
6606 | /* Write to TIMx CCMR2 */ |
6607 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6607 | TIMx->CCMR2 = tmpccmrx; |
6608 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6608 | |
6609 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6609 | /* Set the Capture Compare Register value */ |
6610 | 6610 | TIMx->CCR3 = OC_Config->Pulse; |
|
6611 | /* Configure TI1 Filter and Polarity */ |
6611 | |
6612 | TIM_TI1_ConfigInputStage(htim->Instance, |
6612 | /* Write to TIMx CCER */ |
6613 | sSlaveConfig->TriggerPolarity, |
6613 | TIMx->CCER = tmpccer; |
6614 | sSlaveConfig->TriggerFilter); |
6614 | } |
6615 | break; |
6615 | |
6616 | } |
6616 | /** |
6617 | 6617 | * @brief Timer Output Compare 4 configuration |
|
6618 | case TIM_TS_TI2FP2: |
6618 | * @param TIMx to select the TIM peripheral |
6619 | { |
6619 | * @param OC_Config The output configuration structure |
6620 | /* Check the parameters */ |
6620 | * @retval None |
6621 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6621 | */ |
6622 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6622 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
6623 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6623 | { |
6624 | 6624 | uint32_t tmpccmrx; |
|
6625 | /* Configure TI2 Filter and Polarity */ |
6625 | uint32_t tmpccer; |
6626 | TIM_TI2_ConfigInputStage(htim->Instance, |
6626 | uint32_t tmpcr2; |
6627 | sSlaveConfig->TriggerPolarity, |
6627 | |
6628 | sSlaveConfig->TriggerFilter); |
6628 | /* Get the TIMx CCER register value */ |
6629 | break; |
6629 | tmpccer = TIMx->CCER; |
6630 | } |
6630 | |
6631 | 6631 | /* Disable the Channel 4: Reset the CC4E Bit */ |
|
6632 | case TIM_TS_ITR0: |
6632 | TIMx->CCER &= ~TIM_CCER_CC4E; |
6633 | case TIM_TS_ITR1: |
6633 | |
6634 | case TIM_TS_ITR2: |
6634 | /* Get the TIMx CR2 register value */ |
6635 | case TIM_TS_ITR3: |
6635 | tmpcr2 = TIMx->CR2; |
6636 | { |
6636 | |
6637 | /* Check the parameter */ |
6637 | /* Get the TIMx CCMR2 register value */ |
6638 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6638 | tmpccmrx = TIMx->CCMR2; |
6639 | break; |
6639 | |
6640 | } |
6640 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6641 | 6641 | tmpccmrx &= ~TIM_CCMR2_OC4M; |
|
6642 | default: |
6642 | tmpccmrx &= ~TIM_CCMR2_CC4S; |
6643 | break; |
6643 | |
6644 | } |
6644 | /* Select the Output Compare Mode */ |
6645 | return HAL_OK; |
6645 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6646 | } |
6646 | |
6647 | 6647 | /* Reset the Output Polarity level */ |
|
6648 | /** |
6648 | tmpccer &= ~TIM_CCER_CC4P; |
6649 | * @brief Configure the TI1 as Input. |
6649 | /* Set the Output Compare Polarity */ |
6650 | * @param TIMx to select the TIM peripheral. |
6650 | tmpccer |= (OC_Config->OCPolarity << 12U); |
6651 | * @param TIM_ICPolarity The Input Polarity. |
6651 | |
6652 | * This parameter can be one of the following values: |
6652 | /* Write to TIMx CR2 */ |
6653 | * @arg TIM_ICPOLARITY_RISING |
6653 | TIMx->CR2 = tmpcr2; |
6654 | * @arg TIM_ICPOLARITY_FALLING |
6654 | |
6655 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6655 | /* Write to TIMx CCMR2 */ |
6656 | * @param TIM_ICSelection specifies the input to be used. |
6656 | TIMx->CCMR2 = tmpccmrx; |
6657 | * This parameter can be one of the following values: |
6657 | |
6658 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
6658 | /* Set the Capture Compare Register value */ |
6659 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
6659 | TIMx->CCR4 = OC_Config->Pulse; |
6660 | * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
6660 | |
6661 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6661 | /* Write to TIMx CCER */ |
6662 | * This parameter must be a value between 0x00 and 0x0F. |
6662 | TIMx->CCER = tmpccer; |
6663 | * @retval None |
6663 | } |
6664 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
6664 | |
6665 | * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
6665 | /** |
6666 | * protected against un-initialized filter and polarity values. |
6666 | * @brief Slave Timer configuration function |
6667 | */ |
6667 | * @param htim TIM handle |
6668 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6668 | * @param sSlaveConfig Slave timer configuration |
6669 | uint32_t TIM_ICFilter) |
6669 | * @retval None |
6670 | { |
6670 | */ |
6671 | uint32_t tmpccmr1; |
6671 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
6672 | uint32_t tmpccer; |
6672 | const TIM_SlaveConfigTypeDef *sSlaveConfig) |
6673 | 6673 | { |
|
6674 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6674 | HAL_StatusTypeDef status = HAL_OK; |
6675 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6675 | uint32_t tmpsmcr; |
6676 | tmpccmr1 = TIMx->CCMR1; |
6676 | uint32_t tmpccmr1; |
6677 | tmpccer = TIMx->CCER; |
6677 | uint32_t tmpccer; |
6678 | 6678 | ||
6679 | /* Select the Input */ |
6679 | /* Get the TIMx SMCR register value */ |
6680 | if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
6680 | tmpsmcr = htim->Instance->SMCR; |
6681 | { |
6681 | |
6682 | tmpccmr1 &= ~TIM_CCMR1_CC1S; |
6682 | /* Reset the Trigger Selection Bits */ |
6683 | tmpccmr1 |= TIM_ICSelection; |
6683 | tmpsmcr &= ~TIM_SMCR_TS; |
6684 | } |
6684 | /* Set the Input Trigger source */ |
6685 | else |
6685 | tmpsmcr |= sSlaveConfig->InputTrigger; |
6686 | { |
6686 | |
6687 | tmpccmr1 |= TIM_CCMR1_CC1S_0; |
6687 | /* Reset the slave mode Bits */ |
6688 | } |
6688 | tmpsmcr &= ~TIM_SMCR_SMS; |
6689 | 6689 | /* Set the slave mode */ |
|
6690 | /* Set the filter */ |
6690 | tmpsmcr |= sSlaveConfig->SlaveMode; |
6691 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6691 | |
6692 | tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
6692 | /* Write to TIMx SMCR */ |
6693 | 6693 | htim->Instance->SMCR = tmpsmcr; |
|
6694 | /* Select the Polarity and set the CC1E Bit */ |
6694 | |
6695 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6695 | /* Configure the trigger prescaler, filter, and polarity */ |
6696 | tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
6696 | switch (sSlaveConfig->InputTrigger) |
6697 | 6697 | { |
|
6698 | /* Write to TIMx CCMR1 and CCER registers */ |
6698 | case TIM_TS_ETRF: |
6699 | TIMx->CCMR1 = tmpccmr1; |
6699 | { |
6700 | TIMx->CCER = tmpccer; |
6700 | /* Check the parameters */ |
6701 | } |
6701 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
6702 | 6702 | assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
|
6703 | /** |
6703 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6704 | * @brief Configure the Polarity and Filter for TI1. |
6704 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6705 | * @param TIMx to select the TIM peripheral. |
6705 | /* Configure the ETR Trigger source */ |
6706 | * @param TIM_ICPolarity The Input Polarity. |
6706 | TIM_ETR_SetConfig(htim->Instance, |
6707 | * This parameter can be one of the following values: |
6707 | sSlaveConfig->TriggerPrescaler, |
6708 | * @arg TIM_ICPOLARITY_RISING |
6708 | sSlaveConfig->TriggerPolarity, |
6709 | * @arg TIM_ICPOLARITY_FALLING |
6709 | sSlaveConfig->TriggerFilter); |
6710 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6710 | break; |
6711 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6711 | } |
6712 | * This parameter must be a value between 0x00 and 0x0F. |
6712 | |
6713 | * @retval None |
6713 | case TIM_TS_TI1F_ED: |
6714 | */ |
6714 | { |
6715 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
6715 | /* Check the parameters */ |
6716 | { |
6716 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6717 | uint32_t tmpccmr1; |
6717 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6718 | uint32_t tmpccer; |
6718 | |
6719 | 6719 | if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
|
6720 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6720 | { |
6721 | tmpccer = TIMx->CCER; |
6721 | return HAL_ERROR; |
6722 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6722 | } |
6723 | tmpccmr1 = TIMx->CCMR1; |
6723 | |
6724 | 6724 | /* Disable the Channel 1: Reset the CC1E Bit */ |
|
6725 | /* Set the filter */ |
6725 | tmpccer = htim->Instance->CCER; |
6726 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6726 | htim->Instance->CCER &= ~TIM_CCER_CC1E; |
6727 | tmpccmr1 |= (TIM_ICFilter << 4U); |
6727 | tmpccmr1 = htim->Instance->CCMR1; |
6728 | 6728 | ||
6729 | /* Select the Polarity and set the CC1E Bit */ |
6729 | /* Set the filter */ |
6730 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6730 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6731 | tmpccer |= TIM_ICPolarity; |
6731 | tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
6732 | 6732 | ||
6733 | /* Write to TIMx CCMR1 and CCER registers */ |
6733 | /* Write to TIMx CCMR1 and CCER registers */ |
6734 | TIMx->CCMR1 = tmpccmr1; |
6734 | htim->Instance->CCMR1 = tmpccmr1; |
6735 | TIMx->CCER = tmpccer; |
6735 | htim->Instance->CCER = tmpccer; |
6736 | } |
6736 | break; |
6737 | 6737 | } |
|
6738 | /** |
6738 | |
6739 | * @brief Configure the TI2 as Input. |
6739 | case TIM_TS_TI1FP1: |
6740 | * @param TIMx to select the TIM peripheral |
6740 | { |
6741 | * @param TIM_ICPolarity The Input Polarity. |
6741 | /* Check the parameters */ |
6742 | * This parameter can be one of the following values: |
6742 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6743 | * @arg TIM_ICPOLARITY_RISING |
6743 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6744 | * @arg TIM_ICPOLARITY_FALLING |
6744 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6745 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6745 | |
6746 | * @param TIM_ICSelection specifies the input to be used. |
6746 | /* Configure TI1 Filter and Polarity */ |
6747 | * This parameter can be one of the following values: |
6747 | TIM_TI1_ConfigInputStage(htim->Instance, |
6748 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
6748 | sSlaveConfig->TriggerPolarity, |
6749 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
6749 | sSlaveConfig->TriggerFilter); |
6750 | * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
6750 | break; |
6751 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6751 | } |
6752 | * This parameter must be a value between 0x00 and 0x0F. |
6752 | |
6753 | * @retval None |
6753 | case TIM_TS_TI2FP2: |
6754 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
6754 | { |
6755 | * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
6755 | /* Check the parameters */ |
6756 | * protected against un-initialized filter and polarity values. |
6756 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6757 | */ |
6757 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6758 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6758 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6759 | uint32_t TIM_ICFilter) |
6759 | |
6760 | { |
6760 | /* Configure TI2 Filter and Polarity */ |
6761 | uint32_t tmpccmr1; |
6761 | TIM_TI2_ConfigInputStage(htim->Instance, |
6762 | uint32_t tmpccer; |
6762 | sSlaveConfig->TriggerPolarity, |
6763 | 6763 | sSlaveConfig->TriggerFilter); |
|
6764 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6764 | break; |
6765 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6765 | } |
6766 | tmpccmr1 = TIMx->CCMR1; |
6766 | |
6767 | tmpccer = TIMx->CCER; |
6767 | case TIM_TS_ITR0: |
6768 | 6768 | case TIM_TS_ITR1: |
|
6769 | /* Select the Input */ |
6769 | case TIM_TS_ITR2: |
6770 | tmpccmr1 &= ~TIM_CCMR1_CC2S; |
6770 | case TIM_TS_ITR3: |
6771 | tmpccmr1 |= (TIM_ICSelection << 8U); |
6771 | { |
6772 | 6772 | /* Check the parameter */ |
|
6773 | /* Set the filter */ |
6773 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6774 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
6774 | break; |
6775 | tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
6775 | } |
6776 | 6776 | ||
6777 | /* Select the Polarity and set the CC2E Bit */ |
6777 | default: |
6778 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6778 | status = HAL_ERROR; |
6779 | tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
6779 | break; |
6780 | 6780 | } |
|
6781 | /* Write to TIMx CCMR1 and CCER registers */ |
6781 | |
6782 | TIMx->CCMR1 = tmpccmr1 ; |
6782 | return status; |
6783 | TIMx->CCER = tmpccer; |
6783 | } |
6784 | } |
6784 | |
6785 | 6785 | /** |
|
6786 | /** |
6786 | * @brief Configure the TI1 as Input. |
6787 | * @brief Configure the Polarity and Filter for TI2. |
6787 | * @param TIMx to select the TIM peripheral. |
6788 | * @param TIMx to select the TIM peripheral. |
6788 | * @param TIM_ICPolarity The Input Polarity. |
6789 | * @param TIM_ICPolarity The Input Polarity. |
6789 | * This parameter can be one of the following values: |
6790 | * This parameter can be one of the following values: |
6790 | * @arg TIM_ICPOLARITY_RISING |
6791 | * @arg TIM_ICPOLARITY_RISING |
6791 | * @arg TIM_ICPOLARITY_FALLING |
6792 | * @arg TIM_ICPOLARITY_FALLING |
6792 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6793 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6793 | * @param TIM_ICSelection specifies the input to be used. |
6794 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6794 | * This parameter can be one of the following values: |
6795 | * This parameter must be a value between 0x00 and 0x0F. |
6795 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
6796 | * @retval None |
6796 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
6797 | */ |
6797 | * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
6798 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
6798 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6799 | { |
6799 | * This parameter must be a value between 0x00 and 0x0F. |
6800 | uint32_t tmpccmr1; |
6800 | * @retval None |
6801 | uint32_t tmpccer; |
6801 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
6802 | 6802 | * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
|
6803 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6803 | * protected against un-initialized filter and polarity values. |
6804 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6804 | */ |
6805 | tmpccmr1 = TIMx->CCMR1; |
6805 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6806 | tmpccer = TIMx->CCER; |
6806 | uint32_t TIM_ICFilter) |
6807 | 6807 | { |
|
6808 | /* Set the filter */ |
6808 | uint32_t tmpccmr1; |
6809 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
6809 | uint32_t tmpccer; |
6810 | tmpccmr1 |= (TIM_ICFilter << 12U); |
6810 | |
6811 | 6811 | /* Disable the Channel 1: Reset the CC1E Bit */ |
|
6812 | /* Select the Polarity and set the CC2E Bit */ |
6812 | tmpccer = TIMx->CCER; |
6813 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6813 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6814 | tmpccer |= (TIM_ICPolarity << 4U); |
6814 | tmpccmr1 = TIMx->CCMR1; |
6815 | 6815 | ||
6816 | /* Write to TIMx CCMR1 and CCER registers */ |
6816 | /* Select the Input */ |
6817 | TIMx->CCMR1 = tmpccmr1 ; |
6817 | if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
6818 | TIMx->CCER = tmpccer; |
6818 | { |
6819 | } |
6819 | tmpccmr1 &= ~TIM_CCMR1_CC1S; |
6820 | 6820 | tmpccmr1 |= TIM_ICSelection; |
|
6821 | /** |
6821 | } |
6822 | * @brief Configure the TI3 as Input. |
6822 | else |
6823 | * @param TIMx to select the TIM peripheral |
6823 | { |
6824 | * @param TIM_ICPolarity The Input Polarity. |
6824 | tmpccmr1 |= TIM_CCMR1_CC1S_0; |
6825 | * This parameter can be one of the following values: |
6825 | } |
6826 | * @arg TIM_ICPOLARITY_RISING |
6826 | |
6827 | * @arg TIM_ICPOLARITY_FALLING |
6827 | /* Set the filter */ |
6828 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6828 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6829 | * @param TIM_ICSelection specifies the input to be used. |
6829 | tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
6830 | * This parameter can be one of the following values: |
6830 | |
6831 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
6831 | /* Select the Polarity and set the CC1E Bit */ |
6832 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
6832 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6833 | * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
6833 | tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
6834 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6834 | |
6835 | * This parameter must be a value between 0x00 and 0x0F. |
6835 | /* Write to TIMx CCMR1 and CCER registers */ |
6836 | * @retval None |
6836 | TIMx->CCMR1 = tmpccmr1; |
6837 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
6837 | TIMx->CCER = tmpccer; |
6838 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
6838 | } |
6839 | * protected against un-initialized filter and polarity values. |
6839 | |
6840 | */ |
6840 | /** |
6841 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6841 | * @brief Configure the Polarity and Filter for TI1. |
6842 | uint32_t TIM_ICFilter) |
6842 | * @param TIMx to select the TIM peripheral. |
6843 | { |
6843 | * @param TIM_ICPolarity The Input Polarity. |
6844 | uint32_t tmpccmr2; |
6844 | * This parameter can be one of the following values: |
6845 | uint32_t tmpccer; |
6845 | * @arg TIM_ICPOLARITY_RISING |
6846 | 6846 | * @arg TIM_ICPOLARITY_FALLING |
|
6847 | /* Disable the Channel 3: Reset the CC3E Bit */ |
6847 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6848 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6848 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6849 | tmpccmr2 = TIMx->CCMR2; |
6849 | * This parameter must be a value between 0x00 and 0x0F. |
6850 | tmpccer = TIMx->CCER; |
6850 | * @retval None |
6851 | 6851 | */ |
|
6852 | /* Select the Input */ |
6852 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
6853 | tmpccmr2 &= ~TIM_CCMR2_CC3S; |
6853 | { |
6854 | tmpccmr2 |= TIM_ICSelection; |
6854 | uint32_t tmpccmr1; |
6855 | 6855 | uint32_t tmpccer; |
|
6856 | /* Set the filter */ |
6856 | |
6857 | tmpccmr2 &= ~TIM_CCMR2_IC3F; |
6857 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6858 | tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
6858 | tmpccer = TIMx->CCER; |
6859 | 6859 | TIMx->CCER &= ~TIM_CCER_CC1E; |
|
6860 | /* Select the Polarity and set the CC3E Bit */ |
6860 | tmpccmr1 = TIMx->CCMR1; |
6861 | tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
6861 | |
6862 | tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
6862 | /* Set the filter */ |
6863 | 6863 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
|
6864 | /* Write to TIMx CCMR2 and CCER registers */ |
6864 | tmpccmr1 |= (TIM_ICFilter << 4U); |
6865 | TIMx->CCMR2 = tmpccmr2; |
6865 | |
6866 | TIMx->CCER = tmpccer; |
6866 | /* Select the Polarity and set the CC1E Bit */ |
6867 | } |
6867 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6868 | 6868 | tmpccer |= TIM_ICPolarity; |
|
6869 | /** |
6869 | |
6870 | * @brief Configure the TI4 as Input. |
6870 | /* Write to TIMx CCMR1 and CCER registers */ |
6871 | * @param TIMx to select the TIM peripheral |
6871 | TIMx->CCMR1 = tmpccmr1; |
6872 | * @param TIM_ICPolarity The Input Polarity. |
6872 | TIMx->CCER = tmpccer; |
6873 | * This parameter can be one of the following values: |
6873 | } |
6874 | * @arg TIM_ICPOLARITY_RISING |
6874 | |
6875 | * @arg TIM_ICPOLARITY_FALLING |
6875 | /** |
6876 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6876 | * @brief Configure the TI2 as Input. |
6877 | * @param TIM_ICSelection specifies the input to be used. |
6877 | * @param TIMx to select the TIM peripheral |
6878 | * This parameter can be one of the following values: |
6878 | * @param TIM_ICPolarity The Input Polarity. |
6879 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
6879 | * This parameter can be one of the following values: |
6880 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
6880 | * @arg TIM_ICPOLARITY_RISING |
6881 | * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
6881 | * @arg TIM_ICPOLARITY_FALLING |
6882 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6882 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6883 | * This parameter must be a value between 0x00 and 0x0F. |
6883 | * @param TIM_ICSelection specifies the input to be used. |
6884 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
6884 | * This parameter can be one of the following values: |
6885 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
6885 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
6886 | * protected against un-initialized filter and polarity values. |
6886 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
6887 | * @retval None |
6887 | * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
6888 | */ |
6888 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6889 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6889 | * This parameter must be a value between 0x00 and 0x0F. |
6890 | uint32_t TIM_ICFilter) |
6890 | * @retval None |
6891 | { |
6891 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
6892 | uint32_t tmpccmr2; |
6892 | * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
6893 | uint32_t tmpccer; |
6893 | * protected against un-initialized filter and polarity values. |
6894 | 6894 | */ |
|
6895 | /* Disable the Channel 4: Reset the CC4E Bit */ |
6895 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6896 | TIMx->CCER &= ~TIM_CCER_CC4E; |
6896 | uint32_t TIM_ICFilter) |
6897 | tmpccmr2 = TIMx->CCMR2; |
6897 | { |
6898 | tmpccer = TIMx->CCER; |
6898 | uint32_t tmpccmr1; |
6899 | 6899 | uint32_t tmpccer; |
|
6900 | /* Select the Input */ |
6900 | |
6901 | tmpccmr2 &= ~TIM_CCMR2_CC4S; |
6901 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6902 | tmpccmr2 |= (TIM_ICSelection << 8U); |
6902 | tmpccer = TIMx->CCER; |
6903 | 6903 | TIMx->CCER &= ~TIM_CCER_CC2E; |
|
6904 | /* Set the filter */ |
6904 | tmpccmr1 = TIMx->CCMR1; |
6905 | tmpccmr2 &= ~TIM_CCMR2_IC4F; |
6905 | |
6906 | tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
6906 | /* Select the Input */ |
6907 | 6907 | tmpccmr1 &= ~TIM_CCMR1_CC2S; |
|
6908 | /* Select the Polarity and set the CC4E Bit */ |
6908 | tmpccmr1 |= (TIM_ICSelection << 8U); |
6909 | tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
6909 | |
6910 | tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
6910 | /* Set the filter */ |
6911 | 6911 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
|
6912 | /* Write to TIMx CCMR2 and CCER registers */ |
6912 | tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
6913 | TIMx->CCMR2 = tmpccmr2; |
6913 | |
6914 | TIMx->CCER = tmpccer ; |
6914 | /* Select the Polarity and set the CC2E Bit */ |
6915 | } |
6915 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6916 | 6916 | tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
|
6917 | /** |
6917 | |
6918 | * @brief Selects the Input Trigger source |
6918 | /* Write to TIMx CCMR1 and CCER registers */ |
6919 | * @param TIMx to select the TIM peripheral |
6919 | TIMx->CCMR1 = tmpccmr1 ; |
6920 | * @param InputTriggerSource The Input Trigger source. |
6920 | TIMx->CCER = tmpccer; |
6921 | * This parameter can be one of the following values: |
6921 | } |
6922 | * @arg TIM_TS_ITR0: Internal Trigger 0 |
6922 | |
6923 | * @arg TIM_TS_ITR1: Internal Trigger 1 |
6923 | /** |
6924 | * @arg TIM_TS_ITR2: Internal Trigger 2 |
6924 | * @brief Configure the Polarity and Filter for TI2. |
6925 | * @arg TIM_TS_ITR3: Internal Trigger 3 |
6925 | * @param TIMx to select the TIM peripheral. |
6926 | * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
6926 | * @param TIM_ICPolarity The Input Polarity. |
6927 | * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
6927 | * This parameter can be one of the following values: |
6928 | * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
6928 | * @arg TIM_ICPOLARITY_RISING |
6929 | * @arg TIM_TS_ETRF: External Trigger input |
6929 | * @arg TIM_ICPOLARITY_FALLING |
6930 | * @retval None |
6930 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6931 | */ |
6931 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6932 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
6932 | * This parameter must be a value between 0x00 and 0x0F. |
6933 | { |
6933 | * @retval None |
6934 | uint32_t tmpsmcr; |
6934 | */ |
6935 | 6935 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
|
6936 | /* Get the TIMx SMCR register value */ |
6936 | { |
6937 | tmpsmcr = TIMx->SMCR; |
6937 | uint32_t tmpccmr1; |
6938 | /* Reset the TS Bits */ |
6938 | uint32_t tmpccer; |
6939 | tmpsmcr &= ~TIM_SMCR_TS; |
6939 | |
6940 | /* Set the Input Trigger source and the slave mode*/ |
6940 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6941 | tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
6941 | tmpccer = TIMx->CCER; |
6942 | /* Write to TIMx SMCR */ |
6942 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6943 | TIMx->SMCR = tmpsmcr; |
6943 | tmpccmr1 = TIMx->CCMR1; |
6944 | } |
6944 | |
6945 | /** |
6945 | /* Set the filter */ |
6946 | * @brief Configures the TIMx External Trigger (ETR). |
6946 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
6947 | * @param TIMx to select the TIM peripheral |
6947 | tmpccmr1 |= (TIM_ICFilter << 12U); |
6948 | * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
6948 | |
6949 | * This parameter can be one of the following values: |
6949 | /* Select the Polarity and set the CC2E Bit */ |
6950 | * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
6950 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6951 | * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
6951 | tmpccer |= (TIM_ICPolarity << 4U); |
6952 | * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
6952 | |
6953 | * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
6953 | /* Write to TIMx CCMR1 and CCER registers */ |
6954 | * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
6954 | TIMx->CCMR1 = tmpccmr1 ; |
6955 | * This parameter can be one of the following values: |
6955 | TIMx->CCER = tmpccer; |
6956 | * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
6956 | } |
6957 | * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
6957 | |
6958 | * @param ExtTRGFilter External Trigger Filter. |
6958 | /** |
6959 | * This parameter must be a value between 0x00 and 0x0F |
6959 | * @brief Configure the TI3 as Input. |
6960 | * @retval None |
6960 | * @param TIMx to select the TIM peripheral |
6961 | */ |
6961 | * @param TIM_ICPolarity The Input Polarity. |
6962 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
6962 | * This parameter can be one of the following values: |
6963 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
6963 | * @arg TIM_ICPOLARITY_RISING |
6964 | { |
6964 | * @arg TIM_ICPOLARITY_FALLING |
6965 | uint32_t tmpsmcr; |
6965 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6966 | 6966 | * @param TIM_ICSelection specifies the input to be used. |
|
6967 | tmpsmcr = TIMx->SMCR; |
6967 | * This parameter can be one of the following values: |
6968 | 6968 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
|
6969 | /* Reset the ETR Bits */ |
6969 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
6970 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
6970 | * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
6971 | 6971 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
|
6972 | /* Set the Prescaler, the Filter value and the Polarity */ |
6972 | * This parameter must be a value between 0x00 and 0x0F. |
6973 | tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
6973 | * @retval None |
6974 | 6974 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
|
6975 | /* Write to TIMx SMCR */ |
6975 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
6976 | TIMx->SMCR = tmpsmcr; |
6976 | * protected against un-initialized filter and polarity values. |
6977 | } |
6977 | */ |
6978 | 6978 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
6979 | /** |
6979 | uint32_t TIM_ICFilter) |
6980 | * @brief Enables or disables the TIM Capture Compare Channel x. |
6980 | { |
6981 | * @param TIMx to select the TIM peripheral |
6981 | uint32_t tmpccmr2; |
6982 | * @param Channel specifies the TIM Channel |
6982 | uint32_t tmpccer; |
6983 | * This parameter can be one of the following values: |
6983 | |
6984 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
6984 | /* Disable the Channel 3: Reset the CC3E Bit */ |
6985 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
6985 | tmpccer = TIMx->CCER; |
6986 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
6986 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6987 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
6987 | tmpccmr2 = TIMx->CCMR2; |
6988 | * @param ChannelState specifies the TIM Channel CCxE bit new state. |
6988 | |
6989 | * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
6989 | /* Select the Input */ |
6990 | * @retval None |
6990 | tmpccmr2 &= ~TIM_CCMR2_CC3S; |
6991 | */ |
6991 | tmpccmr2 |= TIM_ICSelection; |
6992 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
6992 | |
6993 | { |
6993 | /* Set the filter */ |
6994 | uint32_t tmp; |
6994 | tmpccmr2 &= ~TIM_CCMR2_IC3F; |
6995 | 6995 | tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
|
6996 | /* Check the parameters */ |
6996 | |
6997 | assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
6997 | /* Select the Polarity and set the CC3E Bit */ |
6998 | assert_param(IS_TIM_CHANNELS(Channel)); |
6998 | tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
6999 | 6999 | tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
|
7000 | tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
7000 | |
7001 | 7001 | /* Write to TIMx CCMR2 and CCER registers */ |
|
7002 | /* Reset the CCxE Bit */ |
7002 | TIMx->CCMR2 = tmpccmr2; |
7003 | TIMx->CCER &= ~tmp; |
7003 | TIMx->CCER = tmpccer; |
7004 | 7004 | } |
|
7005 | /* Set or reset the CCxE Bit */ |
7005 | |
7006 | TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
7006 | /** |
7007 | } |
7007 | * @brief Configure the TI4 as Input. |
7008 | 7008 | * @param TIMx to select the TIM peripheral |
|
7009 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
7009 | * @param TIM_ICPolarity The Input Polarity. |
7010 | /** |
7010 | * This parameter can be one of the following values: |
7011 | * @brief Reset interrupt callbacks to the legacy weak callbacks. |
7011 | * @arg TIM_ICPOLARITY_RISING |
7012 | * @param htim pointer to a TIM_HandleTypeDef structure that contains |
7012 | * @arg TIM_ICPOLARITY_FALLING |
7013 | * the configuration information for TIM module. |
7013 | * @arg TIM_ICPOLARITY_BOTHEDGE |
7014 | * @retval None |
7014 | * @param TIM_ICSelection specifies the input to be used. |
7015 | */ |
7015 | * This parameter can be one of the following values: |
7016 | void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
7016 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
7017 | { |
7017 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
7018 | /* Reset the TIM callback to the legacy weak callbacks */ |
7018 | * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
7019 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
7019 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
7020 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
7020 | * This parameter must be a value between 0x00 and 0x0F. |
7021 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
7021 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
7022 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
7022 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
7023 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
7023 | * protected against un-initialized filter and polarity values. |
7024 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
7024 | * @retval None |
7025 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
7025 | */ |
7026 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
7026 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
7027 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
7027 | uint32_t TIM_ICFilter) |
7028 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
7028 | { |
7029 | } |
7029 | uint32_t tmpccmr2; |
7030 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
7030 | uint32_t tmpccer; |
7031 | 7031 | ||
7032 | /** |
7032 | /* Disable the Channel 4: Reset the CC4E Bit */ |
7033 | * @} |
7033 | tmpccer = TIMx->CCER; |
7034 | */ |
7034 | TIMx->CCER &= ~TIM_CCER_CC4E; |
7035 | 7035 | tmpccmr2 = TIMx->CCMR2; |
|
7036 | #endif /* HAL_TIM_MODULE_ENABLED */ |
7036 | |
7037 | /** |
7037 | /* Select the Input */ |
7038 | * @} |
7038 | tmpccmr2 &= ~TIM_CCMR2_CC4S; |
7039 | */ |
7039 | tmpccmr2 |= (TIM_ICSelection << 8U); |
7040 | 7040 | ||
7041 | /** |
7041 | /* Set the filter */ |
7042 | * @} |
7042 | tmpccmr2 &= ~TIM_CCMR2_IC4F; |
7043 | */ |
7043 | tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
7044 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
7044 | |
- | 7045 | /* Select the Polarity and set the CC4E Bit */ |
|
- | 7046 | tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
|
- | 7047 | tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
|
- | 7048 | ||
- | 7049 | /* Write to TIMx CCMR2 and CCER registers */ |
|
- | 7050 | TIMx->CCMR2 = tmpccmr2; |
|
- | 7051 | TIMx->CCER = tmpccer ; |
|
- | 7052 | } |
|
- | 7053 | ||
- | 7054 | /** |
|
- | 7055 | * @brief Selects the Input Trigger source |
|
- | 7056 | * @param TIMx to select the TIM peripheral |
|
- | 7057 | * @param InputTriggerSource The Input Trigger source. |
|
- | 7058 | * This parameter can be one of the following values: |
|
- | 7059 | * @arg TIM_TS_ITR0: Internal Trigger 0 |
|
- | 7060 | * @arg TIM_TS_ITR1: Internal Trigger 1 |
|
- | 7061 | * @arg TIM_TS_ITR2: Internal Trigger 2 |
|
- | 7062 | * @arg TIM_TS_ITR3: Internal Trigger 3 |
|
- | 7063 | * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
|
- | 7064 | * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
|
- | 7065 | * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
|
- | 7066 | * @arg TIM_TS_ETRF: External Trigger input |
|
- | 7067 | * @retval None |
|
- | 7068 | */ |
|
- | 7069 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
|
- | 7070 | { |
|
- | 7071 | uint32_t tmpsmcr; |
|
- | 7072 | ||
- | 7073 | /* Get the TIMx SMCR register value */ |
|
- | 7074 | tmpsmcr = TIMx->SMCR; |
|
- | 7075 | /* Reset the TS Bits */ |
|
- | 7076 | tmpsmcr &= ~TIM_SMCR_TS; |
|
- | 7077 | /* Set the Input Trigger source and the slave mode*/ |
|
- | 7078 | tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
|
- | 7079 | /* Write to TIMx SMCR */ |
|
- | 7080 | TIMx->SMCR = tmpsmcr; |
|
- | 7081 | } |
|
- | 7082 | /** |
|
- | 7083 | * @brief Configures the TIMx External Trigger (ETR). |
|
- | 7084 | * @param TIMx to select the TIM peripheral |
|
- | 7085 | * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
|
- | 7086 | * This parameter can be one of the following values: |
|
- | 7087 | * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
|
- | 7088 | * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
|
- | 7089 | * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
|
- | 7090 | * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
|
- | 7091 | * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
|
- | 7092 | * This parameter can be one of the following values: |
|
- | 7093 | * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
|
- | 7094 | * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
|
- | 7095 | * @param ExtTRGFilter External Trigger Filter. |
|
- | 7096 | * This parameter must be a value between 0x00 and 0x0F |
|
- | 7097 | * @retval None |
|
- | 7098 | */ |
|
- | 7099 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
|
- | 7100 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
|
- | 7101 | { |
|
- | 7102 | uint32_t tmpsmcr; |
|
- | 7103 | ||
- | 7104 | tmpsmcr = TIMx->SMCR; |
|
- | 7105 | ||
- | 7106 | /* Reset the ETR Bits */ |
|
- | 7107 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
- | 7108 | ||
- | 7109 | /* Set the Prescaler, the Filter value and the Polarity */ |
|
- | 7110 | tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
|
- | 7111 | ||
- | 7112 | /* Write to TIMx SMCR */ |
|
- | 7113 | TIMx->SMCR = tmpsmcr; |
|
- | 7114 | } |
|
- | 7115 | ||
- | 7116 | /** |
|
- | 7117 | * @brief Enables or disables the TIM Capture Compare Channel x. |
|
- | 7118 | * @param TIMx to select the TIM peripheral |
|
- | 7119 | * @param Channel specifies the TIM Channel |
|
- | 7120 | * This parameter can be one of the following values: |
|
- | 7121 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
|
- | 7122 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
|
- | 7123 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
|
- | 7124 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
|
- | 7125 | * @param ChannelState specifies the TIM Channel CCxE bit new state. |
|
- | 7126 | * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
|
- | 7127 | * @retval None |
|
- | 7128 | */ |
|
- | 7129 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
|
- | 7130 | { |
|
- | 7131 | uint32_t tmp; |
|
- | 7132 | ||
- | 7133 | /* Check the parameters */ |
|
- | 7134 | assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
|
- | 7135 | assert_param(IS_TIM_CHANNELS(Channel)); |
|
- | 7136 | ||
- | 7137 | tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
|
- | 7138 | ||
- | 7139 | /* Reset the CCxE Bit */ |
|
- | 7140 | TIMx->CCER &= ~tmp; |
|
- | 7141 | ||
- | 7142 | /* Set or reset the CCxE Bit */ |
|
- | 7143 | TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
|
- | 7144 | } |
|
- | 7145 | ||
- | 7146 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
- | 7147 | /** |
|
- | 7148 | * @brief Reset interrupt callbacks to the legacy weak callbacks. |
|
- | 7149 | * @param htim pointer to a TIM_HandleTypeDef structure that contains |
|
- | 7150 | * the configuration information for TIM module. |
|
- | 7151 | * @retval None |
|
- | 7152 | */ |
|
- | 7153 | void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
|
- | 7154 | { |
|
- | 7155 | /* Reset the TIM callback to the legacy weak callbacks */ |
|
- | 7156 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
|
- | 7157 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
|
- | 7158 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
|
- | 7159 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
|
- | 7160 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
|
- | 7161 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
|
- | 7162 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
|
- | 7163 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
|
- | 7164 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
|
- | 7165 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
|
- | 7166 | } |
|
- | 7167 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
- | 7168 | ||
- | 7169 | /** |
|
- | 7170 | * @} |
|
- | 7171 | */ |
|
- | 7172 | ||
- | 7173 | #endif /* HAL_TIM_MODULE_ENABLED */ |
|
- | 7174 | /** |
|
- | 7175 | * @} |
|
- | 7176 | */ |
|
- | 7177 | ||
- | 7178 | /** |
|
- | 7179 | * @} |
|
- | 7180 | */ |