Rev 61 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
| Rev 61 | Rev 77 | ||
|---|---|---|---|
| Line 1... | Line 1... | ||
| 1 | /** |
1 | /** |
| 2 | ****************************************************************************** |
2 | ****************************************************************************** |
| 3 | * @file stm32l1xx_hal_tim.c |
3 | * @file stm32l1xx_hal_tim.c |
| 4 | * @author MCD Application Team |
4 | * @author MCD Application Team |
| 5 | * @brief TIM HAL module driver. |
5 | * @brief TIM HAL module driver. |
| 6 | * This file provides firmware functions to manage the following |
6 | * This file provides firmware functions to manage the following |
| 7 | * functionalities of the Timer (TIM) peripheral: |
7 | * functionalities of the Timer (TIM) peripheral: |
| 8 | * + TIM Time Base Initialization |
8 | * + TIM Time Base Initialization |
| 9 | * + TIM Time Base Start |
9 | * + TIM Time Base Start |
| 10 | * + TIM Time Base Start Interruption |
10 | * + TIM Time Base Start Interruption |
| 11 | * + TIM Time Base Start DMA |
11 | * + TIM Time Base Start DMA |
| 12 | * + TIM Output Compare/PWM Initialization |
12 | * + TIM Output Compare/PWM Initialization |
| 13 | * + TIM Output Compare/PWM Channel Configuration |
13 | * + TIM Output Compare/PWM Channel Configuration |
| 14 | * + TIM Output Compare/PWM Start |
14 | * + TIM Output Compare/PWM Start |
| 15 | * + TIM Output Compare/PWM Start Interruption |
15 | * + TIM Output Compare/PWM Start Interruption |
| 16 | * + TIM Output Compare/PWM Start DMA |
16 | * + TIM Output Compare/PWM Start DMA |
| 17 | * + TIM Input Capture Initialization |
17 | * + TIM Input Capture Initialization |
| 18 | * + TIM Input Capture Channel Configuration |
18 | * + TIM Input Capture Channel Configuration |
| 19 | * + TIM Input Capture Start |
19 | * + TIM Input Capture Start |
| 20 | * + TIM Input Capture Start Interruption |
20 | * + TIM Input Capture Start Interruption |
| 21 | * + TIM Input Capture Start DMA |
21 | * + TIM Input Capture Start DMA |
| 22 | * + TIM One Pulse Initialization |
22 | * + TIM One Pulse Initialization |
| 23 | * + TIM One Pulse Channel Configuration |
23 | * + TIM One Pulse Channel Configuration |
| 24 | * + TIM One Pulse Start |
24 | * + TIM One Pulse Start |
| 25 | * + TIM Encoder Interface Initialization |
25 | * + TIM Encoder Interface Initialization |
| 26 | * + TIM Encoder Interface Start |
26 | * + TIM Encoder Interface Start |
| 27 | * + TIM Encoder Interface Start Interruption |
27 | * + TIM Encoder Interface Start Interruption |
| 28 | * + TIM Encoder Interface Start DMA |
28 | * + TIM Encoder Interface Start DMA |
| 29 | * + Commutation Event configuration with Interruption and DMA |
29 | * + Commutation Event configuration with Interruption and DMA |
| 30 | * + TIM OCRef clear configuration |
30 | * + TIM OCRef clear configuration |
| 31 | * + TIM External Clock configuration |
31 | * + TIM External Clock configuration |
| 32 | @verbatim |
32 | ****************************************************************************** |
| 33 | ============================================================================== |
33 | * @attention |
| 34 | ##### TIMER Generic features ##### |
34 | * |
| 35 | ============================================================================== |
35 | * Copyright (c) 2016 STMicroelectronics. |
| 36 | [..] The Timer features include: |
36 | * All rights reserved. |
| 37 | (#) 16-bit up, down, up/down auto-reload counter. |
37 | * |
| 38 | (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
38 | * This software is licensed under terms that can be found in the LICENSE file |
| 39 | counter clock frequency either by any factor between 1 and 65536. |
39 | * in the root directory of this software component. |
| 40 | (#) Up to 4 independent channels for: |
40 | * If no LICENSE file comes with this software, it is provided AS-IS. |
| 41 | (++) Input Capture |
41 | * |
| 42 | (++) Output Compare |
42 | ****************************************************************************** |
| 43 | (++) PWM generation (Edge and Center-aligned Mode) |
43 | @verbatim |
| 44 | (++) One-pulse mode output |
44 | ============================================================================== |
| 45 | (#) Synchronization circuit to control the timer with external signals and to interconnect |
45 | ##### TIMER Generic features ##### |
| 46 | several timers together. |
46 | ============================================================================== |
| 47 | (#) Supports incremental encoder for positioning purposes |
47 | [..] The Timer features include: |
| 48 | 48 | (#) 16-bit up, down, up/down auto-reload counter. |
|
| 49 | ##### How to use this driver ##### |
49 | (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
| 50 | ============================================================================== |
50 | counter clock frequency either by any factor between 1 and 65536. |
| 51 | [..] |
51 | (#) Up to 4 independent channels for: |
| 52 | (#) Initialize the TIM low level resources by implementing the following functions |
52 | (++) Input Capture |
| 53 | depending on the selected feature: |
53 | (++) Output Compare |
| 54 | (++) Time Base : HAL_TIM_Base_MspInit() |
54 | (++) PWM generation (Edge and Center-aligned Mode) |
| 55 | (++) Input Capture : HAL_TIM_IC_MspInit() |
55 | (++) One-pulse mode output |
| 56 | (++) Output Compare : HAL_TIM_OC_MspInit() |
56 | (#) Synchronization circuit to control the timer with external signals and to interconnect |
| 57 | (++) PWM generation : HAL_TIM_PWM_MspInit() |
57 | several timers together. |
| 58 | (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
58 | (#) Supports incremental encoder for positioning purposes |
| 59 | (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
59 | |
| 60 | 60 | ##### How to use this driver ##### |
|
| 61 | (#) Initialize the TIM low level resources : |
61 | ============================================================================== |
| 62 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
62 | [..] |
| 63 | (##) TIM pins configuration |
63 | (#) Initialize the TIM low level resources by implementing the following functions |
| 64 | (+++) Enable the clock for the TIM GPIOs using the following function: |
64 | depending on the selected feature: |
| 65 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
65 | (++) Time Base : HAL_TIM_Base_MspInit() |
| 66 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
66 | (++) Input Capture : HAL_TIM_IC_MspInit() |
| 67 | 67 | (++) Output Compare : HAL_TIM_OC_MspInit() |
|
| 68 | (#) The external Clock can be configured, if needed (the default clock is the |
68 | (++) PWM generation : HAL_TIM_PWM_MspInit() |
| 69 | internal clock from the APBx), using the following function: |
69 | (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
| 70 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
70 | (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
| 71 | any start function. |
71 | |
| 72 | 72 | (#) Initialize the TIM low level resources : |
|
| 73 | (#) Configure the TIM in the desired functioning mode using one of the |
73 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
| 74 | Initialization function of this driver: |
74 | (##) TIM pins configuration |
| 75 | (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
75 | (+++) Enable the clock for the TIM GPIOs using the following function: |
| 76 | (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
76 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
| 77 | Output Compare signal. |
77 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
| 78 | (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
78 | |
| 79 | PWM signal. |
79 | (#) The external Clock can be configured, if needed (the default clock is the |
| 80 | (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
80 | internal clock from the APBx), using the following function: |
| 81 | external signal. |
81 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
| 82 | (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
82 | any start function. |
| 83 | in One Pulse Mode. |
83 | |
| 84 | (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
84 | (#) Configure the TIM in the desired functioning mode using one of the |
| 85 | 85 | Initialization function of this driver: |
|
| 86 | (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
86 | (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
| 87 | (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
87 | (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
| 88 | (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
88 | Output Compare signal. |
| 89 | (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
89 | (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
| 90 | (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
90 | PWM signal. |
| 91 | (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
91 | (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
| 92 | (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
92 | external signal. |
| 93 | 93 | (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
|
| 94 | (#) The DMA Burst is managed with the two following functions: |
94 | in One Pulse Mode. |
| 95 | HAL_TIM_DMABurst_WriteStart() |
95 | (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
| 96 | HAL_TIM_DMABurst_ReadStart() |
96 | |
| 97 | 97 | (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
|
| 98 | *** Callback registration *** |
98 | (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
| 99 | ============================================= |
99 | (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
| 100 | 100 | (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
|
| 101 | [..] |
101 | (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
| 102 | The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
102 | (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
| 103 | allows the user to configure dynamically the driver callbacks. |
103 | (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
| 104 | 104 | ||
| 105 | [..] |
105 | (#) The DMA Burst is managed with the two following functions: |
| 106 | Use Function @ref HAL_TIM_RegisterCallback() to register a callback. |
106 | HAL_TIM_DMABurst_WriteStart() |
| 107 | @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
107 | HAL_TIM_DMABurst_ReadStart() |
| 108 | the Callback ID and a pointer to the user callback function. |
108 | |
| 109 | 109 | *** Callback registration *** |
|
| 110 | [..] |
110 | ============================================= |
| 111 | Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default |
111 | |
| 112 | weak function. |
112 | [..] |
| 113 | @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
113 | The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
| 114 | and the Callback ID. |
114 | allows the user to configure dynamically the driver callbacks. |
| 115 | 115 | ||
| 116 | [..] |
116 | [..] |
| 117 | These functions allow to register/unregister following callbacks: |
117 | Use Function HAL_TIM_RegisterCallback() to register a callback. |
| 118 | (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
118 | HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
| 119 | (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
119 | the Callback ID and a pointer to the user callback function. |
| 120 | (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
120 | |
| 121 | (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
121 | [..] |
| 122 | (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
122 | Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default |
| 123 | (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
123 | weak function. |
| 124 | (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
124 | HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| 125 | (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
125 | and the Callback ID. |
| 126 | (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
126 | |
| 127 | (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
127 | [..] |
| 128 | (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
128 | These functions allow to register/unregister following callbacks: |
| 129 | (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
129 | (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
| 130 | (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
130 | (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
| 131 | (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
131 | (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
| 132 | (+) TriggerCallback : TIM Trigger Callback. |
132 | (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
| 133 | (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
133 | (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
| 134 | (+) IC_CaptureCallback : TIM Input Capture Callback. |
134 | (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
| 135 | (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
135 | (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
| 136 | (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
136 | (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
| 137 | (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
137 | (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
| 138 | (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
138 | (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
| 139 | (+) ErrorCallback : TIM Error Callback. |
139 | (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
| 140 | 140 | (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
|
| 141 | [..] |
141 | (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
| 142 | By default, after the Init and when the state is HAL_TIM_STATE_RESET |
142 | (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
| 143 | all interrupt callbacks are set to the corresponding weak functions: |
143 | (+) TriggerCallback : TIM Trigger Callback. |
| 144 | examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). |
144 | (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
| 145 | 145 | (+) IC_CaptureCallback : TIM Input Capture Callback. |
|
| 146 | [..] |
146 | (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
| 147 | Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
147 | (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
| 148 | functionalities in the Init / DeInit only when these callbacks are null |
148 | (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
| 149 | (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
149 | (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
| 150 | keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
150 | (+) ErrorCallback : TIM Error Callback. |
| 151 | 151 | ||
| 152 | [..] |
152 | [..] |
| 153 | Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
153 | By default, after the Init and when the state is HAL_TIM_STATE_RESET |
| 154 | Exception done MspInit / MspDeInit that can be registered / unregistered |
154 | all interrupt callbacks are set to the corresponding weak functions: |
| 155 | in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
155 | examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback(). |
| 156 | thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
156 | |
| 157 | In that case first register the MspInit/MspDeInit user callbacks |
157 | [..] |
| 158 | using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
158 | Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
| 159 | 159 | functionalities in the Init / DeInit only when these callbacks are null |
|
| 160 | [..] |
160 | (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
| 161 | When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
161 | keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
| 162 | not defined, the callback registration feature is not available and all callbacks |
162 | |
| 163 | are set to the corresponding weak functions. |
163 | [..] |
| 164 | 164 | Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
|
| 165 | @endverbatim |
165 | Exception done MspInit / MspDeInit that can be registered / unregistered |
| 166 | ****************************************************************************** |
166 | in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
| 167 | * @attention |
167 | thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
| 168 | * |
168 | In that case first register the MspInit/MspDeInit user callbacks |
| 169 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
169 | using HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
| 170 | * All rights reserved.</center></h2> |
170 | |
| 171 | * |
171 | [..] |
| 172 | * This software component is licensed by ST under BSD 3-Clause license, |
172 | When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
| 173 | * the "License"; You may not use this file except in compliance with the |
173 | not defined, the callback registration feature is not available and all callbacks |
| 174 | * License. You may obtain a copy of the License at: |
174 | are set to the corresponding weak functions. |
| 175 | * opensource.org/licenses/BSD-3-Clause |
175 | |
| 176 | * |
176 | @endverbatim |
| 177 | ****************************************************************************** |
177 | ****************************************************************************** |
| 178 | */ |
178 | */ |
| 179 | 179 | ||
| 180 | /* Includes ------------------------------------------------------------------*/ |
180 | /* Includes ------------------------------------------------------------------*/ |
| 181 | #include "stm32l1xx_hal.h" |
181 | #include "stm32l1xx_hal.h" |
| 182 | 182 | ||
| 183 | /** @addtogroup STM32L1xx_HAL_Driver |
183 | /** @addtogroup STM32L1xx_HAL_Driver |
| 184 | * @{ |
184 | * @{ |
| 185 | */ |
185 | */ |
| 186 | 186 | ||
| 187 | /** @defgroup TIM TIM |
187 | /** @defgroup TIM TIM |
| 188 | * @brief TIM HAL module driver |
188 | * @brief TIM HAL module driver |
| 189 | * @{ |
189 | * @{ |
| 190 | */ |
190 | */ |
| 191 | 191 | ||
| 192 | #ifdef HAL_TIM_MODULE_ENABLED |
192 | #ifdef HAL_TIM_MODULE_ENABLED |
| 193 | 193 | ||
| 194 | /* Private typedef -----------------------------------------------------------*/ |
194 | /* Private typedef -----------------------------------------------------------*/ |
| 195 | /* Private define ------------------------------------------------------------*/ |
195 | /* Private define ------------------------------------------------------------*/ |
| 196 | /* Private macros ------------------------------------------------------------*/ |
196 | /* Private macros ------------------------------------------------------------*/ |
| 197 | /* Private variables ---------------------------------------------------------*/ |
197 | /* Private variables ---------------------------------------------------------*/ |
| 198 | /* Private function prototypes -----------------------------------------------*/ |
198 | /* Private function prototypes -----------------------------------------------*/ |
| 199 | /** @addtogroup TIM_Private_Functions |
199 | /** @addtogroup TIM_Private_Functions |
| 200 | * @{ |
200 | * @{ |
| 201 | */ |
201 | */ |
| 202 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure); |
202 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure); |
| 203 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
203 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
| 204 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
204 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
| 205 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
205 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
| 206 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
206 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config); |
| 207 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
207 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 208 | uint32_t TIM_ICFilter); |
208 | uint32_t TIM_ICFilter); |
| 209 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
209 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
| 210 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
210 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 211 | uint32_t TIM_ICFilter); |
211 | uint32_t TIM_ICFilter); |
| 212 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
212 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
| 213 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
213 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 214 | uint32_t TIM_ICFilter); |
214 | uint32_t TIM_ICFilter); |
| 215 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
215 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 216 | uint32_t TIM_ICFilter); |
216 | uint32_t TIM_ICFilter); |
| 217 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
217 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
| 218 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
218 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
| 219 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); |
219 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); |
| 220 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); |
220 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState); |
| 221 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
221 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
| 222 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
222 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
| 223 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
223 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
| 224 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); |
224 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma); |
| 225 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
225 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
| 226 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
226 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
| 227 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
227 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
| 228 | TIM_SlaveConfigTypeDef *sSlaveConfig); |
228 | const TIM_SlaveConfigTypeDef *sSlaveConfig); |
| 229 | /** |
229 | /** |
| 230 | * @} |
230 | * @} |
| 231 | */ |
231 | */ |
| 232 | /* Exported functions --------------------------------------------------------*/ |
232 | /* Exported functions --------------------------------------------------------*/ |
| 233 | 233 | ||
| 234 | /** @defgroup TIM_Exported_Functions TIM Exported Functions |
234 | /** @defgroup TIM_Exported_Functions TIM Exported Functions |
| 235 | * @{ |
235 | * @{ |
| 236 | */ |
236 | */ |
| 237 | 237 | ||
| 238 | /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
238 | /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
| 239 | * @brief Time Base functions |
239 | * @brief Time Base functions |
| 240 | * |
240 | * |
| 241 | @verbatim |
241 | @verbatim |
| 242 | ============================================================================== |
242 | ============================================================================== |
| 243 | ##### Time Base functions ##### |
243 | ##### Time Base functions ##### |
| 244 | ============================================================================== |
244 | ============================================================================== |
| 245 | [..] |
245 | [..] |
| 246 | This section provides functions allowing to: |
246 | This section provides functions allowing to: |
| 247 | (+) Initialize and configure the TIM base. |
247 | (+) Initialize and configure the TIM base. |
| 248 | (+) De-initialize the TIM base. |
248 | (+) De-initialize the TIM base. |
| 249 | (+) Start the Time Base. |
249 | (+) Start the Time Base. |
| 250 | (+) Stop the Time Base. |
250 | (+) Stop the Time Base. |
| 251 | (+) Start the Time Base and enable interrupt. |
251 | (+) Start the Time Base and enable interrupt. |
| 252 | (+) Stop the Time Base and disable interrupt. |
252 | (+) Stop the Time Base and disable interrupt. |
| 253 | (+) Start the Time Base and enable DMA transfer. |
253 | (+) Start the Time Base and enable DMA transfer. |
| 254 | (+) Stop the Time Base and disable DMA transfer. |
254 | (+) Stop the Time Base and disable DMA transfer. |
| 255 | 255 | ||
| 256 | @endverbatim |
256 | @endverbatim |
| 257 | * @{ |
257 | * @{ |
| 258 | */ |
258 | */ |
| 259 | /** |
259 | /** |
| 260 | * @brief Initializes the TIM Time base Unit according to the specified |
260 | * @brief Initializes the TIM Time base Unit according to the specified |
| 261 | * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
261 | * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
| 262 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
262 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| 263 | * requires a timer reset to avoid unexpected direction |
263 | * requires a timer reset to avoid unexpected direction |
| 264 | * due to DIR bit readonly in center aligned mode. |
264 | * due to DIR bit readonly in center aligned mode. |
| 265 | * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
265 | * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
| 266 | * @param htim TIM Base handle |
266 | * @param htim TIM Base handle |
| 267 | * @retval HAL status |
267 | * @retval HAL status |
| 268 | */ |
268 | */ |
| 269 | HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
269 | HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
| 270 | { |
270 | { |
| 271 | /* Check the TIM handle allocation */ |
271 | /* Check the TIM handle allocation */ |
| 272 | if (htim == NULL) |
272 | if (htim == NULL) |
| 273 | { |
273 | { |
| 274 | return HAL_ERROR; |
274 | return HAL_ERROR; |
| 275 | } |
275 | } |
| 276 | 276 | ||
| 277 | /* Check the parameters */ |
277 | /* Check the parameters */ |
| 278 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
278 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 279 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
279 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 280 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
280 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| 281 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
281 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
| 282 | 282 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
| 283 | if (htim->State == HAL_TIM_STATE_RESET) |
283 | |
| 284 | { |
284 | if (htim->State == HAL_TIM_STATE_RESET) |
| 285 | /* Allocate lock resource and initialize it */ |
285 | { |
| 286 | htim->Lock = HAL_UNLOCKED; |
286 | /* Allocate lock resource and initialize it */ |
| 287 | 287 | htim->Lock = HAL_UNLOCKED; |
|
| 288 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
288 | |
| 289 | /* Reset interrupt callbacks to legacy weak callbacks */ |
289 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 290 | TIM_ResetCallback(htim); |
290 | /* Reset interrupt callbacks to legacy weak callbacks */ |
| 291 | 291 | TIM_ResetCallback(htim); |
|
| 292 | if (htim->Base_MspInitCallback == NULL) |
292 | |
| 293 | { |
293 | if (htim->Base_MspInitCallback == NULL) |
| 294 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
294 | { |
| 295 | } |
295 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
| 296 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
296 | } |
| 297 | htim->Base_MspInitCallback(htim); |
297 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 298 | #else |
298 | htim->Base_MspInitCallback(htim); |
| 299 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
299 | #else |
| 300 | HAL_TIM_Base_MspInit(htim); |
300 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 301 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
301 | HAL_TIM_Base_MspInit(htim); |
| 302 | } |
302 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 303 | 303 | } |
|
| 304 | /* Set the TIM state */ |
304 | |
| 305 | htim->State = HAL_TIM_STATE_BUSY; |
305 | /* Set the TIM state */ |
| 306 | 306 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 307 | /* Set the Time Base configuration */ |
307 | |
| 308 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
308 | /* Set the Time Base configuration */ |
| 309 | 309 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
|
| 310 | /* Initialize the DMA burst operation state */ |
310 | |
| 311 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
311 | /* Initialize the DMA burst operation state */ |
| 312 | 312 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
|
| 313 | /* Initialize the TIM channels state */ |
313 | |
| 314 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
314 | /* Initialize the TIM channels state */ |
| 315 | 315 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
|
| 316 | /* Initialize the TIM state*/ |
316 | |
| 317 | htim->State = HAL_TIM_STATE_READY; |
317 | /* Initialize the TIM state*/ |
| 318 | 318 | htim->State = HAL_TIM_STATE_READY; |
|
| 319 | return HAL_OK; |
319 | |
| 320 | } |
320 | return HAL_OK; |
| 321 | 321 | } |
|
| 322 | /** |
322 | |
| 323 | * @brief DeInitializes the TIM Base peripheral |
323 | /** |
| 324 | * @param htim TIM Base handle |
324 | * @brief DeInitializes the TIM Base peripheral |
| 325 | * @retval HAL status |
325 | * @param htim TIM Base handle |
| 326 | */ |
326 | * @retval HAL status |
| 327 | HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
327 | */ |
| 328 | { |
328 | HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
| 329 | /* Check the parameters */ |
329 | { |
| 330 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
330 | /* Check the parameters */ |
| 331 | 331 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 332 | htim->State = HAL_TIM_STATE_BUSY; |
332 | |
| 333 | 333 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 334 | /* Disable the TIM Peripheral Clock */ |
334 | |
| 335 | __HAL_TIM_DISABLE(htim); |
335 | /* Disable the TIM Peripheral Clock */ |
| 336 | 336 | __HAL_TIM_DISABLE(htim); |
|
| 337 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
337 | |
| 338 | if (htim->Base_MspDeInitCallback == NULL) |
338 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 339 | { |
339 | if (htim->Base_MspDeInitCallback == NULL) |
| 340 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
340 | { |
| 341 | } |
341 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
| 342 | /* DeInit the low level hardware */ |
342 | } |
| 343 | htim->Base_MspDeInitCallback(htim); |
343 | /* DeInit the low level hardware */ |
| 344 | #else |
344 | htim->Base_MspDeInitCallback(htim); |
| 345 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
345 | #else |
| 346 | HAL_TIM_Base_MspDeInit(htim); |
346 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
| 347 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
347 | HAL_TIM_Base_MspDeInit(htim); |
| 348 | 348 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 349 | /* Change the DMA burst operation state */ |
349 | |
| 350 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
350 | /* Change the DMA burst operation state */ |
| 351 | 351 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
|
| 352 | /* Change the TIM channels state */ |
352 | |
| 353 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
353 | /* Change the TIM channels state */ |
| 354 | 354 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
|
| 355 | /* Change TIM state */ |
355 | |
| 356 | htim->State = HAL_TIM_STATE_RESET; |
356 | /* Change TIM state */ |
| 357 | 357 | htim->State = HAL_TIM_STATE_RESET; |
|
| 358 | /* Release Lock */ |
358 | |
| 359 | __HAL_UNLOCK(htim); |
359 | /* Release Lock */ |
| 360 | 360 | __HAL_UNLOCK(htim); |
|
| 361 | return HAL_OK; |
361 | |
| 362 | } |
362 | return HAL_OK; |
| 363 | 363 | } |
|
| 364 | /** |
364 | |
| 365 | * @brief Initializes the TIM Base MSP. |
365 | /** |
| 366 | * @param htim TIM Base handle |
366 | * @brief Initializes the TIM Base MSP. |
| 367 | * @retval None |
367 | * @param htim TIM Base handle |
| 368 | */ |
368 | * @retval None |
| 369 | __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
369 | */ |
| 370 | { |
370 | __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
| 371 | /* Prevent unused argument(s) compilation warning */ |
371 | { |
| 372 | UNUSED(htim); |
372 | /* Prevent unused argument(s) compilation warning */ |
| 373 | 373 | UNUSED(htim); |
|
| 374 | /* NOTE : This function should not be modified, when the callback is needed, |
374 | |
| 375 | the HAL_TIM_Base_MspInit could be implemented in the user file |
375 | /* NOTE : This function should not be modified, when the callback is needed, |
| 376 | */ |
376 | the HAL_TIM_Base_MspInit could be implemented in the user file |
| 377 | } |
377 | */ |
| 378 | 378 | } |
|
| 379 | /** |
379 | |
| 380 | * @brief DeInitializes TIM Base MSP. |
380 | /** |
| 381 | * @param htim TIM Base handle |
381 | * @brief DeInitializes TIM Base MSP. |
| 382 | * @retval None |
382 | * @param htim TIM Base handle |
| 383 | */ |
383 | * @retval None |
| 384 | __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
384 | */ |
| 385 | { |
385 | __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
| 386 | /* Prevent unused argument(s) compilation warning */ |
386 | { |
| 387 | UNUSED(htim); |
387 | /* Prevent unused argument(s) compilation warning */ |
| 388 | 388 | UNUSED(htim); |
|
| 389 | /* NOTE : This function should not be modified, when the callback is needed, |
389 | |
| 390 | the HAL_TIM_Base_MspDeInit could be implemented in the user file |
390 | /* NOTE : This function should not be modified, when the callback is needed, |
| 391 | */ |
391 | the HAL_TIM_Base_MspDeInit could be implemented in the user file |
| 392 | } |
392 | */ |
| 393 | 393 | } |
|
| 394 | 394 | ||
| 395 | /** |
395 | |
| 396 | * @brief Starts the TIM Base generation. |
396 | /** |
| 397 | * @param htim TIM Base handle |
397 | * @brief Starts the TIM Base generation. |
| 398 | * @retval HAL status |
398 | * @param htim TIM Base handle |
| 399 | */ |
399 | * @retval HAL status |
| 400 | HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
400 | */ |
| 401 | { |
401 | HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
| 402 | uint32_t tmpsmcr; |
402 | { |
| 403 | 403 | uint32_t tmpsmcr; |
|
| 404 | /* Check the parameters */ |
404 | |
| 405 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
405 | /* Check the parameters */ |
| 406 | 406 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 407 | /* Check the TIM state */ |
407 | |
| 408 | if (htim->State != HAL_TIM_STATE_READY) |
408 | /* Check the TIM state */ |
| 409 | { |
409 | if (htim->State != HAL_TIM_STATE_READY) |
| 410 | return HAL_ERROR; |
410 | { |
| 411 | } |
411 | return HAL_ERROR; |
| 412 | 412 | } |
|
| 413 | /* Set the TIM state */ |
413 | |
| 414 | htim->State = HAL_TIM_STATE_BUSY; |
414 | /* Set the TIM state */ |
| 415 | 415 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 416 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
416 | |
| 417 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
417 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 418 | { |
418 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 419 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
419 | { |
| 420 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
420 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 421 | { |
421 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 422 | __HAL_TIM_ENABLE(htim); |
422 | { |
| 423 | } |
423 | __HAL_TIM_ENABLE(htim); |
| 424 | } |
424 | } |
| 425 | else |
425 | } |
| 426 | { |
426 | else |
| 427 | __HAL_TIM_ENABLE(htim); |
427 | { |
| 428 | } |
428 | __HAL_TIM_ENABLE(htim); |
| 429 | 429 | } |
|
| 430 | /* Return function status */ |
430 | |
| 431 | return HAL_OK; |
431 | /* Return function status */ |
| 432 | } |
432 | return HAL_OK; |
| 433 | 433 | } |
|
| 434 | /** |
434 | |
| 435 | * @brief Stops the TIM Base generation. |
435 | /** |
| 436 | * @param htim TIM Base handle |
436 | * @brief Stops the TIM Base generation. |
| 437 | * @retval HAL status |
437 | * @param htim TIM Base handle |
| 438 | */ |
438 | * @retval HAL status |
| 439 | HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
439 | */ |
| 440 | { |
440 | HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
| 441 | /* Check the parameters */ |
441 | { |
| 442 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
442 | /* Check the parameters */ |
| 443 | 443 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 444 | /* Disable the Peripheral */ |
444 | |
| 445 | __HAL_TIM_DISABLE(htim); |
445 | /* Disable the Peripheral */ |
| 446 | 446 | __HAL_TIM_DISABLE(htim); |
|
| 447 | /* Set the TIM state */ |
447 | |
| 448 | htim->State = HAL_TIM_STATE_READY; |
448 | /* Set the TIM state */ |
| 449 | 449 | htim->State = HAL_TIM_STATE_READY; |
|
| 450 | /* Return function status */ |
450 | |
| 451 | return HAL_OK; |
451 | /* Return function status */ |
| 452 | } |
452 | return HAL_OK; |
| 453 | 453 | } |
|
| 454 | /** |
454 | |
| 455 | * @brief Starts the TIM Base generation in interrupt mode. |
455 | /** |
| 456 | * @param htim TIM Base handle |
456 | * @brief Starts the TIM Base generation in interrupt mode. |
| 457 | * @retval HAL status |
457 | * @param htim TIM Base handle |
| 458 | */ |
458 | * @retval HAL status |
| 459 | HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
459 | */ |
| 460 | { |
460 | HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
| 461 | uint32_t tmpsmcr; |
461 | { |
| 462 | 462 | uint32_t tmpsmcr; |
|
| 463 | /* Check the parameters */ |
463 | |
| 464 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
464 | /* Check the parameters */ |
| 465 | 465 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 466 | /* Check the TIM state */ |
466 | |
| 467 | if (htim->State != HAL_TIM_STATE_READY) |
467 | /* Check the TIM state */ |
| 468 | { |
468 | if (htim->State != HAL_TIM_STATE_READY) |
| 469 | return HAL_ERROR; |
469 | { |
| 470 | } |
470 | return HAL_ERROR; |
| 471 | 471 | } |
|
| 472 | /* Set the TIM state */ |
472 | |
| 473 | htim->State = HAL_TIM_STATE_BUSY; |
473 | /* Set the TIM state */ |
| 474 | 474 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 475 | /* Enable the TIM Update interrupt */ |
475 | |
| 476 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
476 | /* Enable the TIM Update interrupt */ |
| 477 | 477 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
|
| 478 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
478 | |
| 479 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
479 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 480 | { |
480 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 481 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
481 | { |
| 482 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
482 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 483 | { |
483 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 484 | __HAL_TIM_ENABLE(htim); |
484 | { |
| 485 | } |
485 | __HAL_TIM_ENABLE(htim); |
| 486 | } |
486 | } |
| 487 | else |
487 | } |
| 488 | { |
488 | else |
| 489 | __HAL_TIM_ENABLE(htim); |
489 | { |
| 490 | } |
490 | __HAL_TIM_ENABLE(htim); |
| 491 | 491 | } |
|
| 492 | /* Return function status */ |
492 | |
| 493 | return HAL_OK; |
493 | /* Return function status */ |
| 494 | } |
494 | return HAL_OK; |
| 495 | 495 | } |
|
| 496 | /** |
496 | |
| 497 | * @brief Stops the TIM Base generation in interrupt mode. |
497 | /** |
| 498 | * @param htim TIM Base handle |
498 | * @brief Stops the TIM Base generation in interrupt mode. |
| 499 | * @retval HAL status |
499 | * @param htim TIM Base handle |
| 500 | */ |
500 | * @retval HAL status |
| 501 | HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
501 | */ |
| 502 | { |
502 | HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
| 503 | /* Check the parameters */ |
503 | { |
| 504 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
504 | /* Check the parameters */ |
| 505 | 505 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 506 | /* Disable the TIM Update interrupt */ |
506 | |
| 507 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
507 | /* Disable the TIM Update interrupt */ |
| 508 | 508 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
|
| 509 | /* Disable the Peripheral */ |
509 | |
| 510 | __HAL_TIM_DISABLE(htim); |
510 | /* Disable the Peripheral */ |
| 511 | 511 | __HAL_TIM_DISABLE(htim); |
|
| 512 | /* Set the TIM state */ |
512 | |
| 513 | htim->State = HAL_TIM_STATE_READY; |
513 | /* Set the TIM state */ |
| 514 | 514 | htim->State = HAL_TIM_STATE_READY; |
|
| 515 | /* Return function status */ |
515 | |
| 516 | return HAL_OK; |
516 | /* Return function status */ |
| 517 | } |
517 | return HAL_OK; |
| 518 | 518 | } |
|
| 519 | /** |
519 | |
| 520 | * @brief Starts the TIM Base generation in DMA mode. |
520 | /** |
| 521 | * @param htim TIM Base handle |
521 | * @brief Starts the TIM Base generation in DMA mode. |
| 522 | * @param pData The source Buffer address. |
522 | * @param htim TIM Base handle |
| 523 | * @param Length The length of data to be transferred from memory to peripheral. |
523 | * @param pData The source Buffer address. |
| 524 | * @retval HAL status |
524 | * @param Length The length of data to be transferred from memory to peripheral. |
| 525 | */ |
525 | * @retval HAL status |
| 526 | HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
526 | */ |
| 527 | { |
527 | HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length) |
| 528 | uint32_t tmpsmcr; |
528 | { |
| 529 | 529 | uint32_t tmpsmcr; |
|
| 530 | /* Check the parameters */ |
530 | |
| 531 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
531 | /* Check the parameters */ |
| 532 | 532 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
| 533 | /* Set the TIM state */ |
533 | |
| 534 | if (htim->State == HAL_TIM_STATE_BUSY) |
534 | /* Set the TIM state */ |
| 535 | { |
535 | if (htim->State == HAL_TIM_STATE_BUSY) |
| 536 | return HAL_BUSY; |
536 | { |
| 537 | } |
537 | return HAL_BUSY; |
| 538 | else if (htim->State == HAL_TIM_STATE_READY) |
538 | } |
| 539 | { |
539 | else if (htim->State == HAL_TIM_STATE_READY) |
| 540 | if ((pData == NULL) && (Length > 0U)) |
540 | { |
| 541 | { |
541 | if ((pData == NULL) || (Length == 0U)) |
| 542 | return HAL_ERROR; |
542 | { |
| 543 | } |
543 | return HAL_ERROR; |
| 544 | else |
544 | } |
| 545 | { |
545 | else |
| 546 | htim->State = HAL_TIM_STATE_BUSY; |
546 | { |
| 547 | } |
547 | htim->State = HAL_TIM_STATE_BUSY; |
| 548 | } |
548 | } |
| 549 | else |
549 | } |
| 550 | { |
550 | else |
| 551 | return HAL_ERROR; |
551 | { |
| 552 | } |
552 | return HAL_ERROR; |
| 553 | 553 | } |
|
| 554 | /* Set the DMA Period elapsed callbacks */ |
554 | |
| 555 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
555 | /* Set the DMA Period elapsed callbacks */ |
| 556 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
556 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| 557 | 557 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
|
| 558 | /* Set the DMA error callback */ |
558 | |
| 559 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
559 | /* Set the DMA error callback */ |
| 560 | 560 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
|
| 561 | /* Enable the DMA channel */ |
561 | |
| 562 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
562 | /* Enable the DMA channel */ |
| 563 | Length) != HAL_OK) |
563 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
| 564 | { |
564 | Length) != HAL_OK) |
| 565 | /* Return error status */ |
565 | { |
| 566 | return HAL_ERROR; |
566 | /* Return error status */ |
| 567 | } |
567 | return HAL_ERROR; |
| 568 | 568 | } |
|
| 569 | /* Enable the TIM Update DMA request */ |
569 | |
| 570 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
570 | /* Enable the TIM Update DMA request */ |
| 571 | 571 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
|
| 572 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
572 | |
| 573 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
573 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 574 | { |
574 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 575 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
575 | { |
| 576 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
576 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 577 | { |
577 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 578 | __HAL_TIM_ENABLE(htim); |
578 | { |
| 579 | } |
579 | __HAL_TIM_ENABLE(htim); |
| 580 | } |
580 | } |
| 581 | else |
581 | } |
| 582 | { |
582 | else |
| 583 | __HAL_TIM_ENABLE(htim); |
583 | { |
| 584 | } |
584 | __HAL_TIM_ENABLE(htim); |
| 585 | 585 | } |
|
| 586 | /* Return function status */ |
586 | |
| 587 | return HAL_OK; |
587 | /* Return function status */ |
| 588 | } |
588 | return HAL_OK; |
| 589 | 589 | } |
|
| 590 | /** |
590 | |
| 591 | * @brief Stops the TIM Base generation in DMA mode. |
591 | /** |
| 592 | * @param htim TIM Base handle |
592 | * @brief Stops the TIM Base generation in DMA mode. |
| 593 | * @retval HAL status |
593 | * @param htim TIM Base handle |
| 594 | */ |
594 | * @retval HAL status |
| 595 | HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
595 | */ |
| 596 | { |
596 | HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
| 597 | /* Check the parameters */ |
597 | { |
| 598 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
598 | /* Check the parameters */ |
| 599 | 599 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
|
| 600 | /* Disable the TIM Update DMA request */ |
600 | |
| 601 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
601 | /* Disable the TIM Update DMA request */ |
| 602 | 602 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
|
| 603 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
603 | |
| 604 | 604 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
|
| 605 | /* Disable the Peripheral */ |
605 | |
| 606 | __HAL_TIM_DISABLE(htim); |
606 | /* Disable the Peripheral */ |
| 607 | 607 | __HAL_TIM_DISABLE(htim); |
|
| 608 | /* Set the TIM state */ |
608 | |
| 609 | htim->State = HAL_TIM_STATE_READY; |
609 | /* Set the TIM state */ |
| 610 | 610 | htim->State = HAL_TIM_STATE_READY; |
|
| 611 | /* Return function status */ |
611 | |
| 612 | return HAL_OK; |
612 | /* Return function status */ |
| 613 | } |
613 | return HAL_OK; |
| 614 | 614 | } |
|
| 615 | /** |
615 | |
| 616 | * @} |
616 | /** |
| 617 | */ |
617 | * @} |
| 618 | 618 | */ |
|
| 619 | /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
619 | |
| 620 | * @brief TIM Output Compare functions |
620 | /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
| 621 | * |
621 | * @brief TIM Output Compare functions |
| 622 | @verbatim |
622 | * |
| 623 | ============================================================================== |
623 | @verbatim |
| 624 | ##### TIM Output Compare functions ##### |
624 | ============================================================================== |
| 625 | ============================================================================== |
625 | ##### TIM Output Compare functions ##### |
| 626 | [..] |
626 | ============================================================================== |
| 627 | This section provides functions allowing to: |
627 | [..] |
| 628 | (+) Initialize and configure the TIM Output Compare. |
628 | This section provides functions allowing to: |
| 629 | (+) De-initialize the TIM Output Compare. |
629 | (+) Initialize and configure the TIM Output Compare. |
| 630 | (+) Start the TIM Output Compare. |
630 | (+) De-initialize the TIM Output Compare. |
| 631 | (+) Stop the TIM Output Compare. |
631 | (+) Start the TIM Output Compare. |
| 632 | (+) Start the TIM Output Compare and enable interrupt. |
632 | (+) Stop the TIM Output Compare. |
| 633 | (+) Stop the TIM Output Compare and disable interrupt. |
633 | (+) Start the TIM Output Compare and enable interrupt. |
| 634 | (+) Start the TIM Output Compare and enable DMA transfer. |
634 | (+) Stop the TIM Output Compare and disable interrupt. |
| 635 | (+) Stop the TIM Output Compare and disable DMA transfer. |
635 | (+) Start the TIM Output Compare and enable DMA transfer. |
| 636 | 636 | (+) Stop the TIM Output Compare and disable DMA transfer. |
|
| 637 | @endverbatim |
637 | |
| 638 | * @{ |
638 | @endverbatim |
| 639 | */ |
639 | * @{ |
| 640 | /** |
640 | */ |
| 641 | * @brief Initializes the TIM Output Compare according to the specified |
641 | /** |
| 642 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
642 | * @brief Initializes the TIM Output Compare according to the specified |
| 643 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
643 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| 644 | * requires a timer reset to avoid unexpected direction |
644 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| 645 | * due to DIR bit readonly in center aligned mode. |
645 | * requires a timer reset to avoid unexpected direction |
| 646 | * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
646 | * due to DIR bit readonly in center aligned mode. |
| 647 | * @param htim TIM Output Compare handle |
647 | * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
| 648 | * @retval HAL status |
648 | * @param htim TIM Output Compare handle |
| 649 | */ |
649 | * @retval HAL status |
| 650 | HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
650 | */ |
| 651 | { |
651 | HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
| 652 | /* Check the TIM handle allocation */ |
652 | { |
| 653 | if (htim == NULL) |
653 | /* Check the TIM handle allocation */ |
| 654 | { |
654 | if (htim == NULL) |
| 655 | return HAL_ERROR; |
655 | { |
| 656 | } |
656 | return HAL_ERROR; |
| 657 | 657 | } |
|
| 658 | /* Check the parameters */ |
658 | |
| 659 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
659 | /* Check the parameters */ |
| 660 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
660 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 661 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
661 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 662 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
662 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| 663 | 663 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
| 664 | if (htim->State == HAL_TIM_STATE_RESET) |
664 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| 665 | { |
665 | |
| 666 | /* Allocate lock resource and initialize it */ |
666 | if (htim->State == HAL_TIM_STATE_RESET) |
| 667 | htim->Lock = HAL_UNLOCKED; |
667 | { |
| 668 | 668 | /* Allocate lock resource and initialize it */ |
|
| 669 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
669 | htim->Lock = HAL_UNLOCKED; |
| 670 | /* Reset interrupt callbacks to legacy weak callbacks */ |
670 | |
| 671 | TIM_ResetCallback(htim); |
671 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 672 | 672 | /* Reset interrupt callbacks to legacy weak callbacks */ |
|
| 673 | if (htim->OC_MspInitCallback == NULL) |
673 | TIM_ResetCallback(htim); |
| 674 | { |
674 | |
| 675 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
675 | if (htim->OC_MspInitCallback == NULL) |
| 676 | } |
676 | { |
| 677 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
677 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
| 678 | htim->OC_MspInitCallback(htim); |
678 | } |
| 679 | #else |
679 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 680 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
680 | htim->OC_MspInitCallback(htim); |
| 681 | HAL_TIM_OC_MspInit(htim); |
681 | #else |
| 682 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
682 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| 683 | } |
683 | HAL_TIM_OC_MspInit(htim); |
| 684 | 684 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 685 | /* Set the TIM state */ |
685 | } |
| 686 | htim->State = HAL_TIM_STATE_BUSY; |
686 | |
| 687 | 687 | /* Set the TIM state */ |
|
| 688 | /* Init the base time for the Output Compare */ |
688 | htim->State = HAL_TIM_STATE_BUSY; |
| 689 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
689 | |
| 690 | 690 | /* Init the base time for the Output Compare */ |
|
| 691 | /* Initialize the DMA burst operation state */ |
691 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| 692 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
692 | |
| 693 | 693 | /* Initialize the DMA burst operation state */ |
|
| 694 | /* Initialize the TIM channels state */ |
694 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 695 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
695 | |
| 696 | 696 | /* Initialize the TIM channels state */ |
|
| 697 | /* Initialize the TIM state*/ |
697 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| 698 | htim->State = HAL_TIM_STATE_READY; |
698 | |
| 699 | 699 | /* Initialize the TIM state*/ |
|
| 700 | return HAL_OK; |
700 | htim->State = HAL_TIM_STATE_READY; |
| 701 | } |
701 | |
| 702 | 702 | return HAL_OK; |
|
| 703 | /** |
703 | } |
| 704 | * @brief DeInitializes the TIM peripheral |
704 | |
| 705 | * @param htim TIM Output Compare handle |
705 | /** |
| 706 | * @retval HAL status |
706 | * @brief DeInitializes the TIM peripheral |
| 707 | */ |
707 | * @param htim TIM Output Compare handle |
| 708 | HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
708 | * @retval HAL status |
| 709 | { |
709 | */ |
| 710 | /* Check the parameters */ |
710 | HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
| 711 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
711 | { |
| 712 | 712 | /* Check the parameters */ |
|
| 713 | htim->State = HAL_TIM_STATE_BUSY; |
713 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 714 | 714 | ||
| 715 | /* Disable the TIM Peripheral Clock */ |
715 | htim->State = HAL_TIM_STATE_BUSY; |
| 716 | __HAL_TIM_DISABLE(htim); |
716 | |
| 717 | 717 | /* Disable the TIM Peripheral Clock */ |
|
| 718 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
718 | __HAL_TIM_DISABLE(htim); |
| 719 | if (htim->OC_MspDeInitCallback == NULL) |
719 | |
| 720 | { |
720 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 721 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
721 | if (htim->OC_MspDeInitCallback == NULL) |
| 722 | } |
722 | { |
| 723 | /* DeInit the low level hardware */ |
723 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
| 724 | htim->OC_MspDeInitCallback(htim); |
724 | } |
| 725 | #else |
725 | /* DeInit the low level hardware */ |
| 726 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
726 | htim->OC_MspDeInitCallback(htim); |
| 727 | HAL_TIM_OC_MspDeInit(htim); |
727 | #else |
| 728 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
728 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| 729 | 729 | HAL_TIM_OC_MspDeInit(htim); |
|
| 730 | /* Change the DMA burst operation state */ |
730 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 731 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
731 | |
| 732 | 732 | /* Change the DMA burst operation state */ |
|
| 733 | /* Change the TIM channels state */ |
733 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| 734 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
734 | |
| 735 | 735 | /* Change the TIM channels state */ |
|
| 736 | /* Change TIM state */ |
736 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| 737 | htim->State = HAL_TIM_STATE_RESET; |
737 | |
| 738 | 738 | /* Change TIM state */ |
|
| 739 | /* Release Lock */ |
739 | htim->State = HAL_TIM_STATE_RESET; |
| 740 | __HAL_UNLOCK(htim); |
740 | |
| 741 | 741 | /* Release Lock */ |
|
| 742 | return HAL_OK; |
742 | __HAL_UNLOCK(htim); |
| 743 | } |
743 | |
| 744 | 744 | return HAL_OK; |
|
| 745 | /** |
745 | } |
| 746 | * @brief Initializes the TIM Output Compare MSP. |
746 | |
| 747 | * @param htim TIM Output Compare handle |
747 | /** |
| 748 | * @retval None |
748 | * @brief Initializes the TIM Output Compare MSP. |
| 749 | */ |
749 | * @param htim TIM Output Compare handle |
| 750 | __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
750 | * @retval None |
| 751 | { |
751 | */ |
| 752 | /* Prevent unused argument(s) compilation warning */ |
752 | __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
| 753 | UNUSED(htim); |
753 | { |
| 754 | 754 | /* Prevent unused argument(s) compilation warning */ |
|
| 755 | /* NOTE : This function should not be modified, when the callback is needed, |
755 | UNUSED(htim); |
| 756 | the HAL_TIM_OC_MspInit could be implemented in the user file |
756 | |
| 757 | */ |
757 | /* NOTE : This function should not be modified, when the callback is needed, |
| 758 | } |
758 | the HAL_TIM_OC_MspInit could be implemented in the user file |
| 759 | 759 | */ |
|
| 760 | /** |
760 | } |
| 761 | * @brief DeInitializes TIM Output Compare MSP. |
761 | |
| 762 | * @param htim TIM Output Compare handle |
762 | /** |
| 763 | * @retval None |
763 | * @brief DeInitializes TIM Output Compare MSP. |
| 764 | */ |
764 | * @param htim TIM Output Compare handle |
| 765 | __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
765 | * @retval None |
| 766 | { |
766 | */ |
| 767 | /* Prevent unused argument(s) compilation warning */ |
767 | __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
| 768 | UNUSED(htim); |
768 | { |
| 769 | 769 | /* Prevent unused argument(s) compilation warning */ |
|
| 770 | /* NOTE : This function should not be modified, when the callback is needed, |
770 | UNUSED(htim); |
| 771 | the HAL_TIM_OC_MspDeInit could be implemented in the user file |
771 | |
| 772 | */ |
772 | /* NOTE : This function should not be modified, when the callback is needed, |
| 773 | } |
773 | the HAL_TIM_OC_MspDeInit could be implemented in the user file |
| 774 | 774 | */ |
|
| 775 | /** |
775 | } |
| 776 | * @brief Starts the TIM Output Compare signal generation. |
776 | |
| 777 | * @param htim TIM Output Compare handle |
777 | /** |
| 778 | * @param Channel TIM Channel to be enabled |
778 | * @brief Starts the TIM Output Compare signal generation. |
| 779 | * This parameter can be one of the following values: |
779 | * @param htim TIM Output Compare handle |
| 780 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
780 | * @param Channel TIM Channel to be enabled |
| 781 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
781 | * This parameter can be one of the following values: |
| 782 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
782 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 783 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
783 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 784 | * @retval HAL status |
784 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 785 | */ |
785 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 786 | HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
786 | * @retval HAL status |
| 787 | { |
787 | */ |
| 788 | uint32_t tmpsmcr; |
788 | HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 789 | 789 | { |
|
| 790 | /* Check the parameters */ |
790 | uint32_t tmpsmcr; |
| 791 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
791 | |
| 792 | 792 | /* Check the parameters */ |
|
| 793 | /* Check the TIM channel state */ |
793 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 794 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
794 | |
| 795 | { |
795 | /* Check the TIM channel state */ |
| 796 | return HAL_ERROR; |
796 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| 797 | } |
797 | { |
| 798 | 798 | return HAL_ERROR; |
|
| 799 | /* Set the TIM channel state */ |
799 | } |
| 800 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
800 | |
| 801 | 801 | /* Set the TIM channel state */ |
|
| 802 | /* Enable the Output compare channel */ |
802 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 803 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
803 | |
| 804 | 804 | /* Enable the Output compare channel */ |
|
| 805 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
805 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 806 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
806 | |
| 807 | { |
807 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 808 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
808 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 809 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
809 | { |
| 810 | { |
810 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 811 | __HAL_TIM_ENABLE(htim); |
811 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 812 | } |
812 | { |
| 813 | } |
813 | __HAL_TIM_ENABLE(htim); |
| 814 | else |
814 | } |
| 815 | { |
815 | } |
| 816 | __HAL_TIM_ENABLE(htim); |
816 | else |
| 817 | } |
817 | { |
| 818 | 818 | __HAL_TIM_ENABLE(htim); |
|
| 819 | /* Return function status */ |
819 | } |
| 820 | return HAL_OK; |
820 | |
| 821 | } |
821 | /* Return function status */ |
| 822 | 822 | return HAL_OK; |
|
| 823 | /** |
823 | } |
| 824 | * @brief Stops the TIM Output Compare signal generation. |
824 | |
| 825 | * @param htim TIM Output Compare handle |
825 | /** |
| 826 | * @param Channel TIM Channel to be disabled |
826 | * @brief Stops the TIM Output Compare signal generation. |
| 827 | * This parameter can be one of the following values: |
827 | * @param htim TIM Output Compare handle |
| 828 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
828 | * @param Channel TIM Channel to be disabled |
| 829 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
829 | * This parameter can be one of the following values: |
| 830 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
830 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 831 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
831 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 832 | * @retval HAL status |
832 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 833 | */ |
833 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 834 | HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
834 | * @retval HAL status |
| 835 | { |
835 | */ |
| 836 | /* Check the parameters */ |
836 | HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 837 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
837 | { |
| 838 | 838 | /* Check the parameters */ |
|
| 839 | /* Disable the Output compare channel */ |
839 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 840 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
840 | |
| 841 | 841 | /* Disable the Output compare channel */ |
|
| 842 | /* Disable the Peripheral */ |
842 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 843 | __HAL_TIM_DISABLE(htim); |
843 | |
| 844 | 844 | /* Disable the Peripheral */ |
|
| 845 | /* Set the TIM channel state */ |
845 | __HAL_TIM_DISABLE(htim); |
| 846 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
846 | |
| 847 | 847 | /* Set the TIM channel state */ |
|
| 848 | /* Return function status */ |
848 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 849 | return HAL_OK; |
849 | |
| 850 | } |
850 | /* Return function status */ |
| 851 | 851 | return HAL_OK; |
|
| 852 | /** |
852 | } |
| 853 | * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
853 | |
| 854 | * @param htim TIM Output Compare handle |
854 | /** |
| 855 | * @param Channel TIM Channel to be enabled |
855 | * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
| 856 | * This parameter can be one of the following values: |
856 | * @param htim TIM Output Compare handle |
| 857 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
857 | * @param Channel TIM Channel to be enabled |
| 858 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
858 | * This parameter can be one of the following values: |
| 859 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
859 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 860 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
860 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 861 | * @retval HAL status |
861 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 862 | */ |
862 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 863 | HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
863 | * @retval HAL status |
| 864 | { |
864 | */ |
| 865 | uint32_t tmpsmcr; |
865 | HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 866 | 866 | { |
|
| 867 | /* Check the parameters */ |
867 | HAL_StatusTypeDef status = HAL_OK; |
| 868 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
868 | uint32_t tmpsmcr; |
| 869 | 869 | ||
| 870 | /* Check the TIM channel state */ |
870 | /* Check the parameters */ |
| 871 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
871 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 872 | { |
872 | |
| 873 | return HAL_ERROR; |
873 | /* Check the TIM channel state */ |
| 874 | } |
874 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| 875 | 875 | { |
|
| 876 | /* Set the TIM channel state */ |
876 | return HAL_ERROR; |
| 877 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
877 | } |
| 878 | 878 | ||
| 879 | switch (Channel) |
879 | /* Set the TIM channel state */ |
| 880 | { |
880 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 881 | case TIM_CHANNEL_1: |
881 | |
| 882 | { |
882 | switch (Channel) |
| 883 | /* Enable the TIM Capture/Compare 1 interrupt */ |
883 | { |
| 884 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
884 | case TIM_CHANNEL_1: |
| 885 | break; |
885 | { |
| 886 | } |
886 | /* Enable the TIM Capture/Compare 1 interrupt */ |
| 887 | 887 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
| 888 | case TIM_CHANNEL_2: |
888 | break; |
| 889 | { |
889 | } |
| 890 | /* Enable the TIM Capture/Compare 2 interrupt */ |
890 | |
| 891 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
891 | case TIM_CHANNEL_2: |
| 892 | break; |
892 | { |
| 893 | } |
893 | /* Enable the TIM Capture/Compare 2 interrupt */ |
| 894 | 894 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
| 895 | case TIM_CHANNEL_3: |
895 | break; |
| 896 | { |
896 | } |
| 897 | /* Enable the TIM Capture/Compare 3 interrupt */ |
897 | |
| 898 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
898 | case TIM_CHANNEL_3: |
| 899 | break; |
899 | { |
| 900 | } |
900 | /* Enable the TIM Capture/Compare 3 interrupt */ |
| 901 | 901 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
|
| 902 | case TIM_CHANNEL_4: |
902 | break; |
| 903 | { |
903 | } |
| 904 | /* Enable the TIM Capture/Compare 4 interrupt */ |
904 | |
| 905 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
905 | case TIM_CHANNEL_4: |
| 906 | break; |
906 | { |
| 907 | } |
907 | /* Enable the TIM Capture/Compare 4 interrupt */ |
| 908 | 908 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
| 909 | default: |
909 | break; |
| 910 | break; |
910 | } |
| 911 | } |
911 | |
| 912 | 912 | default: |
|
| 913 | /* Enable the Output compare channel */ |
913 | status = HAL_ERROR; |
| 914 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
914 | break; |
| 915 | 915 | } |
|
| 916 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
916 | |
| 917 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
917 | if (status == HAL_OK) |
| 918 | { |
918 | { |
| 919 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
919 | /* Enable the Output compare channel */ |
| 920 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
920 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 921 | { |
921 | |
| 922 | __HAL_TIM_ENABLE(htim); |
922 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 923 | } |
923 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 924 | } |
924 | { |
| 925 | else |
925 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 926 | { |
926 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 927 | __HAL_TIM_ENABLE(htim); |
927 | { |
| 928 | } |
928 | __HAL_TIM_ENABLE(htim); |
| 929 | 929 | } |
|
| 930 | /* Return function status */ |
930 | } |
| 931 | return HAL_OK; |
931 | else |
| 932 | } |
932 | { |
| 933 | 933 | __HAL_TIM_ENABLE(htim); |
|
| 934 | /** |
934 | } |
| 935 | * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
935 | } |
| 936 | * @param htim TIM Output Compare handle |
936 | |
| 937 | * @param Channel TIM Channel to be disabled |
937 | /* Return function status */ |
| 938 | * This parameter can be one of the following values: |
938 | return status; |
| 939 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
939 | } |
| 940 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
940 | |
| 941 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
941 | /** |
| 942 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
942 | * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
| 943 | * @retval HAL status |
943 | * @param htim TIM Output Compare handle |
| 944 | */ |
944 | * @param Channel TIM Channel to be disabled |
| 945 | HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
945 | * This parameter can be one of the following values: |
| 946 | { |
946 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 947 | /* Check the parameters */ |
947 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 948 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
948 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 949 | 949 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
| 950 | switch (Channel) |
950 | * @retval HAL status |
| 951 | { |
951 | */ |
| 952 | case TIM_CHANNEL_1: |
952 | HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 953 | { |
953 | { |
| 954 | /* Disable the TIM Capture/Compare 1 interrupt */ |
954 | HAL_StatusTypeDef status = HAL_OK; |
| 955 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
955 | |
| 956 | break; |
956 | /* Check the parameters */ |
| 957 | } |
957 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 958 | 958 | ||
| 959 | case TIM_CHANNEL_2: |
959 | switch (Channel) |
| 960 | { |
960 | { |
| 961 | /* Disable the TIM Capture/Compare 2 interrupt */ |
961 | case TIM_CHANNEL_1: |
| 962 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
962 | { |
| 963 | break; |
963 | /* Disable the TIM Capture/Compare 1 interrupt */ |
| 964 | } |
964 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| 965 | 965 | break; |
|
| 966 | case TIM_CHANNEL_3: |
966 | } |
| 967 | { |
967 | |
| 968 | /* Disable the TIM Capture/Compare 3 interrupt */ |
968 | case TIM_CHANNEL_2: |
| 969 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
969 | { |
| 970 | break; |
970 | /* Disable the TIM Capture/Compare 2 interrupt */ |
| 971 | } |
971 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| 972 | 972 | break; |
|
| 973 | case TIM_CHANNEL_4: |
973 | } |
| 974 | { |
974 | |
| 975 | /* Disable the TIM Capture/Compare 4 interrupt */ |
975 | case TIM_CHANNEL_3: |
| 976 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
976 | { |
| 977 | break; |
977 | /* Disable the TIM Capture/Compare 3 interrupt */ |
| 978 | } |
978 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| 979 | 979 | break; |
|
| 980 | default: |
980 | } |
| 981 | break; |
981 | |
| 982 | } |
982 | case TIM_CHANNEL_4: |
| 983 | 983 | { |
|
| 984 | /* Disable the Output compare channel */ |
984 | /* Disable the TIM Capture/Compare 4 interrupt */ |
| 985 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
985 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| 986 | 986 | break; |
|
| 987 | /* Disable the Peripheral */ |
987 | } |
| 988 | __HAL_TIM_DISABLE(htim); |
988 | |
| 989 | 989 | default: |
|
| 990 | /* Set the TIM channel state */ |
990 | status = HAL_ERROR; |
| 991 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
991 | break; |
| 992 | 992 | } |
|
| 993 | /* Return function status */ |
993 | |
| 994 | return HAL_OK; |
994 | if (status == HAL_OK) |
| 995 | } |
995 | { |
| 996 | 996 | /* Disable the Output compare channel */ |
|
| 997 | /** |
997 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 998 | * @brief Starts the TIM Output Compare signal generation in DMA mode. |
998 | |
| 999 | * @param htim TIM Output Compare handle |
999 | /* Disable the Peripheral */ |
| 1000 | * @param Channel TIM Channel to be enabled |
1000 | __HAL_TIM_DISABLE(htim); |
| 1001 | * This parameter can be one of the following values: |
1001 | |
| 1002 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1002 | /* Set the TIM channel state */ |
| 1003 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1003 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 1004 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1004 | } |
| 1005 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1005 | |
| 1006 | * @param pData The source Buffer address. |
1006 | /* Return function status */ |
| 1007 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1007 | return status; |
| 1008 | * @retval HAL status |
1008 | } |
| 1009 | */ |
1009 | |
| 1010 | HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
1010 | /** |
| 1011 | { |
1011 | * @brief Starts the TIM Output Compare signal generation in DMA mode. |
| 1012 | uint32_t tmpsmcr; |
1012 | * @param htim TIM Output Compare handle |
| 1013 | 1013 | * @param Channel TIM Channel to be enabled |
|
| 1014 | /* Check the parameters */ |
1014 | * This parameter can be one of the following values: |
| 1015 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1015 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1016 | 1016 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 1017 | /* Set the TIM channel state */ |
1017 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1018 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1018 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1019 | { |
1019 | * @param pData The source Buffer address. |
| 1020 | return HAL_BUSY; |
1020 | * @param Length The length of data to be transferred from memory to TIM peripheral |
| 1021 | } |
1021 | * @retval HAL status |
| 1022 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1022 | */ |
| 1023 | { |
1023 | HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
| 1024 | if ((pData == NULL) && (Length > 0U)) |
1024 | uint16_t Length) |
| 1025 | { |
1025 | { |
| 1026 | return HAL_ERROR; |
1026 | HAL_StatusTypeDef status = HAL_OK; |
| 1027 | } |
1027 | uint32_t tmpsmcr; |
| 1028 | else |
1028 | |
| 1029 | { |
1029 | /* Check the parameters */ |
| 1030 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1030 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1031 | } |
1031 | |
| 1032 | } |
1032 | /* Set the TIM channel state */ |
| 1033 | else |
1033 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
| 1034 | { |
1034 | { |
| 1035 | return HAL_ERROR; |
1035 | return HAL_BUSY; |
| 1036 | } |
1036 | } |
| 1037 | 1037 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
|
| 1038 | switch (Channel) |
1038 | { |
| 1039 | { |
1039 | if ((pData == NULL) || (Length == 0U)) |
| 1040 | case TIM_CHANNEL_1: |
1040 | { |
| 1041 | { |
1041 | return HAL_ERROR; |
| 1042 | /* Set the DMA compare callbacks */ |
1042 | } |
| 1043 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1043 | else |
| 1044 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1044 | { |
| 1045 | 1045 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
| 1046 | /* Set the DMA error callback */ |
1046 | } |
| 1047 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1047 | } |
| 1048 | 1048 | else |
|
| 1049 | /* Enable the DMA channel */ |
1049 | { |
| 1050 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1050 | return HAL_ERROR; |
| 1051 | Length) != HAL_OK) |
1051 | } |
| 1052 | { |
1052 | |
| 1053 | /* Return error status */ |
1053 | switch (Channel) |
| 1054 | return HAL_ERROR; |
1054 | { |
| 1055 | } |
1055 | case TIM_CHANNEL_1: |
| 1056 | 1056 | { |
|
| 1057 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1057 | /* Set the DMA compare callbacks */ |
| 1058 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1058 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1059 | break; |
1059 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1060 | } |
1060 | |
| 1061 | 1061 | /* Set the DMA error callback */ |
|
| 1062 | case TIM_CHANNEL_2: |
1062 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 1063 | { |
1063 | |
| 1064 | /* Set the DMA compare callbacks */ |
1064 | /* Enable the DMA channel */ |
| 1065 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1065 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
| 1066 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1066 | Length) != HAL_OK) |
| 1067 | 1067 | { |
|
| 1068 | /* Set the DMA error callback */ |
1068 | /* Return error status */ |
| 1069 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
1069 | return HAL_ERROR; |
| 1070 | 1070 | } |
|
| 1071 | /* Enable the DMA channel */ |
1071 | |
| 1072 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1072 | /* Enable the TIM Capture/Compare 1 DMA request */ |
| 1073 | Length) != HAL_OK) |
1073 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| 1074 | { |
1074 | break; |
| 1075 | /* Return error status */ |
1075 | } |
| 1076 | return HAL_ERROR; |
1076 | |
| 1077 | } |
1077 | case TIM_CHANNEL_2: |
| 1078 | 1078 | { |
|
| 1079 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1079 | /* Set the DMA compare callbacks */ |
| 1080 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1080 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1081 | break; |
1081 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1082 | } |
1082 | |
| 1083 | 1083 | /* Set the DMA error callback */ |
|
| 1084 | case TIM_CHANNEL_3: |
1084 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| 1085 | { |
1085 | |
| 1086 | /* Set the DMA compare callbacks */ |
1086 | /* Enable the DMA channel */ |
| 1087 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1087 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
| 1088 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1088 | Length) != HAL_OK) |
| 1089 | 1089 | { |
|
| 1090 | /* Set the DMA error callback */ |
1090 | /* Return error status */ |
| 1091 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1091 | return HAL_ERROR; |
| 1092 | 1092 | } |
|
| 1093 | /* Enable the DMA channel */ |
1093 | |
| 1094 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1094 | /* Enable the TIM Capture/Compare 2 DMA request */ |
| 1095 | Length) != HAL_OK) |
1095 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| 1096 | { |
1096 | break; |
| 1097 | /* Return error status */ |
1097 | } |
| 1098 | return HAL_ERROR; |
1098 | |
| 1099 | } |
1099 | case TIM_CHANNEL_3: |
| 1100 | /* Enable the TIM Capture/Compare 3 DMA request */ |
1100 | { |
| 1101 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1101 | /* Set the DMA compare callbacks */ |
| 1102 | break; |
1102 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1103 | } |
1103 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1104 | 1104 | ||
| 1105 | case TIM_CHANNEL_4: |
1105 | /* Set the DMA error callback */ |
| 1106 | { |
1106 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| 1107 | /* Set the DMA compare callbacks */ |
1107 | |
| 1108 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1108 | /* Enable the DMA channel */ |
| 1109 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1109 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
| 1110 | 1110 | Length) != HAL_OK) |
|
| 1111 | /* Set the DMA error callback */ |
1111 | { |
| 1112 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1112 | /* Return error status */ |
| 1113 | 1113 | return HAL_ERROR; |
|
| 1114 | /* Enable the DMA channel */ |
1114 | } |
| 1115 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1115 | /* Enable the TIM Capture/Compare 3 DMA request */ |
| 1116 | Length) != HAL_OK) |
1116 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
| 1117 | { |
1117 | break; |
| 1118 | /* Return error status */ |
1118 | } |
| 1119 | return HAL_ERROR; |
1119 | |
| 1120 | } |
1120 | case TIM_CHANNEL_4: |
| 1121 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1121 | { |
| 1122 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1122 | /* Set the DMA compare callbacks */ |
| 1123 | break; |
1123 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1124 | } |
1124 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1125 | 1125 | ||
| 1126 | default: |
1126 | /* Set the DMA error callback */ |
| 1127 | break; |
1127 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| 1128 | } |
1128 | |
| 1129 | 1129 | /* Enable the DMA channel */ |
|
| 1130 | /* Enable the Output compare channel */ |
1130 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
| 1131 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1131 | Length) != HAL_OK) |
| 1132 | 1132 | { |
|
| 1133 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1133 | /* Return error status */ |
| 1134 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1134 | return HAL_ERROR; |
| 1135 | { |
1135 | } |
| 1136 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1136 | /* Enable the TIM Capture/Compare 4 DMA request */ |
| 1137 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1137 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| 1138 | { |
1138 | break; |
| 1139 | __HAL_TIM_ENABLE(htim); |
1139 | } |
| 1140 | } |
1140 | |
| 1141 | } |
1141 | default: |
| 1142 | else |
1142 | status = HAL_ERROR; |
| 1143 | { |
1143 | break; |
| 1144 | __HAL_TIM_ENABLE(htim); |
1144 | } |
| 1145 | } |
1145 | |
| 1146 | 1146 | if (status == HAL_OK) |
|
| 1147 | /* Return function status */ |
1147 | { |
| 1148 | return HAL_OK; |
1148 | /* Enable the Output compare channel */ |
| 1149 | } |
1149 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 1150 | 1150 | ||
| 1151 | /** |
1151 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 1152 | * @brief Stops the TIM Output Compare signal generation in DMA mode. |
1152 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 1153 | * @param htim TIM Output Compare handle |
1153 | { |
| 1154 | * @param Channel TIM Channel to be disabled |
1154 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 1155 | * This parameter can be one of the following values: |
1155 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 1156 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1156 | { |
| 1157 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1157 | __HAL_TIM_ENABLE(htim); |
| 1158 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1158 | } |
| 1159 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1159 | } |
| 1160 | * @retval HAL status |
1160 | else |
| 1161 | */ |
1161 | { |
| 1162 | HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1162 | __HAL_TIM_ENABLE(htim); |
| 1163 | { |
1163 | } |
| 1164 | /* Check the parameters */ |
1164 | } |
| 1165 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1165 | |
| 1166 | 1166 | /* Return function status */ |
|
| 1167 | switch (Channel) |
1167 | return status; |
| 1168 | { |
1168 | } |
| 1169 | case TIM_CHANNEL_1: |
1169 | |
| 1170 | { |
1170 | /** |
| 1171 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1171 | * @brief Stops the TIM Output Compare signal generation in DMA mode. |
| 1172 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1172 | * @param htim TIM Output Compare handle |
| 1173 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1173 | * @param Channel TIM Channel to be disabled |
| 1174 | break; |
1174 | * This parameter can be one of the following values: |
| 1175 | } |
1175 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1176 | 1176 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 1177 | case TIM_CHANNEL_2: |
1177 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1178 | { |
1178 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1179 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1179 | * @retval HAL status |
| 1180 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1180 | */ |
| 1181 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1181 | HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1182 | break; |
1182 | { |
| 1183 | } |
1183 | HAL_StatusTypeDef status = HAL_OK; |
| 1184 | 1184 | ||
| 1185 | case TIM_CHANNEL_3: |
1185 | /* Check the parameters */ |
| 1186 | { |
1186 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1187 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1187 | |
| 1188 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1188 | switch (Channel) |
| 1189 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1189 | { |
| 1190 | break; |
1190 | case TIM_CHANNEL_1: |
| 1191 | } |
1191 | { |
| 1192 | 1192 | /* Disable the TIM Capture/Compare 1 DMA request */ |
|
| 1193 | case TIM_CHANNEL_4: |
1193 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| 1194 | { |
1194 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 1195 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1195 | break; |
| 1196 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
1196 | } |
| 1197 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1197 | |
| 1198 | break; |
1198 | case TIM_CHANNEL_2: |
| 1199 | } |
1199 | { |
| 1200 | 1200 | /* Disable the TIM Capture/Compare 2 DMA request */ |
|
| 1201 | default: |
1201 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| 1202 | break; |
1202 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 1203 | } |
1203 | break; |
| 1204 | 1204 | } |
|
| 1205 | /* Disable the Output compare channel */ |
1205 | |
| 1206 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1206 | case TIM_CHANNEL_3: |
| 1207 | 1207 | { |
|
| 1208 | /* Disable the Peripheral */ |
1208 | /* Disable the TIM Capture/Compare 3 DMA request */ |
| 1209 | __HAL_TIM_DISABLE(htim); |
1209 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| 1210 | 1210 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
|
| 1211 | /* Set the TIM channel state */ |
1211 | break; |
| 1212 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1212 | } |
| 1213 | 1213 | ||
| 1214 | /* Return function status */ |
1214 | case TIM_CHANNEL_4: |
| 1215 | return HAL_OK; |
1215 | { |
| 1216 | } |
1216 | /* Disable the TIM Capture/Compare 4 interrupt */ |
| 1217 | 1217 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
|
| 1218 | /** |
1218 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| 1219 | * @} |
1219 | break; |
| 1220 | */ |
1220 | } |
| 1221 | 1221 | ||
| 1222 | /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
1222 | default: |
| 1223 | * @brief TIM PWM functions |
1223 | status = HAL_ERROR; |
| 1224 | * |
1224 | break; |
| 1225 | @verbatim |
1225 | } |
| 1226 | ============================================================================== |
1226 | |
| 1227 | ##### TIM PWM functions ##### |
1227 | if (status == HAL_OK) |
| 1228 | ============================================================================== |
1228 | { |
| 1229 | [..] |
1229 | /* Disable the Output compare channel */ |
| 1230 | This section provides functions allowing to: |
1230 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 1231 | (+) Initialize and configure the TIM PWM. |
1231 | |
| 1232 | (+) De-initialize the TIM PWM. |
1232 | /* Disable the Peripheral */ |
| 1233 | (+) Start the TIM PWM. |
1233 | __HAL_TIM_DISABLE(htim); |
| 1234 | (+) Stop the TIM PWM. |
1234 | |
| 1235 | (+) Start the TIM PWM and enable interrupt. |
1235 | /* Set the TIM channel state */ |
| 1236 | (+) Stop the TIM PWM and disable interrupt. |
1236 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 1237 | (+) Start the TIM PWM and enable DMA transfer. |
1237 | } |
| 1238 | (+) Stop the TIM PWM and disable DMA transfer. |
1238 | |
| 1239 | 1239 | /* Return function status */ |
|
| 1240 | @endverbatim |
1240 | return status; |
| 1241 | * @{ |
1241 | } |
| 1242 | */ |
1242 | |
| 1243 | /** |
1243 | /** |
| 1244 | * @brief Initializes the TIM PWM Time Base according to the specified |
1244 | * @} |
| 1245 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1245 | */ |
| 1246 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
1246 | |
| 1247 | * requires a timer reset to avoid unexpected direction |
1247 | /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
| 1248 | * due to DIR bit readonly in center aligned mode. |
1248 | * @brief TIM PWM functions |
| 1249 | * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
1249 | * |
| 1250 | * @param htim TIM PWM handle |
1250 | @verbatim |
| 1251 | * @retval HAL status |
1251 | ============================================================================== |
| 1252 | */ |
1252 | ##### TIM PWM functions ##### |
| 1253 | HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
1253 | ============================================================================== |
| 1254 | { |
1254 | [..] |
| 1255 | /* Check the TIM handle allocation */ |
1255 | This section provides functions allowing to: |
| 1256 | if (htim == NULL) |
1256 | (+) Initialize and configure the TIM PWM. |
| 1257 | { |
1257 | (+) De-initialize the TIM PWM. |
| 1258 | return HAL_ERROR; |
1258 | (+) Start the TIM PWM. |
| 1259 | } |
1259 | (+) Stop the TIM PWM. |
| 1260 | 1260 | (+) Start the TIM PWM and enable interrupt. |
|
| 1261 | /* Check the parameters */ |
1261 | (+) Stop the TIM PWM and disable interrupt. |
| 1262 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1262 | (+) Start the TIM PWM and enable DMA transfer. |
| 1263 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1263 | (+) Stop the TIM PWM and disable DMA transfer. |
| 1264 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1264 | |
| 1265 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1265 | @endverbatim |
| 1266 | 1266 | * @{ |
|
| 1267 | if (htim->State == HAL_TIM_STATE_RESET) |
1267 | */ |
| 1268 | { |
1268 | /** |
| 1269 | /* Allocate lock resource and initialize it */ |
1269 | * @brief Initializes the TIM PWM Time Base according to the specified |
| 1270 | htim->Lock = HAL_UNLOCKED; |
1270 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| 1271 | 1271 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
| 1272 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1272 | * requires a timer reset to avoid unexpected direction |
| 1273 | /* Reset interrupt callbacks to legacy weak callbacks */ |
1273 | * due to DIR bit readonly in center aligned mode. |
| 1274 | TIM_ResetCallback(htim); |
1274 | * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
| 1275 | 1275 | * @param htim TIM PWM handle |
|
| 1276 | if (htim->PWM_MspInitCallback == NULL) |
1276 | * @retval HAL status |
| 1277 | { |
1277 | */ |
| 1278 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
1278 | HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
| 1279 | } |
1279 | { |
| 1280 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1280 | /* Check the TIM handle allocation */ |
| 1281 | htim->PWM_MspInitCallback(htim); |
1281 | if (htim == NULL) |
| 1282 | #else |
1282 | { |
| 1283 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1283 | return HAL_ERROR; |
| 1284 | HAL_TIM_PWM_MspInit(htim); |
1284 | } |
| 1285 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1285 | |
| 1286 | } |
1286 | /* Check the parameters */ |
| 1287 | 1287 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 1288 | /* Set the TIM state */ |
1288 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 1289 | htim->State = HAL_TIM_STATE_BUSY; |
1289 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| 1290 | 1290 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
| 1291 | /* Init the base time for the PWM */ |
1291 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| 1292 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1292 | |
| 1293 | 1293 | if (htim->State == HAL_TIM_STATE_RESET) |
|
| 1294 | /* Initialize the DMA burst operation state */ |
1294 | { |
| 1295 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1295 | /* Allocate lock resource and initialize it */ |
| 1296 | 1296 | htim->Lock = HAL_UNLOCKED; |
|
| 1297 | /* Initialize the TIM channels state */ |
1297 | |
| 1298 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1298 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 1299 | 1299 | /* Reset interrupt callbacks to legacy weak callbacks */ |
|
| 1300 | /* Initialize the TIM state*/ |
1300 | TIM_ResetCallback(htim); |
| 1301 | htim->State = HAL_TIM_STATE_READY; |
1301 | |
| 1302 | 1302 | if (htim->PWM_MspInitCallback == NULL) |
|
| 1303 | return HAL_OK; |
1303 | { |
| 1304 | } |
1304 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
| 1305 | 1305 | } |
|
| 1306 | /** |
1306 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 1307 | * @brief DeInitializes the TIM peripheral |
1307 | htim->PWM_MspInitCallback(htim); |
| 1308 | * @param htim TIM PWM handle |
1308 | #else |
| 1309 | * @retval HAL status |
1309 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| 1310 | */ |
1310 | HAL_TIM_PWM_MspInit(htim); |
| 1311 | HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
1311 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 1312 | { |
1312 | } |
| 1313 | /* Check the parameters */ |
1313 | |
| 1314 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1314 | /* Set the TIM state */ |
| 1315 | 1315 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 1316 | htim->State = HAL_TIM_STATE_BUSY; |
1316 | |
| 1317 | 1317 | /* Init the base time for the PWM */ |
|
| 1318 | /* Disable the TIM Peripheral Clock */ |
1318 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| 1319 | __HAL_TIM_DISABLE(htim); |
1319 | |
| 1320 | 1320 | /* Initialize the DMA burst operation state */ |
|
| 1321 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1321 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 1322 | if (htim->PWM_MspDeInitCallback == NULL) |
1322 | |
| 1323 | { |
1323 | /* Initialize the TIM channels state */ |
| 1324 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
1324 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| 1325 | } |
1325 | |
| 1326 | /* DeInit the low level hardware */ |
1326 | /* Initialize the TIM state*/ |
| 1327 | htim->PWM_MspDeInitCallback(htim); |
1327 | htim->State = HAL_TIM_STATE_READY; |
| 1328 | #else |
1328 | |
| 1329 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1329 | return HAL_OK; |
| 1330 | HAL_TIM_PWM_MspDeInit(htim); |
1330 | } |
| 1331 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1331 | |
| 1332 | 1332 | /** |
|
| 1333 | /* Change the DMA burst operation state */ |
1333 | * @brief DeInitializes the TIM peripheral |
| 1334 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1334 | * @param htim TIM PWM handle |
| 1335 | 1335 | * @retval HAL status |
|
| 1336 | /* Change the TIM channels state */ |
1336 | */ |
| 1337 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1337 | HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
| 1338 | 1338 | { |
|
| 1339 | /* Change TIM state */ |
1339 | /* Check the parameters */ |
| 1340 | htim->State = HAL_TIM_STATE_RESET; |
1340 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 1341 | 1341 | ||
| 1342 | /* Release Lock */ |
1342 | htim->State = HAL_TIM_STATE_BUSY; |
| 1343 | __HAL_UNLOCK(htim); |
1343 | |
| 1344 | 1344 | /* Disable the TIM Peripheral Clock */ |
|
| 1345 | return HAL_OK; |
1345 | __HAL_TIM_DISABLE(htim); |
| 1346 | } |
1346 | |
| 1347 | 1347 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 1348 | /** |
1348 | if (htim->PWM_MspDeInitCallback == NULL) |
| 1349 | * @brief Initializes the TIM PWM MSP. |
1349 | { |
| 1350 | * @param htim TIM PWM handle |
1350 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
| 1351 | * @retval None |
1351 | } |
| 1352 | */ |
1352 | /* DeInit the low level hardware */ |
| 1353 | __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
1353 | htim->PWM_MspDeInitCallback(htim); |
| 1354 | { |
1354 | #else |
| 1355 | /* Prevent unused argument(s) compilation warning */ |
1355 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| 1356 | UNUSED(htim); |
1356 | HAL_TIM_PWM_MspDeInit(htim); |
| 1357 | 1357 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 1358 | /* NOTE : This function should not be modified, when the callback is needed, |
1358 | |
| 1359 | the HAL_TIM_PWM_MspInit could be implemented in the user file |
1359 | /* Change the DMA burst operation state */ |
| 1360 | */ |
1360 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| 1361 | } |
1361 | |
| 1362 | 1362 | /* Change the TIM channels state */ |
|
| 1363 | /** |
1363 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| 1364 | * @brief DeInitializes TIM PWM MSP. |
1364 | |
| 1365 | * @param htim TIM PWM handle |
1365 | /* Change TIM state */ |
| 1366 | * @retval None |
1366 | htim->State = HAL_TIM_STATE_RESET; |
| 1367 | */ |
1367 | |
| 1368 | __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
1368 | /* Release Lock */ |
| 1369 | { |
1369 | __HAL_UNLOCK(htim); |
| 1370 | /* Prevent unused argument(s) compilation warning */ |
1370 | |
| 1371 | UNUSED(htim); |
1371 | return HAL_OK; |
| 1372 | 1372 | } |
|
| 1373 | /* NOTE : This function should not be modified, when the callback is needed, |
1373 | |
| 1374 | the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
1374 | /** |
| 1375 | */ |
1375 | * @brief Initializes the TIM PWM MSP. |
| 1376 | } |
1376 | * @param htim TIM PWM handle |
| 1377 | 1377 | * @retval None |
|
| 1378 | /** |
1378 | */ |
| 1379 | * @brief Starts the PWM signal generation. |
1379 | __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
| 1380 | * @param htim TIM handle |
1380 | { |
| 1381 | * @param Channel TIM Channels to be enabled |
1381 | /* Prevent unused argument(s) compilation warning */ |
| 1382 | * This parameter can be one of the following values: |
1382 | UNUSED(htim); |
| 1383 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1383 | |
| 1384 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1384 | /* NOTE : This function should not be modified, when the callback is needed, |
| 1385 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1385 | the HAL_TIM_PWM_MspInit could be implemented in the user file |
| 1386 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1386 | */ |
| 1387 | * @retval HAL status |
1387 | } |
| 1388 | */ |
1388 | |
| 1389 | HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1389 | /** |
| 1390 | { |
1390 | * @brief DeInitializes TIM PWM MSP. |
| 1391 | uint32_t tmpsmcr; |
1391 | * @param htim TIM PWM handle |
| 1392 | 1392 | * @retval None |
|
| 1393 | /* Check the parameters */ |
1393 | */ |
| 1394 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1394 | __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
| 1395 | 1395 | { |
|
| 1396 | /* Check the TIM channel state */ |
1396 | /* Prevent unused argument(s) compilation warning */ |
| 1397 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1397 | UNUSED(htim); |
| 1398 | { |
1398 | |
| 1399 | return HAL_ERROR; |
1399 | /* NOTE : This function should not be modified, when the callback is needed, |
| 1400 | } |
1400 | the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
| 1401 | 1401 | */ |
|
| 1402 | /* Set the TIM channel state */ |
1402 | } |
| 1403 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1403 | |
| 1404 | 1404 | /** |
|
| 1405 | /* Enable the Capture compare channel */ |
1405 | * @brief Starts the PWM signal generation. |
| 1406 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1406 | * @param htim TIM handle |
| 1407 | 1407 | * @param Channel TIM Channels to be enabled |
|
| 1408 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1408 | * This parameter can be one of the following values: |
| 1409 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1409 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1410 | { |
1410 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 1411 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1411 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1412 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1412 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1413 | { |
1413 | * @retval HAL status |
| 1414 | __HAL_TIM_ENABLE(htim); |
1414 | */ |
| 1415 | } |
1415 | HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1416 | } |
1416 | { |
| 1417 | else |
1417 | uint32_t tmpsmcr; |
| 1418 | { |
1418 | |
| 1419 | __HAL_TIM_ENABLE(htim); |
1419 | /* Check the parameters */ |
| 1420 | } |
1420 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1421 | 1421 | ||
| 1422 | /* Return function status */ |
1422 | /* Check the TIM channel state */ |
| 1423 | return HAL_OK; |
1423 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| 1424 | } |
1424 | { |
| 1425 | 1425 | return HAL_ERROR; |
|
| 1426 | /** |
1426 | } |
| 1427 | * @brief Stops the PWM signal generation. |
1427 | |
| 1428 | * @param htim TIM PWM handle |
1428 | /* Set the TIM channel state */ |
| 1429 | * @param Channel TIM Channels to be disabled |
1429 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 1430 | * This parameter can be one of the following values: |
1430 | |
| 1431 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1431 | /* Enable the Capture compare channel */ |
| 1432 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1432 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 1433 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1433 | |
| 1434 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1434 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 1435 | * @retval HAL status |
1435 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 1436 | */ |
1436 | { |
| 1437 | HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
1437 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 1438 | { |
1438 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 1439 | /* Check the parameters */ |
1439 | { |
| 1440 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1440 | __HAL_TIM_ENABLE(htim); |
| 1441 | 1441 | } |
|
| 1442 | /* Disable the Capture compare channel */ |
1442 | } |
| 1443 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1443 | else |
| 1444 | 1444 | { |
|
| 1445 | /* Disable the Peripheral */ |
1445 | __HAL_TIM_ENABLE(htim); |
| 1446 | __HAL_TIM_DISABLE(htim); |
1446 | } |
| 1447 | 1447 | ||
| 1448 | /* Set the TIM channel state */ |
1448 | /* Return function status */ |
| 1449 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1449 | return HAL_OK; |
| 1450 | 1450 | } |
|
| 1451 | /* Return function status */ |
1451 | |
| 1452 | return HAL_OK; |
1452 | /** |
| 1453 | } |
1453 | * @brief Stops the PWM signal generation. |
| 1454 | 1454 | * @param htim TIM PWM handle |
|
| 1455 | /** |
1455 | * @param Channel TIM Channels to be disabled |
| 1456 | * @brief Starts the PWM signal generation in interrupt mode. |
1456 | * This parameter can be one of the following values: |
| 1457 | * @param htim TIM PWM handle |
1457 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1458 | * @param Channel TIM Channel to be enabled |
1458 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 1459 | * This parameter can be one of the following values: |
1459 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1460 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1460 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1461 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1461 | * @retval HAL status |
| 1462 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1462 | */ |
| 1463 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1463 | HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1464 | * @retval HAL status |
1464 | { |
| 1465 | */ |
1465 | /* Check the parameters */ |
| 1466 | HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1466 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1467 | { |
1467 | |
| 1468 | uint32_t tmpsmcr; |
1468 | /* Disable the Capture compare channel */ |
| 1469 | /* Check the parameters */ |
1469 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 1470 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1470 | |
| 1471 | 1471 | /* Disable the Peripheral */ |
|
| 1472 | /* Check the TIM channel state */ |
1472 | __HAL_TIM_DISABLE(htim); |
| 1473 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
1473 | |
| 1474 | { |
1474 | /* Set the TIM channel state */ |
| 1475 | return HAL_ERROR; |
1475 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 1476 | } |
1476 | |
| 1477 | 1477 | /* Return function status */ |
|
| 1478 | /* Set the TIM channel state */ |
1478 | return HAL_OK; |
| 1479 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1479 | } |
| 1480 | 1480 | ||
| 1481 | switch (Channel) |
1481 | /** |
| 1482 | { |
1482 | * @brief Starts the PWM signal generation in interrupt mode. |
| 1483 | case TIM_CHANNEL_1: |
1483 | * @param htim TIM PWM handle |
| 1484 | { |
1484 | * @param Channel TIM Channel to be enabled |
| 1485 | /* Enable the TIM Capture/Compare 1 interrupt */ |
1485 | * This parameter can be one of the following values: |
| 1486 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
1486 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1487 | break; |
1487 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 1488 | } |
1488 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1489 | 1489 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
| 1490 | case TIM_CHANNEL_2: |
1490 | * @retval HAL status |
| 1491 | { |
1491 | */ |
| 1492 | /* Enable the TIM Capture/Compare 2 interrupt */ |
1492 | HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1493 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
1493 | { |
| 1494 | break; |
1494 | HAL_StatusTypeDef status = HAL_OK; |
| 1495 | } |
1495 | uint32_t tmpsmcr; |
| 1496 | 1496 | ||
| 1497 | case TIM_CHANNEL_3: |
1497 | /* Check the parameters */ |
| 1498 | { |
1498 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1499 | /* Enable the TIM Capture/Compare 3 interrupt */ |
1499 | |
| 1500 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
1500 | /* Check the TIM channel state */ |
| 1501 | break; |
1501 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
| 1502 | } |
1502 | { |
| 1503 | 1503 | return HAL_ERROR; |
|
| 1504 | case TIM_CHANNEL_4: |
1504 | } |
| 1505 | { |
1505 | |
| 1506 | /* Enable the TIM Capture/Compare 4 interrupt */ |
1506 | /* Set the TIM channel state */ |
| 1507 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
1507 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 1508 | break; |
1508 | |
| 1509 | } |
1509 | switch (Channel) |
| 1510 | 1510 | { |
|
| 1511 | default: |
1511 | case TIM_CHANNEL_1: |
| 1512 | break; |
1512 | { |
| 1513 | } |
1513 | /* Enable the TIM Capture/Compare 1 interrupt */ |
| 1514 | 1514 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
|
| 1515 | /* Enable the Capture compare channel */ |
1515 | break; |
| 1516 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1516 | } |
| 1517 | 1517 | ||
| 1518 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1518 | case TIM_CHANNEL_2: |
| 1519 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1519 | { |
| 1520 | { |
1520 | /* Enable the TIM Capture/Compare 2 interrupt */ |
| 1521 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1521 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| 1522 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1522 | break; |
| 1523 | { |
1523 | } |
| 1524 | __HAL_TIM_ENABLE(htim); |
1524 | |
| 1525 | } |
1525 | case TIM_CHANNEL_3: |
| 1526 | } |
1526 | { |
| 1527 | else |
1527 | /* Enable the TIM Capture/Compare 3 interrupt */ |
| 1528 | { |
1528 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
| 1529 | __HAL_TIM_ENABLE(htim); |
1529 | break; |
| 1530 | } |
1530 | } |
| 1531 | 1531 | ||
| 1532 | /* Return function status */ |
1532 | case TIM_CHANNEL_4: |
| 1533 | return HAL_OK; |
1533 | { |
| 1534 | } |
1534 | /* Enable the TIM Capture/Compare 4 interrupt */ |
| 1535 | 1535 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
|
| 1536 | /** |
1536 | break; |
| 1537 | * @brief Stops the PWM signal generation in interrupt mode. |
1537 | } |
| 1538 | * @param htim TIM PWM handle |
1538 | |
| 1539 | * @param Channel TIM Channels to be disabled |
1539 | default: |
| 1540 | * This parameter can be one of the following values: |
1540 | status = HAL_ERROR; |
| 1541 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1541 | break; |
| 1542 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1542 | } |
| 1543 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1543 | |
| 1544 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1544 | if (status == HAL_OK) |
| 1545 | * @retval HAL status |
1545 | { |
| 1546 | */ |
1546 | /* Enable the Capture compare channel */ |
| 1547 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
1547 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 1548 | { |
1548 | |
| 1549 | /* Check the parameters */ |
1549 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 1550 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1550 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 1551 | 1551 | { |
|
| 1552 | switch (Channel) |
1552 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 1553 | { |
1553 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 1554 | case TIM_CHANNEL_1: |
1554 | { |
| 1555 | { |
1555 | __HAL_TIM_ENABLE(htim); |
| 1556 | /* Disable the TIM Capture/Compare 1 interrupt */ |
1556 | } |
| 1557 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
1557 | } |
| 1558 | break; |
1558 | else |
| 1559 | } |
1559 | { |
| 1560 | 1560 | __HAL_TIM_ENABLE(htim); |
|
| 1561 | case TIM_CHANNEL_2: |
1561 | } |
| 1562 | { |
1562 | } |
| 1563 | /* Disable the TIM Capture/Compare 2 interrupt */ |
1563 | |
| 1564 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
1564 | /* Return function status */ |
| 1565 | break; |
1565 | return status; |
| 1566 | } |
1566 | } |
| 1567 | 1567 | ||
| 1568 | case TIM_CHANNEL_3: |
1568 | /** |
| 1569 | { |
1569 | * @brief Stops the PWM signal generation in interrupt mode. |
| 1570 | /* Disable the TIM Capture/Compare 3 interrupt */ |
1570 | * @param htim TIM PWM handle |
| 1571 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
1571 | * @param Channel TIM Channels to be disabled |
| 1572 | break; |
1572 | * This parameter can be one of the following values: |
| 1573 | } |
1573 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1574 | 1574 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 1575 | case TIM_CHANNEL_4: |
1575 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1576 | { |
1576 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1577 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1577 | * @retval HAL status |
| 1578 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
1578 | */ |
| 1579 | break; |
1579 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1580 | } |
1580 | { |
| 1581 | 1581 | HAL_StatusTypeDef status = HAL_OK; |
|
| 1582 | default: |
1582 | |
| 1583 | break; |
1583 | /* Check the parameters */ |
| 1584 | } |
1584 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1585 | 1585 | ||
| 1586 | /* Disable the Capture compare channel */ |
1586 | switch (Channel) |
| 1587 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1587 | { |
| 1588 | 1588 | case TIM_CHANNEL_1: |
|
| 1589 | /* Disable the Peripheral */ |
1589 | { |
| 1590 | __HAL_TIM_DISABLE(htim); |
1590 | /* Disable the TIM Capture/Compare 1 interrupt */ |
| 1591 | 1591 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
|
| 1592 | /* Set the TIM channel state */ |
1592 | break; |
| 1593 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1593 | } |
| 1594 | 1594 | ||
| 1595 | /* Return function status */ |
1595 | case TIM_CHANNEL_2: |
| 1596 | return HAL_OK; |
1596 | { |
| 1597 | } |
1597 | /* Disable the TIM Capture/Compare 2 interrupt */ |
| 1598 | 1598 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
|
| 1599 | /** |
1599 | break; |
| 1600 | * @brief Starts the TIM PWM signal generation in DMA mode. |
1600 | } |
| 1601 | * @param htim TIM PWM handle |
1601 | |
| 1602 | * @param Channel TIM Channels to be enabled |
1602 | case TIM_CHANNEL_3: |
| 1603 | * This parameter can be one of the following values: |
1603 | { |
| 1604 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1604 | /* Disable the TIM Capture/Compare 3 interrupt */ |
| 1605 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1605 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| 1606 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1606 | break; |
| 1607 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1607 | } |
| 1608 | * @param pData The source Buffer address. |
1608 | |
| 1609 | * @param Length The length of data to be transferred from memory to TIM peripheral |
1609 | case TIM_CHANNEL_4: |
| 1610 | * @retval HAL status |
1610 | { |
| 1611 | */ |
1611 | /* Disable the TIM Capture/Compare 4 interrupt */ |
| 1612 | HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
1612 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| 1613 | { |
1613 | break; |
| 1614 | uint32_t tmpsmcr; |
1614 | } |
| 1615 | 1615 | ||
| 1616 | /* Check the parameters */ |
1616 | default: |
| 1617 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1617 | status = HAL_ERROR; |
| 1618 | 1618 | break; |
|
| 1619 | /* Set the TIM channel state */ |
1619 | } |
| 1620 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
1620 | |
| 1621 | { |
1621 | if (status == HAL_OK) |
| 1622 | return HAL_BUSY; |
1622 | { |
| 1623 | } |
1623 | /* Disable the Capture compare channel */ |
| 1624 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
1624 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 1625 | { |
1625 | |
| 1626 | if ((pData == NULL) && (Length > 0U)) |
1626 | /* Disable the Peripheral */ |
| 1627 | { |
1627 | __HAL_TIM_DISABLE(htim); |
| 1628 | return HAL_ERROR; |
1628 | |
| 1629 | } |
1629 | /* Set the TIM channel state */ |
| 1630 | else |
1630 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 1631 | { |
1631 | } |
| 1632 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
1632 | |
| 1633 | } |
1633 | /* Return function status */ |
| 1634 | } |
1634 | return status; |
| 1635 | else |
1635 | } |
| 1636 | { |
1636 | |
| 1637 | return HAL_ERROR; |
1637 | /** |
| 1638 | } |
1638 | * @brief Starts the TIM PWM signal generation in DMA mode. |
| 1639 | 1639 | * @param htim TIM PWM handle |
|
| 1640 | switch (Channel) |
1640 | * @param Channel TIM Channels to be enabled |
| 1641 | { |
1641 | * This parameter can be one of the following values: |
| 1642 | case TIM_CHANNEL_1: |
1642 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 1643 | { |
1643 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 1644 | /* Set the DMA compare callbacks */ |
1644 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1645 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1645 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1646 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1646 | * @param pData The source Buffer address. |
| 1647 | 1647 | * @param Length The length of data to be transferred from memory to TIM peripheral |
|
| 1648 | /* Set the DMA error callback */ |
1648 | * @retval HAL status |
| 1649 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
1649 | */ |
| 1650 | 1650 | HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData, |
|
| 1651 | /* Enable the DMA channel */ |
1651 | uint16_t Length) |
| 1652 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
1652 | { |
| 1653 | Length) != HAL_OK) |
1653 | HAL_StatusTypeDef status = HAL_OK; |
| 1654 | { |
1654 | uint32_t tmpsmcr; |
| 1655 | /* Return error status */ |
1655 | |
| 1656 | return HAL_ERROR; |
1656 | /* Check the parameters */ |
| 1657 | } |
1657 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1658 | 1658 | ||
| 1659 | /* Enable the TIM Capture/Compare 1 DMA request */ |
1659 | /* Set the TIM channel state */ |
| 1660 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
1660 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
| 1661 | break; |
1661 | { |
| 1662 | } |
1662 | return HAL_BUSY; |
| 1663 | 1663 | } |
|
| 1664 | case TIM_CHANNEL_2: |
1664 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
| 1665 | { |
1665 | { |
| 1666 | /* Set the DMA compare callbacks */ |
1666 | if ((pData == NULL) || (Length == 0U)) |
| 1667 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1667 | { |
| 1668 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1668 | return HAL_ERROR; |
| 1669 | 1669 | } |
|
| 1670 | /* Set the DMA error callback */ |
1670 | else |
| 1671 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
1671 | { |
| 1672 | 1672 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
| 1673 | /* Enable the DMA channel */ |
1673 | } |
| 1674 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
1674 | } |
| 1675 | Length) != HAL_OK) |
1675 | else |
| 1676 | { |
1676 | { |
| 1677 | /* Return error status */ |
1677 | return HAL_ERROR; |
| 1678 | return HAL_ERROR; |
1678 | } |
| 1679 | } |
1679 | |
| 1680 | /* Enable the TIM Capture/Compare 2 DMA request */ |
1680 | switch (Channel) |
| 1681 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
1681 | { |
| 1682 | break; |
1682 | case TIM_CHANNEL_1: |
| 1683 | } |
1683 | { |
| 1684 | 1684 | /* Set the DMA compare callbacks */ |
|
| 1685 | case TIM_CHANNEL_3: |
1685 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1686 | { |
1686 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1687 | /* Set the DMA compare callbacks */ |
1687 | |
| 1688 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1688 | /* Set the DMA error callback */ |
| 1689 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1689 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 1690 | 1690 | ||
| 1691 | /* Set the DMA error callback */ |
1691 | /* Enable the DMA channel */ |
| 1692 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
1692 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
| 1693 | 1693 | Length) != HAL_OK) |
|
| 1694 | /* Enable the DMA channel */ |
1694 | { |
| 1695 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
1695 | /* Return error status */ |
| 1696 | Length) != HAL_OK) |
1696 | return HAL_ERROR; |
| 1697 | { |
1697 | } |
| 1698 | /* Return error status */ |
1698 | |
| 1699 | return HAL_ERROR; |
1699 | /* Enable the TIM Capture/Compare 1 DMA request */ |
| 1700 | } |
1700 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| 1701 | /* Enable the TIM Output Capture/Compare 3 request */ |
1701 | break; |
| 1702 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
1702 | } |
| 1703 | break; |
1703 | |
| 1704 | } |
1704 | case TIM_CHANNEL_2: |
| 1705 | 1705 | { |
|
| 1706 | case TIM_CHANNEL_4: |
1706 | /* Set the DMA compare callbacks */ |
| 1707 | { |
1707 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1708 | /* Set the DMA compare callbacks */ |
1708 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1709 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
1709 | |
| 1710 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
1710 | /* Set the DMA error callback */ |
| 1711 | 1711 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
|
| 1712 | /* Set the DMA error callback */ |
1712 | |
| 1713 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
1713 | /* Enable the DMA channel */ |
| 1714 | 1714 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
|
| 1715 | /* Enable the DMA channel */ |
1715 | Length) != HAL_OK) |
| 1716 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
1716 | { |
| 1717 | Length) != HAL_OK) |
1717 | /* Return error status */ |
| 1718 | { |
1718 | return HAL_ERROR; |
| 1719 | /* Return error status */ |
1719 | } |
| 1720 | return HAL_ERROR; |
1720 | /* Enable the TIM Capture/Compare 2 DMA request */ |
| 1721 | } |
1721 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| 1722 | /* Enable the TIM Capture/Compare 4 DMA request */ |
1722 | break; |
| 1723 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
1723 | } |
| 1724 | break; |
1724 | |
| 1725 | } |
1725 | case TIM_CHANNEL_3: |
| 1726 | 1726 | { |
|
| 1727 | default: |
1727 | /* Set the DMA compare callbacks */ |
| 1728 | break; |
1728 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1729 | } |
1729 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1730 | 1730 | ||
| 1731 | /* Enable the Capture compare channel */ |
1731 | /* Set the DMA error callback */ |
| 1732 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
1732 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| 1733 | 1733 | ||
| 1734 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
1734 | /* Enable the DMA channel */ |
| 1735 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
1735 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
| 1736 | { |
1736 | Length) != HAL_OK) |
| 1737 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
1737 | { |
| 1738 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
1738 | /* Return error status */ |
| 1739 | { |
1739 | return HAL_ERROR; |
| 1740 | __HAL_TIM_ENABLE(htim); |
1740 | } |
| 1741 | } |
1741 | /* Enable the TIM Output Capture/Compare 3 request */ |
| 1742 | } |
1742 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
| 1743 | else |
1743 | break; |
| 1744 | { |
1744 | } |
| 1745 | __HAL_TIM_ENABLE(htim); |
1745 | |
| 1746 | } |
1746 | case TIM_CHANNEL_4: |
| 1747 | 1747 | { |
|
| 1748 | /* Return function status */ |
1748 | /* Set the DMA compare callbacks */ |
| 1749 | return HAL_OK; |
1749 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 1750 | } |
1750 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 1751 | 1751 | ||
| 1752 | /** |
1752 | /* Set the DMA error callback */ |
| 1753 | * @brief Stops the TIM PWM signal generation in DMA mode. |
1753 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| 1754 | * @param htim TIM PWM handle |
1754 | |
| 1755 | * @param Channel TIM Channels to be disabled |
1755 | /* Enable the DMA channel */ |
| 1756 | * This parameter can be one of the following values: |
1756 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
| 1757 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1757 | Length) != HAL_OK) |
| 1758 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1758 | { |
| 1759 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1759 | /* Return error status */ |
| 1760 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1760 | return HAL_ERROR; |
| 1761 | * @retval HAL status |
1761 | } |
| 1762 | */ |
1762 | /* Enable the TIM Capture/Compare 4 DMA request */ |
| 1763 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
1763 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| 1764 | { |
1764 | break; |
| 1765 | /* Check the parameters */ |
1765 | } |
| 1766 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1766 | |
| 1767 | 1767 | default: |
|
| 1768 | switch (Channel) |
1768 | status = HAL_ERROR; |
| 1769 | { |
1769 | break; |
| 1770 | case TIM_CHANNEL_1: |
1770 | } |
| 1771 | { |
1771 | |
| 1772 | /* Disable the TIM Capture/Compare 1 DMA request */ |
1772 | if (status == HAL_OK) |
| 1773 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
1773 | { |
| 1774 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
1774 | /* Enable the Capture compare channel */ |
| 1775 | break; |
1775 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 1776 | } |
1776 | |
| 1777 | 1777 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
|
| 1778 | case TIM_CHANNEL_2: |
1778 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 1779 | { |
1779 | { |
| 1780 | /* Disable the TIM Capture/Compare 2 DMA request */ |
1780 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 1781 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
1781 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 1782 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
1782 | { |
| 1783 | break; |
1783 | __HAL_TIM_ENABLE(htim); |
| 1784 | } |
1784 | } |
| 1785 | 1785 | } |
|
| 1786 | case TIM_CHANNEL_3: |
1786 | else |
| 1787 | { |
1787 | { |
| 1788 | /* Disable the TIM Capture/Compare 3 DMA request */ |
1788 | __HAL_TIM_ENABLE(htim); |
| 1789 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
1789 | } |
| 1790 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
1790 | } |
| 1791 | break; |
1791 | |
| 1792 | } |
1792 | /* Return function status */ |
| 1793 | 1793 | return status; |
|
| 1794 | case TIM_CHANNEL_4: |
1794 | } |
| 1795 | { |
1795 | |
| 1796 | /* Disable the TIM Capture/Compare 4 interrupt */ |
1796 | /** |
| 1797 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
1797 | * @brief Stops the TIM PWM signal generation in DMA mode. |
| 1798 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
1798 | * @param htim TIM PWM handle |
| 1799 | break; |
1799 | * @param Channel TIM Channels to be disabled |
| 1800 | } |
1800 | * This parameter can be one of the following values: |
| 1801 | 1801 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
| 1802 | default: |
1802 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 1803 | break; |
1803 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 1804 | } |
1804 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 1805 | 1805 | * @retval HAL status |
|
| 1806 | /* Disable the Capture compare channel */ |
1806 | */ |
| 1807 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
1807 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 1808 | 1808 | { |
|
| 1809 | /* Disable the Peripheral */ |
1809 | HAL_StatusTypeDef status = HAL_OK; |
| 1810 | __HAL_TIM_DISABLE(htim); |
1810 | |
| 1811 | 1811 | /* Check the parameters */ |
|
| 1812 | /* Set the TIM channel state */ |
1812 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 1813 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
1813 | |
| 1814 | 1814 | switch (Channel) |
|
| 1815 | /* Return function status */ |
1815 | { |
| 1816 | return HAL_OK; |
1816 | case TIM_CHANNEL_1: |
| 1817 | } |
1817 | { |
| 1818 | 1818 | /* Disable the TIM Capture/Compare 1 DMA request */ |
|
| 1819 | /** |
1819 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| 1820 | * @} |
1820 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 1821 | */ |
1821 | break; |
| 1822 | 1822 | } |
|
| 1823 | /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
1823 | |
| 1824 | * @brief TIM Input Capture functions |
1824 | case TIM_CHANNEL_2: |
| 1825 | * |
1825 | { |
| 1826 | @verbatim |
1826 | /* Disable the TIM Capture/Compare 2 DMA request */ |
| 1827 | ============================================================================== |
1827 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| 1828 | ##### TIM Input Capture functions ##### |
1828 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 1829 | ============================================================================== |
1829 | break; |
| 1830 | [..] |
1830 | } |
| 1831 | This section provides functions allowing to: |
1831 | |
| 1832 | (+) Initialize and configure the TIM Input Capture. |
1832 | case TIM_CHANNEL_3: |
| 1833 | (+) De-initialize the TIM Input Capture. |
1833 | { |
| 1834 | (+) Start the TIM Input Capture. |
1834 | /* Disable the TIM Capture/Compare 3 DMA request */ |
| 1835 | (+) Stop the TIM Input Capture. |
1835 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| 1836 | (+) Start the TIM Input Capture and enable interrupt. |
1836 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| 1837 | (+) Stop the TIM Input Capture and disable interrupt. |
1837 | break; |
| 1838 | (+) Start the TIM Input Capture and enable DMA transfer. |
1838 | } |
| 1839 | (+) Stop the TIM Input Capture and disable DMA transfer. |
1839 | |
| 1840 | 1840 | case TIM_CHANNEL_4: |
|
| 1841 | @endverbatim |
1841 | { |
| 1842 | * @{ |
1842 | /* Disable the TIM Capture/Compare 4 interrupt */ |
| 1843 | */ |
1843 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
| 1844 | /** |
1844 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| 1845 | * @brief Initializes the TIM Input Capture Time base according to the specified |
1845 | break; |
| 1846 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
1846 | } |
| 1847 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
1847 | |
| 1848 | * requires a timer reset to avoid unexpected direction |
1848 | default: |
| 1849 | * due to DIR bit readonly in center aligned mode. |
1849 | status = HAL_ERROR; |
| 1850 | * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
1850 | break; |
| 1851 | * @param htim TIM Input Capture handle |
1851 | } |
| 1852 | * @retval HAL status |
1852 | |
| 1853 | */ |
1853 | if (status == HAL_OK) |
| 1854 | HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
1854 | { |
| 1855 | { |
1855 | /* Disable the Capture compare channel */ |
| 1856 | /* Check the TIM handle allocation */ |
1856 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 1857 | if (htim == NULL) |
1857 | |
| 1858 | { |
1858 | /* Disable the Peripheral */ |
| 1859 | return HAL_ERROR; |
1859 | __HAL_TIM_DISABLE(htim); |
| 1860 | } |
1860 | |
| 1861 | 1861 | /* Set the TIM channel state */ |
|
| 1862 | /* Check the parameters */ |
1862 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 1863 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1863 | } |
| 1864 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
1864 | |
| 1865 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
1865 | /* Return function status */ |
| 1866 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
1866 | return status; |
| 1867 | 1867 | } |
|
| 1868 | if (htim->State == HAL_TIM_STATE_RESET) |
1868 | |
| 1869 | { |
1869 | /** |
| 1870 | /* Allocate lock resource and initialize it */ |
1870 | * @} |
| 1871 | htim->Lock = HAL_UNLOCKED; |
1871 | */ |
| 1872 | 1872 | ||
| 1873 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1873 | /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
| 1874 | /* Reset interrupt callbacks to legacy weak callbacks */ |
1874 | * @brief TIM Input Capture functions |
| 1875 | TIM_ResetCallback(htim); |
1875 | * |
| 1876 | 1876 | @verbatim |
|
| 1877 | if (htim->IC_MspInitCallback == NULL) |
1877 | ============================================================================== |
| 1878 | { |
1878 | ##### TIM Input Capture functions ##### |
| 1879 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
1879 | ============================================================================== |
| 1880 | } |
1880 | [..] |
| 1881 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
1881 | This section provides functions allowing to: |
| 1882 | htim->IC_MspInitCallback(htim); |
1882 | (+) Initialize and configure the TIM Input Capture. |
| 1883 | #else |
1883 | (+) De-initialize the TIM Input Capture. |
| 1884 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
1884 | (+) Start the TIM Input Capture. |
| 1885 | HAL_TIM_IC_MspInit(htim); |
1885 | (+) Stop the TIM Input Capture. |
| 1886 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1886 | (+) Start the TIM Input Capture and enable interrupt. |
| 1887 | } |
1887 | (+) Stop the TIM Input Capture and disable interrupt. |
| 1888 | 1888 | (+) Start the TIM Input Capture and enable DMA transfer. |
|
| 1889 | /* Set the TIM state */ |
1889 | (+) Stop the TIM Input Capture and disable DMA transfer. |
| 1890 | htim->State = HAL_TIM_STATE_BUSY; |
1890 | |
| 1891 | 1891 | @endverbatim |
|
| 1892 | /* Init the base time for the input capture */ |
1892 | * @{ |
| 1893 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
1893 | */ |
| 1894 | 1894 | /** |
|
| 1895 | /* Initialize the DMA burst operation state */ |
1895 | * @brief Initializes the TIM Input Capture Time base according to the specified |
| 1896 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
1896 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| 1897 | 1897 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
|
| 1898 | /* Initialize the TIM channels state */ |
1898 | * requires a timer reset to avoid unexpected direction |
| 1899 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
1899 | * due to DIR bit readonly in center aligned mode. |
| 1900 | 1900 | * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
|
| 1901 | /* Initialize the TIM state*/ |
1901 | * @param htim TIM Input Capture handle |
| 1902 | htim->State = HAL_TIM_STATE_READY; |
1902 | * @retval HAL status |
| 1903 | 1903 | */ |
|
| 1904 | return HAL_OK; |
1904 | HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
| 1905 | } |
1905 | { |
| 1906 | 1906 | /* Check the TIM handle allocation */ |
|
| 1907 | /** |
1907 | if (htim == NULL) |
| 1908 | * @brief DeInitializes the TIM peripheral |
1908 | { |
| 1909 | * @param htim TIM Input Capture handle |
1909 | return HAL_ERROR; |
| 1910 | * @retval HAL status |
1910 | } |
| 1911 | */ |
1911 | |
| 1912 | HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
1912 | /* Check the parameters */ |
| 1913 | { |
1913 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 1914 | /* Check the parameters */ |
1914 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 1915 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
1915 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| 1916 | 1916 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
|
| 1917 | htim->State = HAL_TIM_STATE_BUSY; |
1917 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| 1918 | 1918 | ||
| 1919 | /* Disable the TIM Peripheral Clock */ |
1919 | if (htim->State == HAL_TIM_STATE_RESET) |
| 1920 | __HAL_TIM_DISABLE(htim); |
1920 | { |
| 1921 | 1921 | /* Allocate lock resource and initialize it */ |
|
| 1922 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
1922 | htim->Lock = HAL_UNLOCKED; |
| 1923 | if (htim->IC_MspDeInitCallback == NULL) |
1923 | |
| 1924 | { |
1924 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 1925 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
1925 | /* Reset interrupt callbacks to legacy weak callbacks */ |
| 1926 | } |
1926 | TIM_ResetCallback(htim); |
| 1927 | /* DeInit the low level hardware */ |
1927 | |
| 1928 | htim->IC_MspDeInitCallback(htim); |
1928 | if (htim->IC_MspInitCallback == NULL) |
| 1929 | #else |
1929 | { |
| 1930 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
1930 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
| 1931 | HAL_TIM_IC_MspDeInit(htim); |
1931 | } |
| 1932 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
1932 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 1933 | 1933 | htim->IC_MspInitCallback(htim); |
|
| 1934 | /* Change the DMA burst operation state */ |
1934 | #else |
| 1935 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
1935 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| 1936 | 1936 | HAL_TIM_IC_MspInit(htim); |
|
| 1937 | /* Change the TIM channels state */ |
1937 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 1938 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
1938 | } |
| 1939 | 1939 | ||
| 1940 | /* Change TIM state */ |
1940 | /* Set the TIM state */ |
| 1941 | htim->State = HAL_TIM_STATE_RESET; |
1941 | htim->State = HAL_TIM_STATE_BUSY; |
| 1942 | 1942 | ||
| 1943 | /* Release Lock */ |
1943 | /* Init the base time for the input capture */ |
| 1944 | __HAL_UNLOCK(htim); |
1944 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| 1945 | 1945 | ||
| 1946 | return HAL_OK; |
1946 | /* Initialize the DMA burst operation state */ |
| 1947 | } |
1947 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 1948 | 1948 | ||
| 1949 | /** |
1949 | /* Initialize the TIM channels state */ |
| 1950 | * @brief Initializes the TIM Input Capture MSP. |
1950 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
| 1951 | * @param htim TIM Input Capture handle |
1951 | |
| 1952 | * @retval None |
1952 | /* Initialize the TIM state*/ |
| 1953 | */ |
1953 | htim->State = HAL_TIM_STATE_READY; |
| 1954 | __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
1954 | |
| 1955 | { |
1955 | return HAL_OK; |
| 1956 | /* Prevent unused argument(s) compilation warning */ |
1956 | } |
| 1957 | UNUSED(htim); |
1957 | |
| 1958 | 1958 | /** |
|
| 1959 | /* NOTE : This function should not be modified, when the callback is needed, |
1959 | * @brief DeInitializes the TIM peripheral |
| 1960 | the HAL_TIM_IC_MspInit could be implemented in the user file |
1960 | * @param htim TIM Input Capture handle |
| 1961 | */ |
1961 | * @retval HAL status |
| 1962 | } |
1962 | */ |
| 1963 | 1963 | HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
|
| 1964 | /** |
1964 | { |
| 1965 | * @brief DeInitializes TIM Input Capture MSP. |
1965 | /* Check the parameters */ |
| 1966 | * @param htim TIM handle |
1966 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 1967 | * @retval None |
1967 | |
| 1968 | */ |
1968 | htim->State = HAL_TIM_STATE_BUSY; |
| 1969 | __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
1969 | |
| 1970 | { |
1970 | /* Disable the TIM Peripheral Clock */ |
| 1971 | /* Prevent unused argument(s) compilation warning */ |
1971 | __HAL_TIM_DISABLE(htim); |
| 1972 | UNUSED(htim); |
1972 | |
| 1973 | 1973 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 1974 | /* NOTE : This function should not be modified, when the callback is needed, |
1974 | if (htim->IC_MspDeInitCallback == NULL) |
| 1975 | the HAL_TIM_IC_MspDeInit could be implemented in the user file |
1975 | { |
| 1976 | */ |
1976 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
| 1977 | } |
1977 | } |
| 1978 | 1978 | /* DeInit the low level hardware */ |
|
| 1979 | /** |
1979 | htim->IC_MspDeInitCallback(htim); |
| 1980 | * @brief Starts the TIM Input Capture measurement. |
1980 | #else |
| 1981 | * @param htim TIM Input Capture handle |
1981 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
| 1982 | * @param Channel TIM Channels to be enabled |
1982 | HAL_TIM_IC_MspDeInit(htim); |
| 1983 | * This parameter can be one of the following values: |
1983 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 1984 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
1984 | |
| 1985 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
1985 | /* Change the DMA burst operation state */ |
| 1986 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
1986 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| 1987 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
1987 | |
| 1988 | * @retval HAL status |
1988 | /* Change the TIM channels state */ |
| 1989 | */ |
1989 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
| 1990 | HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
1990 | |
| 1991 | { |
1991 | /* Change TIM state */ |
| 1992 | uint32_t tmpsmcr; |
1992 | htim->State = HAL_TIM_STATE_RESET; |
| 1993 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
1993 | |
| 1994 | 1994 | /* Release Lock */ |
|
| 1995 | /* Check the parameters */ |
1995 | __HAL_UNLOCK(htim); |
| 1996 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
1996 | |
| 1997 | 1997 | return HAL_OK; |
|
| 1998 | /* Check the TIM channel state */ |
1998 | } |
| 1999 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
1999 | |
| 2000 | { |
2000 | /** |
| 2001 | return HAL_ERROR; |
2001 | * @brief Initializes the TIM Input Capture MSP. |
| 2002 | } |
2002 | * @param htim TIM Input Capture handle |
| 2003 | 2003 | * @retval None |
|
| 2004 | /* Set the TIM channel state */ |
2004 | */ |
| 2005 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2005 | __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
| 2006 | 2006 | { |
|
| 2007 | /* Enable the Input Capture channel */ |
2007 | /* Prevent unused argument(s) compilation warning */ |
| 2008 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2008 | UNUSED(htim); |
| 2009 | 2009 | ||
| 2010 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2010 | /* NOTE : This function should not be modified, when the callback is needed, |
| 2011 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2011 | the HAL_TIM_IC_MspInit could be implemented in the user file |
| 2012 | { |
2012 | */ |
| 2013 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2013 | } |
| 2014 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2014 | |
| 2015 | { |
2015 | /** |
| 2016 | __HAL_TIM_ENABLE(htim); |
2016 | * @brief DeInitializes TIM Input Capture MSP. |
| 2017 | } |
2017 | * @param htim TIM handle |
| 2018 | } |
2018 | * @retval None |
| 2019 | else |
2019 | */ |
| 2020 | { |
2020 | __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
| 2021 | __HAL_TIM_ENABLE(htim); |
2021 | { |
| 2022 | } |
2022 | /* Prevent unused argument(s) compilation warning */ |
| 2023 | 2023 | UNUSED(htim); |
|
| 2024 | /* Return function status */ |
2024 | |
| 2025 | return HAL_OK; |
2025 | /* NOTE : This function should not be modified, when the callback is needed, |
| 2026 | } |
2026 | the HAL_TIM_IC_MspDeInit could be implemented in the user file |
| 2027 | 2027 | */ |
|
| 2028 | /** |
2028 | } |
| 2029 | * @brief Stops the TIM Input Capture measurement. |
2029 | |
| 2030 | * @param htim TIM Input Capture handle |
2030 | /** |
| 2031 | * @param Channel TIM Channels to be disabled |
2031 | * @brief Starts the TIM Input Capture measurement. |
| 2032 | * This parameter can be one of the following values: |
2032 | * @param htim TIM Input Capture handle |
| 2033 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2033 | * @param Channel TIM Channels to be enabled |
| 2034 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2034 | * This parameter can be one of the following values: |
| 2035 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2035 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 2036 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2036 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 2037 | * @retval HAL status |
2037 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2038 | */ |
2038 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2039 | HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
2039 | * @retval HAL status |
| 2040 | { |
2040 | */ |
| 2041 | /* Check the parameters */ |
2041 | HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 2042 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2042 | { |
| 2043 | 2043 | uint32_t tmpsmcr; |
|
| 2044 | /* Disable the Input Capture channel */ |
2044 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| 2045 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2045 | |
| 2046 | 2046 | /* Check the parameters */ |
|
| 2047 | /* Disable the Peripheral */ |
2047 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 2048 | __HAL_TIM_DISABLE(htim); |
2048 | |
| 2049 | 2049 | /* Check the TIM channel state */ |
|
| 2050 | /* Set the TIM channel state */ |
2050 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
| 2051 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2051 | { |
| 2052 | 2052 | return HAL_ERROR; |
|
| 2053 | /* Return function status */ |
2053 | } |
| 2054 | return HAL_OK; |
2054 | |
| 2055 | } |
2055 | /* Set the TIM channel state */ |
| 2056 | 2056 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
|
| 2057 | /** |
2057 | |
| 2058 | * @brief Starts the TIM Input Capture measurement in interrupt mode. |
2058 | /* Enable the Input Capture channel */ |
| 2059 | * @param htim TIM Input Capture handle |
2059 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 2060 | * @param Channel TIM Channels to be enabled |
2060 | |
| 2061 | * This parameter can be one of the following values: |
2061 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 2062 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2062 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 2063 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2063 | { |
| 2064 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2064 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 2065 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2065 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 2066 | * @retval HAL status |
2066 | { |
| 2067 | */ |
2067 | __HAL_TIM_ENABLE(htim); |
| 2068 | HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2068 | } |
| 2069 | { |
2069 | } |
| 2070 | uint32_t tmpsmcr; |
2070 | else |
| 2071 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2071 | { |
| 2072 | 2072 | __HAL_TIM_ENABLE(htim); |
|
| 2073 | /* Check the parameters */ |
2073 | } |
| 2074 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2074 | |
| 2075 | 2075 | /* Return function status */ |
|
| 2076 | /* Check the TIM channel state */ |
2076 | return HAL_OK; |
| 2077 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
2077 | } |
| 2078 | { |
2078 | |
| 2079 | return HAL_ERROR; |
2079 | /** |
| 2080 | } |
2080 | * @brief Stops the TIM Input Capture measurement. |
| 2081 | 2081 | * @param htim TIM Input Capture handle |
|
| 2082 | /* Set the TIM channel state */ |
2082 | * @param Channel TIM Channels to be disabled |
| 2083 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2083 | * This parameter can be one of the following values: |
| 2084 | 2084 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
| 2085 | switch (Channel) |
2085 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 2086 | { |
2086 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2087 | case TIM_CHANNEL_1: |
2087 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2088 | { |
2088 | * @retval HAL status |
| 2089 | /* Enable the TIM Capture/Compare 1 interrupt */ |
2089 | */ |
| 2090 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2090 | HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 2091 | break; |
2091 | { |
| 2092 | } |
2092 | /* Check the parameters */ |
| 2093 | 2093 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
| 2094 | case TIM_CHANNEL_2: |
2094 | |
| 2095 | { |
2095 | /* Disable the Input Capture channel */ |
| 2096 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2096 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 2097 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2097 | |
| 2098 | break; |
2098 | /* Disable the Peripheral */ |
| 2099 | } |
2099 | __HAL_TIM_DISABLE(htim); |
| 2100 | 2100 | ||
| 2101 | case TIM_CHANNEL_3: |
2101 | /* Set the TIM channel state */ |
| 2102 | { |
2102 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 2103 | /* Enable the TIM Capture/Compare 3 interrupt */ |
2103 | |
| 2104 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
2104 | /* Return function status */ |
| 2105 | break; |
2105 | return HAL_OK; |
| 2106 | } |
2106 | } |
| 2107 | 2107 | ||
| 2108 | case TIM_CHANNEL_4: |
2108 | /** |
| 2109 | { |
2109 | * @brief Starts the TIM Input Capture measurement in interrupt mode. |
| 2110 | /* Enable the TIM Capture/Compare 4 interrupt */ |
2110 | * @param htim TIM Input Capture handle |
| 2111 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
2111 | * @param Channel TIM Channels to be enabled |
| 2112 | break; |
2112 | * This parameter can be one of the following values: |
| 2113 | } |
2113 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 2114 | 2114 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 2115 | default: |
2115 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2116 | break; |
2116 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2117 | } |
2117 | * @retval HAL status |
| 2118 | /* Enable the Input Capture channel */ |
2118 | */ |
| 2119 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2119 | HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 2120 | 2120 | { |
|
| 2121 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2121 | HAL_StatusTypeDef status = HAL_OK; |
| 2122 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2122 | uint32_t tmpsmcr; |
| 2123 | { |
2123 | |
| 2124 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2124 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| 2125 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2125 | |
| 2126 | { |
2126 | /* Check the parameters */ |
| 2127 | __HAL_TIM_ENABLE(htim); |
2127 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 2128 | } |
2128 | |
| 2129 | } |
2129 | /* Check the TIM channel state */ |
| 2130 | else |
2130 | if (channel_state != HAL_TIM_CHANNEL_STATE_READY) |
| 2131 | { |
2131 | { |
| 2132 | __HAL_TIM_ENABLE(htim); |
2132 | return HAL_ERROR; |
| 2133 | } |
2133 | } |
| 2134 | 2134 | ||
| 2135 | /* Return function status */ |
2135 | /* Set the TIM channel state */ |
| 2136 | return HAL_OK; |
2136 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2137 | } |
2137 | |
| 2138 | 2138 | switch (Channel) |
|
| 2139 | /** |
2139 | { |
| 2140 | * @brief Stops the TIM Input Capture measurement in interrupt mode. |
2140 | case TIM_CHANNEL_1: |
| 2141 | * @param htim TIM Input Capture handle |
2141 | { |
| 2142 | * @param Channel TIM Channels to be disabled |
2142 | /* Enable the TIM Capture/Compare 1 interrupt */ |
| 2143 | * This parameter can be one of the following values: |
2143 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| 2144 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2144 | break; |
| 2145 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2145 | } |
| 2146 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2146 | |
| 2147 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2147 | case TIM_CHANNEL_2: |
| 2148 | * @retval HAL status |
2148 | { |
| 2149 | */ |
2149 | /* Enable the TIM Capture/Compare 2 interrupt */ |
| 2150 | HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
2150 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| 2151 | { |
2151 | break; |
| 2152 | /* Check the parameters */ |
2152 | } |
| 2153 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2153 | |
| 2154 | 2154 | case TIM_CHANNEL_3: |
|
| 2155 | switch (Channel) |
2155 | { |
| 2156 | { |
2156 | /* Enable the TIM Capture/Compare 3 interrupt */ |
| 2157 | case TIM_CHANNEL_1: |
2157 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
| 2158 | { |
2158 | break; |
| 2159 | /* Disable the TIM Capture/Compare 1 interrupt */ |
2159 | } |
| 2160 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2160 | |
| 2161 | break; |
2161 | case TIM_CHANNEL_4: |
| 2162 | } |
2162 | { |
| 2163 | 2163 | /* Enable the TIM Capture/Compare 4 interrupt */ |
|
| 2164 | case TIM_CHANNEL_2: |
2164 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
| 2165 | { |
2165 | break; |
| 2166 | /* Disable the TIM Capture/Compare 2 interrupt */ |
2166 | } |
| 2167 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2167 | |
| 2168 | break; |
2168 | default: |
| 2169 | } |
2169 | status = HAL_ERROR; |
| 2170 | 2170 | break; |
|
| 2171 | case TIM_CHANNEL_3: |
2171 | } |
| 2172 | { |
2172 | |
| 2173 | /* Disable the TIM Capture/Compare 3 interrupt */ |
2173 | if (status == HAL_OK) |
| 2174 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
2174 | { |
| 2175 | break; |
2175 | /* Enable the Input Capture channel */ |
| 2176 | } |
2176 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 2177 | 2177 | ||
| 2178 | case TIM_CHANNEL_4: |
2178 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 2179 | { |
2179 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 2180 | /* Disable the TIM Capture/Compare 4 interrupt */ |
2180 | { |
| 2181 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
2181 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 2182 | break; |
2182 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
| 2183 | } |
2183 | { |
| 2184 | 2184 | __HAL_TIM_ENABLE(htim); |
|
| 2185 | default: |
2185 | } |
| 2186 | break; |
2186 | } |
| 2187 | } |
2187 | else |
| 2188 | 2188 | { |
|
| 2189 | /* Disable the Input Capture channel */ |
2189 | __HAL_TIM_ENABLE(htim); |
| 2190 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2190 | } |
| 2191 | 2191 | } |
|
| 2192 | /* Disable the Peripheral */ |
2192 | |
| 2193 | __HAL_TIM_DISABLE(htim); |
2193 | /* Return function status */ |
| 2194 | 2194 | return status; |
|
| 2195 | /* Set the TIM channel state */ |
2195 | } |
| 2196 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2196 | |
| 2197 | 2197 | /** |
|
| 2198 | /* Return function status */ |
2198 | * @brief Stops the TIM Input Capture measurement in interrupt mode. |
| 2199 | return HAL_OK; |
2199 | * @param htim TIM Input Capture handle |
| 2200 | } |
2200 | * @param Channel TIM Channels to be disabled |
| 2201 | 2201 | * This parameter can be one of the following values: |
|
| 2202 | /** |
2202 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 2203 | * @brief Starts the TIM Input Capture measurement in DMA mode. |
2203 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 2204 | * @param htim TIM Input Capture handle |
2204 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2205 | * @param Channel TIM Channels to be enabled |
2205 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2206 | * This parameter can be one of the following values: |
2206 | * @retval HAL status |
| 2207 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2207 | */ |
| 2208 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2208 | HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 2209 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2209 | { |
| 2210 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2210 | HAL_StatusTypeDef status = HAL_OK; |
| 2211 | * @param pData The destination Buffer address. |
2211 | |
| 2212 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
2212 | /* Check the parameters */ |
| 2213 | * @retval HAL status |
2213 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 2214 | */ |
2214 | |
| 2215 | HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
2215 | switch (Channel) |
| 2216 | { |
2216 | { |
| 2217 | uint32_t tmpsmcr; |
2217 | case TIM_CHANNEL_1: |
| 2218 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
2218 | { |
| 2219 | 2219 | /* Disable the TIM Capture/Compare 1 interrupt */ |
|
| 2220 | /* Check the parameters */ |
2220 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| 2221 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2221 | break; |
| 2222 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2222 | } |
| 2223 | 2223 | ||
| 2224 | /* Set the TIM channel state */ |
2224 | case TIM_CHANNEL_2: |
| 2225 | if (channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
2225 | { |
| 2226 | { |
2226 | /* Disable the TIM Capture/Compare 2 interrupt */ |
| 2227 | return HAL_BUSY; |
2227 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| 2228 | } |
2228 | break; |
| 2229 | if (channel_state == HAL_TIM_CHANNEL_STATE_READY) |
2229 | } |
| 2230 | { |
2230 | |
| 2231 | if ((pData == NULL) && (Length > 0U)) |
2231 | case TIM_CHANNEL_3: |
| 2232 | { |
2232 | { |
| 2233 | return HAL_ERROR; |
2233 | /* Disable the TIM Capture/Compare 3 interrupt */ |
| 2234 | } |
2234 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
| 2235 | else |
2235 | break; |
| 2236 | { |
2236 | } |
| 2237 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
2237 | |
| 2238 | } |
2238 | case TIM_CHANNEL_4: |
| 2239 | } |
2239 | { |
| 2240 | else |
2240 | /* Disable the TIM Capture/Compare 4 interrupt */ |
| 2241 | { |
2241 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
| 2242 | return HAL_ERROR; |
2242 | break; |
| 2243 | } |
2243 | } |
| 2244 | 2244 | ||
| 2245 | /* Enable the Input Capture channel */ |
2245 | default: |
| 2246 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
2246 | status = HAL_ERROR; |
| 2247 | 2247 | break; |
|
| 2248 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
2248 | } |
| 2249 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
2249 | |
| 2250 | { |
2250 | if (status == HAL_OK) |
| 2251 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
2251 | { |
| 2252 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
2252 | /* Disable the Input Capture channel */ |
| 2253 | { |
2253 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 2254 | __HAL_TIM_ENABLE(htim); |
2254 | |
| 2255 | } |
2255 | /* Disable the Peripheral */ |
| 2256 | } |
2256 | __HAL_TIM_DISABLE(htim); |
| 2257 | else |
2257 | |
| 2258 | { |
2258 | /* Set the TIM channel state */ |
| 2259 | __HAL_TIM_ENABLE(htim); |
2259 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 2260 | } |
2260 | } |
| 2261 | 2261 | ||
| 2262 | switch (Channel) |
2262 | /* Return function status */ |
| 2263 | { |
2263 | return status; |
| 2264 | case TIM_CHANNEL_1: |
2264 | } |
| 2265 | { |
2265 | |
| 2266 | /* Set the DMA capture callbacks */ |
2266 | /** |
| 2267 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
2267 | * @brief Starts the TIM Input Capture measurement in DMA mode. |
| 2268 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2268 | * @param htim TIM Input Capture handle |
| 2269 | 2269 | * @param Channel TIM Channels to be enabled |
|
| 2270 | /* Set the DMA error callback */ |
2270 | * This parameter can be one of the following values: |
| 2271 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
2271 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 2272 | 2272 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 2273 | /* Enable the DMA channel */ |
2273 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2274 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
2274 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2275 | Length) != HAL_OK) |
2275 | * @param pData The destination Buffer address. |
| 2276 | { |
2276 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
| 2277 | /* Return error status */ |
2277 | * @retval HAL status |
| 2278 | return HAL_ERROR; |
2278 | */ |
| 2279 | } |
2279 | HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
| 2280 | /* Enable the TIM Capture/Compare 1 DMA request */ |
2280 | { |
| 2281 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
2281 | HAL_StatusTypeDef status = HAL_OK; |
| 2282 | break; |
2282 | uint32_t tmpsmcr; |
| 2283 | } |
2283 | |
| 2284 | 2284 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
|
| 2285 | case TIM_CHANNEL_2: |
2285 | |
| 2286 | { |
2286 | /* Check the parameters */ |
| 2287 | /* Set the DMA capture callbacks */ |
2287 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 2288 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
2288 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
| 2289 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2289 | |
| 2290 | 2290 | /* Set the TIM channel state */ |
|
| 2291 | /* Set the DMA error callback */ |
2291 | if (channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| 2292 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
2292 | { |
| 2293 | 2293 | return HAL_BUSY; |
|
| 2294 | /* Enable the DMA channel */ |
2294 | } |
| 2295 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
2295 | if (channel_state == HAL_TIM_CHANNEL_STATE_READY) |
| 2296 | Length) != HAL_OK) |
2296 | { |
| 2297 | { |
2297 | if ((pData == NULL) || (Length == 0U)) |
| 2298 | /* Return error status */ |
2298 | { |
| 2299 | return HAL_ERROR; |
2299 | return HAL_ERROR; |
| 2300 | } |
2300 | } |
| 2301 | /* Enable the TIM Capture/Compare 2 DMA request */ |
2301 | else |
| 2302 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
2302 | { |
| 2303 | break; |
2303 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2304 | } |
2304 | } |
| 2305 | 2305 | } |
|
| 2306 | case TIM_CHANNEL_3: |
2306 | else |
| 2307 | { |
2307 | { |
| 2308 | /* Set the DMA capture callbacks */ |
2308 | return HAL_ERROR; |
| 2309 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
2309 | } |
| 2310 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2310 | |
| 2311 | 2311 | /* Enable the Input Capture channel */ |
|
| 2312 | /* Set the DMA error callback */ |
2312 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
| 2313 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
2313 | |
| 2314 | 2314 | switch (Channel) |
|
| 2315 | /* Enable the DMA channel */ |
2315 | { |
| 2316 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
2316 | case TIM_CHANNEL_1: |
| 2317 | Length) != HAL_OK) |
2317 | { |
| 2318 | { |
2318 | /* Set the DMA capture callbacks */ |
| 2319 | /* Return error status */ |
2319 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| 2320 | return HAL_ERROR; |
2320 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 2321 | } |
2321 | |
| 2322 | /* Enable the TIM Capture/Compare 3 DMA request */ |
2322 | /* Set the DMA error callback */ |
| 2323 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
2323 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 2324 | break; |
2324 | |
| 2325 | } |
2325 | /* Enable the DMA channel */ |
| 2326 | 2326 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
|
| 2327 | case TIM_CHANNEL_4: |
2327 | Length) != HAL_OK) |
| 2328 | { |
2328 | { |
| 2329 | /* Set the DMA capture callbacks */ |
2329 | /* Return error status */ |
| 2330 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
2330 | return HAL_ERROR; |
| 2331 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
2331 | } |
| 2332 | 2332 | /* Enable the TIM Capture/Compare 1 DMA request */ |
|
| 2333 | /* Set the DMA error callback */ |
2333 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| 2334 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
2334 | break; |
| 2335 | 2335 | } |
|
| 2336 | /* Enable the DMA channel */ |
2336 | |
| 2337 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
2337 | case TIM_CHANNEL_2: |
| 2338 | Length) != HAL_OK) |
2338 | { |
| 2339 | { |
2339 | /* Set the DMA capture callbacks */ |
| 2340 | /* Return error status */ |
2340 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| 2341 | return HAL_ERROR; |
2341 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 2342 | } |
2342 | |
| 2343 | /* Enable the TIM Capture/Compare 4 DMA request */ |
2343 | /* Set the DMA error callback */ |
| 2344 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
2344 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| 2345 | break; |
2345 | |
| 2346 | } |
2346 | /* Enable the DMA channel */ |
| 2347 | 2347 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
|
| 2348 | default: |
2348 | Length) != HAL_OK) |
| 2349 | break; |
2349 | { |
| 2350 | } |
2350 | /* Return error status */ |
| 2351 | 2351 | return HAL_ERROR; |
|
| 2352 | /* Return function status */ |
2352 | } |
| 2353 | return HAL_OK; |
2353 | /* Enable the TIM Capture/Compare 2 DMA request */ |
| 2354 | } |
2354 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| 2355 | 2355 | break; |
|
| 2356 | /** |
2356 | } |
| 2357 | * @brief Stops the TIM Input Capture measurement in DMA mode. |
2357 | |
| 2358 | * @param htim TIM Input Capture handle |
2358 | case TIM_CHANNEL_3: |
| 2359 | * @param Channel TIM Channels to be disabled |
2359 | { |
| 2360 | * This parameter can be one of the following values: |
2360 | /* Set the DMA capture callbacks */ |
| 2361 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2361 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
| 2362 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2362 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 2363 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
2363 | |
| 2364 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
2364 | /* Set the DMA error callback */ |
| 2365 | * @retval HAL status |
2365 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| 2366 | */ |
2366 | |
| 2367 | HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
2367 | /* Enable the DMA channel */ |
| 2368 | { |
2368 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
| 2369 | /* Check the parameters */ |
2369 | Length) != HAL_OK) |
| 2370 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
2370 | { |
| 2371 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
2371 | /* Return error status */ |
| 2372 | 2372 | return HAL_ERROR; |
|
| 2373 | /* Disable the Input Capture channel */ |
2373 | } |
| 2374 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
2374 | /* Enable the TIM Capture/Compare 3 DMA request */ |
| 2375 | 2375 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
|
| 2376 | switch (Channel) |
2376 | break; |
| 2377 | { |
2377 | } |
| 2378 | case TIM_CHANNEL_1: |
2378 | |
| 2379 | { |
2379 | case TIM_CHANNEL_4: |
| 2380 | /* Disable the TIM Capture/Compare 1 DMA request */ |
2380 | { |
| 2381 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
2381 | /* Set the DMA capture callbacks */ |
| 2382 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
2382 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
| 2383 | break; |
2383 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 2384 | } |
2384 | |
| 2385 | 2385 | /* Set the DMA error callback */ |
|
| 2386 | case TIM_CHANNEL_2: |
2386 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| 2387 | { |
2387 | |
| 2388 | /* Disable the TIM Capture/Compare 2 DMA request */ |
2388 | /* Enable the DMA channel */ |
| 2389 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
2389 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
| 2390 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
2390 | Length) != HAL_OK) |
| 2391 | break; |
2391 | { |
| 2392 | } |
2392 | /* Return error status */ |
| 2393 | 2393 | return HAL_ERROR; |
|
| 2394 | case TIM_CHANNEL_3: |
2394 | } |
| 2395 | { |
2395 | /* Enable the TIM Capture/Compare 4 DMA request */ |
| 2396 | /* Disable the TIM Capture/Compare 3 DMA request */ |
2396 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
| 2397 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
2397 | break; |
| 2398 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
2398 | } |
| 2399 | break; |
2399 | |
| 2400 | } |
2400 | default: |
| 2401 | 2401 | status = HAL_ERROR; |
|
| 2402 | case TIM_CHANNEL_4: |
2402 | break; |
| 2403 | { |
2403 | } |
| 2404 | /* Disable the TIM Capture/Compare 4 DMA request */ |
2404 | |
| 2405 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
2405 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
| 2406 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
2406 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
| 2407 | break; |
2407 | { |
| 2408 | } |
2408 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
| 2409 | 2409 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
|
| 2410 | default: |
2410 | { |
| 2411 | break; |
2411 | __HAL_TIM_ENABLE(htim); |
| 2412 | } |
2412 | } |
| 2413 | 2413 | } |
|
| 2414 | /* Disable the Peripheral */ |
2414 | else |
| 2415 | __HAL_TIM_DISABLE(htim); |
2415 | { |
| 2416 | 2416 | __HAL_TIM_ENABLE(htim); |
|
| 2417 | /* Set the TIM channel state */ |
2417 | } |
| 2418 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
2418 | |
| 2419 | 2419 | /* Return function status */ |
|
| 2420 | /* Return function status */ |
2420 | return status; |
| 2421 | return HAL_OK; |
2421 | } |
| 2422 | } |
2422 | |
| 2423 | /** |
2423 | /** |
| 2424 | * @} |
2424 | * @brief Stops the TIM Input Capture measurement in DMA mode. |
| 2425 | */ |
2425 | * @param htim TIM Input Capture handle |
| 2426 | 2426 | * @param Channel TIM Channels to be disabled |
|
| 2427 | /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
2427 | * This parameter can be one of the following values: |
| 2428 | * @brief TIM One Pulse functions |
2428 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 2429 | * |
2429 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 2430 | @verbatim |
2430 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 2431 | ============================================================================== |
2431 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 2432 | ##### TIM One Pulse functions ##### |
2432 | * @retval HAL status |
| 2433 | ============================================================================== |
2433 | */ |
| 2434 | [..] |
2434 | HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 2435 | This section provides functions allowing to: |
2435 | { |
| 2436 | (+) Initialize and configure the TIM One Pulse. |
2436 | HAL_StatusTypeDef status = HAL_OK; |
| 2437 | (+) De-initialize the TIM One Pulse. |
2437 | |
| 2438 | (+) Start the TIM One Pulse. |
2438 | /* Check the parameters */ |
| 2439 | (+) Stop the TIM One Pulse. |
2439 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
| 2440 | (+) Start the TIM One Pulse and enable interrupt. |
2440 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
| 2441 | (+) Stop the TIM One Pulse and disable interrupt. |
2441 | |
| 2442 | (+) Start the TIM One Pulse and enable DMA transfer. |
2442 | /* Disable the Input Capture channel */ |
| 2443 | (+) Stop the TIM One Pulse and disable DMA transfer. |
2443 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
| 2444 | 2444 | ||
| 2445 | @endverbatim |
2445 | switch (Channel) |
| 2446 | * @{ |
2446 | { |
| 2447 | */ |
2447 | case TIM_CHANNEL_1: |
| 2448 | /** |
2448 | { |
| 2449 | * @brief Initializes the TIM One Pulse Time Base according to the specified |
2449 | /* Disable the TIM Capture/Compare 1 DMA request */ |
| 2450 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
2450 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| 2451 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2451 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 2452 | * requires a timer reset to avoid unexpected direction |
2452 | break; |
| 2453 | * due to DIR bit readonly in center aligned mode. |
2453 | } |
| 2454 | * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
2454 | |
| 2455 | * @note When the timer instance is initialized in One Pulse mode, timer |
2455 | case TIM_CHANNEL_2: |
| 2456 | * channels 1 and channel 2 are reserved and cannot be used for other |
2456 | { |
| 2457 | * purpose. |
2457 | /* Disable the TIM Capture/Compare 2 DMA request */ |
| 2458 | * @param htim TIM One Pulse handle |
2458 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| 2459 | * @param OnePulseMode Select the One pulse mode. |
2459 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 2460 | * This parameter can be one of the following values: |
2460 | break; |
| 2461 | * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
2461 | } |
| 2462 | * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
2462 | |
| 2463 | * @retval HAL status |
2463 | case TIM_CHANNEL_3: |
| 2464 | */ |
2464 | { |
| 2465 | HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
2465 | /* Disable the TIM Capture/Compare 3 DMA request */ |
| 2466 | { |
2466 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
| 2467 | /* Check the TIM handle allocation */ |
2467 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| 2468 | if (htim == NULL) |
2468 | break; |
| 2469 | { |
2469 | } |
| 2470 | return HAL_ERROR; |
2470 | |
| 2471 | } |
2471 | case TIM_CHANNEL_4: |
| 2472 | 2472 | { |
|
| 2473 | /* Check the parameters */ |
2473 | /* Disable the TIM Capture/Compare 4 DMA request */ |
| 2474 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2474 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
| 2475 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2475 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| 2476 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
2476 | break; |
| 2477 | assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
2477 | } |
| 2478 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
2478 | |
| 2479 | 2479 | default: |
|
| 2480 | if (htim->State == HAL_TIM_STATE_RESET) |
2480 | status = HAL_ERROR; |
| 2481 | { |
2481 | break; |
| 2482 | /* Allocate lock resource and initialize it */ |
2482 | } |
| 2483 | htim->Lock = HAL_UNLOCKED; |
2483 | |
| 2484 | 2484 | if (status == HAL_OK) |
|
| 2485 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2485 | { |
| 2486 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2486 | /* Disable the Peripheral */ |
| 2487 | TIM_ResetCallback(htim); |
2487 | __HAL_TIM_DISABLE(htim); |
| 2488 | 2488 | ||
| 2489 | if (htim->OnePulse_MspInitCallback == NULL) |
2489 | /* Set the TIM channel state */ |
| 2490 | { |
2490 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 2491 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
2491 | } |
| 2492 | } |
2492 | |
| 2493 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2493 | /* Return function status */ |
| 2494 | htim->OnePulse_MspInitCallback(htim); |
2494 | return status; |
| 2495 | #else |
2495 | } |
| 2496 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
2496 | /** |
| 2497 | HAL_TIM_OnePulse_MspInit(htim); |
2497 | * @} |
| 2498 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2498 | */ |
| 2499 | } |
2499 | |
| 2500 | 2500 | /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
|
| 2501 | /* Set the TIM state */ |
2501 | * @brief TIM One Pulse functions |
| 2502 | htim->State = HAL_TIM_STATE_BUSY; |
2502 | * |
| 2503 | 2503 | @verbatim |
|
| 2504 | /* Configure the Time base in the One Pulse Mode */ |
2504 | ============================================================================== |
| 2505 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2505 | ##### TIM One Pulse functions ##### |
| 2506 | 2506 | ============================================================================== |
|
| 2507 | /* Reset the OPM Bit */ |
2507 | [..] |
| 2508 | htim->Instance->CR1 &= ~TIM_CR1_OPM; |
2508 | This section provides functions allowing to: |
| 2509 | 2509 | (+) Initialize and configure the TIM One Pulse. |
|
| 2510 | /* Configure the OPM Mode */ |
2510 | (+) De-initialize the TIM One Pulse. |
| 2511 | htim->Instance->CR1 |= OnePulseMode; |
2511 | (+) Start the TIM One Pulse. |
| 2512 | 2512 | (+) Stop the TIM One Pulse. |
|
| 2513 | /* Initialize the DMA burst operation state */ |
2513 | (+) Start the TIM One Pulse and enable interrupt. |
| 2514 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2514 | (+) Stop the TIM One Pulse and disable interrupt. |
| 2515 | 2515 | (+) Start the TIM One Pulse and enable DMA transfer. |
|
| 2516 | /* Initialize the TIM channels state */ |
2516 | (+) Stop the TIM One Pulse and disable DMA transfer. |
| 2517 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2517 | |
| 2518 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2518 | @endverbatim |
| 2519 | 2519 | * @{ |
|
| 2520 | /* Initialize the TIM state*/ |
2520 | */ |
| 2521 | htim->State = HAL_TIM_STATE_READY; |
2521 | /** |
| 2522 | 2522 | * @brief Initializes the TIM One Pulse Time Base according to the specified |
|
| 2523 | return HAL_OK; |
2523 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
| 2524 | } |
2524 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| 2525 | 2525 | * requires a timer reset to avoid unexpected direction |
|
| 2526 | /** |
2526 | * due to DIR bit readonly in center aligned mode. |
| 2527 | * @brief DeInitializes the TIM One Pulse |
2527 | * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
| 2528 | * @param htim TIM One Pulse handle |
2528 | * @note When the timer instance is initialized in One Pulse mode, timer |
| 2529 | * @retval HAL status |
2529 | * channels 1 and channel 2 are reserved and cannot be used for other |
| 2530 | */ |
2530 | * purpose. |
| 2531 | HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
2531 | * @param htim TIM One Pulse handle |
| 2532 | { |
2532 | * @param OnePulseMode Select the One pulse mode. |
| 2533 | /* Check the parameters */ |
2533 | * This parameter can be one of the following values: |
| 2534 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2534 | * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
| 2535 | 2535 | * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
|
| 2536 | htim->State = HAL_TIM_STATE_BUSY; |
2536 | * @retval HAL status |
| 2537 | 2537 | */ |
|
| 2538 | /* Disable the TIM Peripheral Clock */ |
2538 | HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
| 2539 | __HAL_TIM_DISABLE(htim); |
2539 | { |
| 2540 | 2540 | /* Check the TIM handle allocation */ |
|
| 2541 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2541 | if (htim == NULL) |
| 2542 | if (htim->OnePulse_MspDeInitCallback == NULL) |
2542 | { |
| 2543 | { |
2543 | return HAL_ERROR; |
| 2544 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
2544 | } |
| 2545 | } |
2545 | |
| 2546 | /* DeInit the low level hardware */ |
2546 | /* Check the parameters */ |
| 2547 | htim->OnePulse_MspDeInitCallback(htim); |
2547 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 2548 | #else |
2548 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 2549 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
2549 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
| 2550 | HAL_TIM_OnePulse_MspDeInit(htim); |
2550 | assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
| 2551 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2551 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
| 2552 | 2552 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
|
| 2553 | /* Change the DMA burst operation state */ |
2553 | |
| 2554 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
2554 | if (htim->State == HAL_TIM_STATE_RESET) |
| 2555 | 2555 | { |
|
| 2556 | /* Set the TIM channel state */ |
2556 | /* Allocate lock resource and initialize it */ |
| 2557 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
2557 | htim->Lock = HAL_UNLOCKED; |
| 2558 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
2558 | |
| 2559 | 2559 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 2560 | /* Change TIM state */ |
2560 | /* Reset interrupt callbacks to legacy weak callbacks */ |
| 2561 | htim->State = HAL_TIM_STATE_RESET; |
2561 | TIM_ResetCallback(htim); |
| 2562 | 2562 | ||
| 2563 | /* Release Lock */ |
2563 | if (htim->OnePulse_MspInitCallback == NULL) |
| 2564 | __HAL_UNLOCK(htim); |
2564 | { |
| 2565 | 2565 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
|
| 2566 | return HAL_OK; |
2566 | } |
| 2567 | } |
2567 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 2568 | 2568 | htim->OnePulse_MspInitCallback(htim); |
|
| 2569 | /** |
2569 | #else |
| 2570 | * @brief Initializes the TIM One Pulse MSP. |
2570 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
| 2571 | * @param htim TIM One Pulse handle |
2571 | HAL_TIM_OnePulse_MspInit(htim); |
| 2572 | * @retval None |
2572 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 2573 | */ |
2573 | } |
| 2574 | __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
2574 | |
| 2575 | { |
2575 | /* Set the TIM state */ |
| 2576 | /* Prevent unused argument(s) compilation warning */ |
2576 | htim->State = HAL_TIM_STATE_BUSY; |
| 2577 | UNUSED(htim); |
2577 | |
| 2578 | 2578 | /* Configure the Time base in the One Pulse Mode */ |
|
| 2579 | /* NOTE : This function should not be modified, when the callback is needed, |
2579 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| 2580 | the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
2580 | |
| 2581 | */ |
2581 | /* Reset the OPM Bit */ |
| 2582 | } |
2582 | htim->Instance->CR1 &= ~TIM_CR1_OPM; |
| 2583 | 2583 | ||
| 2584 | /** |
2584 | /* Configure the OPM Mode */ |
| 2585 | * @brief DeInitializes TIM One Pulse MSP. |
2585 | htim->Instance->CR1 |= OnePulseMode; |
| 2586 | * @param htim TIM One Pulse handle |
2586 | |
| 2587 | * @retval None |
2587 | /* Initialize the DMA burst operation state */ |
| 2588 | */ |
2588 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 2589 | __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
2589 | |
| 2590 | { |
2590 | /* Initialize the TIM channels state */ |
| 2591 | /* Prevent unused argument(s) compilation warning */ |
2591 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 2592 | UNUSED(htim); |
2592 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 2593 | 2593 | ||
| 2594 | /* NOTE : This function should not be modified, when the callback is needed, |
2594 | /* Initialize the TIM state*/ |
| 2595 | the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
2595 | htim->State = HAL_TIM_STATE_READY; |
| 2596 | */ |
2596 | |
| 2597 | } |
2597 | return HAL_OK; |
| 2598 | 2598 | } |
|
| 2599 | /** |
2599 | |
| 2600 | * @brief Starts the TIM One Pulse signal generation. |
2600 | /** |
| 2601 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2601 | * @brief DeInitializes the TIM One Pulse |
| 2602 | * it has been kept to avoid HAL_TIM API compatibility break. |
2602 | * @param htim TIM One Pulse handle |
| 2603 | * @note The pulse output channel is determined when calling |
2603 | * @retval HAL status |
| 2604 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2604 | */ |
| 2605 | * @param htim TIM One Pulse handle |
2605 | HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
| 2606 | * @param OutputChannel See note above |
2606 | { |
| 2607 | * @retval HAL status |
2607 | /* Check the parameters */ |
| 2608 | */ |
2608 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 2609 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2609 | |
| 2610 | { |
2610 | htim->State = HAL_TIM_STATE_BUSY; |
| 2611 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
2611 | |
| 2612 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2612 | /* Disable the TIM Peripheral Clock */ |
| 2613 | 2613 | __HAL_TIM_DISABLE(htim); |
|
| 2614 | /* Prevent unused argument(s) compilation warning */ |
2614 | |
| 2615 | UNUSED(OutputChannel); |
2615 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 2616 | 2616 | if (htim->OnePulse_MspDeInitCallback == NULL) |
|
| 2617 | /* Check the TIM channels state */ |
2617 | { |
| 2618 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2618 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
| 2619 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
2619 | } |
| 2620 | { |
2620 | /* DeInit the low level hardware */ |
| 2621 | return HAL_ERROR; |
2621 | htim->OnePulse_MspDeInitCallback(htim); |
| 2622 | } |
2622 | #else |
| 2623 | 2623 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
|
| 2624 | /* Set the TIM channels state */ |
2624 | HAL_TIM_OnePulse_MspDeInit(htim); |
| 2625 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2625 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 2626 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2626 | |
| 2627 | 2627 | /* Change the DMA burst operation state */ |
|
| 2628 | /* Enable the Capture compare and the Input Capture channels |
2628 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| 2629 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2629 | |
| 2630 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2630 | /* Set the TIM channel state */ |
| 2631 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2631 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| 2632 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2632 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| 2633 | 2633 | ||
| 2634 | No need to enable the counter, it's enabled automatically by hardware |
2634 | /* Change TIM state */ |
| 2635 | (the counter starts in response to a stimulus and generate a pulse */ |
2635 | htim->State = HAL_TIM_STATE_RESET; |
| 2636 | 2636 | ||
| 2637 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2637 | /* Release Lock */ |
| 2638 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2638 | __HAL_UNLOCK(htim); |
| 2639 | 2639 | ||
| 2640 | /* Return function status */ |
2640 | return HAL_OK; |
| 2641 | return HAL_OK; |
2641 | } |
| 2642 | } |
2642 | |
| 2643 | 2643 | /** |
|
| 2644 | /** |
2644 | * @brief Initializes the TIM One Pulse MSP. |
| 2645 | * @brief Stops the TIM One Pulse signal generation. |
2645 | * @param htim TIM One Pulse handle |
| 2646 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2646 | * @retval None |
| 2647 | * it has been kept to avoid HAL_TIM API compatibility break. |
2647 | */ |
| 2648 | * @note The pulse output channel is determined when calling |
2648 | __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
| 2649 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2649 | { |
| 2650 | * @param htim TIM One Pulse handle |
2650 | /* Prevent unused argument(s) compilation warning */ |
| 2651 | * @param OutputChannel See note above |
2651 | UNUSED(htim); |
| 2652 | * @retval HAL status |
2652 | |
| 2653 | */ |
2653 | /* NOTE : This function should not be modified, when the callback is needed, |
| 2654 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2654 | the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
| 2655 | { |
2655 | */ |
| 2656 | /* Prevent unused argument(s) compilation warning */ |
2656 | } |
| 2657 | UNUSED(OutputChannel); |
2657 | |
| 2658 | 2658 | /** |
|
| 2659 | /* Disable the Capture compare and the Input Capture channels |
2659 | * @brief DeInitializes TIM One Pulse MSP. |
| 2660 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2660 | * @param htim TIM One Pulse handle |
| 2661 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2661 | * @retval None |
| 2662 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2662 | */ |
| 2663 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2663 | __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
| 2664 | 2664 | { |
|
| 2665 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2665 | /* Prevent unused argument(s) compilation warning */ |
| 2666 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2666 | UNUSED(htim); |
| 2667 | 2667 | ||
| 2668 | /* Disable the Peripheral */ |
2668 | /* NOTE : This function should not be modified, when the callback is needed, |
| 2669 | __HAL_TIM_DISABLE(htim); |
2669 | the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
| 2670 | 2670 | */ |
|
| 2671 | /* Set the TIM channels state */ |
2671 | } |
| 2672 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2672 | |
| 2673 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2673 | /** |
| 2674 | 2674 | * @brief Starts the TIM One Pulse signal generation. |
|
| 2675 | /* Return function status */ |
2675 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
| 2676 | return HAL_OK; |
2676 | * it has been kept to avoid HAL_TIM API compatibility break. |
| 2677 | } |
2677 | * @note The pulse output channel is determined when calling |
| 2678 | 2678 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
| 2679 | /** |
2679 | * @param htim TIM One Pulse handle |
| 2680 | * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
2680 | * @param OutputChannel See note above |
| 2681 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2681 | * @retval HAL status |
| 2682 | * it has been kept to avoid HAL_TIM API compatibility break. |
2682 | */ |
| 2683 | * @note The pulse output channel is determined when calling |
2683 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| 2684 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2684 | { |
| 2685 | * @param htim TIM One Pulse handle |
2685 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| 2686 | * @param OutputChannel See note above |
2686 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| 2687 | * @retval HAL status |
2687 | |
| 2688 | */ |
2688 | /* Prevent unused argument(s) compilation warning */ |
| 2689 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2689 | UNUSED(OutputChannel); |
| 2690 | { |
2690 | |
| 2691 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
2691 | /* Check the TIM channels state */ |
| 2692 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
2692 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 2693 | 2693 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
| 2694 | /* Prevent unused argument(s) compilation warning */ |
2694 | { |
| 2695 | UNUSED(OutputChannel); |
2695 | return HAL_ERROR; |
| 2696 | 2696 | } |
|
| 2697 | /* Check the TIM channels state */ |
2697 | |
| 2698 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
2698 | /* Set the TIM channels state */ |
| 2699 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
2699 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2700 | { |
2700 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2701 | return HAL_ERROR; |
2701 | |
| 2702 | } |
2702 | /* Enable the Capture compare and the Input Capture channels |
| 2703 | 2703 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
|
| 2704 | /* Set the TIM channels state */ |
2704 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| 2705 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
2705 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| 2706 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
2706 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
| 2707 | 2707 | ||
| 2708 | /* Enable the Capture compare and the Input Capture channels |
2708 | No need to enable the counter, it's enabled automatically by hardware |
| 2709 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2709 | (the counter starts in response to a stimulus and generate a pulse */ |
| 2710 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2710 | |
| 2711 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2711 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 2712 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
2712 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 2713 | 2713 | ||
| 2714 | No need to enable the counter, it's enabled automatically by hardware |
2714 | /* Return function status */ |
| 2715 | (the counter starts in response to a stimulus and generate a pulse */ |
2715 | return HAL_OK; |
| 2716 | 2716 | } |
|
| 2717 | /* Enable the TIM Capture/Compare 1 interrupt */ |
2717 | |
| 2718 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
2718 | /** |
| 2719 | 2719 | * @brief Stops the TIM One Pulse signal generation. |
|
| 2720 | /* Enable the TIM Capture/Compare 2 interrupt */ |
2720 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
| 2721 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
2721 | * it has been kept to avoid HAL_TIM API compatibility break. |
| 2722 | 2722 | * @note The pulse output channel is determined when calling |
|
| 2723 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
2723 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
| 2724 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
2724 | * @param htim TIM One Pulse handle |
| 2725 | 2725 | * @param OutputChannel See note above |
|
| 2726 | /* Return function status */ |
2726 | * @retval HAL status |
| 2727 | return HAL_OK; |
2727 | */ |
| 2728 | } |
2728 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| 2729 | 2729 | { |
|
| 2730 | /** |
2730 | /* Prevent unused argument(s) compilation warning */ |
| 2731 | * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
2731 | UNUSED(OutputChannel); |
| 2732 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
2732 | |
| 2733 | * it has been kept to avoid HAL_TIM API compatibility break. |
2733 | /* Disable the Capture compare and the Input Capture channels |
| 2734 | * @note The pulse output channel is determined when calling |
2734 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| 2735 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
2735 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| 2736 | * @param htim TIM One Pulse handle |
2736 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| 2737 | * @param OutputChannel See note above |
2737 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
| 2738 | * @retval HAL status |
2738 | |
| 2739 | */ |
2739 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 2740 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
2740 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 2741 | { |
2741 | |
| 2742 | /* Prevent unused argument(s) compilation warning */ |
2742 | /* Disable the Peripheral */ |
| 2743 | UNUSED(OutputChannel); |
2743 | __HAL_TIM_DISABLE(htim); |
| 2744 | 2744 | ||
| 2745 | /* Disable the TIM Capture/Compare 1 interrupt */ |
2745 | /* Set the TIM channels state */ |
| 2746 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
2746 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 2747 | 2747 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
|
| 2748 | /* Disable the TIM Capture/Compare 2 interrupt */ |
2748 | |
| 2749 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
2749 | /* Return function status */ |
| 2750 | 2750 | return HAL_OK; |
|
| 2751 | /* Disable the Capture compare and the Input Capture channels |
2751 | } |
| 2752 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
2752 | |
| 2753 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
2753 | /** |
| 2754 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
2754 | * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
| 2755 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
2755 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
| 2756 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
2756 | * it has been kept to avoid HAL_TIM API compatibility break. |
| 2757 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
2757 | * @note The pulse output channel is determined when calling |
| 2758 | 2758 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
|
| 2759 | /* Disable the Peripheral */ |
2759 | * @param htim TIM One Pulse handle |
| 2760 | __HAL_TIM_DISABLE(htim); |
2760 | * @param OutputChannel See note above |
| 2761 | 2761 | * @retval HAL status |
|
| 2762 | /* Set the TIM channels state */ |
2762 | */ |
| 2763 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2763 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| 2764 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2764 | { |
| 2765 | 2765 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
|
| 2766 | /* Return function status */ |
2766 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| 2767 | return HAL_OK; |
2767 | |
| 2768 | } |
2768 | /* Prevent unused argument(s) compilation warning */ |
| 2769 | 2769 | UNUSED(OutputChannel); |
|
| 2770 | /** |
2770 | |
| 2771 | * @} |
2771 | /* Check the TIM channels state */ |
| 2772 | */ |
2772 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 2773 | 2773 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
|
| 2774 | /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
2774 | { |
| 2775 | * @brief TIM Encoder functions |
2775 | return HAL_ERROR; |
| 2776 | * |
2776 | } |
| 2777 | @verbatim |
2777 | |
| 2778 | ============================================================================== |
2778 | /* Set the TIM channels state */ |
| 2779 | ##### TIM Encoder functions ##### |
2779 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2780 | ============================================================================== |
2780 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 2781 | [..] |
2781 | |
| 2782 | This section provides functions allowing to: |
2782 | /* Enable the Capture compare and the Input Capture channels |
| 2783 | (+) Initialize and configure the TIM Encoder. |
2783 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| 2784 | (+) De-initialize the TIM Encoder. |
2784 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| 2785 | (+) Start the TIM Encoder. |
2785 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| 2786 | (+) Stop the TIM Encoder. |
2786 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
| 2787 | (+) Start the TIM Encoder and enable interrupt. |
2787 | |
| 2788 | (+) Stop the TIM Encoder and disable interrupt. |
2788 | No need to enable the counter, it's enabled automatically by hardware |
| 2789 | (+) Start the TIM Encoder and enable DMA transfer. |
2789 | (the counter starts in response to a stimulus and generate a pulse */ |
| 2790 | (+) Stop the TIM Encoder and disable DMA transfer. |
2790 | |
| 2791 | 2791 | /* Enable the TIM Capture/Compare 1 interrupt */ |
|
| 2792 | @endverbatim |
2792 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| 2793 | * @{ |
2793 | |
| 2794 | */ |
2794 | /* Enable the TIM Capture/Compare 2 interrupt */ |
| 2795 | /** |
2795 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| 2796 | * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
2796 | |
| 2797 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
2797 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 2798 | * requires a timer reset to avoid unexpected direction |
2798 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 2799 | * due to DIR bit readonly in center aligned mode. |
2799 | |
| 2800 | * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
2800 | /* Return function status */ |
| 2801 | * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
2801 | return HAL_OK; |
| 2802 | * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
2802 | } |
| 2803 | * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
2803 | |
| 2804 | * @note When the timer instance is initialized in Encoder mode, timer |
2804 | /** |
| 2805 | * channels 1 and channel 2 are reserved and cannot be used for other |
2805 | * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
| 2806 | * purpose. |
2806 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
| 2807 | * @param htim TIM Encoder Interface handle |
2807 | * it has been kept to avoid HAL_TIM API compatibility break. |
| 2808 | * @param sConfig TIM Encoder Interface configuration structure |
2808 | * @note The pulse output channel is determined when calling |
| 2809 | * @retval HAL status |
2809 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
| 2810 | */ |
2810 | * @param htim TIM One Pulse handle |
| 2811 | HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) |
2811 | * @param OutputChannel See note above |
| 2812 | { |
2812 | * @retval HAL status |
| 2813 | uint32_t tmpsmcr; |
2813 | */ |
| 2814 | uint32_t tmpccmr1; |
2814 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
| 2815 | uint32_t tmpccer; |
2815 | { |
| 2816 | 2816 | /* Prevent unused argument(s) compilation warning */ |
|
| 2817 | /* Check the TIM handle allocation */ |
2817 | UNUSED(OutputChannel); |
| 2818 | if (htim == NULL) |
2818 | |
| 2819 | { |
2819 | /* Disable the TIM Capture/Compare 1 interrupt */ |
| 2820 | return HAL_ERROR; |
2820 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| 2821 | } |
2821 | |
| 2822 | 2822 | /* Disable the TIM Capture/Compare 2 interrupt */ |
|
| 2823 | /* Check the parameters */ |
2823 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| 2824 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
2824 | |
| 2825 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
2825 | /* Disable the Capture compare and the Input Capture channels |
| 2826 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
2826 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
| 2827 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
2827 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
| 2828 | assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
2828 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
| 2829 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
2829 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
| 2830 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
2830 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 2831 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
2831 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 2832 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
2832 | |
| 2833 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
2833 | /* Disable the Peripheral */ |
| 2834 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
2834 | __HAL_TIM_DISABLE(htim); |
| 2835 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
2835 | |
| 2836 | assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
2836 | /* Set the TIM channels state */ |
| 2837 | 2837 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
|
| 2838 | if (htim->State == HAL_TIM_STATE_RESET) |
2838 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 2839 | { |
2839 | |
| 2840 | /* Allocate lock resource and initialize it */ |
2840 | /* Return function status */ |
| 2841 | htim->Lock = HAL_UNLOCKED; |
2841 | return HAL_OK; |
| 2842 | 2842 | } |
|
| 2843 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2843 | |
| 2844 | /* Reset interrupt callbacks to legacy weak callbacks */ |
2844 | /** |
| 2845 | TIM_ResetCallback(htim); |
2845 | * @} |
| 2846 | 2846 | */ |
|
| 2847 | if (htim->Encoder_MspInitCallback == NULL) |
2847 | |
| 2848 | { |
2848 | /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
| 2849 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
2849 | * @brief TIM Encoder functions |
| 2850 | } |
2850 | * |
| 2851 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
2851 | @verbatim |
| 2852 | htim->Encoder_MspInitCallback(htim); |
2852 | ============================================================================== |
| 2853 | #else |
2853 | ##### TIM Encoder functions ##### |
| 2854 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
2854 | ============================================================================== |
| 2855 | HAL_TIM_Encoder_MspInit(htim); |
2855 | [..] |
| 2856 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2856 | This section provides functions allowing to: |
| 2857 | } |
2857 | (+) Initialize and configure the TIM Encoder. |
| 2858 | 2858 | (+) De-initialize the TIM Encoder. |
|
| 2859 | /* Set the TIM state */ |
2859 | (+) Start the TIM Encoder. |
| 2860 | htim->State = HAL_TIM_STATE_BUSY; |
2860 | (+) Stop the TIM Encoder. |
| 2861 | 2861 | (+) Start the TIM Encoder and enable interrupt. |
|
| 2862 | /* Reset the SMS and ECE bits */ |
2862 | (+) Stop the TIM Encoder and disable interrupt. |
| 2863 | htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
2863 | (+) Start the TIM Encoder and enable DMA transfer. |
| 2864 | 2864 | (+) Stop the TIM Encoder and disable DMA transfer. |
|
| 2865 | /* Configure the Time base in the Encoder Mode */ |
2865 | |
| 2866 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
2866 | @endverbatim |
| 2867 | 2867 | * @{ |
|
| 2868 | /* Get the TIMx SMCR register value */ |
2868 | */ |
| 2869 | tmpsmcr = htim->Instance->SMCR; |
2869 | /** |
| 2870 | 2870 | * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
|
| 2871 | /* Get the TIMx CCMR1 register value */ |
2871 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
| 2872 | tmpccmr1 = htim->Instance->CCMR1; |
2872 | * requires a timer reset to avoid unexpected direction |
| 2873 | 2873 | * due to DIR bit readonly in center aligned mode. |
|
| 2874 | /* Get the TIMx CCER register value */ |
2874 | * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
| 2875 | tmpccer = htim->Instance->CCER; |
2875 | * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
| 2876 | 2876 | * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
|
| 2877 | /* Set the encoder Mode */ |
2877 | * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
| 2878 | tmpsmcr |= sConfig->EncoderMode; |
2878 | * @note When the timer instance is initialized in Encoder mode, timer |
| 2879 | 2879 | * channels 1 and channel 2 are reserved and cannot be used for other |
|
| 2880 | /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
2880 | * purpose. |
| 2881 | tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
2881 | * @param htim TIM Encoder Interface handle |
| 2882 | tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
2882 | * @param sConfig TIM Encoder Interface configuration structure |
| 2883 | 2883 | * @retval HAL status |
|
| 2884 | /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
2884 | */ |
| 2885 | tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
2885 | HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig) |
| 2886 | tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
2886 | { |
| 2887 | tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
2887 | uint32_t tmpsmcr; |
| 2888 | tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
2888 | uint32_t tmpccmr1; |
| 2889 | 2889 | uint32_t tmpccer; |
|
| 2890 | /* Set the TI1 and the TI2 Polarities */ |
2890 | |
| 2891 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
2891 | /* Check the TIM handle allocation */ |
| 2892 | tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
2892 | if (htim == NULL) |
| 2893 | tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
2893 | { |
| 2894 | 2894 | return HAL_ERROR; |
|
| 2895 | /* Write to TIMx SMCR */ |
2895 | } |
| 2896 | htim->Instance->SMCR = tmpsmcr; |
2896 | |
| 2897 | 2897 | /* Check the parameters */ |
|
| 2898 | /* Write to TIMx CCMR1 */ |
2898 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 2899 | htim->Instance->CCMR1 = tmpccmr1; |
2899 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
| 2900 | 2900 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
|
| 2901 | /* Write to TIMx CCER */ |
2901 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
| 2902 | htim->Instance->CCER = tmpccer; |
2902 | assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
| 2903 | 2903 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
|
| 2904 | /* Initialize the DMA burst operation state */ |
2904 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
| 2905 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
2905 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
| 2906 | 2906 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
|
| 2907 | /* Set the TIM channels state */ |
2907 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
| 2908 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
2908 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
| 2909 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
2909 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
| 2910 | 2910 | assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
|
| 2911 | /* Initialize the TIM state*/ |
2911 | assert_param(IS_TIM_PERIOD(htim, htim->Init.Period)); |
| 2912 | htim->State = HAL_TIM_STATE_READY; |
2912 | |
| 2913 | 2913 | if (htim->State == HAL_TIM_STATE_RESET) |
|
| 2914 | return HAL_OK; |
2914 | { |
| 2915 | } |
2915 | /* Allocate lock resource and initialize it */ |
| 2916 | 2916 | htim->Lock = HAL_UNLOCKED; |
|
| 2917 | 2917 | ||
| 2918 | /** |
2918 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 2919 | * @brief DeInitializes the TIM Encoder interface |
2919 | /* Reset interrupt callbacks to legacy weak callbacks */ |
| 2920 | * @param htim TIM Encoder Interface handle |
2920 | TIM_ResetCallback(htim); |
| 2921 | * @retval HAL status |
2921 | |
| 2922 | */ |
2922 | if (htim->Encoder_MspInitCallback == NULL) |
| 2923 | HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
2923 | { |
| 2924 | { |
2924 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
| 2925 | /* Check the parameters */ |
2925 | } |
| 2926 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
2926 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
| 2927 | 2927 | htim->Encoder_MspInitCallback(htim); |
|
| 2928 | htim->State = HAL_TIM_STATE_BUSY; |
2928 | #else |
| 2929 | 2929 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
|
| 2930 | /* Disable the TIM Peripheral Clock */ |
2930 | HAL_TIM_Encoder_MspInit(htim); |
| 2931 | __HAL_TIM_DISABLE(htim); |
2931 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 2932 | 2932 | } |
|
| 2933 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
2933 | |
| 2934 | if (htim->Encoder_MspDeInitCallback == NULL) |
2934 | /* Set the TIM state */ |
| 2935 | { |
2935 | htim->State = HAL_TIM_STATE_BUSY; |
| 2936 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
2936 | |
| 2937 | } |
2937 | /* Reset the SMS and ECE bits */ |
| 2938 | /* DeInit the low level hardware */ |
2938 | htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
| 2939 | htim->Encoder_MspDeInitCallback(htim); |
2939 | |
| 2940 | #else |
2940 | /* Configure the Time base in the Encoder Mode */ |
| 2941 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
2941 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
| 2942 | HAL_TIM_Encoder_MspDeInit(htim); |
2942 | |
| 2943 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
2943 | /* Get the TIMx SMCR register value */ |
| 2944 | 2944 | tmpsmcr = htim->Instance->SMCR; |
|
| 2945 | /* Change the DMA burst operation state */ |
2945 | |
| 2946 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
2946 | /* Get the TIMx CCMR1 register value */ |
| 2947 | 2947 | tmpccmr1 = htim->Instance->CCMR1; |
|
| 2948 | /* Set the TIM channels state */ |
2948 | |
| 2949 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
2949 | /* Get the TIMx CCER register value */ |
| 2950 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
2950 | tmpccer = htim->Instance->CCER; |
| 2951 | 2951 | ||
| 2952 | /* Change TIM state */ |
2952 | /* Set the encoder Mode */ |
| 2953 | htim->State = HAL_TIM_STATE_RESET; |
2953 | tmpsmcr |= sConfig->EncoderMode; |
| 2954 | 2954 | ||
| 2955 | /* Release Lock */ |
2955 | /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
| 2956 | __HAL_UNLOCK(htim); |
2956 | tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
| 2957 | 2957 | tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
|
| 2958 | return HAL_OK; |
2958 | |
| 2959 | } |
2959 | /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
| 2960 | 2960 | tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
|
| 2961 | /** |
2961 | tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
| 2962 | * @brief Initializes the TIM Encoder Interface MSP. |
2962 | tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
| 2963 | * @param htim TIM Encoder Interface handle |
2963 | tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
| 2964 | * @retval None |
2964 | |
| 2965 | */ |
2965 | /* Set the TI1 and the TI2 Polarities */ |
| 2966 | __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
2966 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
| 2967 | { |
2967 | tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); |
| 2968 | /* Prevent unused argument(s) compilation warning */ |
2968 | tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
| 2969 | UNUSED(htim); |
2969 | |
| 2970 | 2970 | /* Write to TIMx SMCR */ |
|
| 2971 | /* NOTE : This function should not be modified, when the callback is needed, |
2971 | htim->Instance->SMCR = tmpsmcr; |
| 2972 | the HAL_TIM_Encoder_MspInit could be implemented in the user file |
2972 | |
| 2973 | */ |
2973 | /* Write to TIMx CCMR1 */ |
| 2974 | } |
2974 | htim->Instance->CCMR1 = tmpccmr1; |
| 2975 | 2975 | ||
| 2976 | /** |
2976 | /* Write to TIMx CCER */ |
| 2977 | * @brief DeInitializes TIM Encoder Interface MSP. |
2977 | htim->Instance->CCER = tmpccer; |
| 2978 | * @param htim TIM Encoder Interface handle |
2978 | |
| 2979 | * @retval None |
2979 | /* Initialize the DMA burst operation state */ |
| 2980 | */ |
2980 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 2981 | __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
2981 | |
| 2982 | { |
2982 | /* Set the TIM channels state */ |
| 2983 | /* Prevent unused argument(s) compilation warning */ |
2983 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 2984 | UNUSED(htim); |
2984 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 2985 | 2985 | ||
| 2986 | /* NOTE : This function should not be modified, when the callback is needed, |
2986 | /* Initialize the TIM state*/ |
| 2987 | the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
2987 | htim->State = HAL_TIM_STATE_READY; |
| 2988 | */ |
2988 | |
| 2989 | } |
2989 | return HAL_OK; |
| 2990 | 2990 | } |
|
| 2991 | /** |
2991 | |
| 2992 | * @brief Starts the TIM Encoder Interface. |
2992 | |
| 2993 | * @param htim TIM Encoder Interface handle |
2993 | /** |
| 2994 | * @param Channel TIM Channels to be enabled |
2994 | * @brief DeInitializes the TIM Encoder interface |
| 2995 | * This parameter can be one of the following values: |
2995 | * @param htim TIM Encoder Interface handle |
| 2996 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
2996 | * @retval HAL status |
| 2997 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
2997 | */ |
| 2998 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
2998 | HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
| 2999 | * @retval HAL status |
2999 | { |
| 3000 | */ |
3000 | /* Check the parameters */ |
| 3001 | HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
3001 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 3002 | { |
3002 | |
| 3003 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3003 | htim->State = HAL_TIM_STATE_BUSY; |
| 3004 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3004 | |
| 3005 | 3005 | /* Disable the TIM Peripheral Clock */ |
|
| 3006 | /* Check the parameters */ |
3006 | __HAL_TIM_DISABLE(htim); |
| 3007 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3007 | |
| 3008 | 3008 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 3009 | /* Set the TIM channel(s) state */ |
3009 | if (htim->Encoder_MspDeInitCallback == NULL) |
| 3010 | if (Channel == TIM_CHANNEL_1) |
3010 | { |
| 3011 | { |
3011 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
| 3012 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3012 | } |
| 3013 | { |
3013 | /* DeInit the low level hardware */ |
| 3014 | return HAL_ERROR; |
3014 | htim->Encoder_MspDeInitCallback(htim); |
| 3015 | } |
3015 | #else |
| 3016 | else |
3016 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
| 3017 | { |
3017 | HAL_TIM_Encoder_MspDeInit(htim); |
| 3018 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3018 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3019 | } |
3019 | |
| 3020 | } |
3020 | /* Change the DMA burst operation state */ |
| 3021 | else if (Channel == TIM_CHANNEL_2) |
3021 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
| 3022 | { |
3022 | |
| 3023 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3023 | /* Set the TIM channels state */ |
| 3024 | { |
3024 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
| 3025 | return HAL_ERROR; |
3025 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
| 3026 | } |
3026 | |
| 3027 | else |
3027 | /* Change TIM state */ |
| 3028 | { |
3028 | htim->State = HAL_TIM_STATE_RESET; |
| 3029 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3029 | |
| 3030 | } |
3030 | /* Release Lock */ |
| 3031 | } |
3031 | __HAL_UNLOCK(htim); |
| 3032 | else |
3032 | |
| 3033 | { |
3033 | return HAL_OK; |
| 3034 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3034 | } |
| 3035 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3035 | |
| 3036 | { |
3036 | /** |
| 3037 | return HAL_ERROR; |
3037 | * @brief Initializes the TIM Encoder Interface MSP. |
| 3038 | } |
3038 | * @param htim TIM Encoder Interface handle |
| 3039 | else |
3039 | * @retval None |
| 3040 | { |
3040 | */ |
| 3041 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3041 | __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
| 3042 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3042 | { |
| 3043 | } |
3043 | /* Prevent unused argument(s) compilation warning */ |
| 3044 | } |
3044 | UNUSED(htim); |
| 3045 | 3045 | ||
| 3046 | /* Enable the encoder interface channels */ |
3046 | /* NOTE : This function should not be modified, when the callback is needed, |
| 3047 | switch (Channel) |
3047 | the HAL_TIM_Encoder_MspInit could be implemented in the user file |
| 3048 | { |
3048 | */ |
| 3049 | case TIM_CHANNEL_1: |
3049 | } |
| 3050 | { |
3050 | |
| 3051 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3051 | /** |
| 3052 | break; |
3052 | * @brief DeInitializes TIM Encoder Interface MSP. |
| 3053 | } |
3053 | * @param htim TIM Encoder Interface handle |
| 3054 | 3054 | * @retval None |
|
| 3055 | case TIM_CHANNEL_2: |
3055 | */ |
| 3056 | { |
3056 | __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
| 3057 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3057 | { |
| 3058 | break; |
3058 | /* Prevent unused argument(s) compilation warning */ |
| 3059 | } |
3059 | UNUSED(htim); |
| 3060 | 3060 | ||
| 3061 | default : |
3061 | /* NOTE : This function should not be modified, when the callback is needed, |
| 3062 | { |
3062 | the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
| 3063 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3063 | */ |
| 3064 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3064 | } |
| 3065 | break; |
3065 | |
| 3066 | } |
3066 | /** |
| 3067 | } |
3067 | * @brief Starts the TIM Encoder Interface. |
| 3068 | /* Enable the Peripheral */ |
3068 | * @param htim TIM Encoder Interface handle |
| 3069 | __HAL_TIM_ENABLE(htim); |
3069 | * @param Channel TIM Channels to be enabled |
| 3070 | 3070 | * This parameter can be one of the following values: |
|
| 3071 | /* Return function status */ |
3071 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3072 | return HAL_OK; |
3072 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3073 | } |
3073 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| 3074 | 3074 | * @retval HAL status |
|
| 3075 | /** |
3075 | */ |
| 3076 | * @brief Stops the TIM Encoder Interface. |
3076 | HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 3077 | * @param htim TIM Encoder Interface handle |
3077 | { |
| 3078 | * @param Channel TIM Channels to be disabled |
3078 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| 3079 | * This parameter can be one of the following values: |
3079 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| 3080 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3080 | |
| 3081 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3081 | /* Check the parameters */ |
| 3082 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3082 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3083 | * @retval HAL status |
3083 | |
| 3084 | */ |
3084 | /* Set the TIM channel(s) state */ |
| 3085 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
3085 | if (Channel == TIM_CHANNEL_1) |
| 3086 | { |
3086 | { |
| 3087 | /* Check the parameters */ |
3087 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3088 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3088 | { |
| 3089 | 3089 | return HAL_ERROR; |
|
| 3090 | /* Disable the Input Capture channels 1 and 2 |
3090 | } |
| 3091 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3091 | else |
| 3092 | switch (Channel) |
3092 | { |
| 3093 | { |
3093 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3094 | case TIM_CHANNEL_1: |
3094 | } |
| 3095 | { |
3095 | } |
| 3096 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3096 | else if (Channel == TIM_CHANNEL_2) |
| 3097 | break; |
3097 | { |
| 3098 | } |
3098 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3099 | 3099 | { |
|
| 3100 | case TIM_CHANNEL_2: |
3100 | return HAL_ERROR; |
| 3101 | { |
3101 | } |
| 3102 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3102 | else |
| 3103 | break; |
3103 | { |
| 3104 | } |
3104 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3105 | 3105 | } |
|
| 3106 | default : |
3106 | } |
| 3107 | { |
3107 | else |
| 3108 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3108 | { |
| 3109 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3109 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3110 | break; |
3110 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| 3111 | } |
3111 | { |
| 3112 | } |
3112 | return HAL_ERROR; |
| 3113 | 3113 | } |
|
| 3114 | /* Disable the Peripheral */ |
3114 | else |
| 3115 | __HAL_TIM_DISABLE(htim); |
3115 | { |
| 3116 | 3116 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
| 3117 | /* Set the TIM channel(s) state */ |
3117 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3118 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3118 | } |
| 3119 | { |
3119 | } |
| 3120 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3120 | |
| 3121 | } |
3121 | /* Enable the encoder interface channels */ |
| 3122 | else |
3122 | switch (Channel) |
| 3123 | { |
3123 | { |
| 3124 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3124 | case TIM_CHANNEL_1: |
| 3125 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3125 | { |
| 3126 | } |
3126 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 3127 | 3127 | break; |
|
| 3128 | /* Return function status */ |
3128 | } |
| 3129 | return HAL_OK; |
3129 | |
| 3130 | } |
3130 | case TIM_CHANNEL_2: |
| 3131 | 3131 | { |
|
| 3132 | /** |
3132 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3133 | * @brief Starts the TIM Encoder Interface in interrupt mode. |
3133 | break; |
| 3134 | * @param htim TIM Encoder Interface handle |
3134 | } |
| 3135 | * @param Channel TIM Channels to be enabled |
3135 | |
| 3136 | * This parameter can be one of the following values: |
3136 | default : |
| 3137 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3137 | { |
| 3138 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3138 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 3139 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3139 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3140 | * @retval HAL status |
3140 | break; |
| 3141 | */ |
3141 | } |
| 3142 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
3142 | } |
| 3143 | { |
3143 | /* Enable the Peripheral */ |
| 3144 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3144 | __HAL_TIM_ENABLE(htim); |
| 3145 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3145 | |
| 3146 | 3146 | /* Return function status */ |
|
| 3147 | /* Check the parameters */ |
3147 | return HAL_OK; |
| 3148 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3148 | } |
| 3149 | 3149 | ||
| 3150 | /* Set the TIM channel(s) state */ |
3150 | /** |
| 3151 | if (Channel == TIM_CHANNEL_1) |
3151 | * @brief Stops the TIM Encoder Interface. |
| 3152 | { |
3152 | * @param htim TIM Encoder Interface handle |
| 3153 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3153 | * @param Channel TIM Channels to be disabled |
| 3154 | { |
3154 | * This parameter can be one of the following values: |
| 3155 | return HAL_ERROR; |
3155 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3156 | } |
3156 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3157 | else |
3157 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| 3158 | { |
3158 | * @retval HAL status |
| 3159 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3159 | */ |
| 3160 | } |
3160 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 3161 | } |
3161 | { |
| 3162 | else if (Channel == TIM_CHANNEL_2) |
3162 | /* Check the parameters */ |
| 3163 | { |
3163 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3164 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
3164 | |
| 3165 | { |
3165 | /* Disable the Input Capture channels 1 and 2 |
| 3166 | return HAL_ERROR; |
3166 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| 3167 | } |
3167 | switch (Channel) |
| 3168 | else |
3168 | { |
| 3169 | { |
3169 | case TIM_CHANNEL_1: |
| 3170 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3170 | { |
| 3171 | } |
3171 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3172 | } |
3172 | break; |
| 3173 | else |
3173 | } |
| 3174 | { |
3174 | |
| 3175 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
3175 | case TIM_CHANNEL_2: |
| 3176 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
3176 | { |
| 3177 | { |
3177 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3178 | return HAL_ERROR; |
3178 | break; |
| 3179 | } |
3179 | } |
| 3180 | else |
3180 | |
| 3181 | { |
3181 | default : |
| 3182 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3182 | { |
| 3183 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3183 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3184 | } |
3184 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3185 | } |
3185 | break; |
| 3186 | 3186 | } |
|
| 3187 | /* Enable the encoder interface channels */ |
3187 | } |
| 3188 | /* Enable the capture compare Interrupts 1 and/or 2 */ |
3188 | |
| 3189 | switch (Channel) |
3189 | /* Disable the Peripheral */ |
| 3190 | { |
3190 | __HAL_TIM_DISABLE(htim); |
| 3191 | case TIM_CHANNEL_1: |
3191 | |
| 3192 | { |
3192 | /* Set the TIM channel(s) state */ |
| 3193 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3193 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| 3194 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3194 | { |
| 3195 | break; |
3195 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 3196 | } |
3196 | } |
| 3197 | 3197 | else |
|
| 3198 | case TIM_CHANNEL_2: |
3198 | { |
| 3199 | { |
3199 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 3200 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3200 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 3201 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
3201 | } |
| 3202 | break; |
3202 | |
| 3203 | } |
3203 | /* Return function status */ |
| 3204 | 3204 | return HAL_OK; |
|
| 3205 | default : |
3205 | } |
| 3206 | { |
3206 | |
| 3207 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3207 | /** |
| 3208 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3208 | * @brief Starts the TIM Encoder Interface in interrupt mode. |
| 3209 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
3209 | * @param htim TIM Encoder Interface handle |
| 3210 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
3210 | * @param Channel TIM Channels to be enabled |
| 3211 | break; |
3211 | * This parameter can be one of the following values: |
| 3212 | } |
3212 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3213 | } |
3213 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3214 | 3214 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
|
| 3215 | /* Enable the Peripheral */ |
3215 | * @retval HAL status |
| 3216 | __HAL_TIM_ENABLE(htim); |
3216 | */ |
| 3217 | 3217 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
|
| 3218 | /* Return function status */ |
3218 | { |
| 3219 | return HAL_OK; |
3219 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| 3220 | } |
3220 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
| 3221 | 3221 | ||
| 3222 | /** |
3222 | /* Check the parameters */ |
| 3223 | * @brief Stops the TIM Encoder Interface in interrupt mode. |
3223 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3224 | * @param htim TIM Encoder Interface handle |
3224 | |
| 3225 | * @param Channel TIM Channels to be disabled |
3225 | /* Set the TIM channel(s) state */ |
| 3226 | * This parameter can be one of the following values: |
3226 | if (Channel == TIM_CHANNEL_1) |
| 3227 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3227 | { |
| 3228 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3228 | if (channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3229 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3229 | { |
| 3230 | * @retval HAL status |
3230 | return HAL_ERROR; |
| 3231 | */ |
3231 | } |
| 3232 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
3232 | else |
| 3233 | { |
3233 | { |
| 3234 | /* Check the parameters */ |
3234 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3235 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3235 | } |
| 3236 | 3236 | } |
|
| 3237 | /* Disable the Input Capture channels 1 and 2 |
3237 | else if (Channel == TIM_CHANNEL_2) |
| 3238 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3238 | { |
| 3239 | if (Channel == TIM_CHANNEL_1) |
3239 | if (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3240 | { |
3240 | { |
| 3241 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3241 | return HAL_ERROR; |
| 3242 | 3242 | } |
|
| 3243 | /* Disable the capture compare Interrupts 1 */ |
3243 | else |
| 3244 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3244 | { |
| 3245 | } |
3245 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3246 | else if (Channel == TIM_CHANNEL_2) |
3246 | } |
| 3247 | { |
3247 | } |
| 3248 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3248 | else |
| 3249 | 3249 | { |
|
| 3250 | /* Disable the capture compare Interrupts 2 */ |
3250 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
| 3251 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3251 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
| 3252 | } |
3252 | { |
| 3253 | else |
3253 | return HAL_ERROR; |
| 3254 | { |
3254 | } |
| 3255 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3255 | else |
| 3256 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3256 | { |
| 3257 | 3257 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
|
| 3258 | /* Disable the capture compare Interrupts 1 and 2 */ |
3258 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3259 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
3259 | } |
| 3260 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
3260 | } |
| 3261 | } |
3261 | |
| 3262 | 3262 | /* Enable the encoder interface channels */ |
|
| 3263 | /* Disable the Peripheral */ |
3263 | /* Enable the capture compare Interrupts 1 and/or 2 */ |
| 3264 | __HAL_TIM_DISABLE(htim); |
3264 | switch (Channel) |
| 3265 | 3265 | { |
|
| 3266 | /* Set the TIM channel(s) state */ |
3266 | case TIM_CHANNEL_1: |
| 3267 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3267 | { |
| 3268 | { |
3268 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 3269 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3269 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| 3270 | } |
3270 | break; |
| 3271 | else |
3271 | } |
| 3272 | { |
3272 | |
| 3273 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3273 | case TIM_CHANNEL_2: |
| 3274 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3274 | { |
| 3275 | } |
3275 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3276 | 3276 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
|
| 3277 | /* Return function status */ |
3277 | break; |
| 3278 | return HAL_OK; |
3278 | } |
| 3279 | } |
3279 | |
| 3280 | 3280 | default : |
|
| 3281 | /** |
3281 | { |
| 3282 | * @brief Starts the TIM Encoder Interface in DMA mode. |
3282 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 3283 | * @param htim TIM Encoder Interface handle |
3283 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3284 | * @param Channel TIM Channels to be enabled |
3284 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
| 3285 | * This parameter can be one of the following values: |
3285 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
| 3286 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3286 | break; |
| 3287 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3287 | } |
| 3288 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3288 | } |
| 3289 | * @param pData1 The destination Buffer address for IC1. |
3289 | |
| 3290 | * @param pData2 The destination Buffer address for IC2. |
3290 | /* Enable the Peripheral */ |
| 3291 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
3291 | __HAL_TIM_ENABLE(htim); |
| 3292 | * @retval HAL status |
3292 | |
| 3293 | */ |
3293 | /* Return function status */ |
| 3294 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
3294 | return HAL_OK; |
| 3295 | uint32_t *pData2, uint16_t Length) |
3295 | } |
| 3296 | { |
3296 | |
| 3297 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
3297 | /** |
| 3298 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
3298 | * @brief Stops the TIM Encoder Interface in interrupt mode. |
| 3299 | 3299 | * @param htim TIM Encoder Interface handle |
|
| 3300 | /* Check the parameters */ |
3300 | * @param Channel TIM Channels to be disabled |
| 3301 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3301 | * This parameter can be one of the following values: |
| 3302 | 3302 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
|
| 3303 | /* Set the TIM channel(s) state */ |
3303 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3304 | if (Channel == TIM_CHANNEL_1) |
3304 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| 3305 | { |
3305 | * @retval HAL status |
| 3306 | if (channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3306 | */ |
| 3307 | { |
3307 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 3308 | return HAL_BUSY; |
3308 | { |
| 3309 | } |
3309 | /* Check the parameters */ |
| 3310 | else if (channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3310 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3311 | { |
3311 | |
| 3312 | if ((pData1 == NULL) && (Length > 0U)) |
3312 | /* Disable the Input Capture channels 1 and 2 |
| 3313 | { |
3313 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| 3314 | return HAL_ERROR; |
3314 | if (Channel == TIM_CHANNEL_1) |
| 3315 | } |
3315 | { |
| 3316 | else |
3316 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3317 | { |
3317 | |
| 3318 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3318 | /* Disable the capture compare Interrupts 1 */ |
| 3319 | } |
3319 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| 3320 | } |
3320 | } |
| 3321 | else |
3321 | else if (Channel == TIM_CHANNEL_2) |
| 3322 | { |
3322 | { |
| 3323 | return HAL_ERROR; |
3323 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3324 | } |
3324 | |
| 3325 | } |
3325 | /* Disable the capture compare Interrupts 2 */ |
| 3326 | else if (Channel == TIM_CHANNEL_2) |
3326 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| 3327 | { |
3327 | } |
| 3328 | if (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3328 | else |
| 3329 | { |
3329 | { |
| 3330 | return HAL_BUSY; |
3330 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3331 | } |
3331 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3332 | else if (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
3332 | |
| 3333 | { |
3333 | /* Disable the capture compare Interrupts 1 and 2 */ |
| 3334 | if ((pData2 == NULL) && (Length > 0U)) |
3334 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
| 3335 | { |
3335 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
| 3336 | return HAL_ERROR; |
3336 | } |
| 3337 | } |
3337 | |
| 3338 | else |
3338 | /* Disable the Peripheral */ |
| 3339 | { |
3339 | __HAL_TIM_DISABLE(htim); |
| 3340 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3340 | |
| 3341 | } |
3341 | /* Set the TIM channel(s) state */ |
| 3342 | } |
3342 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| 3343 | else |
3343 | { |
| 3344 | { |
3344 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 3345 | return HAL_ERROR; |
3345 | } |
| 3346 | } |
3346 | else |
| 3347 | } |
3347 | { |
| 3348 | else |
3348 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 3349 | { |
3349 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 3350 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
3350 | } |
| 3351 | || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
3351 | |
| 3352 | { |
3352 | /* Return function status */ |
| 3353 | return HAL_BUSY; |
3353 | return HAL_OK; |
| 3354 | } |
3354 | } |
| 3355 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
3355 | |
| 3356 | && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
3356 | /** |
| 3357 | { |
3357 | * @brief Starts the TIM Encoder Interface in DMA mode. |
| 3358 | if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) |
3358 | * @param htim TIM Encoder Interface handle |
| 3359 | { |
3359 | * @param Channel TIM Channels to be enabled |
| 3360 | return HAL_ERROR; |
3360 | * This parameter can be one of the following values: |
| 3361 | } |
3361 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3362 | else |
3362 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3363 | { |
3363 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| 3364 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
3364 | * @param pData1 The destination Buffer address for IC1. |
| 3365 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
3365 | * @param pData2 The destination Buffer address for IC2. |
| 3366 | } |
3366 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
| 3367 | } |
3367 | * @retval HAL status |
| 3368 | else |
3368 | */ |
| 3369 | { |
3369 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
| 3370 | return HAL_ERROR; |
3370 | uint32_t *pData2, uint16_t Length) |
| 3371 | } |
3371 | { |
| 3372 | } |
3372 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
| 3373 | 3373 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
|
| 3374 | switch (Channel) |
3374 | |
| 3375 | { |
3375 | /* Check the parameters */ |
| 3376 | case TIM_CHANNEL_1: |
3376 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3377 | { |
3377 | |
| 3378 | /* Set the DMA capture callbacks */ |
3378 | /* Set the TIM channel(s) state */ |
| 3379 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3379 | if (Channel == TIM_CHANNEL_1) |
| 3380 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3380 | { |
| 3381 | 3381 | if (channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
|
| 3382 | /* Set the DMA error callback */ |
3382 | { |
| 3383 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3383 | return HAL_BUSY; |
| 3384 | 3384 | } |
|
| 3385 | /* Enable the DMA channel */ |
3385 | else if (channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
| 3386 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3386 | { |
| 3387 | Length) != HAL_OK) |
3387 | if ((pData1 == NULL) || (Length == 0U)) |
| 3388 | { |
3388 | { |
| 3389 | /* Return error status */ |
3389 | return HAL_ERROR; |
| 3390 | return HAL_ERROR; |
3390 | } |
| 3391 | } |
3391 | else |
| 3392 | /* Enable the TIM Input Capture DMA request */ |
3392 | { |
| 3393 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3393 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3394 | 3394 | } |
|
| 3395 | /* Enable the Peripheral */ |
3395 | } |
| 3396 | __HAL_TIM_ENABLE(htim); |
3396 | else |
| 3397 | 3397 | { |
|
| 3398 | /* Enable the Capture compare channel */ |
3398 | return HAL_ERROR; |
| 3399 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3399 | } |
| 3400 | break; |
3400 | } |
| 3401 | } |
3401 | else if (Channel == TIM_CHANNEL_2) |
| 3402 | 3402 | { |
|
| 3403 | case TIM_CHANNEL_2: |
3403 | if (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| 3404 | { |
3404 | { |
| 3405 | /* Set the DMA capture callbacks */ |
3405 | return HAL_BUSY; |
| 3406 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3406 | } |
| 3407 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3407 | else if (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
| 3408 | 3408 | { |
|
| 3409 | /* Set the DMA error callback */ |
3409 | if ((pData2 == NULL) || (Length == 0U)) |
| 3410 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
3410 | { |
| 3411 | /* Enable the DMA channel */ |
3411 | return HAL_ERROR; |
| 3412 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3412 | } |
| 3413 | Length) != HAL_OK) |
3413 | else |
| 3414 | { |
3414 | { |
| 3415 | /* Return error status */ |
3415 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3416 | return HAL_ERROR; |
3416 | } |
| 3417 | } |
3417 | } |
| 3418 | /* Enable the TIM Input Capture DMA request */ |
3418 | else |
| 3419 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3419 | { |
| 3420 | 3420 | return HAL_ERROR; |
|
| 3421 | /* Enable the Peripheral */ |
3421 | } |
| 3422 | __HAL_TIM_ENABLE(htim); |
3422 | } |
| 3423 | 3423 | else |
|
| 3424 | /* Enable the Capture compare channel */ |
3424 | { |
| 3425 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3425 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
| 3426 | break; |
3426 | || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
| 3427 | } |
3427 | { |
| 3428 | 3428 | return HAL_BUSY; |
|
| 3429 | case TIM_CHANNEL_ALL: |
3429 | } |
| 3430 | { |
3430 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
| 3431 | /* Set the DMA capture callbacks */ |
3431 | && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
| 3432 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
3432 | { |
| 3433 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3433 | if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U)) |
| 3434 | 3434 | { |
|
| 3435 | /* Set the DMA error callback */ |
3435 | return HAL_ERROR; |
| 3436 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
3436 | } |
| 3437 | 3437 | else |
|
| 3438 | /* Enable the DMA channel */ |
3438 | { |
| 3439 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
3439 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3440 | Length) != HAL_OK) |
3440 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
| 3441 | { |
3441 | } |
| 3442 | /* Return error status */ |
3442 | } |
| 3443 | return HAL_ERROR; |
3443 | else |
| 3444 | } |
3444 | { |
| 3445 | 3445 | return HAL_ERROR; |
|
| 3446 | /* Set the DMA capture callbacks */ |
3446 | } |
| 3447 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
3447 | } |
| 3448 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
3448 | |
| 3449 | 3449 | switch (Channel) |
|
| 3450 | /* Set the DMA error callback */ |
3450 | { |
| 3451 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
3451 | case TIM_CHANNEL_1: |
| 3452 | 3452 | { |
|
| 3453 | /* Enable the DMA channel */ |
3453 | /* Set the DMA capture callbacks */ |
| 3454 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
3454 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| 3455 | Length) != HAL_OK) |
3455 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 3456 | { |
3456 | |
| 3457 | /* Return error status */ |
3457 | /* Set the DMA error callback */ |
| 3458 | return HAL_ERROR; |
3458 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 3459 | } |
3459 | |
| 3460 | /* Enable the Peripheral */ |
3460 | /* Enable the DMA channel */ |
| 3461 | __HAL_TIM_ENABLE(htim); |
3461 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
| 3462 | 3462 | Length) != HAL_OK) |
|
| 3463 | /* Enable the Capture compare channel */ |
3463 | { |
| 3464 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
3464 | /* Return error status */ |
| 3465 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
3465 | return HAL_ERROR; |
| 3466 | 3466 | } |
|
| 3467 | /* Enable the TIM Input Capture DMA request */ |
3467 | /* Enable the TIM Input Capture DMA request */ |
| 3468 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
3468 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| 3469 | /* Enable the TIM Input Capture DMA request */ |
3469 | |
| 3470 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
3470 | /* Enable the Capture compare channel */ |
| 3471 | break; |
3471 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
| 3472 | } |
3472 | |
| 3473 | 3473 | /* Enable the Peripheral */ |
|
| 3474 | default: |
3474 | __HAL_TIM_ENABLE(htim); |
| 3475 | break; |
3475 | |
| 3476 | } |
3476 | break; |
| 3477 | 3477 | } |
|
| 3478 | /* Return function status */ |
3478 | |
| 3479 | return HAL_OK; |
3479 | case TIM_CHANNEL_2: |
| 3480 | } |
3480 | { |
| 3481 | 3481 | /* Set the DMA capture callbacks */ |
|
| 3482 | /** |
3482 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| 3483 | * @brief Stops the TIM Encoder Interface in DMA mode. |
3483 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 3484 | * @param htim TIM Encoder Interface handle |
3484 | |
| 3485 | * @param Channel TIM Channels to be enabled |
3485 | /* Set the DMA error callback */ |
| 3486 | * This parameter can be one of the following values: |
3486 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
| 3487 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3487 | /* Enable the DMA channel */ |
| 3488 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3488 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
| 3489 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
3489 | Length) != HAL_OK) |
| 3490 | * @retval HAL status |
3490 | { |
| 3491 | */ |
3491 | /* Return error status */ |
| 3492 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
3492 | return HAL_ERROR; |
| 3493 | { |
3493 | } |
| 3494 | /* Check the parameters */ |
3494 | /* Enable the TIM Input Capture DMA request */ |
| 3495 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
3495 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| 3496 | 3496 | ||
| 3497 | /* Disable the Input Capture channels 1 and 2 |
3497 | /* Enable the Capture compare channel */ |
| 3498 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
3498 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3499 | if (Channel == TIM_CHANNEL_1) |
3499 | |
| 3500 | { |
3500 | /* Enable the Peripheral */ |
| 3501 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3501 | __HAL_TIM_ENABLE(htim); |
| 3502 | 3502 | ||
| 3503 | /* Disable the capture compare DMA Request 1 */ |
3503 | break; |
| 3504 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3504 | } |
| 3505 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3505 | |
| 3506 | } |
3506 | default: |
| 3507 | else if (Channel == TIM_CHANNEL_2) |
3507 | { |
| 3508 | { |
3508 | /* Set the DMA capture callbacks */ |
| 3509 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3509 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| 3510 | 3510 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
|
| 3511 | /* Disable the capture compare DMA Request 2 */ |
3511 | |
| 3512 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3512 | /* Set the DMA error callback */ |
| 3513 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3513 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 3514 | } |
3514 | |
| 3515 | else |
3515 | /* Enable the DMA channel */ |
| 3516 | { |
3516 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
| 3517 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
3517 | Length) != HAL_OK) |
| 3518 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
3518 | { |
| 3519 | 3519 | /* Return error status */ |
|
| 3520 | /* Disable the capture compare DMA Request 1 and 2 */ |
3520 | return HAL_ERROR; |
| 3521 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
3521 | } |
| 3522 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
3522 | |
| 3523 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
3523 | /* Set the DMA capture callbacks */ |
| 3524 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
3524 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| 3525 | } |
3525 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 3526 | 3526 | ||
| 3527 | /* Disable the Peripheral */ |
3527 | /* Set the DMA error callback */ |
| 3528 | __HAL_TIM_DISABLE(htim); |
3528 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| 3529 | 3529 | ||
| 3530 | /* Set the TIM channel(s) state */ |
3530 | /* Enable the DMA channel */ |
| 3531 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
3531 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
| 3532 | { |
3532 | Length) != HAL_OK) |
| 3533 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
3533 | { |
| 3534 | } |
3534 | /* Return error status */ |
| 3535 | else |
3535 | return HAL_ERROR; |
| 3536 | { |
3536 | } |
| 3537 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
3537 | |
| 3538 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
3538 | /* Enable the TIM Input Capture DMA request */ |
| 3539 | } |
3539 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
| 3540 | 3540 | /* Enable the TIM Input Capture DMA request */ |
|
| 3541 | /* Return function status */ |
3541 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
| 3542 | return HAL_OK; |
3542 | |
| 3543 | } |
3543 | /* Enable the Capture compare channel */ |
| 3544 | 3544 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
|
| 3545 | /** |
3545 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
| 3546 | * @} |
3546 | |
| 3547 | */ |
3547 | /* Enable the Peripheral */ |
| 3548 | /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
3548 | __HAL_TIM_ENABLE(htim); |
| 3549 | * @brief TIM IRQ handler management |
3549 | |
| 3550 | * |
3550 | break; |
| 3551 | @verbatim |
3551 | } |
| 3552 | ============================================================================== |
3552 | } |
| 3553 | ##### IRQ handler management ##### |
3553 | |
| 3554 | ============================================================================== |
3554 | /* Return function status */ |
| 3555 | [..] |
3555 | return HAL_OK; |
| 3556 | This section provides Timer IRQ handler function. |
3556 | } |
| 3557 | 3557 | ||
| 3558 | @endverbatim |
3558 | /** |
| 3559 | * @{ |
3559 | * @brief Stops the TIM Encoder Interface in DMA mode. |
| 3560 | */ |
3560 | * @param htim TIM Encoder Interface handle |
| 3561 | /** |
3561 | * @param Channel TIM Channels to be enabled |
| 3562 | * @brief This function handles TIM interrupts requests. |
3562 | * This parameter can be one of the following values: |
| 3563 | * @param htim TIM handle |
3563 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3564 | * @retval None |
3564 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3565 | */ |
3565 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
| 3566 | void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
3566 | * @retval HAL status |
| 3567 | { |
3567 | */ |
| 3568 | /* Capture compare 1 event */ |
3568 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
| 3569 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
3569 | { |
| 3570 | { |
3570 | /* Check the parameters */ |
| 3571 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
3571 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
| 3572 | { |
3572 | |
| 3573 | { |
3573 | /* Disable the Input Capture channels 1 and 2 |
| 3574 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
3574 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
| 3575 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
3575 | if (Channel == TIM_CHANNEL_1) |
| 3576 | 3576 | { |
|
| 3577 | /* Input capture event */ |
3577 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3578 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
3578 | |
| 3579 | { |
3579 | /* Disable the capture compare DMA Request 1 */ |
| 3580 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3580 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| 3581 | htim->IC_CaptureCallback(htim); |
3581 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 3582 | #else |
3582 | } |
| 3583 | HAL_TIM_IC_CaptureCallback(htim); |
3583 | else if (Channel == TIM_CHANNEL_2) |
| 3584 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3584 | { |
| 3585 | } |
3585 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3586 | /* Output compare event */ |
3586 | |
| 3587 | else |
3587 | /* Disable the capture compare DMA Request 2 */ |
| 3588 | { |
3588 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| 3589 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3589 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 3590 | htim->OC_DelayElapsedCallback(htim); |
3590 | } |
| 3591 | htim->PWM_PulseFinishedCallback(htim); |
3591 | else |
| 3592 | #else |
3592 | { |
| 3593 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3593 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
| 3594 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3594 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
| 3595 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3595 | |
| 3596 | } |
3596 | /* Disable the capture compare DMA Request 1 and 2 */ |
| 3597 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3597 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
| 3598 | } |
3598 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
| 3599 | } |
3599 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 3600 | } |
3600 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 3601 | /* Capture compare 2 event */ |
3601 | } |
| 3602 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
3602 | |
| 3603 | { |
3603 | /* Disable the Peripheral */ |
| 3604 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
3604 | __HAL_TIM_DISABLE(htim); |
| 3605 | { |
3605 | |
| 3606 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
3606 | /* Set the TIM channel(s) state */ |
| 3607 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
3607 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
| 3608 | /* Input capture event */ |
3608 | { |
| 3609 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
3609 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
| 3610 | { |
3610 | } |
| 3611 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3611 | else |
| 3612 | htim->IC_CaptureCallback(htim); |
3612 | { |
| 3613 | #else |
3613 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 3614 | HAL_TIM_IC_CaptureCallback(htim); |
3614 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 3615 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3615 | } |
| 3616 | } |
3616 | |
| 3617 | /* Output compare event */ |
3617 | /* Return function status */ |
| 3618 | else |
3618 | return HAL_OK; |
| 3619 | { |
3619 | } |
| 3620 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3620 | |
| 3621 | htim->OC_DelayElapsedCallback(htim); |
3621 | /** |
| 3622 | htim->PWM_PulseFinishedCallback(htim); |
3622 | * @} |
| 3623 | #else |
3623 | */ |
| 3624 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3624 | /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
| 3625 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3625 | * @brief TIM IRQ handler management |
| 3626 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3626 | * |
| 3627 | } |
3627 | @verbatim |
| 3628 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3628 | ============================================================================== |
| 3629 | } |
3629 | ##### IRQ handler management ##### |
| 3630 | } |
3630 | ============================================================================== |
| 3631 | /* Capture compare 3 event */ |
3631 | [..] |
| 3632 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
3632 | This section provides Timer IRQ handler function. |
| 3633 | { |
3633 | |
| 3634 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
3634 | @endverbatim |
| 3635 | { |
3635 | * @{ |
| 3636 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
3636 | */ |
| 3637 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
3637 | /** |
| 3638 | /* Input capture event */ |
3638 | * @brief This function handles TIM interrupts requests. |
| 3639 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
3639 | * @param htim TIM handle |
| 3640 | { |
3640 | * @retval None |
| 3641 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3641 | */ |
| 3642 | htim->IC_CaptureCallback(htim); |
3642 | void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
| 3643 | #else |
3643 | { |
| 3644 | HAL_TIM_IC_CaptureCallback(htim); |
3644 | /* Capture compare 1 event */ |
| 3645 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3645 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
| 3646 | } |
3646 | { |
| 3647 | /* Output compare event */ |
3647 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
| 3648 | else |
3648 | { |
| 3649 | { |
3649 | { |
| 3650 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3650 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
| 3651 | htim->OC_DelayElapsedCallback(htim); |
3651 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| 3652 | htim->PWM_PulseFinishedCallback(htim); |
3652 | |
| 3653 | #else |
3653 | /* Input capture event */ |
| 3654 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3654 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
| 3655 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3655 | { |
| 3656 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3656 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3657 | } |
3657 | htim->IC_CaptureCallback(htim); |
| 3658 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3658 | #else |
| 3659 | } |
3659 | HAL_TIM_IC_CaptureCallback(htim); |
| 3660 | } |
3660 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3661 | /* Capture compare 4 event */ |
3661 | } |
| 3662 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
3662 | /* Output compare event */ |
| 3663 | { |
3663 | else |
| 3664 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
3664 | { |
| 3665 | { |
3665 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3666 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
3666 | htim->OC_DelayElapsedCallback(htim); |
| 3667 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
3667 | htim->PWM_PulseFinishedCallback(htim); |
| 3668 | /* Input capture event */ |
3668 | #else |
| 3669 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
3669 | HAL_TIM_OC_DelayElapsedCallback(htim); |
| 3670 | { |
3670 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
| 3671 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3671 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3672 | htim->IC_CaptureCallback(htim); |
3672 | } |
| 3673 | #else |
3673 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 3674 | HAL_TIM_IC_CaptureCallback(htim); |
3674 | } |
| 3675 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3675 | } |
| 3676 | } |
3676 | } |
| 3677 | /* Output compare event */ |
3677 | /* Capture compare 2 event */ |
| 3678 | else |
3678 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
| 3679 | { |
3679 | { |
| 3680 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3680 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
| 3681 | htim->OC_DelayElapsedCallback(htim); |
3681 | { |
| 3682 | htim->PWM_PulseFinishedCallback(htim); |
3682 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
| 3683 | #else |
3683 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| 3684 | HAL_TIM_OC_DelayElapsedCallback(htim); |
3684 | /* Input capture event */ |
| 3685 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
3685 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
| 3686 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3686 | { |
| 3687 | } |
3687 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3688 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
3688 | htim->IC_CaptureCallback(htim); |
| 3689 | } |
3689 | #else |
| 3690 | } |
3690 | HAL_TIM_IC_CaptureCallback(htim); |
| 3691 | /* TIM Update event */ |
3691 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3692 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
3692 | } |
| 3693 | { |
3693 | /* Output compare event */ |
| 3694 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
3694 | else |
| 3695 | { |
3695 | { |
| 3696 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
3696 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3697 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3697 | htim->OC_DelayElapsedCallback(htim); |
| 3698 | htim->PeriodElapsedCallback(htim); |
3698 | htim->PWM_PulseFinishedCallback(htim); |
| 3699 | #else |
3699 | #else |
| 3700 | HAL_TIM_PeriodElapsedCallback(htim); |
3700 | HAL_TIM_OC_DelayElapsedCallback(htim); |
| 3701 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3701 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
| 3702 | } |
3702 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3703 | } |
3703 | } |
| 3704 | /* TIM Trigger detection event */ |
3704 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 3705 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
3705 | } |
| 3706 | { |
3706 | } |
| 3707 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
3707 | /* Capture compare 3 event */ |
| 3708 | { |
3708 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
| 3709 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
3709 | { |
| 3710 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
3710 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
| 3711 | htim->TriggerCallback(htim); |
3711 | { |
| 3712 | #else |
3712 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
| 3713 | HAL_TIM_TriggerCallback(htim); |
3713 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| 3714 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
3714 | /* Input capture event */ |
| 3715 | } |
3715 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
| 3716 | } |
3716 | { |
| 3717 | } |
3717 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3718 | 3718 | htim->IC_CaptureCallback(htim); |
|
| 3719 | /** |
3719 | #else |
| 3720 | * @} |
3720 | HAL_TIM_IC_CaptureCallback(htim); |
| 3721 | */ |
3721 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3722 | 3722 | } |
|
| 3723 | /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
3723 | /* Output compare event */ |
| 3724 | * @brief TIM Peripheral Control functions |
3724 | else |
| 3725 | * |
3725 | { |
| 3726 | @verbatim |
3726 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3727 | ============================================================================== |
3727 | htim->OC_DelayElapsedCallback(htim); |
| 3728 | ##### Peripheral Control functions ##### |
3728 | htim->PWM_PulseFinishedCallback(htim); |
| 3729 | ============================================================================== |
3729 | #else |
| 3730 | [..] |
3730 | HAL_TIM_OC_DelayElapsedCallback(htim); |
| 3731 | This section provides functions allowing to: |
3731 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
| 3732 | (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
3732 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3733 | (+) Configure External Clock source. |
3733 | } |
| 3734 | (+) Configure Master and the Slave synchronization. |
3734 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 3735 | (+) Configure the DMA Burst Mode. |
3735 | } |
| 3736 | 3736 | } |
|
| 3737 | @endverbatim |
3737 | /* Capture compare 4 event */ |
| 3738 | * @{ |
3738 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
| 3739 | */ |
3739 | { |
| 3740 | 3740 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
|
| 3741 | /** |
3741 | { |
| 3742 | * @brief Initializes the TIM Output Compare Channels according to the specified |
3742 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
| 3743 | * parameters in the TIM_OC_InitTypeDef. |
3743 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 3744 | * @param htim TIM Output Compare handle |
3744 | /* Input capture event */ |
| 3745 | * @param sConfig TIM Output Compare configuration structure |
3745 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
| 3746 | * @param Channel TIM Channels to configure |
3746 | { |
| 3747 | * This parameter can be one of the following values: |
3747 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3748 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3748 | htim->IC_CaptureCallback(htim); |
| 3749 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3749 | #else |
| 3750 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3750 | HAL_TIM_IC_CaptureCallback(htim); |
| 3751 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3751 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3752 | * @retval HAL status |
3752 | } |
| 3753 | */ |
3753 | /* Output compare event */ |
| 3754 | HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
3754 | else |
| 3755 | TIM_OC_InitTypeDef *sConfig, |
3755 | { |
| 3756 | uint32_t Channel) |
3756 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3757 | { |
3757 | htim->OC_DelayElapsedCallback(htim); |
| 3758 | /* Check the parameters */ |
3758 | htim->PWM_PulseFinishedCallback(htim); |
| 3759 | assert_param(IS_TIM_CHANNELS(Channel)); |
3759 | #else |
| 3760 | assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
3760 | HAL_TIM_OC_DelayElapsedCallback(htim); |
| 3761 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
3761 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
| 3762 | 3762 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 3763 | /* Process Locked */ |
3763 | } |
| 3764 | __HAL_LOCK(htim); |
3764 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 3765 | 3765 | } |
|
| 3766 | switch (Channel) |
3766 | } |
| 3767 | { |
3767 | /* TIM Update event */ |
| 3768 | case TIM_CHANNEL_1: |
3768 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
| 3769 | { |
3769 | { |
| 3770 | /* Check the parameters */ |
3770 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
| 3771 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3771 | { |
| 3772 | 3772 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
|
| 3773 | /* Configure the TIM Channel 1 in Output Compare */ |
3773 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3774 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
3774 | htim->PeriodElapsedCallback(htim); |
| 3775 | break; |
3775 | #else |
| 3776 | } |
3776 | HAL_TIM_PeriodElapsedCallback(htim); |
| 3777 | 3777 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 3778 | case TIM_CHANNEL_2: |
3778 | } |
| 3779 | { |
3779 | } |
| 3780 | /* Check the parameters */ |
3780 | /* TIM Trigger detection event */ |
| 3781 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3781 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
| 3782 | 3782 | { |
|
| 3783 | /* Configure the TIM Channel 2 in Output Compare */ |
3783 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
| 3784 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
3784 | { |
| 3785 | break; |
3785 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
| 3786 | } |
3786 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 3787 | 3787 | htim->TriggerCallback(htim); |
|
| 3788 | case TIM_CHANNEL_3: |
3788 | #else |
| 3789 | { |
3789 | HAL_TIM_TriggerCallback(htim); |
| 3790 | /* Check the parameters */ |
3790 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 3791 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3791 | } |
| 3792 | 3792 | } |
|
| 3793 | /* Configure the TIM Channel 3 in Output Compare */ |
3793 | } |
| 3794 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
3794 | |
| 3795 | break; |
3795 | /** |
| 3796 | } |
3796 | * @} |
| 3797 | 3797 | */ |
|
| 3798 | case TIM_CHANNEL_4: |
3798 | |
| 3799 | { |
3799 | /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
| 3800 | /* Check the parameters */ |
3800 | * @brief TIM Peripheral Control functions |
| 3801 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3801 | * |
| 3802 | 3802 | @verbatim |
|
| 3803 | /* Configure the TIM Channel 4 in Output Compare */ |
3803 | ============================================================================== |
| 3804 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
3804 | ##### Peripheral Control functions ##### |
| 3805 | break; |
3805 | ============================================================================== |
| 3806 | } |
3806 | [..] |
| 3807 | 3807 | This section provides functions allowing to: |
|
| 3808 | default: |
3808 | (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
| 3809 | break; |
3809 | (+) Configure External Clock source. |
| 3810 | } |
3810 | (+) Configure Master and the Slave synchronization. |
| 3811 | 3811 | (+) Configure the DMA Burst Mode. |
|
| 3812 | __HAL_UNLOCK(htim); |
3812 | |
| 3813 | 3813 | @endverbatim |
|
| 3814 | return HAL_OK; |
3814 | * @{ |
| 3815 | } |
3815 | */ |
| 3816 | 3816 | ||
| 3817 | /** |
3817 | /** |
| 3818 | * @brief Initializes the TIM Input Capture Channels according to the specified |
3818 | * @brief Initializes the TIM Output Compare Channels according to the specified |
| 3819 | * parameters in the TIM_IC_InitTypeDef. |
3819 | * parameters in the TIM_OC_InitTypeDef. |
| 3820 | * @param htim TIM IC handle |
3820 | * @param htim TIM Output Compare handle |
| 3821 | * @param sConfig TIM Input Capture configuration structure |
3821 | * @param sConfig TIM Output Compare configuration structure |
| 3822 | * @param Channel TIM Channel to configure |
3822 | * @param Channel TIM Channels to configure |
| 3823 | * This parameter can be one of the following values: |
3823 | * This parameter can be one of the following values: |
| 3824 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3824 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3825 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3825 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 3826 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3826 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 3827 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3827 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
| 3828 | * @retval HAL status |
3828 | * @retval HAL status |
| 3829 | */ |
3829 | */ |
| 3830 | HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
3830 | HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
| 3831 | { |
3831 | const TIM_OC_InitTypeDef *sConfig, |
| 3832 | /* Check the parameters */ |
3832 | uint32_t Channel) |
| 3833 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3833 | { |
| 3834 | assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
3834 | HAL_StatusTypeDef status = HAL_OK; |
| 3835 | assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
3835 | |
| 3836 | assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
3836 | /* Check the parameters */ |
| 3837 | assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
3837 | assert_param(IS_TIM_CHANNELS(Channel)); |
| 3838 | 3838 | assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
|
| 3839 | /* Process Locked */ |
3839 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
| 3840 | __HAL_LOCK(htim); |
3840 | |
| 3841 | 3841 | /* Process Locked */ |
|
| 3842 | if (Channel == TIM_CHANNEL_1) |
3842 | __HAL_LOCK(htim); |
| 3843 | { |
3843 | |
| 3844 | /* TI1 Configuration */ |
3844 | switch (Channel) |
| 3845 | TIM_TI1_SetConfig(htim->Instance, |
3845 | { |
| 3846 | sConfig->ICPolarity, |
3846 | case TIM_CHANNEL_1: |
| 3847 | sConfig->ICSelection, |
3847 | { |
| 3848 | sConfig->ICFilter); |
3848 | /* Check the parameters */ |
| 3849 | 3849 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
|
| 3850 | /* Reset the IC1PSC Bits */ |
3850 | |
| 3851 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
3851 | /* Configure the TIM Channel 1 in Output Compare */ |
| 3852 | 3852 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
|
| 3853 | /* Set the IC1PSC value */ |
3853 | break; |
| 3854 | htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
3854 | } |
| 3855 | } |
3855 | |
| 3856 | else if (Channel == TIM_CHANNEL_2) |
3856 | case TIM_CHANNEL_2: |
| 3857 | { |
3857 | { |
| 3858 | /* TI2 Configuration */ |
3858 | /* Check the parameters */ |
| 3859 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3859 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 3860 | 3860 | ||
| 3861 | TIM_TI2_SetConfig(htim->Instance, |
3861 | /* Configure the TIM Channel 2 in Output Compare */ |
| 3862 | sConfig->ICPolarity, |
3862 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
| 3863 | sConfig->ICSelection, |
3863 | break; |
| 3864 | sConfig->ICFilter); |
3864 | } |
| 3865 | 3865 | ||
| 3866 | /* Reset the IC2PSC Bits */ |
3866 | case TIM_CHANNEL_3: |
| 3867 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
3867 | { |
| 3868 | 3868 | /* Check the parameters */ |
|
| 3869 | /* Set the IC2PSC value */ |
3869 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| 3870 | htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
3870 | |
| 3871 | } |
3871 | /* Configure the TIM Channel 3 in Output Compare */ |
| 3872 | else if (Channel == TIM_CHANNEL_3) |
3872 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
| 3873 | { |
3873 | break; |
| 3874 | /* TI3 Configuration */ |
3874 | } |
| 3875 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3875 | |
| 3876 | 3876 | case TIM_CHANNEL_4: |
|
| 3877 | TIM_TI3_SetConfig(htim->Instance, |
3877 | { |
| 3878 | sConfig->ICPolarity, |
3878 | /* Check the parameters */ |
| 3879 | sConfig->ICSelection, |
3879 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| 3880 | sConfig->ICFilter); |
3880 | |
| 3881 | 3881 | /* Configure the TIM Channel 4 in Output Compare */ |
|
| 3882 | /* Reset the IC3PSC Bits */ |
3882 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
| 3883 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
3883 | break; |
| 3884 | 3884 | } |
|
| 3885 | /* Set the IC3PSC value */ |
3885 | |
| 3886 | htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
3886 | default: |
| 3887 | } |
3887 | status = HAL_ERROR; |
| 3888 | else |
3888 | break; |
| 3889 | { |
3889 | } |
| 3890 | /* TI4 Configuration */ |
3890 | |
| 3891 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3891 | __HAL_UNLOCK(htim); |
| 3892 | 3892 | ||
| 3893 | TIM_TI4_SetConfig(htim->Instance, |
3893 | return status; |
| 3894 | sConfig->ICPolarity, |
3894 | } |
| 3895 | sConfig->ICSelection, |
3895 | |
| 3896 | sConfig->ICFilter); |
3896 | /** |
| 3897 | 3897 | * @brief Initializes the TIM Input Capture Channels according to the specified |
|
| 3898 | /* Reset the IC4PSC Bits */ |
3898 | * parameters in the TIM_IC_InitTypeDef. |
| 3899 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
3899 | * @param htim TIM IC handle |
| 3900 | 3900 | * @param sConfig TIM Input Capture configuration structure |
|
| 3901 | /* Set the IC4PSC value */ |
3901 | * @param Channel TIM Channel to configure |
| 3902 | htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
3902 | * This parameter can be one of the following values: |
| 3903 | } |
3903 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 3904 | 3904 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 3905 | __HAL_UNLOCK(htim); |
3905 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 3906 | 3906 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
| 3907 | return HAL_OK; |
3907 | * @retval HAL status |
| 3908 | } |
3908 | */ |
| 3909 | 3909 | HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
|
| 3910 | /** |
3910 | { |
| 3911 | * @brief Initializes the TIM PWM channels according to the specified |
3911 | HAL_StatusTypeDef status = HAL_OK; |
| 3912 | * parameters in the TIM_OC_InitTypeDef. |
3912 | |
| 3913 | * @param htim TIM PWM handle |
3913 | /* Check the parameters */ |
| 3914 | * @param sConfig TIM PWM configuration structure |
3914 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 3915 | * @param Channel TIM Channels to be configured |
3915 | assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
| 3916 | * This parameter can be one of the following values: |
3916 | assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
| 3917 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
3917 | assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
| 3918 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
3918 | assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
| 3919 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
3919 | |
| 3920 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
3920 | /* Process Locked */ |
| 3921 | * @retval HAL status |
3921 | __HAL_LOCK(htim); |
| 3922 | */ |
3922 | |
| 3923 | HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
3923 | if (Channel == TIM_CHANNEL_1) |
| 3924 | TIM_OC_InitTypeDef *sConfig, |
3924 | { |
| 3925 | uint32_t Channel) |
3925 | /* TI1 Configuration */ |
| 3926 | { |
3926 | TIM_TI1_SetConfig(htim->Instance, |
| 3927 | /* Check the parameters */ |
3927 | sConfig->ICPolarity, |
| 3928 | assert_param(IS_TIM_CHANNELS(Channel)); |
3928 | sConfig->ICSelection, |
| 3929 | assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
3929 | sConfig->ICFilter); |
| 3930 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
3930 | |
| 3931 | assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
3931 | /* Reset the IC1PSC Bits */ |
| 3932 | 3932 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
|
| 3933 | /* Process Locked */ |
3933 | |
| 3934 | __HAL_LOCK(htim); |
3934 | /* Set the IC1PSC value */ |
| 3935 | 3935 | htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
|
| 3936 | switch (Channel) |
3936 | } |
| 3937 | { |
3937 | else if (Channel == TIM_CHANNEL_2) |
| 3938 | case TIM_CHANNEL_1: |
3938 | { |
| 3939 | { |
3939 | /* TI2 Configuration */ |
| 3940 | /* Check the parameters */ |
3940 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 3941 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
3941 | |
| 3942 | 3942 | TIM_TI2_SetConfig(htim->Instance, |
|
| 3943 | /* Configure the Channel 1 in PWM mode */ |
3943 | sConfig->ICPolarity, |
| 3944 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
3944 | sConfig->ICSelection, |
| 3945 | 3945 | sConfig->ICFilter); |
|
| 3946 | /* Set the Preload enable bit for channel1 */ |
3946 | |
| 3947 | htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
3947 | /* Reset the IC2PSC Bits */ |
| 3948 | 3948 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
|
| 3949 | /* Configure the Output Fast mode */ |
3949 | |
| 3950 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
3950 | /* Set the IC2PSC value */ |
| 3951 | htim->Instance->CCMR1 |= sConfig->OCFastMode; |
3951 | htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
| 3952 | break; |
3952 | } |
| 3953 | } |
3953 | else if (Channel == TIM_CHANNEL_3) |
| 3954 | 3954 | { |
|
| 3955 | case TIM_CHANNEL_2: |
3955 | /* TI3 Configuration */ |
| 3956 | { |
3956 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| 3957 | /* Check the parameters */ |
3957 | |
| 3958 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
3958 | TIM_TI3_SetConfig(htim->Instance, |
| 3959 | 3959 | sConfig->ICPolarity, |
|
| 3960 | /* Configure the Channel 2 in PWM mode */ |
3960 | sConfig->ICSelection, |
| 3961 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
3961 | sConfig->ICFilter); |
| 3962 | 3962 | ||
| 3963 | /* Set the Preload enable bit for channel2 */ |
3963 | /* Reset the IC3PSC Bits */ |
| 3964 | htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
3964 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
| 3965 | 3965 | ||
| 3966 | /* Configure the Output Fast mode */ |
3966 | /* Set the IC3PSC value */ |
| 3967 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
3967 | htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
| 3968 | htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
3968 | } |
| 3969 | break; |
3969 | else if (Channel == TIM_CHANNEL_4) |
| 3970 | } |
3970 | { |
| 3971 | 3971 | /* TI4 Configuration */ |
|
| 3972 | case TIM_CHANNEL_3: |
3972 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| 3973 | { |
3973 | |
| 3974 | /* Check the parameters */ |
3974 | TIM_TI4_SetConfig(htim->Instance, |
| 3975 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
3975 | sConfig->ICPolarity, |
| 3976 | 3976 | sConfig->ICSelection, |
|
| 3977 | /* Configure the Channel 3 in PWM mode */ |
3977 | sConfig->ICFilter); |
| 3978 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
3978 | |
| 3979 | 3979 | /* Reset the IC4PSC Bits */ |
|
| 3980 | /* Set the Preload enable bit for channel3 */ |
3980 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
| 3981 | htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
3981 | |
| 3982 | 3982 | /* Set the IC4PSC value */ |
|
| 3983 | /* Configure the Output Fast mode */ |
3983 | htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
| 3984 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
3984 | } |
| 3985 | htim->Instance->CCMR2 |= sConfig->OCFastMode; |
3985 | else |
| 3986 | break; |
3986 | { |
| 3987 | } |
3987 | status = HAL_ERROR; |
| 3988 | 3988 | } |
|
| 3989 | case TIM_CHANNEL_4: |
3989 | |
| 3990 | { |
3990 | __HAL_UNLOCK(htim); |
| 3991 | /* Check the parameters */ |
3991 | |
| 3992 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
3992 | return status; |
| 3993 | 3993 | } |
|
| 3994 | /* Configure the Channel 4 in PWM mode */ |
3994 | |
| 3995 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
3995 | /** |
| 3996 | 3996 | * @brief Initializes the TIM PWM channels according to the specified |
|
| 3997 | /* Set the Preload enable bit for channel4 */ |
3997 | * parameters in the TIM_OC_InitTypeDef. |
| 3998 | htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
3998 | * @param htim TIM PWM handle |
| 3999 | 3999 | * @param sConfig TIM PWM configuration structure |
|
| 4000 | /* Configure the Output Fast mode */ |
4000 | * @param Channel TIM Channels to be configured |
| 4001 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
4001 | * This parameter can be one of the following values: |
| 4002 | htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
4002 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 4003 | break; |
4003 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 4004 | } |
4004 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 4005 | 4005 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
| 4006 | default: |
4006 | * @retval HAL status |
| 4007 | break; |
4007 | */ |
| 4008 | } |
4008 | HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
| 4009 | 4009 | const TIM_OC_InitTypeDef *sConfig, |
|
| 4010 | __HAL_UNLOCK(htim); |
4010 | uint32_t Channel) |
| 4011 | 4011 | { |
|
| 4012 | return HAL_OK; |
4012 | HAL_StatusTypeDef status = HAL_OK; |
| 4013 | } |
4013 | |
| 4014 | 4014 | /* Check the parameters */ |
|
| 4015 | /** |
4015 | assert_param(IS_TIM_CHANNELS(Channel)); |
| 4016 | * @brief Initializes the TIM One Pulse Channels according to the specified |
4016 | assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
| 4017 | * parameters in the TIM_OnePulse_InitTypeDef. |
4017 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
| 4018 | * @param htim TIM One Pulse handle |
4018 | assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
| 4019 | * @param sConfig TIM One Pulse configuration structure |
4019 | |
| 4020 | * @param OutputChannel TIM output channel to configure |
4020 | /* Process Locked */ |
| 4021 | * This parameter can be one of the following values: |
4021 | __HAL_LOCK(htim); |
| 4022 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4022 | |
| 4023 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4023 | switch (Channel) |
| 4024 | * @param InputChannel TIM input Channel to configure |
4024 | { |
| 4025 | * This parameter can be one of the following values: |
4025 | case TIM_CHANNEL_1: |
| 4026 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
4026 | { |
| 4027 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
4027 | /* Check the parameters */ |
| 4028 | * @note To output a waveform with a minimum delay user can enable the fast |
4028 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 4029 | * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
4029 | |
| 4030 | * output is forced in response to the edge detection on TIx input, |
4030 | /* Configure the Channel 1 in PWM mode */ |
| 4031 | * without taking in account the comparison. |
4031 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
| 4032 | * @retval HAL status |
4032 | |
| 4033 | */ |
4033 | /* Set the Preload enable bit for channel1 */ |
| 4034 | HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
4034 | htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
| 4035 | uint32_t OutputChannel, uint32_t InputChannel) |
4035 | |
| 4036 | { |
4036 | /* Configure the Output Fast mode */ |
| 4037 | TIM_OC_InitTypeDef temp1; |
4037 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
| 4038 | 4038 | htim->Instance->CCMR1 |= sConfig->OCFastMode; |
|
| 4039 | /* Check the parameters */ |
4039 | break; |
| 4040 | assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
4040 | } |
| 4041 | assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
4041 | |
| 4042 | 4042 | case TIM_CHANNEL_2: |
|
| 4043 | if (OutputChannel != InputChannel) |
4043 | { |
| 4044 | { |
4044 | /* Check the parameters */ |
| 4045 | /* Process Locked */ |
4045 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 4046 | __HAL_LOCK(htim); |
4046 | |
| 4047 | 4047 | /* Configure the Channel 2 in PWM mode */ |
|
| 4048 | htim->State = HAL_TIM_STATE_BUSY; |
4048 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
| 4049 | 4049 | ||
| 4050 | /* Extract the Output compare configuration from sConfig structure */ |
4050 | /* Set the Preload enable bit for channel2 */ |
| 4051 | temp1.OCMode = sConfig->OCMode; |
4051 | htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
| 4052 | temp1.Pulse = sConfig->Pulse; |
4052 | |
| 4053 | temp1.OCPolarity = sConfig->OCPolarity; |
4053 | /* Configure the Output Fast mode */ |
| 4054 | 4054 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
|
| 4055 | switch (OutputChannel) |
4055 | htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
| 4056 | { |
4056 | break; |
| 4057 | case TIM_CHANNEL_1: |
4057 | } |
| 4058 | { |
4058 | |
| 4059 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4059 | case TIM_CHANNEL_3: |
| 4060 | 4060 | { |
|
| 4061 | TIM_OC1_SetConfig(htim->Instance, &temp1); |
4061 | /* Check the parameters */ |
| 4062 | break; |
4062 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| 4063 | } |
4063 | |
| 4064 | case TIM_CHANNEL_2: |
4064 | /* Configure the Channel 3 in PWM mode */ |
| 4065 | { |
4065 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
| 4066 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4066 | |
| 4067 | 4067 | /* Set the Preload enable bit for channel3 */ |
|
| 4068 | TIM_OC2_SetConfig(htim->Instance, &temp1); |
4068 | htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
| 4069 | break; |
4069 | |
| 4070 | } |
4070 | /* Configure the Output Fast mode */ |
| 4071 | default: |
4071 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
| 4072 | break; |
4072 | htim->Instance->CCMR2 |= sConfig->OCFastMode; |
| 4073 | } |
4073 | break; |
| 4074 | 4074 | } |
|
| 4075 | switch (InputChannel) |
4075 | |
| 4076 | { |
4076 | case TIM_CHANNEL_4: |
| 4077 | case TIM_CHANNEL_1: |
4077 | { |
| 4078 | { |
4078 | /* Check the parameters */ |
| 4079 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
4079 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| 4080 | 4080 | ||
| 4081 | TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
4081 | /* Configure the Channel 4 in PWM mode */ |
| 4082 | sConfig->ICSelection, sConfig->ICFilter); |
4082 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
| 4083 | 4083 | ||
| 4084 | /* Reset the IC1PSC Bits */ |
4084 | /* Set the Preload enable bit for channel4 */ |
| 4085 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
4085 | htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
| 4086 | 4086 | ||
| 4087 | /* Select the Trigger source */ |
4087 | /* Configure the Output Fast mode */ |
| 4088 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4088 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
| 4089 | htim->Instance->SMCR |= TIM_TS_TI1FP1; |
4089 | htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
| 4090 | 4090 | break; |
|
| 4091 | /* Select the Slave Mode */ |
4091 | } |
| 4092 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4092 | |
| 4093 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4093 | default: |
| 4094 | break; |
4094 | status = HAL_ERROR; |
| 4095 | } |
4095 | break; |
| 4096 | case TIM_CHANNEL_2: |
4096 | } |
| 4097 | { |
4097 | |
| 4098 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
4098 | __HAL_UNLOCK(htim); |
| 4099 | 4099 | ||
| 4100 | TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
4100 | return status; |
| 4101 | sConfig->ICSelection, sConfig->ICFilter); |
4101 | } |
| 4102 | 4102 | ||
| 4103 | /* Reset the IC2PSC Bits */ |
4103 | /** |
| 4104 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
4104 | * @brief Initializes the TIM One Pulse Channels according to the specified |
| 4105 | 4105 | * parameters in the TIM_OnePulse_InitTypeDef. |
|
| 4106 | /* Select the Trigger source */ |
4106 | * @param htim TIM One Pulse handle |
| 4107 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
4107 | * @param sConfig TIM One Pulse configuration structure |
| 4108 | htim->Instance->SMCR |= TIM_TS_TI2FP2; |
4108 | * @param OutputChannel TIM output channel to configure |
| 4109 | 4109 | * This parameter can be one of the following values: |
|
| 4110 | /* Select the Slave Mode */ |
4110 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 4111 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
4111 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 4112 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
4112 | * @param InputChannel TIM input Channel to configure |
| 4113 | break; |
4113 | * This parameter can be one of the following values: |
| 4114 | } |
4114 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 4115 | 4115 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
|
| 4116 | default: |
4116 | * @note To output a waveform with a minimum delay user can enable the fast |
| 4117 | break; |
4117 | * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
| 4118 | } |
4118 | * output is forced in response to the edge detection on TIx input, |
| 4119 | 4119 | * without taking in account the comparison. |
|
| 4120 | htim->State = HAL_TIM_STATE_READY; |
4120 | * @retval HAL status |
| 4121 | 4121 | */ |
|
| 4122 | __HAL_UNLOCK(htim); |
4122 | HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
| 4123 | 4123 | uint32_t OutputChannel, uint32_t InputChannel) |
|
| 4124 | return HAL_OK; |
4124 | { |
| 4125 | } |
4125 | HAL_StatusTypeDef status = HAL_OK; |
| 4126 | else |
4126 | TIM_OC_InitTypeDef temp1; |
| 4127 | { |
4127 | |
| 4128 | return HAL_ERROR; |
4128 | /* Check the parameters */ |
| 4129 | } |
4129 | assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
| 4130 | } |
4130 | assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
| 4131 | 4131 | ||
| 4132 | /** |
4132 | if (OutputChannel != InputChannel) |
| 4133 | * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
4133 | { |
| 4134 | * @param htim TIM handle |
4134 | /* Process Locked */ |
| 4135 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4135 | __HAL_LOCK(htim); |
| 4136 | * This parameter can be one of the following values: |
4136 | |
| 4137 | * @arg TIM_DMABASE_CR1 |
4137 | htim->State = HAL_TIM_STATE_BUSY; |
| 4138 | * @arg TIM_DMABASE_CR2 |
4138 | |
| 4139 | * @arg TIM_DMABASE_SMCR |
4139 | /* Extract the Output compare configuration from sConfig structure */ |
| 4140 | * @arg TIM_DMABASE_DIER |
4140 | temp1.OCMode = sConfig->OCMode; |
| 4141 | * @arg TIM_DMABASE_SR |
4141 | temp1.Pulse = sConfig->Pulse; |
| 4142 | * @arg TIM_DMABASE_EGR |
4142 | temp1.OCPolarity = sConfig->OCPolarity; |
| 4143 | * @arg TIM_DMABASE_CCMR1 |
4143 | |
| 4144 | * @arg TIM_DMABASE_CCMR2 |
4144 | switch (OutputChannel) |
| 4145 | * @arg TIM_DMABASE_CCER |
4145 | { |
| 4146 | * @arg TIM_DMABASE_CNT |
4146 | case TIM_CHANNEL_1: |
| 4147 | * @arg TIM_DMABASE_PSC |
4147 | { |
| 4148 | * @arg TIM_DMABASE_ARR |
4148 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 4149 | * @arg TIM_DMABASE_CCR1 |
4149 | |
| 4150 | * @arg TIM_DMABASE_CCR2 |
4150 | TIM_OC1_SetConfig(htim->Instance, &temp1); |
| 4151 | * @arg TIM_DMABASE_CCR3 |
4151 | break; |
| 4152 | * @arg TIM_DMABASE_CCR4 |
4152 | } |
| 4153 | * @arg TIM_DMABASE_OR |
4153 | |
| 4154 | * @param BurstRequestSrc TIM DMA Request sources |
4154 | case TIM_CHANNEL_2: |
| 4155 | * This parameter can be one of the following values: |
4155 | { |
| 4156 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4156 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 4157 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4157 | |
| 4158 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4158 | TIM_OC2_SetConfig(htim->Instance, &temp1); |
| 4159 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4159 | break; |
| 4160 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4160 | } |
| 4161 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4161 | |
| 4162 | * @param BurstBuffer The Buffer address. |
4162 | default: |
| 4163 | * @param BurstLength DMA Burst length. This parameter can be one value |
4163 | status = HAL_ERROR; |
| 4164 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4164 | break; |
| 4165 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4165 | } |
| 4166 | * @retval HAL status |
4166 | |
| 4167 | */ |
4167 | if (status == HAL_OK) |
| 4168 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4168 | { |
| 4169 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
4169 | switch (InputChannel) |
| 4170 | { |
4170 | { |
| 4171 | return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
4171 | case TIM_CHANNEL_1: |
| 4172 | ((BurstLength) >> 8U) + 1U); |
4172 | { |
| 4173 | } |
4173 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 4174 | 4174 | ||
| 4175 | /** |
4175 | TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
| 4176 | * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
4176 | sConfig->ICSelection, sConfig->ICFilter); |
| 4177 | * @param htim TIM handle |
4177 | |
| 4178 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
4178 | /* Reset the IC1PSC Bits */ |
| 4179 | * This parameter can be one of the following values: |
4179 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
| 4180 | * @arg TIM_DMABASE_CR1 |
4180 | |
| 4181 | * @arg TIM_DMABASE_CR2 |
4181 | /* Select the Trigger source */ |
| 4182 | * @arg TIM_DMABASE_SMCR |
4182 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
| 4183 | * @arg TIM_DMABASE_DIER |
4183 | htim->Instance->SMCR |= TIM_TS_TI1FP1; |
| 4184 | * @arg TIM_DMABASE_SR |
4184 | |
| 4185 | * @arg TIM_DMABASE_EGR |
4185 | /* Select the Slave Mode */ |
| 4186 | * @arg TIM_DMABASE_CCMR1 |
4186 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
| 4187 | * @arg TIM_DMABASE_CCMR2 |
4187 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
| 4188 | * @arg TIM_DMABASE_CCER |
4188 | break; |
| 4189 | * @arg TIM_DMABASE_CNT |
4189 | } |
| 4190 | * @arg TIM_DMABASE_PSC |
4190 | |
| 4191 | * @arg TIM_DMABASE_ARR |
4191 | case TIM_CHANNEL_2: |
| 4192 | * @arg TIM_DMABASE_CCR1 |
4192 | { |
| 4193 | * @arg TIM_DMABASE_CCR2 |
4193 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 4194 | * @arg TIM_DMABASE_CCR3 |
4194 | |
| 4195 | * @arg TIM_DMABASE_CCR4 |
4195 | TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
| 4196 | * @arg TIM_DMABASE_OR |
4196 | sConfig->ICSelection, sConfig->ICFilter); |
| 4197 | * @param BurstRequestSrc TIM DMA Request sources |
4197 | |
| 4198 | * This parameter can be one of the following values: |
4198 | /* Reset the IC2PSC Bits */ |
| 4199 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4199 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
| 4200 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4200 | |
| 4201 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4201 | /* Select the Trigger source */ |
| 4202 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4202 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
| 4203 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4203 | htim->Instance->SMCR |= TIM_TS_TI2FP2; |
| 4204 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4204 | |
| 4205 | * @param BurstBuffer The Buffer address. |
4205 | /* Select the Slave Mode */ |
| 4206 | * @param BurstLength DMA Burst length. This parameter can be one value |
4206 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
| 4207 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4207 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
| 4208 | * @param DataLength Data length. This parameter can be one value |
4208 | break; |
| 4209 | * between 1 and 0xFFFF. |
4209 | } |
| 4210 | * @retval HAL status |
4210 | |
| 4211 | */ |
4211 | default: |
| 4212 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4212 | status = HAL_ERROR; |
| 4213 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
4213 | break; |
| 4214 | uint32_t BurstLength, uint32_t DataLength) |
4214 | } |
| 4215 | { |
4215 | } |
| 4216 | /* Check the parameters */ |
4216 | |
| 4217 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4217 | htim->State = HAL_TIM_STATE_READY; |
| 4218 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4218 | |
| 4219 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4219 | __HAL_UNLOCK(htim); |
| 4220 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4220 | |
| 4221 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4221 | return status; |
| 4222 | 4222 | } |
|
| 4223 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4223 | else |
| 4224 | { |
4224 | { |
| 4225 | return HAL_BUSY; |
4225 | return HAL_ERROR; |
| 4226 | } |
4226 | } |
| 4227 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4227 | } |
| 4228 | { |
4228 | |
| 4229 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4229 | /** |
| 4230 | { |
4230 | * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
| 4231 | return HAL_ERROR; |
4231 | * @param htim TIM handle |
| 4232 | } |
4232 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
| 4233 | else |
4233 | * This parameter can be one of the following values: |
| 4234 | { |
4234 | * @arg TIM_DMABASE_CR1 |
| 4235 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
4235 | * @arg TIM_DMABASE_CR2 |
| 4236 | } |
4236 | * @arg TIM_DMABASE_SMCR |
| 4237 | } |
4237 | * @arg TIM_DMABASE_DIER |
| 4238 | else |
4238 | * @arg TIM_DMABASE_SR |
| 4239 | { |
4239 | * @arg TIM_DMABASE_EGR |
| 4240 | /* nothing to do */ |
4240 | * @arg TIM_DMABASE_CCMR1 |
| 4241 | } |
4241 | * @arg TIM_DMABASE_CCMR2 |
| 4242 | switch (BurstRequestSrc) |
4242 | * @arg TIM_DMABASE_CCER |
| 4243 | { |
4243 | * @arg TIM_DMABASE_CNT |
| 4244 | case TIM_DMA_UPDATE: |
4244 | * @arg TIM_DMABASE_PSC |
| 4245 | { |
4245 | * @arg TIM_DMABASE_ARR |
| 4246 | /* Set the DMA Period elapsed callbacks */ |
4246 | * @arg TIM_DMABASE_CCR1 |
| 4247 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4247 | * @arg TIM_DMABASE_CCR2 |
| 4248 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4248 | * @arg TIM_DMABASE_CCR3 |
| 4249 | 4249 | * @arg TIM_DMABASE_CCR4 |
|
| 4250 | /* Set the DMA error callback */ |
4250 | * @arg TIM_DMABASE_OR |
| 4251 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4251 | * @param BurstRequestSrc TIM DMA Request sources |
| 4252 | 4252 | * This parameter can be one of the following values: |
|
| 4253 | /* Enable the DMA channel */ |
4253 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| 4254 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
4254 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| 4255 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4255 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| 4256 | { |
4256 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| 4257 | /* Return error status */ |
4257 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| 4258 | return HAL_ERROR; |
4258 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| 4259 | } |
4259 | * @param BurstBuffer The Buffer address. |
| 4260 | break; |
4260 | * @param BurstLength DMA Burst length. This parameter can be one value |
| 4261 | } |
4261 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
| 4262 | case TIM_DMA_CC1: |
4262 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
| 4263 | { |
4263 | * @retval HAL status |
| 4264 | /* Set the DMA compare callbacks */ |
4264 | */ |
| 4265 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4265 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| 4266 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4266 | uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength) |
| 4267 | 4267 | { |
|
| 4268 | /* Set the DMA error callback */ |
4268 | HAL_StatusTypeDef status; |
| 4269 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
4269 | |
| 4270 | 4270 | status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
|
| 4271 | /* Enable the DMA channel */ |
4271 | ((BurstLength) >> 8U) + 1U); |
| 4272 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
4272 | |
| 4273 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4273 | |
| 4274 | { |
4274 | |
| 4275 | /* Return error status */ |
4275 | return status; |
| 4276 | return HAL_ERROR; |
4276 | } |
| 4277 | } |
4277 | |
| 4278 | break; |
4278 | /** |
| 4279 | } |
4279 | * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
| 4280 | case TIM_DMA_CC2: |
4280 | * @param htim TIM handle |
| 4281 | { |
4281 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
| 4282 | /* Set the DMA compare callbacks */ |
4282 | * This parameter can be one of the following values: |
| 4283 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4283 | * @arg TIM_DMABASE_CR1 |
| 4284 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4284 | * @arg TIM_DMABASE_CR2 |
| 4285 | 4285 | * @arg TIM_DMABASE_SMCR |
|
| 4286 | /* Set the DMA error callback */ |
4286 | * @arg TIM_DMABASE_DIER |
| 4287 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4287 | * @arg TIM_DMABASE_SR |
| 4288 | 4288 | * @arg TIM_DMABASE_EGR |
|
| 4289 | /* Enable the DMA channel */ |
4289 | * @arg TIM_DMABASE_CCMR1 |
| 4290 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
4290 | * @arg TIM_DMABASE_CCMR2 |
| 4291 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4291 | * @arg TIM_DMABASE_CCER |
| 4292 | { |
4292 | * @arg TIM_DMABASE_CNT |
| 4293 | /* Return error status */ |
4293 | * @arg TIM_DMABASE_PSC |
| 4294 | return HAL_ERROR; |
4294 | * @arg TIM_DMABASE_ARR |
| 4295 | } |
4295 | * @arg TIM_DMABASE_CCR1 |
| 4296 | break; |
4296 | * @arg TIM_DMABASE_CCR2 |
| 4297 | } |
4297 | * @arg TIM_DMABASE_CCR3 |
| 4298 | case TIM_DMA_CC3: |
4298 | * @arg TIM_DMABASE_CCR4 |
| 4299 | { |
4299 | * @arg TIM_DMABASE_OR |
| 4300 | /* Set the DMA compare callbacks */ |
4300 | * @param BurstRequestSrc TIM DMA Request sources |
| 4301 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4301 | * This parameter can be one of the following values: |
| 4302 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4302 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| 4303 | 4303 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
| 4304 | /* Set the DMA error callback */ |
4304 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| 4305 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4305 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| 4306 | 4306 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
| 4307 | /* Enable the DMA channel */ |
4307 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| 4308 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
4308 | * @param BurstBuffer The Buffer address. |
| 4309 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4309 | * @param BurstLength DMA Burst length. This parameter can be one value |
| 4310 | { |
4310 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
| 4311 | /* Return error status */ |
4311 | * @param DataLength Data length. This parameter can be one value |
| 4312 | return HAL_ERROR; |
4312 | * between 1 and 0xFFFF. |
| 4313 | } |
4313 | * @retval HAL status |
| 4314 | break; |
4314 | */ |
| 4315 | } |
4315 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| 4316 | case TIM_DMA_CC4: |
4316 | uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, |
| 4317 | { |
4317 | uint32_t BurstLength, uint32_t DataLength) |
| 4318 | /* Set the DMA compare callbacks */ |
4318 | { |
| 4319 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
4319 | HAL_StatusTypeDef status = HAL_OK; |
| 4320 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
4320 | |
| 4321 | 4321 | /* Check the parameters */ |
|
| 4322 | /* Set the DMA error callback */ |
4322 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| 4323 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4323 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
| 4324 | 4324 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
| 4325 | /* Enable the DMA channel */ |
4325 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
| 4326 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
4326 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
| 4327 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4327 | |
| 4328 | { |
4328 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
| 4329 | /* Return error status */ |
4329 | { |
| 4330 | return HAL_ERROR; |
4330 | return HAL_BUSY; |
| 4331 | } |
4331 | } |
| 4332 | break; |
4332 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
| 4333 | } |
4333 | { |
| 4334 | case TIM_DMA_TRIGGER: |
4334 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
| 4335 | { |
4335 | { |
| 4336 | /* Set the DMA trigger callbacks */ |
4336 | return HAL_ERROR; |
| 4337 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4337 | } |
| 4338 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4338 | else |
| 4339 | 4339 | { |
|
| 4340 | /* Set the DMA error callback */ |
4340 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
| 4341 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4341 | } |
| 4342 | 4342 | } |
|
| 4343 | /* Enable the DMA channel */ |
4343 | else |
| 4344 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
4344 | { |
| 4345 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
4345 | /* nothing to do */ |
| 4346 | { |
4346 | } |
| 4347 | /* Return error status */ |
4347 | |
| 4348 | return HAL_ERROR; |
4348 | switch (BurstRequestSrc) |
| 4349 | } |
4349 | { |
| 4350 | break; |
4350 | case TIM_DMA_UPDATE: |
| 4351 | } |
4351 | { |
| 4352 | default: |
4352 | /* Set the DMA Period elapsed callbacks */ |
| 4353 | break; |
4353 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| 4354 | } |
4354 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
| 4355 | 4355 | ||
| 4356 | /* Configure the DMA Burst Mode */ |
4356 | /* Set the DMA error callback */ |
| 4357 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
4357 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
| 4358 | /* Enable the TIM DMA Request */ |
4358 | |
| 4359 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
4359 | /* Enable the DMA channel */ |
| 4360 | 4360 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
|
| 4361 | /* Return function status */ |
4361 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| 4362 | return HAL_OK; |
4362 | { |
| 4363 | } |
4363 | /* Return error status */ |
| 4364 | 4364 | return HAL_ERROR; |
|
| 4365 | /** |
4365 | } |
| 4366 | * @brief Stops the TIM DMA Burst mode |
4366 | break; |
| 4367 | * @param htim TIM handle |
4367 | } |
| 4368 | * @param BurstRequestSrc TIM DMA Request sources to disable |
4368 | case TIM_DMA_CC1: |
| 4369 | * @retval HAL status |
4369 | { |
| 4370 | */ |
4370 | /* Set the DMA compare callbacks */ |
| 4371 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4371 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 4372 | { |
4372 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 4373 | /* Check the parameters */ |
4373 | |
| 4374 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4374 | /* Set the DMA error callback */ |
| 4375 | 4375 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
|
| 4376 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4376 | |
| 4377 | switch (BurstRequestSrc) |
4377 | /* Enable the DMA channel */ |
| 4378 | { |
4378 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
| 4379 | case TIM_DMA_UPDATE: |
4379 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| 4380 | { |
4380 | { |
| 4381 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4381 | /* Return error status */ |
| 4382 | break; |
4382 | return HAL_ERROR; |
| 4383 | } |
4383 | } |
| 4384 | case TIM_DMA_CC1: |
4384 | break; |
| 4385 | { |
4385 | } |
| 4386 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4386 | case TIM_DMA_CC2: |
| 4387 | break; |
4387 | { |
| 4388 | } |
4388 | /* Set the DMA compare callbacks */ |
| 4389 | case TIM_DMA_CC2: |
4389 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 4390 | { |
4390 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 4391 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4391 | |
| 4392 | break; |
4392 | /* Set the DMA error callback */ |
| 4393 | } |
4393 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| 4394 | case TIM_DMA_CC3: |
4394 | |
| 4395 | { |
4395 | /* Enable the DMA channel */ |
| 4396 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4396 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
| 4397 | break; |
4397 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| 4398 | } |
4398 | { |
| 4399 | case TIM_DMA_CC4: |
4399 | /* Return error status */ |
| 4400 | { |
4400 | return HAL_ERROR; |
| 4401 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
4401 | } |
| 4402 | break; |
4402 | break; |
| 4403 | } |
4403 | } |
| 4404 | case TIM_DMA_TRIGGER: |
4404 | case TIM_DMA_CC3: |
| 4405 | { |
4405 | { |
| 4406 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4406 | /* Set the DMA compare callbacks */ |
| 4407 | break; |
4407 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 4408 | } |
4408 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 4409 | default: |
4409 | |
| 4410 | break; |
4410 | /* Set the DMA error callback */ |
| 4411 | } |
4411 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| 4412 | 4412 | ||
| 4413 | /* Disable the TIM Update DMA request */ |
4413 | /* Enable the DMA channel */ |
| 4414 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4414 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
| 4415 | 4415 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
|
| 4416 | /* Change the DMA burst operation state */ |
4416 | { |
| 4417 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4417 | /* Return error status */ |
| 4418 | 4418 | return HAL_ERROR; |
|
| 4419 | /* Return function status */ |
4419 | } |
| 4420 | return HAL_OK; |
4420 | break; |
| 4421 | } |
4421 | } |
| 4422 | 4422 | case TIM_DMA_CC4: |
|
| 4423 | /** |
4423 | { |
| 4424 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
4424 | /* Set the DMA compare callbacks */ |
| 4425 | * @param htim TIM handle |
4425 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
| 4426 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4426 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
| 4427 | * This parameter can be one of the following values: |
4427 | |
| 4428 | * @arg TIM_DMABASE_CR1 |
4428 | /* Set the DMA error callback */ |
| 4429 | * @arg TIM_DMABASE_CR2 |
4429 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| 4430 | * @arg TIM_DMABASE_SMCR |
4430 | |
| 4431 | * @arg TIM_DMABASE_DIER |
4431 | /* Enable the DMA channel */ |
| 4432 | * @arg TIM_DMABASE_SR |
4432 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
| 4433 | * @arg TIM_DMABASE_EGR |
4433 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| 4434 | * @arg TIM_DMABASE_CCMR1 |
4434 | { |
| 4435 | * @arg TIM_DMABASE_CCMR2 |
4435 | /* Return error status */ |
| 4436 | * @arg TIM_DMABASE_CCER |
4436 | return HAL_ERROR; |
| 4437 | * @arg TIM_DMABASE_CNT |
4437 | } |
| 4438 | * @arg TIM_DMABASE_PSC |
4438 | break; |
| 4439 | * @arg TIM_DMABASE_ARR |
4439 | } |
| 4440 | * @arg TIM_DMABASE_CCR1 |
4440 | case TIM_DMA_TRIGGER: |
| 4441 | * @arg TIM_DMABASE_CCR2 |
4441 | { |
| 4442 | * @arg TIM_DMABASE_CCR3 |
4442 | /* Set the DMA trigger callbacks */ |
| 4443 | * @arg TIM_DMABASE_CCR4 |
4443 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
| 4444 | * @arg TIM_DMABASE_OR |
4444 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
| 4445 | * @param BurstRequestSrc TIM DMA Request sources |
4445 | |
| 4446 | * This parameter can be one of the following values: |
4446 | /* Set the DMA error callback */ |
| 4447 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4447 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
| 4448 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4448 | |
| 4449 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4449 | /* Enable the DMA channel */ |
| 4450 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4450 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
| 4451 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4451 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
| 4452 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4452 | { |
| 4453 | * @param BurstBuffer The Buffer address. |
4453 | /* Return error status */ |
| 4454 | * @param BurstLength DMA Burst length. This parameter can be one value |
4454 | return HAL_ERROR; |
| 4455 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4455 | } |
| 4456 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
4456 | break; |
| 4457 | * @retval HAL status |
4457 | } |
| 4458 | */ |
4458 | default: |
| 4459 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4459 | status = HAL_ERROR; |
| 4460 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
4460 | break; |
| 4461 | { |
4461 | } |
| 4462 | return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
4462 | |
| 4463 | ((BurstLength) >> 8U) + 1U); |
4463 | if (status == HAL_OK) |
| 4464 | } |
4464 | { |
| 4465 | 4465 | /* Configure the DMA Burst Mode */ |
|
| 4466 | /** |
4466 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
| 4467 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
4467 | /* Enable the TIM DMA Request */ |
| 4468 | * @param htim TIM handle |
4468 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
| 4469 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
4469 | } |
| 4470 | * This parameter can be one of the following values: |
4470 | |
| 4471 | * @arg TIM_DMABASE_CR1 |
4471 | /* Return function status */ |
| 4472 | * @arg TIM_DMABASE_CR2 |
4472 | return status; |
| 4473 | * @arg TIM_DMABASE_SMCR |
4473 | } |
| 4474 | * @arg TIM_DMABASE_DIER |
4474 | |
| 4475 | * @arg TIM_DMABASE_SR |
4475 | /** |
| 4476 | * @arg TIM_DMABASE_EGR |
4476 | * @brief Stops the TIM DMA Burst mode |
| 4477 | * @arg TIM_DMABASE_CCMR1 |
4477 | * @param htim TIM handle |
| 4478 | * @arg TIM_DMABASE_CCMR2 |
4478 | * @param BurstRequestSrc TIM DMA Request sources to disable |
| 4479 | * @arg TIM_DMABASE_CCER |
4479 | * @retval HAL status |
| 4480 | * @arg TIM_DMABASE_CNT |
4480 | */ |
| 4481 | * @arg TIM_DMABASE_PSC |
4481 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
| 4482 | * @arg TIM_DMABASE_ARR |
4482 | { |
| 4483 | * @arg TIM_DMABASE_CCR1 |
4483 | HAL_StatusTypeDef status = HAL_OK; |
| 4484 | * @arg TIM_DMABASE_CCR2 |
4484 | |
| 4485 | * @arg TIM_DMABASE_CCR3 |
4485 | /* Check the parameters */ |
| 4486 | * @arg TIM_DMABASE_CCR4 |
4486 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| 4487 | * @arg TIM_DMABASE_OR |
4487 | |
| 4488 | * @param BurstRequestSrc TIM DMA Request sources |
4488 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
| 4489 | * This parameter can be one of the following values: |
4489 | switch (BurstRequestSrc) |
| 4490 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
4490 | { |
| 4491 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
4491 | case TIM_DMA_UPDATE: |
| 4492 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
4492 | { |
| 4493 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
4493 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
| 4494 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
4494 | break; |
| 4495 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
4495 | } |
| 4496 | * @param BurstBuffer The Buffer address. |
4496 | case TIM_DMA_CC1: |
| 4497 | * @param BurstLength DMA Burst length. This parameter can be one value |
4497 | { |
| 4498 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
4498 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 4499 | * @param DataLength Data length. This parameter can be one value |
4499 | break; |
| 4500 | * between 1 and 0xFFFF. |
4500 | } |
| 4501 | * @retval HAL status |
4501 | case TIM_DMA_CC2: |
| 4502 | */ |
4502 | { |
| 4503 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
4503 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 4504 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
4504 | break; |
| 4505 | uint32_t BurstLength, uint32_t DataLength) |
4505 | } |
| 4506 | { |
4506 | case TIM_DMA_CC3: |
| 4507 | /* Check the parameters */ |
4507 | { |
| 4508 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
4508 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| 4509 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
4509 | break; |
| 4510 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4510 | } |
| 4511 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
4511 | case TIM_DMA_CC4: |
| 4512 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
4512 | { |
| 4513 | 4513 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
|
| 4514 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
4514 | break; |
| 4515 | { |
4515 | } |
| 4516 | return HAL_BUSY; |
4516 | case TIM_DMA_TRIGGER: |
| 4517 | } |
4517 | { |
| 4518 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
4518 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
| 4519 | { |
4519 | break; |
| 4520 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
4520 | } |
| 4521 | { |
4521 | default: |
| 4522 | return HAL_ERROR; |
4522 | status = HAL_ERROR; |
| 4523 | } |
4523 | break; |
| 4524 | else |
4524 | } |
| 4525 | { |
4525 | |
| 4526 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
4526 | if (status == HAL_OK) |
| 4527 | } |
4527 | { |
| 4528 | } |
4528 | /* Disable the TIM Update DMA request */ |
| 4529 | else |
4529 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
| 4530 | { |
4530 | |
| 4531 | /* nothing to do */ |
4531 | /* Change the DMA burst operation state */ |
| 4532 | } |
4532 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 4533 | switch (BurstRequestSrc) |
4533 | } |
| 4534 | { |
4534 | |
| 4535 | case TIM_DMA_UPDATE: |
4535 | /* Return function status */ |
| 4536 | { |
4536 | return status; |
| 4537 | /* Set the DMA Period elapsed callbacks */ |
4537 | } |
| 4538 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
4538 | |
| 4539 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
4539 | /** |
| 4540 | 4540 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
|
| 4541 | /* Set the DMA error callback */ |
4541 | * @param htim TIM handle |
| 4542 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
4542 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
| 4543 | 4543 | * This parameter can be one of the following values: |
|
| 4544 | /* Enable the DMA channel */ |
4544 | * @arg TIM_DMABASE_CR1 |
| 4545 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4545 | * @arg TIM_DMABASE_CR2 |
| 4546 | DataLength) != HAL_OK) |
4546 | * @arg TIM_DMABASE_SMCR |
| 4547 | { |
4547 | * @arg TIM_DMABASE_DIER |
| 4548 | /* Return error status */ |
4548 | * @arg TIM_DMABASE_SR |
| 4549 | return HAL_ERROR; |
4549 | * @arg TIM_DMABASE_EGR |
| 4550 | } |
4550 | * @arg TIM_DMABASE_CCMR1 |
| 4551 | break; |
4551 | * @arg TIM_DMABASE_CCMR2 |
| 4552 | } |
4552 | * @arg TIM_DMABASE_CCER |
| 4553 | case TIM_DMA_CC1: |
4553 | * @arg TIM_DMABASE_CNT |
| 4554 | { |
4554 | * @arg TIM_DMABASE_PSC |
| 4555 | /* Set the DMA capture callbacks */ |
4555 | * @arg TIM_DMABASE_ARR |
| 4556 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
4556 | * @arg TIM_DMABASE_CCR1 |
| 4557 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4557 | * @arg TIM_DMABASE_CCR2 |
| 4558 | 4558 | * @arg TIM_DMABASE_CCR3 |
|
| 4559 | /* Set the DMA error callback */ |
4559 | * @arg TIM_DMABASE_CCR4 |
| 4560 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
4560 | * @arg TIM_DMABASE_OR |
| 4561 | 4561 | * @param BurstRequestSrc TIM DMA Request sources |
|
| 4562 | /* Enable the DMA channel */ |
4562 | * This parameter can be one of the following values: |
| 4563 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4563 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| 4564 | DataLength) != HAL_OK) |
4564 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
| 4565 | { |
4565 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| 4566 | /* Return error status */ |
4566 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| 4567 | return HAL_ERROR; |
4567 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
| 4568 | } |
4568 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| 4569 | break; |
4569 | * @param BurstBuffer The Buffer address. |
| 4570 | } |
4570 | * @param BurstLength DMA Burst length. This parameter can be one value |
| 4571 | case TIM_DMA_CC2: |
4571 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
| 4572 | { |
4572 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
| 4573 | /* Set the DMA capture callbacks */ |
4573 | * @retval HAL status |
| 4574 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
4574 | */ |
| 4575 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4575 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| 4576 | 4576 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
|
| 4577 | /* Set the DMA error callback */ |
4577 | { |
| 4578 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
4578 | HAL_StatusTypeDef status; |
| 4579 | 4579 | ||
| 4580 | /* Enable the DMA channel */ |
4580 | status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
| 4581 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4581 | ((BurstLength) >> 8U) + 1U); |
| 4582 | DataLength) != HAL_OK) |
4582 | |
| 4583 | { |
4583 | |
| 4584 | /* Return error status */ |
4584 | return status; |
| 4585 | return HAL_ERROR; |
4585 | } |
| 4586 | } |
4586 | |
| 4587 | break; |
4587 | /** |
| 4588 | } |
4588 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
| 4589 | case TIM_DMA_CC3: |
4589 | * @param htim TIM handle |
| 4590 | { |
4590 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
| 4591 | /* Set the DMA capture callbacks */ |
4591 | * This parameter can be one of the following values: |
| 4592 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
4592 | * @arg TIM_DMABASE_CR1 |
| 4593 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4593 | * @arg TIM_DMABASE_CR2 |
| 4594 | 4594 | * @arg TIM_DMABASE_SMCR |
|
| 4595 | /* Set the DMA error callback */ |
4595 | * @arg TIM_DMABASE_DIER |
| 4596 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
4596 | * @arg TIM_DMABASE_SR |
| 4597 | 4597 | * @arg TIM_DMABASE_EGR |
|
| 4598 | /* Enable the DMA channel */ |
4598 | * @arg TIM_DMABASE_CCMR1 |
| 4599 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4599 | * @arg TIM_DMABASE_CCMR2 |
| 4600 | DataLength) != HAL_OK) |
4600 | * @arg TIM_DMABASE_CCER |
| 4601 | { |
4601 | * @arg TIM_DMABASE_CNT |
| 4602 | /* Return error status */ |
4602 | * @arg TIM_DMABASE_PSC |
| 4603 | return HAL_ERROR; |
4603 | * @arg TIM_DMABASE_ARR |
| 4604 | } |
4604 | * @arg TIM_DMABASE_CCR1 |
| 4605 | break; |
4605 | * @arg TIM_DMABASE_CCR2 |
| 4606 | } |
4606 | * @arg TIM_DMABASE_CCR3 |
| 4607 | case TIM_DMA_CC4: |
4607 | * @arg TIM_DMABASE_CCR4 |
| 4608 | { |
4608 | * @arg TIM_DMABASE_OR |
| 4609 | /* Set the DMA capture callbacks */ |
4609 | * @param BurstRequestSrc TIM DMA Request sources |
| 4610 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
4610 | * This parameter can be one of the following values: |
| 4611 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
4611 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
| 4612 | 4612 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
|
| 4613 | /* Set the DMA error callback */ |
4613 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
| 4614 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
4614 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
| 4615 | 4615 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
|
| 4616 | /* Enable the DMA channel */ |
4616 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
| 4617 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4617 | * @param BurstBuffer The Buffer address. |
| 4618 | DataLength) != HAL_OK) |
4618 | * @param BurstLength DMA Burst length. This parameter can be one value |
| 4619 | { |
4619 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
| 4620 | /* Return error status */ |
4620 | * @param DataLength Data length. This parameter can be one value |
| 4621 | return HAL_ERROR; |
4621 | * between 1 and 0xFFFF. |
| 4622 | } |
4622 | * @retval HAL status |
| 4623 | break; |
4623 | */ |
| 4624 | } |
4624 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
| 4625 | case TIM_DMA_TRIGGER: |
4625 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
| 4626 | { |
4626 | uint32_t BurstLength, uint32_t DataLength) |
| 4627 | /* Set the DMA trigger callbacks */ |
4627 | { |
| 4628 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
4628 | HAL_StatusTypeDef status = HAL_OK; |
| 4629 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
4629 | |
| 4630 | 4630 | /* Check the parameters */ |
|
| 4631 | /* Set the DMA error callback */ |
4631 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| 4632 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
4632 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
| 4633 | 4633 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
|
| 4634 | /* Enable the DMA channel */ |
4634 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
| 4635 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
4635 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
| 4636 | DataLength) != HAL_OK) |
4636 | |
| 4637 | { |
4637 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
| 4638 | /* Return error status */ |
4638 | { |
| 4639 | return HAL_ERROR; |
4639 | return HAL_BUSY; |
| 4640 | } |
4640 | } |
| 4641 | break; |
4641 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
| 4642 | } |
4642 | { |
| 4643 | default: |
4643 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
| 4644 | break; |
4644 | { |
| 4645 | } |
4645 | return HAL_ERROR; |
| 4646 | 4646 | } |
|
| 4647 | /* Configure the DMA Burst Mode */ |
4647 | else |
| 4648 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
4648 | { |
| 4649 | 4649 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
|
| 4650 | /* Enable the TIM DMA Request */ |
4650 | } |
| 4651 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
4651 | } |
| 4652 | 4652 | else |
|
| 4653 | /* Return function status */ |
4653 | { |
| 4654 | return HAL_OK; |
4654 | /* nothing to do */ |
| 4655 | } |
4655 | } |
| 4656 | 4656 | switch (BurstRequestSrc) |
|
| 4657 | /** |
4657 | { |
| 4658 | * @brief Stop the DMA burst reading |
4658 | case TIM_DMA_UPDATE: |
| 4659 | * @param htim TIM handle |
4659 | { |
| 4660 | * @param BurstRequestSrc TIM DMA Request sources to disable. |
4660 | /* Set the DMA Period elapsed callbacks */ |
| 4661 | * @retval HAL status |
4661 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
| 4662 | */ |
4662 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
| 4663 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
4663 | |
| 4664 | { |
4664 | /* Set the DMA error callback */ |
| 4665 | /* Check the parameters */ |
4665 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
| 4666 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
4666 | |
| 4667 | 4667 | /* Enable the DMA channel */ |
|
| 4668 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
4668 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| 4669 | switch (BurstRequestSrc) |
4669 | DataLength) != HAL_OK) |
| 4670 | { |
4670 | { |
| 4671 | case TIM_DMA_UPDATE: |
4671 | /* Return error status */ |
| 4672 | { |
4672 | return HAL_ERROR; |
| 4673 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
4673 | } |
| 4674 | break; |
4674 | break; |
| 4675 | } |
4675 | } |
| 4676 | case TIM_DMA_CC1: |
4676 | case TIM_DMA_CC1: |
| 4677 | { |
4677 | { |
| 4678 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
4678 | /* Set the DMA capture callbacks */ |
| 4679 | break; |
4679 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
| 4680 | } |
4680 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 4681 | case TIM_DMA_CC2: |
4681 | |
| 4682 | { |
4682 | /* Set the DMA error callback */ |
| 4683 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
4683 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
| 4684 | break; |
4684 | |
| 4685 | } |
4685 | /* Enable the DMA channel */ |
| 4686 | case TIM_DMA_CC3: |
4686 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| 4687 | { |
4687 | DataLength) != HAL_OK) |
| 4688 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
4688 | { |
| 4689 | break; |
4689 | /* Return error status */ |
| 4690 | } |
4690 | return HAL_ERROR; |
| 4691 | case TIM_DMA_CC4: |
4691 | } |
| 4692 | { |
4692 | break; |
| 4693 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
4693 | } |
| 4694 | break; |
4694 | case TIM_DMA_CC2: |
| 4695 | } |
4695 | { |
| 4696 | case TIM_DMA_TRIGGER: |
4696 | /* Set the DMA capture callbacks */ |
| 4697 | { |
4697 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
| 4698 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
4698 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 4699 | break; |
4699 | |
| 4700 | } |
4700 | /* Set the DMA error callback */ |
| 4701 | default: |
4701 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
| 4702 | break; |
4702 | |
| 4703 | } |
4703 | /* Enable the DMA channel */ |
| 4704 | 4704 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
|
| 4705 | /* Disable the TIM Update DMA request */ |
4705 | DataLength) != HAL_OK) |
| 4706 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
4706 | { |
| 4707 | 4707 | /* Return error status */ |
|
| 4708 | /* Change the DMA burst operation state */ |
4708 | return HAL_ERROR; |
| 4709 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
4709 | } |
| 4710 | 4710 | break; |
|
| 4711 | /* Return function status */ |
4711 | } |
| 4712 | return HAL_OK; |
4712 | case TIM_DMA_CC3: |
| 4713 | } |
4713 | { |
| 4714 | 4714 | /* Set the DMA capture callbacks */ |
|
| 4715 | /** |
4715 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
| 4716 | * @brief Generate a software event |
4716 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 4717 | * @param htim TIM handle |
4717 | |
| 4718 | * @param EventSource specifies the event source. |
4718 | /* Set the DMA error callback */ |
| 4719 | * This parameter can be one of the following values: |
4719 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
| 4720 | * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
4720 | |
| 4721 | * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
4721 | /* Enable the DMA channel */ |
| 4722 | * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
4722 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| 4723 | * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
4723 | DataLength) != HAL_OK) |
| 4724 | * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
4724 | { |
| 4725 | * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
4725 | /* Return error status */ |
| 4726 | * @note Basic timers can only generate an update event. |
4726 | return HAL_ERROR; |
| 4727 | * @retval HAL status |
4727 | } |
| 4728 | */ |
4728 | break; |
| 4729 | 4729 | } |
|
| 4730 | HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
4730 | case TIM_DMA_CC4: |
| 4731 | { |
4731 | { |
| 4732 | /* Check the parameters */ |
4732 | /* Set the DMA capture callbacks */ |
| 4733 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
4733 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
| 4734 | assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
4734 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
| 4735 | 4735 | ||
| 4736 | /* Process Locked */ |
4736 | /* Set the DMA error callback */ |
| 4737 | __HAL_LOCK(htim); |
4737 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
| 4738 | 4738 | ||
| 4739 | /* Change the TIM state */ |
4739 | /* Enable the DMA channel */ |
| 4740 | htim->State = HAL_TIM_STATE_BUSY; |
4740 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| 4741 | 4741 | DataLength) != HAL_OK) |
|
| 4742 | /* Set the event sources */ |
4742 | { |
| 4743 | htim->Instance->EGR = EventSource; |
4743 | /* Return error status */ |
| 4744 | 4744 | return HAL_ERROR; |
|
| 4745 | /* Change the TIM state */ |
4745 | } |
| 4746 | htim->State = HAL_TIM_STATE_READY; |
4746 | break; |
| 4747 | 4747 | } |
|
| 4748 | __HAL_UNLOCK(htim); |
4748 | case TIM_DMA_TRIGGER: |
| 4749 | 4749 | { |
|
| 4750 | /* Return function status */ |
4750 | /* Set the DMA trigger callbacks */ |
| 4751 | return HAL_OK; |
4751 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
| 4752 | } |
4752 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
| 4753 | 4753 | ||
| 4754 | /** |
4754 | /* Set the DMA error callback */ |
| 4755 | * @brief Configures the OCRef clear feature |
4755 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
| 4756 | * @param htim TIM handle |
4756 | |
| 4757 | * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
4757 | /* Enable the DMA channel */ |
| 4758 | * contains the OCREF clear feature and parameters for the TIM peripheral. |
4758 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
| 4759 | * @param Channel specifies the TIM Channel |
4759 | DataLength) != HAL_OK) |
| 4760 | * This parameter can be one of the following values: |
4760 | { |
| 4761 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
4761 | /* Return error status */ |
| 4762 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
4762 | return HAL_ERROR; |
| 4763 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
4763 | } |
| 4764 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
4764 | break; |
| 4765 | * @retval HAL status |
4765 | } |
| 4766 | */ |
4766 | default: |
| 4767 | HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
4767 | status = HAL_ERROR; |
| 4768 | TIM_ClearInputConfigTypeDef *sClearInputConfig, |
4768 | break; |
| 4769 | uint32_t Channel) |
4769 | } |
| 4770 | { |
4770 | |
| 4771 | /* Check the parameters */ |
4771 | if (status == HAL_OK) |
| 4772 | assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
4772 | { |
| 4773 | assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
4773 | /* Configure the DMA Burst Mode */ |
| 4774 | 4774 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
|
| 4775 | /* Process Locked */ |
4775 | |
| 4776 | __HAL_LOCK(htim); |
4776 | /* Enable the TIM DMA Request */ |
| 4777 | 4777 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
|
| 4778 | htim->State = HAL_TIM_STATE_BUSY; |
4778 | } |
| 4779 | 4779 | ||
| 4780 | switch (sClearInputConfig->ClearInputSource) |
4780 | /* Return function status */ |
| 4781 | { |
4781 | return status; |
| 4782 | case TIM_CLEARINPUTSOURCE_NONE: |
4782 | } |
| 4783 | { |
4783 | |
| 4784 | /* Clear the OCREF clear selection bit and the the ETR Bits */ |
4784 | /** |
| 4785 | CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
4785 | * @brief Stop the DMA burst reading |
| 4786 | break; |
4786 | * @param htim TIM handle |
| 4787 | } |
4787 | * @param BurstRequestSrc TIM DMA Request sources to disable. |
| 4788 | case TIM_CLEARINPUTSOURCE_OCREFCLR: |
4788 | * @retval HAL status |
| 4789 | { |
4789 | */ |
| 4790 | /* Clear the OCREF clear selection bit */ |
4790 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
| 4791 | CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4791 | { |
| 4792 | } |
4792 | HAL_StatusTypeDef status = HAL_OK; |
| 4793 | break; |
4793 | |
| 4794 | 4794 | /* Check the parameters */ |
|
| 4795 | case TIM_CLEARINPUTSOURCE_ETR: |
4795 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
| 4796 | { |
4796 | |
| 4797 | /* Check the parameters */ |
4797 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
| 4798 | assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
4798 | switch (BurstRequestSrc) |
| 4799 | assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
4799 | { |
| 4800 | assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
4800 | case TIM_DMA_UPDATE: |
| 4801 | 4801 | { |
|
| 4802 | /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
4802 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
| 4803 | if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
4803 | break; |
| 4804 | { |
4804 | } |
| 4805 | htim->State = HAL_TIM_STATE_READY; |
4805 | case TIM_DMA_CC1: |
| 4806 | __HAL_UNLOCK(htim); |
4806 | { |
| 4807 | return HAL_ERROR; |
4807 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
| 4808 | } |
4808 | break; |
| 4809 | 4809 | } |
|
| 4810 | TIM_ETR_SetConfig(htim->Instance, |
4810 | case TIM_DMA_CC2: |
| 4811 | sClearInputConfig->ClearInputPrescaler, |
4811 | { |
| 4812 | sClearInputConfig->ClearInputPolarity, |
4812 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
| 4813 | sClearInputConfig->ClearInputFilter); |
4813 | break; |
| 4814 | 4814 | } |
|
| 4815 | /* Set the OCREF clear selection bit */ |
4815 | case TIM_DMA_CC3: |
| 4816 | SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
4816 | { |
| 4817 | break; |
4817 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
| 4818 | } |
4818 | break; |
| 4819 | 4819 | } |
|
| 4820 | default: |
4820 | case TIM_DMA_CC4: |
| 4821 | break; |
4821 | { |
| 4822 | } |
4822 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
| 4823 | 4823 | break; |
|
| 4824 | switch (Channel) |
4824 | } |
| 4825 | { |
4825 | case TIM_DMA_TRIGGER: |
| 4826 | case TIM_CHANNEL_1: |
4826 | { |
| 4827 | { |
4827 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
| 4828 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4828 | break; |
| 4829 | { |
4829 | } |
| 4830 | /* Enable the OCREF clear feature for Channel 1 */ |
4830 | default: |
| 4831 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
4831 | status = HAL_ERROR; |
| 4832 | } |
4832 | break; |
| 4833 | else |
4833 | } |
| 4834 | { |
4834 | |
| 4835 | /* Disable the OCREF clear feature for Channel 1 */ |
4835 | if (status == HAL_OK) |
| 4836 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
4836 | { |
| 4837 | } |
4837 | /* Disable the TIM Update DMA request */ |
| 4838 | break; |
4838 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
| 4839 | } |
4839 | |
| 4840 | case TIM_CHANNEL_2: |
4840 | /* Change the DMA burst operation state */ |
| 4841 | { |
4841 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
| 4842 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4842 | } |
| 4843 | { |
4843 | |
| 4844 | /* Enable the OCREF clear feature for Channel 2 */ |
4844 | /* Return function status */ |
| 4845 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4845 | return status; |
| 4846 | } |
4846 | } |
| 4847 | else |
4847 | |
| 4848 | { |
4848 | /** |
| 4849 | /* Disable the OCREF clear feature for Channel 2 */ |
4849 | * @brief Generate a software event |
| 4850 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
4850 | * @param htim TIM handle |
| 4851 | } |
4851 | * @param EventSource specifies the event source. |
| 4852 | break; |
4852 | * This parameter can be one of the following values: |
| 4853 | } |
4853 | * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
| 4854 | case TIM_CHANNEL_3: |
4854 | * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
| 4855 | { |
4855 | * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
| 4856 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4856 | * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
| 4857 | { |
4857 | * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
| 4858 | /* Enable the OCREF clear feature for Channel 3 */ |
4858 | * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
| 4859 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
4859 | * @note Basic timers can only generate an update event. |
| 4860 | } |
4860 | * @retval HAL status |
| 4861 | else |
4861 | */ |
| 4862 | { |
4862 | |
| 4863 | /* Disable the OCREF clear feature for Channel 3 */ |
4863 | HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
| 4864 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
4864 | { |
| 4865 | } |
4865 | /* Check the parameters */ |
| 4866 | break; |
4866 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
| 4867 | } |
4867 | assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
| 4868 | case TIM_CHANNEL_4: |
4868 | |
| 4869 | { |
4869 | /* Process Locked */ |
| 4870 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
4870 | __HAL_LOCK(htim); |
| 4871 | { |
4871 | |
| 4872 | /* Enable the OCREF clear feature for Channel 4 */ |
4872 | /* Change the TIM state */ |
| 4873 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
4873 | htim->State = HAL_TIM_STATE_BUSY; |
| 4874 | } |
4874 | |
| 4875 | else |
4875 | /* Set the event sources */ |
| 4876 | { |
4876 | htim->Instance->EGR = EventSource; |
| 4877 | /* Disable the OCREF clear feature for Channel 4 */ |
4877 | |
| 4878 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
4878 | /* Change the TIM state */ |
| 4879 | } |
4879 | htim->State = HAL_TIM_STATE_READY; |
| 4880 | break; |
4880 | |
| 4881 | } |
4881 | __HAL_UNLOCK(htim); |
| 4882 | default: |
4882 | |
| 4883 | break; |
4883 | /* Return function status */ |
| 4884 | } |
4884 | return HAL_OK; |
| 4885 | 4885 | } |
|
| 4886 | htim->State = HAL_TIM_STATE_READY; |
4886 | |
| 4887 | 4887 | /** |
|
| 4888 | __HAL_UNLOCK(htim); |
4888 | * @brief Configures the OCRef clear feature |
| 4889 | 4889 | * @param htim TIM handle |
|
| 4890 | return HAL_OK; |
4890 | * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
| 4891 | } |
4891 | * contains the OCREF clear feature and parameters for the TIM peripheral. |
| 4892 | 4892 | * @param Channel specifies the TIM Channel |
|
| 4893 | /** |
4893 | * This parameter can be one of the following values: |
| 4894 | * @brief Configures the clock source to be used |
4894 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
| 4895 | * @param htim TIM handle |
4895 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
| 4896 | * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
4896 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
| 4897 | * contains the clock source information for the TIM peripheral. |
4897 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
| 4898 | * @retval HAL status |
4898 | * @retval HAL status |
| 4899 | */ |
4899 | */ |
| 4900 | HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) |
4900 | HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
| 4901 | { |
4901 | const TIM_ClearInputConfigTypeDef *sClearInputConfig, |
| 4902 | uint32_t tmpsmcr; |
4902 | uint32_t Channel) |
| 4903 | 4903 | { |
|
| 4904 | /* Process Locked */ |
4904 | HAL_StatusTypeDef status = HAL_OK; |
| 4905 | __HAL_LOCK(htim); |
4905 | |
| 4906 | 4906 | /* Check the parameters */ |
|
| 4907 | htim->State = HAL_TIM_STATE_BUSY; |
4907 | assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
| 4908 | 4908 | assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
|
| 4909 | /* Check the parameters */ |
4909 | |
| 4910 | assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
4910 | /* Process Locked */ |
| 4911 | 4911 | __HAL_LOCK(htim); |
|
| 4912 | /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
4912 | |
| 4913 | tmpsmcr = htim->Instance->SMCR; |
4913 | htim->State = HAL_TIM_STATE_BUSY; |
| 4914 | tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
4914 | |
| 4915 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
4915 | switch (sClearInputConfig->ClearInputSource) |
| 4916 | htim->Instance->SMCR = tmpsmcr; |
4916 | { |
| 4917 | 4917 | case TIM_CLEARINPUTSOURCE_NONE: |
|
| 4918 | switch (sClockSourceConfig->ClockSource) |
4918 | { |
| 4919 | { |
4919 | /* Clear the OCREF clear selection bit and the the ETR Bits */ |
| 4920 | case TIM_CLOCKSOURCE_INTERNAL: |
4920 | CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
| 4921 | { |
4921 | break; |
| 4922 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
4922 | } |
| 4923 | break; |
4923 | case TIM_CLEARINPUTSOURCE_OCREFCLR: |
| 4924 | } |
4924 | { |
| 4925 | 4925 | /* Clear the OCREF clear selection bit */ |
|
| 4926 | case TIM_CLOCKSOURCE_ETRMODE1: |
4926 | CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
| 4927 | { |
4927 | break; |
| 4928 | /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
4928 | } |
| 4929 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
4929 | |
| 4930 | 4930 | case TIM_CLEARINPUTSOURCE_ETR: |
|
| 4931 | /* Check ETR input conditioning related parameters */ |
4931 | { |
| 4932 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
4932 | /* Check the parameters */ |
| 4933 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4933 | assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
| 4934 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4934 | assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
| 4935 | 4935 | assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
|
| 4936 | /* Configure the ETR Clock source */ |
4936 | |
| 4937 | TIM_ETR_SetConfig(htim->Instance, |
4937 | /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
| 4938 | sClockSourceConfig->ClockPrescaler, |
4938 | if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
| 4939 | sClockSourceConfig->ClockPolarity, |
4939 | { |
| 4940 | sClockSourceConfig->ClockFilter); |
4940 | htim->State = HAL_TIM_STATE_READY; |
| 4941 | 4941 | __HAL_UNLOCK(htim); |
|
| 4942 | /* Select the External clock mode1 and the ETRF trigger */ |
4942 | return HAL_ERROR; |
| 4943 | tmpsmcr = htim->Instance->SMCR; |
4943 | } |
| 4944 | tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
4944 | |
| 4945 | /* Write to TIMx SMCR */ |
4945 | TIM_ETR_SetConfig(htim->Instance, |
| 4946 | htim->Instance->SMCR = tmpsmcr; |
4946 | sClearInputConfig->ClearInputPrescaler, |
| 4947 | break; |
4947 | sClearInputConfig->ClearInputPolarity, |
| 4948 | } |
4948 | sClearInputConfig->ClearInputFilter); |
| 4949 | 4949 | ||
| 4950 | case TIM_CLOCKSOURCE_ETRMODE2: |
4950 | /* Set the OCREF clear selection bit */ |
| 4951 | { |
4951 | SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS); |
| 4952 | /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
4952 | break; |
| 4953 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
4953 | } |
| 4954 | 4954 | ||
| 4955 | /* Check ETR input conditioning related parameters */ |
4955 | default: |
| 4956 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
4956 | status = HAL_ERROR; |
| 4957 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4957 | break; |
| 4958 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4958 | } |
| 4959 | 4959 | ||
| 4960 | /* Configure the ETR Clock source */ |
4960 | if (status == HAL_OK) |
| 4961 | TIM_ETR_SetConfig(htim->Instance, |
4961 | { |
| 4962 | sClockSourceConfig->ClockPrescaler, |
4962 | switch (Channel) |
| 4963 | sClockSourceConfig->ClockPolarity, |
4963 | { |
| 4964 | sClockSourceConfig->ClockFilter); |
4964 | case TIM_CHANNEL_1: |
| 4965 | /* Enable the External clock mode2 */ |
4965 | { |
| 4966 | htim->Instance->SMCR |= TIM_SMCR_ECE; |
4966 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| 4967 | break; |
4967 | { |
| 4968 | } |
4968 | /* Enable the OCREF clear feature for Channel 1 */ |
| 4969 | 4969 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
| 4970 | case TIM_CLOCKSOURCE_TI1: |
4970 | } |
| 4971 | { |
4971 | else |
| 4972 | /* Check whether or not the timer instance supports external clock mode 1 */ |
4972 | { |
| 4973 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
4973 | /* Disable the OCREF clear feature for Channel 1 */ |
| 4974 | 4974 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
|
| 4975 | /* Check TI1 input conditioning related parameters */ |
4975 | } |
| 4976 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4976 | break; |
| 4977 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4977 | } |
| 4978 | 4978 | case TIM_CHANNEL_2: |
|
| 4979 | TIM_TI1_ConfigInputStage(htim->Instance, |
4979 | { |
| 4980 | sClockSourceConfig->ClockPolarity, |
4980 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| 4981 | sClockSourceConfig->ClockFilter); |
4981 | { |
| 4982 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
4982 | /* Enable the OCREF clear feature for Channel 2 */ |
| 4983 | break; |
4983 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
| 4984 | } |
4984 | } |
| 4985 | 4985 | else |
|
| 4986 | case TIM_CLOCKSOURCE_TI2: |
4986 | { |
| 4987 | { |
4987 | /* Disable the OCREF clear feature for Channel 2 */ |
| 4988 | /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
4988 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
| 4989 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
4989 | } |
| 4990 | 4990 | break; |
|
| 4991 | /* Check TI2 input conditioning related parameters */ |
4991 | } |
| 4992 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
4992 | case TIM_CHANNEL_3: |
| 4993 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
4993 | { |
| 4994 | 4994 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
|
| 4995 | TIM_TI2_ConfigInputStage(htim->Instance, |
4995 | { |
| 4996 | sClockSourceConfig->ClockPolarity, |
4996 | /* Enable the OCREF clear feature for Channel 3 */ |
| 4997 | sClockSourceConfig->ClockFilter); |
4997 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
| 4998 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
4998 | } |
| 4999 | break; |
4999 | else |
| 5000 | } |
5000 | { |
| 5001 | 5001 | /* Disable the OCREF clear feature for Channel 3 */ |
|
| 5002 | case TIM_CLOCKSOURCE_TI1ED: |
5002 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
| 5003 | { |
5003 | } |
| 5004 | /* Check whether or not the timer instance supports external clock mode 1 */ |
5004 | break; |
| 5005 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
5005 | } |
| 5006 | 5006 | case TIM_CHANNEL_4: |
|
| 5007 | /* Check TI1 input conditioning related parameters */ |
5007 | { |
| 5008 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
5008 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
| 5009 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
5009 | { |
| 5010 | 5010 | /* Enable the OCREF clear feature for Channel 4 */ |
|
| 5011 | TIM_TI1_ConfigInputStage(htim->Instance, |
5011 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
| 5012 | sClockSourceConfig->ClockPolarity, |
5012 | } |
| 5013 | sClockSourceConfig->ClockFilter); |
5013 | else |
| 5014 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
5014 | { |
| 5015 | break; |
5015 | /* Disable the OCREF clear feature for Channel 4 */ |
| 5016 | } |
5016 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
| 5017 | 5017 | } |
|
| 5018 | case TIM_CLOCKSOURCE_ITR0: |
5018 | break; |
| 5019 | case TIM_CLOCKSOURCE_ITR1: |
5019 | } |
| 5020 | case TIM_CLOCKSOURCE_ITR2: |
5020 | default: |
| 5021 | case TIM_CLOCKSOURCE_ITR3: |
5021 | break; |
| 5022 | { |
5022 | } |
| 5023 | /* Check whether or not the timer instance supports internal trigger input */ |
5023 | } |
| 5024 | assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
5024 | |
| 5025 | 5025 | htim->State = HAL_TIM_STATE_READY; |
|
| 5026 | TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
5026 | |
| 5027 | break; |
5027 | __HAL_UNLOCK(htim); |
| 5028 | } |
5028 | |
| 5029 | 5029 | return status; |
|
| 5030 | default: |
5030 | } |
| 5031 | break; |
5031 | |
| 5032 | } |
5032 | /** |
| 5033 | htim->State = HAL_TIM_STATE_READY; |
5033 | * @brief Configures the clock source to be used |
| 5034 | 5034 | * @param htim TIM handle |
|
| 5035 | __HAL_UNLOCK(htim); |
5035 | * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
| 5036 | 5036 | * contains the clock source information for the TIM peripheral. |
|
| 5037 | return HAL_OK; |
5037 | * @retval HAL status |
| 5038 | } |
5038 | */ |
| 5039 | 5039 | HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig) |
|
| 5040 | /** |
5040 | { |
| 5041 | * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
5041 | HAL_StatusTypeDef status = HAL_OK; |
| 5042 | * or a XOR combination between CH1_input, CH2_input & CH3_input |
5042 | uint32_t tmpsmcr; |
| 5043 | * @param htim TIM handle. |
5043 | |
| 5044 | * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
5044 | /* Process Locked */ |
| 5045 | * output of a XOR gate. |
5045 | __HAL_LOCK(htim); |
| 5046 | * This parameter can be one of the following values: |
5046 | |
| 5047 | * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
5047 | htim->State = HAL_TIM_STATE_BUSY; |
| 5048 | * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
5048 | |
| 5049 | * pins are connected to the TI1 input (XOR combination) |
5049 | /* Check the parameters */ |
| 5050 | * @retval HAL status |
5050 | assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
| 5051 | */ |
5051 | |
| 5052 | HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
5052 | /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
| 5053 | { |
5053 | tmpsmcr = htim->Instance->SMCR; |
| 5054 | uint32_t tmpcr2; |
5054 | tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
| 5055 | 5055 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
| 5056 | /* Check the parameters */ |
5056 | htim->Instance->SMCR = tmpsmcr; |
| 5057 | assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
5057 | |
| 5058 | assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
5058 | switch (sClockSourceConfig->ClockSource) |
| 5059 | 5059 | { |
|
| 5060 | /* Get the TIMx CR2 register value */ |
5060 | case TIM_CLOCKSOURCE_INTERNAL: |
| 5061 | tmpcr2 = htim->Instance->CR2; |
5061 | { |
| 5062 | 5062 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
|
| 5063 | /* Reset the TI1 selection */ |
5063 | break; |
| 5064 | tmpcr2 &= ~TIM_CR2_TI1S; |
5064 | } |
| 5065 | 5065 | ||
| 5066 | /* Set the TI1 selection */ |
5066 | case TIM_CLOCKSOURCE_ETRMODE1: |
| 5067 | tmpcr2 |= TI1_Selection; |
5067 | { |
| 5068 | 5068 | /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
|
| 5069 | /* Write to TIMxCR2 */ |
5069 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
| 5070 | htim->Instance->CR2 = tmpcr2; |
5070 | |
| 5071 | 5071 | /* Check ETR input conditioning related parameters */ |
|
| 5072 | return HAL_OK; |
5072 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
| 5073 | } |
5073 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| 5074 | 5074 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
| 5075 | /** |
5075 | |
| 5076 | * @brief Configures the TIM in Slave mode |
5076 | /* Configure the ETR Clock source */ |
| 5077 | * @param htim TIM handle. |
5077 | TIM_ETR_SetConfig(htim->Instance, |
| 5078 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
5078 | sClockSourceConfig->ClockPrescaler, |
| 5079 | * contains the selected trigger (internal trigger input, filtered |
5079 | sClockSourceConfig->ClockPolarity, |
| 5080 | * timer input or external trigger input) and the Slave mode |
5080 | sClockSourceConfig->ClockFilter); |
| 5081 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
5081 | |
| 5082 | * @retval HAL status |
5082 | /* Select the External clock mode1 and the ETRF trigger */ |
| 5083 | */ |
5083 | tmpsmcr = htim->Instance->SMCR; |
| 5084 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) |
5084 | tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
| 5085 | { |
5085 | /* Write to TIMx SMCR */ |
| 5086 | /* Check the parameters */ |
5086 | htim->Instance->SMCR = tmpsmcr; |
| 5087 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5087 | break; |
| 5088 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
5088 | } |
| 5089 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5089 | |
| 5090 | 5090 | case TIM_CLOCKSOURCE_ETRMODE2: |
|
| 5091 | __HAL_LOCK(htim); |
5091 | { |
| 5092 | 5092 | /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
|
| 5093 | htim->State = HAL_TIM_STATE_BUSY; |
5093 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
| 5094 | 5094 | ||
| 5095 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5095 | /* Check ETR input conditioning related parameters */ |
| 5096 | { |
5096 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
| 5097 | htim->State = HAL_TIM_STATE_READY; |
5097 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| 5098 | __HAL_UNLOCK(htim); |
5098 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| 5099 | return HAL_ERROR; |
5099 | |
| 5100 | } |
5100 | /* Configure the ETR Clock source */ |
| 5101 | 5101 | TIM_ETR_SetConfig(htim->Instance, |
|
| 5102 | /* Disable Trigger Interrupt */ |
5102 | sClockSourceConfig->ClockPrescaler, |
| 5103 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
5103 | sClockSourceConfig->ClockPolarity, |
| 5104 | 5104 | sClockSourceConfig->ClockFilter); |
|
| 5105 | /* Disable Trigger DMA request */ |
5105 | /* Enable the External clock mode2 */ |
| 5106 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5106 | htim->Instance->SMCR |= TIM_SMCR_ECE; |
| 5107 | 5107 | break; |
|
| 5108 | htim->State = HAL_TIM_STATE_READY; |
5108 | } |
| 5109 | 5109 | ||
| 5110 | __HAL_UNLOCK(htim); |
5110 | case TIM_CLOCKSOURCE_TI1: |
| 5111 | 5111 | { |
|
| 5112 | return HAL_OK; |
5112 | /* Check whether or not the timer instance supports external clock mode 1 */ |
| 5113 | } |
5113 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
| 5114 | 5114 | ||
| 5115 | /** |
5115 | /* Check TI1 input conditioning related parameters */ |
| 5116 | * @brief Configures the TIM in Slave mode in interrupt mode |
5116 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| 5117 | * @param htim TIM handle. |
5117 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| 5118 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
5118 | |
| 5119 | * contains the selected trigger (internal trigger input, filtered |
5119 | TIM_TI1_ConfigInputStage(htim->Instance, |
| 5120 | * timer input or external trigger input) and the Slave mode |
5120 | sClockSourceConfig->ClockPolarity, |
| 5121 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
5121 | sClockSourceConfig->ClockFilter); |
| 5122 | * @retval HAL status |
5122 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
| 5123 | */ |
5123 | break; |
| 5124 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
5124 | } |
| 5125 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
5125 | |
| 5126 | { |
5126 | case TIM_CLOCKSOURCE_TI2: |
| 5127 | /* Check the parameters */ |
5127 | { |
| 5128 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
5128 | /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
| 5129 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
5129 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
| 5130 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
5130 | |
| 5131 | 5131 | /* Check TI2 input conditioning related parameters */ |
|
| 5132 | __HAL_LOCK(htim); |
5132 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
| 5133 | 5133 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
|
| 5134 | htim->State = HAL_TIM_STATE_BUSY; |
5134 | |
| 5135 | 5135 | TIM_TI2_ConfigInputStage(htim->Instance, |
|
| 5136 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
5136 | sClockSourceConfig->ClockPolarity, |
| 5137 | { |
5137 | sClockSourceConfig->ClockFilter); |
| 5138 | htim->State = HAL_TIM_STATE_READY; |
5138 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
| 5139 | __HAL_UNLOCK(htim); |
5139 | break; |
| 5140 | return HAL_ERROR; |
5140 | } |
| 5141 | } |
5141 | |
| 5142 | 5142 | case TIM_CLOCKSOURCE_TI1ED: |
|
| 5143 | /* Enable Trigger Interrupt */ |
5143 | { |
| 5144 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
5144 | /* Check whether or not the timer instance supports external clock mode 1 */ |
| 5145 | 5145 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
|
| 5146 | /* Disable Trigger DMA request */ |
5146 | |
| 5147 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
5147 | /* Check TI1 input conditioning related parameters */ |
| 5148 | 5148 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
|
| 5149 | htim->State = HAL_TIM_STATE_READY; |
5149 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
| 5150 | 5150 | ||
| 5151 | __HAL_UNLOCK(htim); |
5151 | TIM_TI1_ConfigInputStage(htim->Instance, |
| 5152 | 5152 | sClockSourceConfig->ClockPolarity, |
|
| 5153 | return HAL_OK; |
5153 | sClockSourceConfig->ClockFilter); |
| 5154 | } |
5154 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
| 5155 | 5155 | break; |
|
| 5156 | /** |
5156 | } |
| 5157 | * @brief Read the captured value from Capture Compare unit |
5157 | |
| 5158 | * @param htim TIM handle. |
5158 | case TIM_CLOCKSOURCE_ITR0: |
| 5159 | * @param Channel TIM Channels to be enabled |
5159 | case TIM_CLOCKSOURCE_ITR1: |
| 5160 | * This parameter can be one of the following values: |
5160 | case TIM_CLOCKSOURCE_ITR2: |
| 5161 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
5161 | case TIM_CLOCKSOURCE_ITR3: |
| 5162 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
5162 | { |
| 5163 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
5163 | /* Check whether or not the timer instance supports internal trigger input */ |
| 5164 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
5164 | assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
| 5165 | * @retval Captured value |
5165 | |
| 5166 | */ |
5166 | TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
| 5167 | uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) |
5167 | break; |
| 5168 | { |
5168 | } |
| 5169 | uint32_t tmpreg = 0U; |
5169 | |
| 5170 | 5170 | default: |
|
| 5171 | switch (Channel) |
5171 | status = HAL_ERROR; |
| 5172 | { |
5172 | break; |
| 5173 | case TIM_CHANNEL_1: |
5173 | } |
| 5174 | { |
5174 | htim->State = HAL_TIM_STATE_READY; |
| 5175 | /* Check the parameters */ |
5175 | |
| 5176 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
5176 | __HAL_UNLOCK(htim); |
| 5177 | 5177 | ||
| 5178 | /* Return the capture 1 value */ |
5178 | return status; |
| 5179 | tmpreg = htim->Instance->CCR1; |
5179 | } |
| 5180 | 5180 | ||
| 5181 | break; |
5181 | /** |
| 5182 | } |
5182 | * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
| 5183 | case TIM_CHANNEL_2: |
5183 | * or a XOR combination between CH1_input, CH2_input & CH3_input |
| 5184 | { |
5184 | * @param htim TIM handle. |
| 5185 | /* Check the parameters */ |
5185 | * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
| 5186 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
5186 | * output of a XOR gate. |
| 5187 | 5187 | * This parameter can be one of the following values: |
|
| 5188 | /* Return the capture 2 value */ |
5188 | * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
| 5189 | tmpreg = htim->Instance->CCR2; |
5189 | * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
| 5190 | 5190 | * pins are connected to the TI1 input (XOR combination) |
|
| 5191 | break; |
5191 | * @retval HAL status |
| 5192 | } |
5192 | */ |
| 5193 | 5193 | HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
|
| 5194 | case TIM_CHANNEL_3: |
5194 | { |
| 5195 | { |
5195 | uint32_t tmpcr2; |
| 5196 | /* Check the parameters */ |
5196 | |
| 5197 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
5197 | /* Check the parameters */ |
| 5198 | 5198 | assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
|
| 5199 | /* Return the capture 3 value */ |
5199 | assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
| 5200 | tmpreg = htim->Instance->CCR3; |
5200 | |
| 5201 | 5201 | /* Get the TIMx CR2 register value */ |
|
| 5202 | break; |
5202 | tmpcr2 = htim->Instance->CR2; |
| 5203 | } |
5203 | |
| 5204 | 5204 | /* Reset the TI1 selection */ |
|
| 5205 | case TIM_CHANNEL_4: |
5205 | tmpcr2 &= ~TIM_CR2_TI1S; |
| 5206 | { |
5206 | |
| 5207 | /* Check the parameters */ |
5207 | /* Set the TI1 selection */ |
| 5208 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
5208 | tmpcr2 |= TI1_Selection; |
| 5209 | 5209 | ||
| 5210 | /* Return the capture 4 value */ |
5210 | /* Write to TIMxCR2 */ |
| 5211 | tmpreg = htim->Instance->CCR4; |
5211 | htim->Instance->CR2 = tmpcr2; |
| 5212 | 5212 | ||
| 5213 | break; |
5213 | return HAL_OK; |
| 5214 | } |
5214 | } |
| 5215 | 5215 | ||
| 5216 | default: |
5216 | /** |
| 5217 | break; |
5217 | * @brief Configures the TIM in Slave mode |
| 5218 | } |
5218 | * @param htim TIM handle. |
| 5219 | 5219 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
|
| 5220 | return tmpreg; |
5220 | * contains the selected trigger (internal trigger input, filtered |
| 5221 | } |
5221 | * timer input or external trigger input) and the Slave mode |
| 5222 | 5222 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
|
| 5223 | /** |
5223 | * @retval HAL status |
| 5224 | * @} |
5224 | */ |
| 5225 | */ |
5225 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig) |
| 5226 | 5226 | { |
|
| 5227 | /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
5227 | /* Check the parameters */ |
| 5228 | * @brief TIM Callbacks functions |
5228 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
| 5229 | * |
5229 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
| 5230 | @verbatim |
5230 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
| 5231 | ============================================================================== |
5231 | |
| 5232 | ##### TIM Callbacks functions ##### |
5232 | __HAL_LOCK(htim); |
| 5233 | ============================================================================== |
5233 | |
| 5234 | [..] |
5234 | htim->State = HAL_TIM_STATE_BUSY; |
| 5235 | This section provides TIM callback functions: |
5235 | |
| 5236 | (+) TIM Period elapsed callback |
5236 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
| 5237 | (+) TIM Output Compare callback |
5237 | { |
| 5238 | (+) TIM Input capture callback |
5238 | htim->State = HAL_TIM_STATE_READY; |
| 5239 | (+) TIM Trigger callback |
5239 | __HAL_UNLOCK(htim); |
| 5240 | (+) TIM Error callback |
5240 | return HAL_ERROR; |
| 5241 | 5241 | } |
|
| 5242 | @endverbatim |
5242 | |
| 5243 | * @{ |
5243 | /* Disable Trigger Interrupt */ |
| 5244 | */ |
5244 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
| 5245 | 5245 | ||
| 5246 | /** |
5246 | /* Disable Trigger DMA request */ |
| 5247 | * @brief Period elapsed callback in non-blocking mode |
5247 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
| 5248 | * @param htim TIM handle |
5248 | |
| 5249 | * @retval None |
5249 | htim->State = HAL_TIM_STATE_READY; |
| 5250 | */ |
5250 | |
| 5251 | __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
5251 | __HAL_UNLOCK(htim); |
| 5252 | { |
5252 | |
| 5253 | /* Prevent unused argument(s) compilation warning */ |
5253 | return HAL_OK; |
| 5254 | UNUSED(htim); |
5254 | } |
| 5255 | 5255 | ||
| 5256 | /* NOTE : This function should not be modified, when the callback is needed, |
5256 | /** |
| 5257 | the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
5257 | * @brief Configures the TIM in Slave mode in interrupt mode |
| 5258 | */ |
5258 | * @param htim TIM handle. |
| 5259 | } |
5259 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
| 5260 | 5260 | * contains the selected trigger (internal trigger input, filtered |
|
| 5261 | /** |
5261 | * timer input or external trigger input) and the Slave mode |
| 5262 | * @brief Period elapsed half complete callback in non-blocking mode |
5262 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
| 5263 | * @param htim TIM handle |
5263 | * @retval HAL status |
| 5264 | * @retval None |
5264 | */ |
| 5265 | */ |
5265 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
| 5266 | __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
5266 | const TIM_SlaveConfigTypeDef *sSlaveConfig) |
| 5267 | { |
5267 | { |
| 5268 | /* Prevent unused argument(s) compilation warning */ |
5268 | /* Check the parameters */ |
| 5269 | UNUSED(htim); |
5269 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
| 5270 | 5270 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
|
| 5271 | /* NOTE : This function should not be modified, when the callback is needed, |
5271 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
| 5272 | the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
5272 | |
| 5273 | */ |
5273 | __HAL_LOCK(htim); |
| 5274 | } |
5274 | |
| 5275 | 5275 | htim->State = HAL_TIM_STATE_BUSY; |
|
| 5276 | /** |
5276 | |
| 5277 | * @brief Output Compare callback in non-blocking mode |
5277 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
| 5278 | * @param htim TIM OC handle |
5278 | { |
| 5279 | * @retval None |
5279 | htim->State = HAL_TIM_STATE_READY; |
| 5280 | */ |
5280 | __HAL_UNLOCK(htim); |
| 5281 | __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
5281 | return HAL_ERROR; |
| 5282 | { |
5282 | } |
| 5283 | /* Prevent unused argument(s) compilation warning */ |
5283 | |
| 5284 | UNUSED(htim); |
5284 | /* Enable Trigger Interrupt */ |
| 5285 | 5285 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
|
| 5286 | /* NOTE : This function should not be modified, when the callback is needed, |
5286 | |
| 5287 | the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
5287 | /* Disable Trigger DMA request */ |
| 5288 | */ |
5288 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
| 5289 | } |
5289 | |
| 5290 | 5290 | htim->State = HAL_TIM_STATE_READY; |
|
| 5291 | /** |
5291 | |
| 5292 | * @brief Input Capture callback in non-blocking mode |
5292 | __HAL_UNLOCK(htim); |
| 5293 | * @param htim TIM IC handle |
5293 | |
| 5294 | * @retval None |
5294 | return HAL_OK; |
| 5295 | */ |
5295 | } |
| 5296 | __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
5296 | |
| 5297 | { |
5297 | /** |
| 5298 | /* Prevent unused argument(s) compilation warning */ |
5298 | * @brief Read the captured value from Capture Compare unit |
| 5299 | UNUSED(htim); |
5299 | * @param htim TIM handle. |
| 5300 | 5300 | * @param Channel TIM Channels to be enabled |
|
| 5301 | /* NOTE : This function should not be modified, when the callback is needed, |
5301 | * This parameter can be one of the following values: |
| 5302 | the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
5302 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
| 5303 | */ |
5303 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
| 5304 | } |
5304 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
| 5305 | 5305 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
|
| 5306 | /** |
5306 | * @retval Captured value |
| 5307 | * @brief Input Capture half complete callback in non-blocking mode |
5307 | */ |
| 5308 | * @param htim TIM IC handle |
5308 | uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel) |
| 5309 | * @retval None |
5309 | { |
| 5310 | */ |
5310 | uint32_t tmpreg = 0U; |
| 5311 | __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
5311 | |
| 5312 | { |
5312 | switch (Channel) |
| 5313 | /* Prevent unused argument(s) compilation warning */ |
5313 | { |
| 5314 | UNUSED(htim); |
5314 | case TIM_CHANNEL_1: |
| 5315 | 5315 | { |
|
| 5316 | /* NOTE : This function should not be modified, when the callback is needed, |
5316 | /* Check the parameters */ |
| 5317 | the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
5317 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 5318 | */ |
5318 | |
| 5319 | } |
5319 | /* Return the capture 1 value */ |
| 5320 | 5320 | tmpreg = htim->Instance->CCR1; |
|
| 5321 | /** |
5321 | |
| 5322 | * @brief PWM Pulse finished callback in non-blocking mode |
5322 | break; |
| 5323 | * @param htim TIM handle |
5323 | } |
| 5324 | * @retval None |
5324 | case TIM_CHANNEL_2: |
| 5325 | */ |
5325 | { |
| 5326 | __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
5326 | /* Check the parameters */ |
| 5327 | { |
5327 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 5328 | /* Prevent unused argument(s) compilation warning */ |
5328 | |
| 5329 | UNUSED(htim); |
5329 | /* Return the capture 2 value */ |
| 5330 | 5330 | tmpreg = htim->Instance->CCR2; |
|
| 5331 | /* NOTE : This function should not be modified, when the callback is needed, |
5331 | |
| 5332 | the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
5332 | break; |
| 5333 | */ |
5333 | } |
| 5334 | } |
5334 | |
| 5335 | 5335 | case TIM_CHANNEL_3: |
|
| 5336 | /** |
5336 | { |
| 5337 | * @brief PWM Pulse finished half complete callback in non-blocking mode |
5337 | /* Check the parameters */ |
| 5338 | * @param htim TIM handle |
5338 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
| 5339 | * @retval None |
5339 | |
| 5340 | */ |
5340 | /* Return the capture 3 value */ |
| 5341 | __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
5341 | tmpreg = htim->Instance->CCR3; |
| 5342 | { |
5342 | |
| 5343 | /* Prevent unused argument(s) compilation warning */ |
5343 | break; |
| 5344 | UNUSED(htim); |
5344 | } |
| 5345 | 5345 | ||
| 5346 | /* NOTE : This function should not be modified, when the callback is needed, |
5346 | case TIM_CHANNEL_4: |
| 5347 | the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
5347 | { |
| 5348 | */ |
5348 | /* Check the parameters */ |
| 5349 | } |
5349 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
| 5350 | 5350 | ||
| 5351 | /** |
5351 | /* Return the capture 4 value */ |
| 5352 | * @brief Hall Trigger detection callback in non-blocking mode |
5352 | tmpreg = htim->Instance->CCR4; |
| 5353 | * @param htim TIM handle |
5353 | |
| 5354 | * @retval None |
5354 | break; |
| 5355 | */ |
5355 | } |
| 5356 | __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
5356 | |
| 5357 | { |
5357 | default: |
| 5358 | /* Prevent unused argument(s) compilation warning */ |
5358 | break; |
| 5359 | UNUSED(htim); |
5359 | } |
| 5360 | 5360 | ||
| 5361 | /* NOTE : This function should not be modified, when the callback is needed, |
5361 | return tmpreg; |
| 5362 | the HAL_TIM_TriggerCallback could be implemented in the user file |
5362 | } |
| 5363 | */ |
5363 | |
| 5364 | } |
5364 | /** |
| 5365 | 5365 | * @} |
|
| 5366 | /** |
5366 | */ |
| 5367 | * @brief Hall Trigger detection half complete callback in non-blocking mode |
5367 | |
| 5368 | * @param htim TIM handle |
5368 | /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
| 5369 | * @retval None |
5369 | * @brief TIM Callbacks functions |
| 5370 | */ |
5370 | * |
| 5371 | __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
5371 | @verbatim |
| 5372 | { |
5372 | ============================================================================== |
| 5373 | /* Prevent unused argument(s) compilation warning */ |
5373 | ##### TIM Callbacks functions ##### |
| 5374 | UNUSED(htim); |
5374 | ============================================================================== |
| 5375 | 5375 | [..] |
|
| 5376 | /* NOTE : This function should not be modified, when the callback is needed, |
5376 | This section provides TIM callback functions: |
| 5377 | the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
5377 | (+) TIM Period elapsed callback |
| 5378 | */ |
5378 | (+) TIM Output Compare callback |
| 5379 | } |
5379 | (+) TIM Input capture callback |
| 5380 | 5380 | (+) TIM Trigger callback |
|
| 5381 | /** |
5381 | (+) TIM Error callback |
| 5382 | * @brief Timer error callback in non-blocking mode |
5382 | |
| 5383 | * @param htim TIM handle |
5383 | @endverbatim |
| 5384 | * @retval None |
5384 | * @{ |
| 5385 | */ |
5385 | */ |
| 5386 | __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
5386 | |
| 5387 | { |
5387 | /** |
| 5388 | /* Prevent unused argument(s) compilation warning */ |
5388 | * @brief Period elapsed callback in non-blocking mode |
| 5389 | UNUSED(htim); |
5389 | * @param htim TIM handle |
| 5390 | 5390 | * @retval None |
|
| 5391 | /* NOTE : This function should not be modified, when the callback is needed, |
5391 | */ |
| 5392 | the HAL_TIM_ErrorCallback could be implemented in the user file |
5392 | __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
| 5393 | */ |
5393 | { |
| 5394 | } |
5394 | /* Prevent unused argument(s) compilation warning */ |
| 5395 | 5395 | UNUSED(htim); |
|
| 5396 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
5396 | |
| 5397 | /** |
5397 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5398 | * @brief Register a User TIM callback to be used instead of the weak predefined callback |
5398 | the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
| 5399 | * @param htim tim handle |
5399 | */ |
| 5400 | * @param CallbackID ID of the callback to be registered |
5400 | } |
| 5401 | * This parameter can be one of the following values: |
5401 | |
| 5402 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5402 | /** |
| 5403 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
5403 | * @brief Period elapsed half complete callback in non-blocking mode |
| 5404 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5404 | * @param htim TIM handle |
| 5405 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
5405 | * @retval None |
| 5406 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5406 | */ |
| 5407 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
5407 | __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
| 5408 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5408 | { |
| 5409 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5409 | /* Prevent unused argument(s) compilation warning */ |
| 5410 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
5410 | UNUSED(htim); |
| 5411 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
5411 | |
| 5412 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5412 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5413 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5413 | the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
| 5414 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5414 | */ |
| 5415 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
5415 | } |
| 5416 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5416 | |
| 5417 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5417 | /** |
| 5418 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5418 | * @brief Output Compare callback in non-blocking mode |
| 5419 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
5419 | * @param htim TIM OC handle |
| 5420 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5420 | * @retval None |
| 5421 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5421 | */ |
| 5422 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5422 | __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
| 5423 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
5423 | { |
| 5424 | * @param pCallback pointer to the callback function |
5424 | /* Prevent unused argument(s) compilation warning */ |
| 5425 | * @retval status |
5425 | UNUSED(htim); |
| 5426 | */ |
5426 | |
| 5427 | HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
5427 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5428 | pTIM_CallbackTypeDef pCallback) |
5428 | the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
| 5429 | { |
5429 | */ |
| 5430 | HAL_StatusTypeDef status = HAL_OK; |
5430 | } |
| 5431 | 5431 | ||
| 5432 | if (pCallback == NULL) |
5432 | /** |
| 5433 | { |
5433 | * @brief Input Capture callback in non-blocking mode |
| 5434 | return HAL_ERROR; |
5434 | * @param htim TIM IC handle |
| 5435 | } |
5435 | * @retval None |
| 5436 | /* Process locked */ |
5436 | */ |
| 5437 | __HAL_LOCK(htim); |
5437 | __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
| 5438 | 5438 | { |
|
| 5439 | if (htim->State == HAL_TIM_STATE_READY) |
5439 | /* Prevent unused argument(s) compilation warning */ |
| 5440 | { |
5440 | UNUSED(htim); |
| 5441 | switch (CallbackID) |
5441 | |
| 5442 | { |
5442 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5443 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5443 | the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
| 5444 | htim->Base_MspInitCallback = pCallback; |
5444 | */ |
| 5445 | break; |
5445 | } |
| 5446 | 5446 | ||
| 5447 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5447 | /** |
| 5448 | htim->Base_MspDeInitCallback = pCallback; |
5448 | * @brief Input Capture half complete callback in non-blocking mode |
| 5449 | break; |
5449 | * @param htim TIM IC handle |
| 5450 | 5450 | * @retval None |
|
| 5451 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5451 | */ |
| 5452 | htim->IC_MspInitCallback = pCallback; |
5452 | __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
| 5453 | break; |
5453 | { |
| 5454 | 5454 | /* Prevent unused argument(s) compilation warning */ |
|
| 5455 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5455 | UNUSED(htim); |
| 5456 | htim->IC_MspDeInitCallback = pCallback; |
5456 | |
| 5457 | break; |
5457 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5458 | 5458 | the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
|
| 5459 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5459 | */ |
| 5460 | htim->OC_MspInitCallback = pCallback; |
5460 | } |
| 5461 | break; |
5461 | |
| 5462 | 5462 | /** |
|
| 5463 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5463 | * @brief PWM Pulse finished callback in non-blocking mode |
| 5464 | htim->OC_MspDeInitCallback = pCallback; |
5464 | * @param htim TIM handle |
| 5465 | break; |
5465 | * @retval None |
| 5466 | 5466 | */ |
|
| 5467 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5467 | __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
| 5468 | htim->PWM_MspInitCallback = pCallback; |
5468 | { |
| 5469 | break; |
5469 | /* Prevent unused argument(s) compilation warning */ |
| 5470 | 5470 | UNUSED(htim); |
|
| 5471 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5471 | |
| 5472 | htim->PWM_MspDeInitCallback = pCallback; |
5472 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5473 | break; |
5473 | the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
| 5474 | 5474 | */ |
|
| 5475 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5475 | } |
| 5476 | htim->OnePulse_MspInitCallback = pCallback; |
5476 | |
| 5477 | break; |
5477 | /** |
| 5478 | 5478 | * @brief PWM Pulse finished half complete callback in non-blocking mode |
|
| 5479 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5479 | * @param htim TIM handle |
| 5480 | htim->OnePulse_MspDeInitCallback = pCallback; |
5480 | * @retval None |
| 5481 | break; |
5481 | */ |
| 5482 | 5482 | __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
|
| 5483 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5483 | { |
| 5484 | htim->Encoder_MspInitCallback = pCallback; |
5484 | /* Prevent unused argument(s) compilation warning */ |
| 5485 | break; |
5485 | UNUSED(htim); |
| 5486 | 5486 | ||
| 5487 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5487 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5488 | htim->Encoder_MspDeInitCallback = pCallback; |
5488 | the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
| 5489 | break; |
5489 | */ |
| 5490 | 5490 | } |
|
| 5491 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5491 | |
| 5492 | htim->PeriodElapsedCallback = pCallback; |
5492 | /** |
| 5493 | break; |
5493 | * @brief Hall Trigger detection callback in non-blocking mode |
| 5494 | 5494 | * @param htim TIM handle |
|
| 5495 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
5495 | * @retval None |
| 5496 | htim->PeriodElapsedHalfCpltCallback = pCallback; |
5496 | */ |
| 5497 | break; |
5497 | __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
| 5498 | 5498 | { |
|
| 5499 | case HAL_TIM_TRIGGER_CB_ID : |
5499 | /* Prevent unused argument(s) compilation warning */ |
| 5500 | htim->TriggerCallback = pCallback; |
5500 | UNUSED(htim); |
| 5501 | break; |
5501 | |
| 5502 | 5502 | /* NOTE : This function should not be modified, when the callback is needed, |
|
| 5503 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5503 | the HAL_TIM_TriggerCallback could be implemented in the user file |
| 5504 | htim->TriggerHalfCpltCallback = pCallback; |
5504 | */ |
| 5505 | break; |
5505 | } |
| 5506 | 5506 | ||
| 5507 | case HAL_TIM_IC_CAPTURE_CB_ID : |
5507 | /** |
| 5508 | htim->IC_CaptureCallback = pCallback; |
5508 | * @brief Hall Trigger detection half complete callback in non-blocking mode |
| 5509 | break; |
5509 | * @param htim TIM handle |
| 5510 | 5510 | * @retval None |
|
| 5511 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5511 | */ |
| 5512 | htim->IC_CaptureHalfCpltCallback = pCallback; |
5512 | __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
| 5513 | break; |
5513 | { |
| 5514 | 5514 | /* Prevent unused argument(s) compilation warning */ |
|
| 5515 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5515 | UNUSED(htim); |
| 5516 | htim->OC_DelayElapsedCallback = pCallback; |
5516 | |
| 5517 | break; |
5517 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5518 | 5518 | the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
|
| 5519 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5519 | */ |
| 5520 | htim->PWM_PulseFinishedCallback = pCallback; |
5520 | } |
| 5521 | break; |
5521 | |
| 5522 | 5522 | /** |
|
| 5523 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
5523 | * @brief Timer error callback in non-blocking mode |
| 5524 | htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
5524 | * @param htim TIM handle |
| 5525 | break; |
5525 | * @retval None |
| 5526 | 5526 | */ |
|
| 5527 | case HAL_TIM_ERROR_CB_ID : |
5527 | __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
| 5528 | htim->ErrorCallback = pCallback; |
5528 | { |
| 5529 | break; |
5529 | /* Prevent unused argument(s) compilation warning */ |
| 5530 | 5530 | UNUSED(htim); |
|
| 5531 | default : |
5531 | |
| 5532 | /* Return error status */ |
5532 | /* NOTE : This function should not be modified, when the callback is needed, |
| 5533 | status = HAL_ERROR; |
5533 | the HAL_TIM_ErrorCallback could be implemented in the user file |
| 5534 | break; |
5534 | */ |
| 5535 | } |
5535 | } |
| 5536 | } |
5536 | |
| 5537 | else if (htim->State == HAL_TIM_STATE_RESET) |
5537 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 5538 | { |
5538 | /** |
| 5539 | switch (CallbackID) |
5539 | * @brief Register a User TIM callback to be used instead of the weak predefined callback |
| 5540 | { |
5540 | * @param htim tim handle |
| 5541 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5541 | * @param CallbackID ID of the callback to be registered |
| 5542 | htim->Base_MspInitCallback = pCallback; |
5542 | * This parameter can be one of the following values: |
| 5543 | break; |
5543 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
| 5544 | 5544 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
|
| 5545 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5545 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
| 5546 | htim->Base_MspDeInitCallback = pCallback; |
5546 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
| 5547 | break; |
5547 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
| 5548 | 5548 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
|
| 5549 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5549 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
| 5550 | htim->IC_MspInitCallback = pCallback; |
5550 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
| 5551 | break; |
5551 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
| 5552 | 5552 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
|
| 5553 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5553 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
| 5554 | htim->IC_MspDeInitCallback = pCallback; |
5554 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
| 5555 | break; |
5555 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
| 5556 | 5556 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
|
| 5557 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5557 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
| 5558 | htim->OC_MspInitCallback = pCallback; |
5558 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
| 5559 | break; |
5559 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
| 5560 | 5560 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
|
| 5561 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5561 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
| 5562 | htim->OC_MspDeInitCallback = pCallback; |
5562 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
| 5563 | break; |
5563 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
| 5564 | 5564 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
|
| 5565 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5565 | * @param pCallback pointer to the callback function |
| 5566 | htim->PWM_MspInitCallback = pCallback; |
5566 | * @retval status |
| 5567 | break; |
5567 | */ |
| 5568 | 5568 | HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
|
| 5569 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5569 | pTIM_CallbackTypeDef pCallback) |
| 5570 | htim->PWM_MspDeInitCallback = pCallback; |
5570 | { |
| 5571 | break; |
5571 | HAL_StatusTypeDef status = HAL_OK; |
| 5572 | 5572 | ||
| 5573 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5573 | if (pCallback == NULL) |
| 5574 | htim->OnePulse_MspInitCallback = pCallback; |
5574 | { |
| 5575 | break; |
5575 | return HAL_ERROR; |
| 5576 | 5576 | } |
|
| 5577 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5577 | |
| 5578 | htim->OnePulse_MspDeInitCallback = pCallback; |
5578 | if (htim->State == HAL_TIM_STATE_READY) |
| 5579 | break; |
5579 | { |
| 5580 | 5580 | switch (CallbackID) |
|
| 5581 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5581 | { |
| 5582 | htim->Encoder_MspInitCallback = pCallback; |
5582 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
| 5583 | break; |
5583 | htim->Base_MspInitCallback = pCallback; |
| 5584 | 5584 | break; |
|
| 5585 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5585 | |
| 5586 | htim->Encoder_MspDeInitCallback = pCallback; |
5586 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| 5587 | break; |
5587 | htim->Base_MspDeInitCallback = pCallback; |
| 5588 | 5588 | break; |
|
| 5589 | default : |
5589 | |
| 5590 | /* Return error status */ |
5590 | case HAL_TIM_IC_MSPINIT_CB_ID : |
| 5591 | status = HAL_ERROR; |
5591 | htim->IC_MspInitCallback = pCallback; |
| 5592 | break; |
5592 | break; |
| 5593 | } |
5593 | |
| 5594 | } |
5594 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| 5595 | else |
5595 | htim->IC_MspDeInitCallback = pCallback; |
| 5596 | { |
5596 | break; |
| 5597 | /* Return error status */ |
5597 | |
| 5598 | status = HAL_ERROR; |
5598 | case HAL_TIM_OC_MSPINIT_CB_ID : |
| 5599 | } |
5599 | htim->OC_MspInitCallback = pCallback; |
| 5600 | 5600 | break; |
|
| 5601 | /* Release Lock */ |
5601 | |
| 5602 | __HAL_UNLOCK(htim); |
5602 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| 5603 | 5603 | htim->OC_MspDeInitCallback = pCallback; |
|
| 5604 | return status; |
5604 | break; |
| 5605 | } |
5605 | |
| 5606 | 5606 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
|
| 5607 | /** |
5607 | htim->PWM_MspInitCallback = pCallback; |
| 5608 | * @brief Unregister a TIM callback |
5608 | break; |
| 5609 | * TIM callback is redirected to the weak predefined callback |
5609 | |
| 5610 | * @param htim tim handle |
5610 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| 5611 | * @param CallbackID ID of the callback to be unregistered |
5611 | htim->PWM_MspDeInitCallback = pCallback; |
| 5612 | * This parameter can be one of the following values: |
5612 | break; |
| 5613 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
5613 | |
| 5614 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
5614 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| 5615 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
5615 | htim->OnePulse_MspInitCallback = pCallback; |
| 5616 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
5616 | break; |
| 5617 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
5617 | |
| 5618 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
5618 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| 5619 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
5619 | htim->OnePulse_MspDeInitCallback = pCallback; |
| 5620 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
5620 | break; |
| 5621 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
5621 | |
| 5622 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
5622 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| 5623 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
5623 | htim->Encoder_MspInitCallback = pCallback; |
| 5624 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
5624 | break; |
| 5625 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
5625 | |
| 5626 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
5626 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| 5627 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
5627 | htim->Encoder_MspDeInitCallback = pCallback; |
| 5628 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
5628 | break; |
| 5629 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
5629 | |
| 5630 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
5630 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
| 5631 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
5631 | htim->PeriodElapsedCallback = pCallback; |
| 5632 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
5632 | break; |
| 5633 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
5633 | |
| 5634 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
5634 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
| 5635 | * @retval status |
5635 | htim->PeriodElapsedHalfCpltCallback = pCallback; |
| 5636 | */ |
5636 | break; |
| 5637 | HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
5637 | |
| 5638 | { |
5638 | case HAL_TIM_TRIGGER_CB_ID : |
| 5639 | HAL_StatusTypeDef status = HAL_OK; |
5639 | htim->TriggerCallback = pCallback; |
| 5640 | 5640 | break; |
|
| 5641 | /* Process locked */ |
5641 | |
| 5642 | __HAL_LOCK(htim); |
5642 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
| 5643 | 5643 | htim->TriggerHalfCpltCallback = pCallback; |
|
| 5644 | if (htim->State == HAL_TIM_STATE_READY) |
5644 | break; |
| 5645 | { |
5645 | |
| 5646 | switch (CallbackID) |
5646 | case HAL_TIM_IC_CAPTURE_CB_ID : |
| 5647 | { |
5647 | htim->IC_CaptureCallback = pCallback; |
| 5648 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5648 | break; |
| 5649 | /* Legacy weak Base MspInit Callback */ |
5649 | |
| 5650 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5650 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
| 5651 | break; |
5651 | htim->IC_CaptureHalfCpltCallback = pCallback; |
| 5652 | 5652 | break; |
|
| 5653 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5653 | |
| 5654 | /* Legacy weak Base Msp DeInit Callback */ |
5654 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
| 5655 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5655 | htim->OC_DelayElapsedCallback = pCallback; |
| 5656 | break; |
5656 | break; |
| 5657 | 5657 | ||
| 5658 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5658 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
| 5659 | /* Legacy weak IC Msp Init Callback */ |
5659 | htim->PWM_PulseFinishedCallback = pCallback; |
| 5660 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5660 | break; |
| 5661 | break; |
5661 | |
| 5662 | 5662 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
|
| 5663 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5663 | htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
| 5664 | /* Legacy weak IC Msp DeInit Callback */ |
5664 | break; |
| 5665 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5665 | |
| 5666 | break; |
5666 | case HAL_TIM_ERROR_CB_ID : |
| 5667 | 5667 | htim->ErrorCallback = pCallback; |
|
| 5668 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5668 | break; |
| 5669 | /* Legacy weak OC Msp Init Callback */ |
5669 | |
| 5670 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5670 | default : |
| 5671 | break; |
5671 | /* Return error status */ |
| 5672 | 5672 | status = HAL_ERROR; |
|
| 5673 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5673 | break; |
| 5674 | /* Legacy weak OC Msp DeInit Callback */ |
5674 | } |
| 5675 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5675 | } |
| 5676 | break; |
5676 | else if (htim->State == HAL_TIM_STATE_RESET) |
| 5677 | 5677 | { |
|
| 5678 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5678 | switch (CallbackID) |
| 5679 | /* Legacy weak PWM Msp Init Callback */ |
5679 | { |
| 5680 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5680 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
| 5681 | break; |
5681 | htim->Base_MspInitCallback = pCallback; |
| 5682 | 5682 | break; |
|
| 5683 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5683 | |
| 5684 | /* Legacy weak PWM Msp DeInit Callback */ |
5684 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| 5685 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5685 | htim->Base_MspDeInitCallback = pCallback; |
| 5686 | break; |
5686 | break; |
| 5687 | 5687 | ||
| 5688 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5688 | case HAL_TIM_IC_MSPINIT_CB_ID : |
| 5689 | /* Legacy weak One Pulse Msp Init Callback */ |
5689 | htim->IC_MspInitCallback = pCallback; |
| 5690 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5690 | break; |
| 5691 | break; |
5691 | |
| 5692 | 5692 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
|
| 5693 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5693 | htim->IC_MspDeInitCallback = pCallback; |
| 5694 | /* Legacy weak One Pulse Msp DeInit Callback */ |
5694 | break; |
| 5695 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5695 | |
| 5696 | break; |
5696 | case HAL_TIM_OC_MSPINIT_CB_ID : |
| 5697 | 5697 | htim->OC_MspInitCallback = pCallback; |
|
| 5698 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5698 | break; |
| 5699 | /* Legacy weak Encoder Msp Init Callback */ |
5699 | |
| 5700 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5700 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| 5701 | break; |
5701 | htim->OC_MspDeInitCallback = pCallback; |
| 5702 | 5702 | break; |
|
| 5703 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5703 | |
| 5704 | /* Legacy weak Encoder Msp DeInit Callback */ |
5704 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
| 5705 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5705 | htim->PWM_MspInitCallback = pCallback; |
| 5706 | break; |
5706 | break; |
| 5707 | 5707 | ||
| 5708 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
5708 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| 5709 | /* Legacy weak Period Elapsed Callback */ |
5709 | htim->PWM_MspDeInitCallback = pCallback; |
| 5710 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
5710 | break; |
| 5711 | break; |
5711 | |
| 5712 | 5712 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
|
| 5713 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
5713 | htim->OnePulse_MspInitCallback = pCallback; |
| 5714 | /* Legacy weak Period Elapsed half complete Callback */ |
5714 | break; |
| 5715 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
5715 | |
| 5716 | break; |
5716 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| 5717 | 5717 | htim->OnePulse_MspDeInitCallback = pCallback; |
|
| 5718 | case HAL_TIM_TRIGGER_CB_ID : |
5718 | break; |
| 5719 | /* Legacy weak Trigger Callback */ |
5719 | |
| 5720 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
5720 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| 5721 | break; |
5721 | htim->Encoder_MspInitCallback = pCallback; |
| 5722 | 5722 | break; |
|
| 5723 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
5723 | |
| 5724 | /* Legacy weak Trigger half complete Callback */ |
5724 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| 5725 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
5725 | htim->Encoder_MspDeInitCallback = pCallback; |
| 5726 | break; |
5726 | break; |
| 5727 | 5727 | ||
| 5728 | case HAL_TIM_IC_CAPTURE_CB_ID : |
5728 | default : |
| 5729 | /* Legacy weak IC Capture Callback */ |
5729 | /* Return error status */ |
| 5730 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
5730 | status = HAL_ERROR; |
| 5731 | break; |
5731 | break; |
| 5732 | 5732 | } |
|
| 5733 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
5733 | } |
| 5734 | /* Legacy weak IC Capture half complete Callback */ |
5734 | else |
| 5735 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
5735 | { |
| 5736 | break; |
5736 | /* Return error status */ |
| 5737 | 5737 | status = HAL_ERROR; |
|
| 5738 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
5738 | } |
| 5739 | /* Legacy weak OC Delay Elapsed Callback */ |
5739 | |
| 5740 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
5740 | return status; |
| 5741 | break; |
5741 | } |
| 5742 | 5742 | ||
| 5743 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
5743 | /** |
| 5744 | /* Legacy weak PWM Pulse Finished Callback */ |
5744 | * @brief Unregister a TIM callback |
| 5745 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
5745 | * TIM callback is redirected to the weak predefined callback |
| 5746 | break; |
5746 | * @param htim tim handle |
| 5747 | 5747 | * @param CallbackID ID of the callback to be unregistered |
|
| 5748 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
5748 | * This parameter can be one of the following values: |
| 5749 | /* Legacy weak PWM Pulse Finished half complete Callback */ |
5749 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
| 5750 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
5750 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
| 5751 | break; |
5751 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
| 5752 | 5752 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
|
| 5753 | case HAL_TIM_ERROR_CB_ID : |
5753 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
| 5754 | /* Legacy weak Error Callback */ |
5754 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
| 5755 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
5755 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
| 5756 | break; |
5756 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
| 5757 | 5757 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
|
| 5758 | default : |
5758 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
| 5759 | /* Return error status */ |
5759 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
| 5760 | status = HAL_ERROR; |
5760 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
| 5761 | break; |
5761 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
| 5762 | } |
5762 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
| 5763 | } |
5763 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
| 5764 | else if (htim->State == HAL_TIM_STATE_RESET) |
5764 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
| 5765 | { |
5765 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
| 5766 | switch (CallbackID) |
5766 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
| 5767 | { |
5767 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
| 5768 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
5768 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
| 5769 | /* Legacy weak Base MspInit Callback */ |
5769 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
| 5770 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
5770 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
| 5771 | break; |
5771 | * @retval status |
| 5772 | 5772 | */ |
|
| 5773 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
5773 | HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
| 5774 | /* Legacy weak Base Msp DeInit Callback */ |
5774 | { |
| 5775 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
5775 | HAL_StatusTypeDef status = HAL_OK; |
| 5776 | break; |
5776 | |
| 5777 | 5777 | if (htim->State == HAL_TIM_STATE_READY) |
|
| 5778 | case HAL_TIM_IC_MSPINIT_CB_ID : |
5778 | { |
| 5779 | /* Legacy weak IC Msp Init Callback */ |
5779 | switch (CallbackID) |
| 5780 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
5780 | { |
| 5781 | break; |
5781 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
| 5782 | 5782 | /* Legacy weak Base MspInit Callback */ |
|
| 5783 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
5783 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
| 5784 | /* Legacy weak IC Msp DeInit Callback */ |
5784 | break; |
| 5785 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
5785 | |
| 5786 | break; |
5786 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| 5787 | 5787 | /* Legacy weak Base Msp DeInit Callback */ |
|
| 5788 | case HAL_TIM_OC_MSPINIT_CB_ID : |
5788 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
| 5789 | /* Legacy weak OC Msp Init Callback */ |
5789 | break; |
| 5790 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
5790 | |
| 5791 | break; |
5791 | case HAL_TIM_IC_MSPINIT_CB_ID : |
| 5792 | 5792 | /* Legacy weak IC Msp Init Callback */ |
|
| 5793 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
5793 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
| 5794 | /* Legacy weak OC Msp DeInit Callback */ |
5794 | break; |
| 5795 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
5795 | |
| 5796 | break; |
5796 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| 5797 | 5797 | /* Legacy weak IC Msp DeInit Callback */ |
|
| 5798 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
5798 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
| 5799 | /* Legacy weak PWM Msp Init Callback */ |
5799 | break; |
| 5800 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
5800 | |
| 5801 | break; |
5801 | case HAL_TIM_OC_MSPINIT_CB_ID : |
| 5802 | 5802 | /* Legacy weak OC Msp Init Callback */ |
|
| 5803 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
5803 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
| 5804 | /* Legacy weak PWM Msp DeInit Callback */ |
5804 | break; |
| 5805 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
5805 | |
| 5806 | break; |
5806 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| 5807 | 5807 | /* Legacy weak OC Msp DeInit Callback */ |
|
| 5808 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
5808 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
| 5809 | /* Legacy weak One Pulse Msp Init Callback */ |
5809 | break; |
| 5810 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
5810 | |
| 5811 | break; |
5811 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
| 5812 | 5812 | /* Legacy weak PWM Msp Init Callback */ |
|
| 5813 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
5813 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
| 5814 | /* Legacy weak One Pulse Msp DeInit Callback */ |
5814 | break; |
| 5815 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
5815 | |
| 5816 | break; |
5816 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| 5817 | 5817 | /* Legacy weak PWM Msp DeInit Callback */ |
|
| 5818 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
5818 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
| 5819 | /* Legacy weak Encoder Msp Init Callback */ |
5819 | break; |
| 5820 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
5820 | |
| 5821 | break; |
5821 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| 5822 | 5822 | /* Legacy weak One Pulse Msp Init Callback */ |
|
| 5823 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
5823 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
| 5824 | /* Legacy weak Encoder Msp DeInit Callback */ |
5824 | break; |
| 5825 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
5825 | |
| 5826 | break; |
5826 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| 5827 | 5827 | /* Legacy weak One Pulse Msp DeInit Callback */ |
|
| 5828 | default : |
5828 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
| 5829 | /* Return error status */ |
5829 | break; |
| 5830 | status = HAL_ERROR; |
5830 | |
| 5831 | break; |
5831 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| 5832 | } |
5832 | /* Legacy weak Encoder Msp Init Callback */ |
| 5833 | } |
5833 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
| 5834 | else |
5834 | break; |
| 5835 | { |
5835 | |
| 5836 | /* Return error status */ |
5836 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| 5837 | status = HAL_ERROR; |
5837 | /* Legacy weak Encoder Msp DeInit Callback */ |
| 5838 | } |
5838 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
| 5839 | 5839 | break; |
|
| 5840 | /* Release Lock */ |
5840 | |
| 5841 | __HAL_UNLOCK(htim); |
5841 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
| 5842 | 5842 | /* Legacy weak Period Elapsed Callback */ |
|
| 5843 | return status; |
5843 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
| 5844 | } |
5844 | break; |
| 5845 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
5845 | |
| 5846 | 5846 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
|
| 5847 | /** |
5847 | /* Legacy weak Period Elapsed half complete Callback */ |
| 5848 | * @} |
5848 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
| 5849 | */ |
5849 | break; |
| 5850 | 5850 | ||
| 5851 | /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
5851 | case HAL_TIM_TRIGGER_CB_ID : |
| 5852 | * @brief TIM Peripheral State functions |
5852 | /* Legacy weak Trigger Callback */ |
| 5853 | * |
5853 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
| 5854 | @verbatim |
5854 | break; |
| 5855 | ============================================================================== |
5855 | |
| 5856 | ##### Peripheral State functions ##### |
5856 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
| 5857 | ============================================================================== |
5857 | /* Legacy weak Trigger half complete Callback */ |
| 5858 | [..] |
5858 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
| 5859 | This subsection permits to get in run-time the status of the peripheral |
5859 | break; |
| 5860 | and the data flow. |
5860 | |
| 5861 | 5861 | case HAL_TIM_IC_CAPTURE_CB_ID : |
|
| 5862 | @endverbatim |
5862 | /* Legacy weak IC Capture Callback */ |
| 5863 | * @{ |
5863 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
| 5864 | */ |
5864 | break; |
| 5865 | 5865 | ||
| 5866 | /** |
5866 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
| 5867 | * @brief Return the TIM Base handle state. |
5867 | /* Legacy weak IC Capture half complete Callback */ |
| 5868 | * @param htim TIM Base handle |
5868 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
| 5869 | * @retval HAL state |
5869 | break; |
| 5870 | */ |
5870 | |
| 5871 | HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) |
5871 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
| 5872 | { |
5872 | /* Legacy weak OC Delay Elapsed Callback */ |
| 5873 | return htim->State; |
5873 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
| 5874 | } |
5874 | break; |
| 5875 | 5875 | ||
| 5876 | /** |
5876 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
| 5877 | * @brief Return the TIM OC handle state. |
5877 | /* Legacy weak PWM Pulse Finished Callback */ |
| 5878 | * @param htim TIM Output Compare handle |
5878 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
| 5879 | * @retval HAL state |
5879 | break; |
| 5880 | */ |
5880 | |
| 5881 | HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) |
5881 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
| 5882 | { |
5882 | /* Legacy weak PWM Pulse Finished half complete Callback */ |
| 5883 | return htim->State; |
5883 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
| 5884 | } |
5884 | break; |
| 5885 | 5885 | ||
| 5886 | /** |
5886 | case HAL_TIM_ERROR_CB_ID : |
| 5887 | * @brief Return the TIM PWM handle state. |
5887 | /* Legacy weak Error Callback */ |
| 5888 | * @param htim TIM handle |
5888 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
| 5889 | * @retval HAL state |
5889 | break; |
| 5890 | */ |
5890 | |
| 5891 | HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) |
5891 | default : |
| 5892 | { |
5892 | /* Return error status */ |
| 5893 | return htim->State; |
5893 | status = HAL_ERROR; |
| 5894 | } |
5894 | break; |
| 5895 | 5895 | } |
|
| 5896 | /** |
5896 | } |
| 5897 | * @brief Return the TIM Input Capture handle state. |
5897 | else if (htim->State == HAL_TIM_STATE_RESET) |
| 5898 | * @param htim TIM IC handle |
5898 | { |
| 5899 | * @retval HAL state |
5899 | switch (CallbackID) |
| 5900 | */ |
5900 | { |
| 5901 | HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) |
5901 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
| 5902 | { |
5902 | /* Legacy weak Base MspInit Callback */ |
| 5903 | return htim->State; |
5903 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
| 5904 | } |
5904 | break; |
| 5905 | 5905 | ||
| 5906 | /** |
5906 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
| 5907 | * @brief Return the TIM One Pulse Mode handle state. |
5907 | /* Legacy weak Base Msp DeInit Callback */ |
| 5908 | * @param htim TIM OPM handle |
5908 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
| 5909 | * @retval HAL state |
5909 | break; |
| 5910 | */ |
5910 | |
| 5911 | HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) |
5911 | case HAL_TIM_IC_MSPINIT_CB_ID : |
| 5912 | { |
5912 | /* Legacy weak IC Msp Init Callback */ |
| 5913 | return htim->State; |
5913 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
| 5914 | } |
5914 | break; |
| 5915 | 5915 | ||
| 5916 | /** |
5916 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
| 5917 | * @brief Return the TIM Encoder Mode handle state. |
5917 | /* Legacy weak IC Msp DeInit Callback */ |
| 5918 | * @param htim TIM Encoder Interface handle |
5918 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
| 5919 | * @retval HAL state |
5919 | break; |
| 5920 | */ |
5920 | |
| 5921 | HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) |
5921 | case HAL_TIM_OC_MSPINIT_CB_ID : |
| 5922 | { |
5922 | /* Legacy weak OC Msp Init Callback */ |
| 5923 | return htim->State; |
5923 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
| 5924 | } |
5924 | break; |
| 5925 | 5925 | ||
| 5926 | /** |
5926 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
| 5927 | * @brief Return the TIM Encoder Mode handle state. |
5927 | /* Legacy weak OC Msp DeInit Callback */ |
| 5928 | * @param htim TIM handle |
5928 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
| 5929 | * @retval Active channel |
5929 | break; |
| 5930 | */ |
5930 | |
| 5931 | HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) |
5931 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
| 5932 | { |
5932 | /* Legacy weak PWM Msp Init Callback */ |
| 5933 | return htim->Channel; |
5933 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
| 5934 | } |
5934 | break; |
| 5935 | 5935 | ||
| 5936 | /** |
5936 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
| 5937 | * @brief Return actual state of the TIM channel. |
5937 | /* Legacy weak PWM Msp DeInit Callback */ |
| 5938 | * @param htim TIM handle |
5938 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
| 5939 | * @param Channel TIM Channel |
5939 | break; |
| 5940 | * This parameter can be one of the following values: |
5940 | |
| 5941 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
5941 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
| 5942 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
5942 | /* Legacy weak One Pulse Msp Init Callback */ |
| 5943 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
5943 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
| 5944 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
5944 | break; |
| 5945 | * @arg TIM_CHANNEL_5: TIM Channel 5 |
5945 | |
| 5946 | * @arg TIM_CHANNEL_6: TIM Channel 6 |
5946 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
| 5947 | * @retval TIM Channel state |
5947 | /* Legacy weak One Pulse Msp DeInit Callback */ |
| 5948 | */ |
5948 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
| 5949 | HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) |
5949 | break; |
| 5950 | { |
5950 | |
| 5951 | HAL_TIM_ChannelStateTypeDef channel_state; |
5951 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
| 5952 | 5952 | /* Legacy weak Encoder Msp Init Callback */ |
|
| 5953 | /* Check the parameters */ |
5953 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
| 5954 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
5954 | break; |
| 5955 | 5955 | ||
| 5956 | channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
5956 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
| 5957 | 5957 | /* Legacy weak Encoder Msp DeInit Callback */ |
|
| 5958 | return channel_state; |
5958 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
| 5959 | } |
5959 | break; |
| 5960 | 5960 | ||
| 5961 | /** |
5961 | default : |
| 5962 | * @brief Return actual state of a DMA burst operation. |
5962 | /* Return error status */ |
| 5963 | * @param htim TIM handle |
5963 | status = HAL_ERROR; |
| 5964 | * @retval DMA burst state |
5964 | break; |
| 5965 | */ |
5965 | } |
| 5966 | HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) |
5966 | } |
| 5967 | { |
5967 | else |
| 5968 | /* Check the parameters */ |
5968 | { |
| 5969 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
5969 | /* Return error status */ |
| 5970 | 5970 | status = HAL_ERROR; |
|
| 5971 | return htim->DMABurstState; |
5971 | } |
| 5972 | } |
5972 | |
| 5973 | 5973 | return status; |
|
| 5974 | /** |
5974 | } |
| 5975 | * @} |
5975 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 5976 | */ |
5976 | |
| 5977 | 5977 | /** |
|
| 5978 | /** |
5978 | * @} |
| 5979 | * @} |
5979 | */ |
| 5980 | */ |
5980 | |
| 5981 | 5981 | /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
|
| 5982 | /** @defgroup TIM_Private_Functions TIM Private Functions |
5982 | * @brief TIM Peripheral State functions |
| 5983 | * @{ |
5983 | * |
| 5984 | */ |
5984 | @verbatim |
| 5985 | 5985 | ============================================================================== |
|
| 5986 | /** |
5986 | ##### Peripheral State functions ##### |
| 5987 | * @brief TIM DMA error callback |
5987 | ============================================================================== |
| 5988 | * @param hdma pointer to DMA handle. |
5988 | [..] |
| 5989 | * @retval None |
5989 | This subsection permits to get in run-time the status of the peripheral |
| 5990 | */ |
5990 | and the data flow. |
| 5991 | void TIM_DMAError(DMA_HandleTypeDef *hdma) |
5991 | |
| 5992 | { |
5992 | @endverbatim |
| 5993 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
5993 | * @{ |
| 5994 | 5994 | */ |
|
| 5995 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
5995 | |
| 5996 | { |
5996 | /** |
| 5997 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
5997 | * @brief Return the TIM Base handle state. |
| 5998 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
5998 | * @param htim TIM Base handle |
| 5999 | } |
5999 | * @retval HAL state |
| 6000 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6000 | */ |
| 6001 | { |
6001 | HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim) |
| 6002 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6002 | { |
| 6003 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6003 | return htim->State; |
| 6004 | } |
6004 | } |
| 6005 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6005 | |
| 6006 | { |
6006 | /** |
| 6007 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6007 | * @brief Return the TIM OC handle state. |
| 6008 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6008 | * @param htim TIM Output Compare handle |
| 6009 | } |
6009 | * @retval HAL state |
| 6010 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6010 | */ |
| 6011 | { |
6011 | HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim) |
| 6012 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6012 | { |
| 6013 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6013 | return htim->State; |
| 6014 | } |
6014 | } |
| 6015 | else |
6015 | |
| 6016 | { |
6016 | /** |
| 6017 | htim->State = HAL_TIM_STATE_READY; |
6017 | * @brief Return the TIM PWM handle state. |
| 6018 | } |
6018 | * @param htim TIM handle |
| 6019 | 6019 | * @retval HAL state |
|
| 6020 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6020 | */ |
| 6021 | htim->ErrorCallback(htim); |
6021 | HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim) |
| 6022 | #else |
6022 | { |
| 6023 | HAL_TIM_ErrorCallback(htim); |
6023 | return htim->State; |
| 6024 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6024 | } |
| 6025 | 6025 | ||
| 6026 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6026 | /** |
| 6027 | } |
6027 | * @brief Return the TIM Input Capture handle state. |
| 6028 | 6028 | * @param htim TIM IC handle |
|
| 6029 | /** |
6029 | * @retval HAL state |
| 6030 | * @brief TIM DMA Delay Pulse complete callback. |
6030 | */ |
| 6031 | * @param hdma pointer to DMA handle. |
6031 | HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim) |
| 6032 | * @retval None |
6032 | { |
| 6033 | */ |
6033 | return htim->State; |
| 6034 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
6034 | } |
| 6035 | { |
6035 | |
| 6036 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6036 | /** |
| 6037 | 6037 | * @brief Return the TIM One Pulse Mode handle state. |
|
| 6038 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6038 | * @param htim TIM OPM handle |
| 6039 | { |
6039 | * @retval HAL state |
| 6040 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6040 | */ |
| 6041 | 6041 | HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim) |
|
| 6042 | if (hdma->Init.Mode == DMA_NORMAL) |
6042 | { |
| 6043 | { |
6043 | return htim->State; |
| 6044 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6044 | } |
| 6045 | } |
6045 | |
| 6046 | } |
6046 | /** |
| 6047 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6047 | * @brief Return the TIM Encoder Mode handle state. |
| 6048 | { |
6048 | * @param htim TIM Encoder Interface handle |
| 6049 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6049 | * @retval HAL state |
| 6050 | 6050 | */ |
|
| 6051 | if (hdma->Init.Mode == DMA_NORMAL) |
6051 | HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim) |
| 6052 | { |
6052 | { |
| 6053 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6053 | return htim->State; |
| 6054 | } |
6054 | } |
| 6055 | } |
6055 | |
| 6056 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6056 | /** |
| 6057 | { |
6057 | * @brief Return the TIM Encoder Mode handle state. |
| 6058 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6058 | * @param htim TIM handle |
| 6059 | 6059 | * @retval Active channel |
|
| 6060 | if (hdma->Init.Mode == DMA_NORMAL) |
6060 | */ |
| 6061 | { |
6061 | HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim) |
| 6062 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6062 | { |
| 6063 | } |
6063 | return htim->Channel; |
| 6064 | } |
6064 | } |
| 6065 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6065 | |
| 6066 | { |
6066 | /** |
| 6067 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6067 | * @brief Return actual state of the TIM channel. |
| 6068 | 6068 | * @param htim TIM handle |
|
| 6069 | if (hdma->Init.Mode == DMA_NORMAL) |
6069 | * @param Channel TIM Channel |
| 6070 | { |
6070 | * This parameter can be one of the following values: |
| 6071 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6071 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
| 6072 | } |
6072 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
| 6073 | } |
6073 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
| 6074 | else |
6074 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
| 6075 | { |
6075 | * @arg TIM_CHANNEL_5: TIM Channel 5 |
| 6076 | /* nothing to do */ |
6076 | * @arg TIM_CHANNEL_6: TIM Channel 6 |
| 6077 | } |
6077 | * @retval TIM Channel state |
| 6078 | 6078 | */ |
|
| 6079 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6079 | HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel) |
| 6080 | htim->PWM_PulseFinishedCallback(htim); |
6080 | { |
| 6081 | #else |
6081 | HAL_TIM_ChannelStateTypeDef channel_state; |
| 6082 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
6082 | |
| 6083 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6083 | /* Check the parameters */ |
| 6084 | 6084 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
|
| 6085 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6085 | |
| 6086 | } |
6086 | channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
| 6087 | 6087 | ||
| 6088 | /** |
6088 | return channel_state; |
| 6089 | * @brief TIM DMA Delay Pulse half complete callback. |
6089 | } |
| 6090 | * @param hdma pointer to DMA handle. |
6090 | |
| 6091 | * @retval None |
6091 | /** |
| 6092 | */ |
6092 | * @brief Return actual state of a DMA burst operation. |
| 6093 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
6093 | * @param htim TIM handle |
| 6094 | { |
6094 | * @retval DMA burst state |
| 6095 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6095 | */ |
| 6096 | 6096 | HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim) |
|
| 6097 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6097 | { |
| 6098 | { |
6098 | /* Check the parameters */ |
| 6099 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6099 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
| 6100 | } |
6100 | |
| 6101 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6101 | return htim->DMABurstState; |
| 6102 | { |
6102 | } |
| 6103 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6103 | |
| 6104 | } |
6104 | /** |
| 6105 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6105 | * @} |
| 6106 | { |
6106 | */ |
| 6107 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6107 | |
| 6108 | } |
6108 | /** |
| 6109 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6109 | * @} |
| 6110 | { |
6110 | */ |
| 6111 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6111 | |
| 6112 | } |
6112 | /** @defgroup TIM_Private_Functions TIM Private Functions |
| 6113 | else |
6113 | * @{ |
| 6114 | { |
6114 | */ |
| 6115 | /* nothing to do */ |
6115 | |
| 6116 | } |
6116 | /** |
| 6117 | 6117 | * @brief TIM DMA error callback |
|
| 6118 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6118 | * @param hdma pointer to DMA handle. |
| 6119 | htim->PWM_PulseFinishedHalfCpltCallback(htim); |
6119 | * @retval None |
| 6120 | #else |
6120 | */ |
| 6121 | HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
6121 | void TIM_DMAError(DMA_HandleTypeDef *hdma) |
| 6122 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6122 | { |
| 6123 | 6123 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
| 6124 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6124 | |
| 6125 | } |
6125 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| 6126 | 6126 | { |
|
| 6127 | /** |
6127 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| 6128 | * @brief TIM DMA Capture complete callback. |
6128 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 6129 | * @param hdma pointer to DMA handle. |
6129 | } |
| 6130 | * @retval None |
6130 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| 6131 | */ |
6131 | { |
| 6132 | void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
6132 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| 6133 | { |
6133 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 6134 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6134 | } |
| 6135 | 6135 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
|
| 6136 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6136 | { |
| 6137 | { |
6137 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| 6138 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6138 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| 6139 | 6139 | } |
|
| 6140 | if (hdma->Init.Mode == DMA_NORMAL) |
6140 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| 6141 | { |
6141 | { |
| 6142 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
6142 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 6143 | } |
6143 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| 6144 | } |
6144 | } |
| 6145 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6145 | else |
| 6146 | { |
6146 | { |
| 6147 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6147 | htim->State = HAL_TIM_STATE_READY; |
| 6148 | 6148 | } |
|
| 6149 | if (hdma->Init.Mode == DMA_NORMAL) |
6149 | |
| 6150 | { |
6150 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6151 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
6151 | htim->ErrorCallback(htim); |
| 6152 | } |
6152 | #else |
| 6153 | } |
6153 | HAL_TIM_ErrorCallback(htim); |
| 6154 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6154 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6155 | { |
6155 | |
| 6156 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6156 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 6157 | 6157 | } |
|
| 6158 | if (hdma->Init.Mode == DMA_NORMAL) |
6158 | |
| 6159 | { |
6159 | /** |
| 6160 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
6160 | * @brief TIM DMA Delay Pulse complete callback. |
| 6161 | } |
6161 | * @param hdma pointer to DMA handle. |
| 6162 | } |
6162 | * @retval None |
| 6163 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6163 | */ |
| 6164 | { |
6164 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
| 6165 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6165 | { |
| 6166 | 6166 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
| 6167 | if (hdma->Init.Mode == DMA_NORMAL) |
6167 | |
| 6168 | { |
6168 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| 6169 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
6169 | { |
| 6170 | } |
6170 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| 6171 | } |
6171 | |
| 6172 | else |
6172 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6173 | { |
6173 | { |
| 6174 | /* nothing to do */ |
6174 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 6175 | } |
6175 | } |
| 6176 | 6176 | } |
|
| 6177 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6177 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| 6178 | htim->IC_CaptureCallback(htim); |
6178 | { |
| 6179 | #else |
6179 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| 6180 | HAL_TIM_IC_CaptureCallback(htim); |
6180 | |
| 6181 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6181 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6182 | 6182 | { |
|
| 6183 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6183 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 6184 | } |
6184 | } |
| 6185 | 6185 | } |
|
| 6186 | /** |
6186 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| 6187 | * @brief TIM DMA Capture half complete callback. |
6187 | { |
| 6188 | * @param hdma pointer to DMA handle. |
6188 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| 6189 | * @retval None |
6189 | |
| 6190 | */ |
6190 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6191 | void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
6191 | { |
| 6192 | { |
6192 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| 6193 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6193 | } |
| 6194 | 6194 | } |
|
| 6195 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
6195 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| 6196 | { |
6196 | { |
| 6197 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
6197 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 6198 | } |
6198 | |
| 6199 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
6199 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6200 | { |
6200 | { |
| 6201 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
6201 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| 6202 | } |
6202 | } |
| 6203 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
6203 | } |
| 6204 | { |
6204 | else |
| 6205 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
6205 | { |
| 6206 | } |
6206 | /* nothing to do */ |
| 6207 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
6207 | } |
| 6208 | { |
6208 | |
| 6209 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
6209 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6210 | } |
6210 | htim->PWM_PulseFinishedCallback(htim); |
| 6211 | else |
6211 | #else |
| 6212 | { |
6212 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
| 6213 | /* nothing to do */ |
6213 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6214 | } |
6214 | |
| 6215 | 6215 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
| 6216 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6216 | } |
| 6217 | htim->IC_CaptureHalfCpltCallback(htim); |
6217 | |
| 6218 | #else |
6218 | /** |
| 6219 | HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
6219 | * @brief TIM DMA Delay Pulse half complete callback. |
| 6220 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6220 | * @param hdma pointer to DMA handle. |
| 6221 | 6221 | * @retval None |
|
| 6222 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
6222 | */ |
| 6223 | } |
6223 | static void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
| 6224 | 6224 | { |
|
| 6225 | /** |
6225 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| 6226 | * @brief TIM DMA Period Elapse complete callback. |
6226 | |
| 6227 | * @param hdma pointer to DMA handle. |
6227 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| 6228 | * @retval None |
6228 | { |
| 6229 | */ |
6229 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| 6230 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
6230 | } |
| 6231 | { |
6231 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
| 6232 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6232 | { |
| 6233 | 6233 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
|
| 6234 | if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
6234 | } |
| 6235 | { |
6235 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| 6236 | htim->State = HAL_TIM_STATE_READY; |
6236 | { |
| 6237 | } |
6237 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| 6238 | 6238 | } |
|
| 6239 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6239 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| 6240 | htim->PeriodElapsedCallback(htim); |
6240 | { |
| 6241 | #else |
6241 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 6242 | HAL_TIM_PeriodElapsedCallback(htim); |
6242 | } |
| 6243 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6243 | else |
| 6244 | } |
6244 | { |
| 6245 | 6245 | /* nothing to do */ |
|
| 6246 | /** |
6246 | } |
| 6247 | * @brief TIM DMA Period Elapse half complete callback. |
6247 | |
| 6248 | * @param hdma pointer to DMA handle. |
6248 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6249 | * @retval None |
6249 | htim->PWM_PulseFinishedHalfCpltCallback(htim); |
| 6250 | */ |
6250 | #else |
| 6251 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
6251 | HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
| 6252 | { |
6252 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6253 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6253 | |
| 6254 | 6254 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
| 6255 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6255 | } |
| 6256 | htim->PeriodElapsedHalfCpltCallback(htim); |
6256 | |
| 6257 | #else |
6257 | /** |
| 6258 | HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
6258 | * @brief TIM DMA Capture complete callback. |
| 6259 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6259 | * @param hdma pointer to DMA handle. |
| 6260 | } |
6260 | * @retval None |
| 6261 | 6261 | */ |
|
| 6262 | /** |
6262 | void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
| 6263 | * @brief TIM DMA Trigger callback. |
6263 | { |
| 6264 | * @param hdma pointer to DMA handle. |
6264 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| 6265 | * @retval None |
6265 | |
| 6266 | */ |
6266 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| 6267 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
6267 | { |
| 6268 | { |
6268 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
| 6269 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6269 | |
| 6270 | 6270 | if (hdma->Init.Mode == DMA_NORMAL) |
|
| 6271 | if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
6271 | { |
| 6272 | { |
6272 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
| 6273 | htim->State = HAL_TIM_STATE_READY; |
6273 | } |
| 6274 | } |
6274 | } |
| 6275 | 6275 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
| 6276 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6276 | { |
| 6277 | htim->TriggerCallback(htim); |
6277 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| 6278 | #else |
6278 | |
| 6279 | HAL_TIM_TriggerCallback(htim); |
6279 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6280 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6280 | { |
| 6281 | } |
6281 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
| 6282 | 6282 | } |
|
| 6283 | /** |
6283 | } |
| 6284 | * @brief TIM DMA Trigger half complete callback. |
6284 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| 6285 | * @param hdma pointer to DMA handle. |
6285 | { |
| 6286 | * @retval None |
6286 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
| 6287 | */ |
6287 | |
| 6288 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
6288 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6289 | { |
6289 | { |
| 6290 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
6290 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
| 6291 | 6291 | } |
|
| 6292 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
6292 | } |
| 6293 | htim->TriggerHalfCpltCallback(htim); |
6293 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| 6294 | #else |
6294 | { |
| 6295 | HAL_TIM_TriggerHalfCpltCallback(htim); |
6295 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 6296 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
6296 | |
| 6297 | } |
6297 | if (hdma->Init.Mode == DMA_NORMAL) |
| 6298 | 6298 | { |
|
| 6299 | /** |
6299 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
| 6300 | * @brief Time Base configuration |
6300 | } |
| 6301 | * @param TIMx TIM peripheral |
6301 | } |
| 6302 | * @param Structure TIM Base configuration structure |
6302 | else |
| 6303 | * @retval None |
6303 | { |
| 6304 | */ |
6304 | /* nothing to do */ |
| 6305 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) |
6305 | } |
| 6306 | { |
6306 | |
| 6307 | uint32_t tmpcr1; |
6307 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6308 | tmpcr1 = TIMx->CR1; |
6308 | htim->IC_CaptureCallback(htim); |
| 6309 | 6309 | #else |
|
| 6310 | /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
6310 | HAL_TIM_IC_CaptureCallback(htim); |
| 6311 | if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
6311 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6312 | { |
6312 | |
| 6313 | /* Select the Counter Mode */ |
6313 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
| 6314 | tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
6314 | } |
| 6315 | tmpcr1 |= Structure->CounterMode; |
6315 | |
| 6316 | } |
6316 | /** |
| 6317 | 6317 | * @brief TIM DMA Capture half complete callback. |
|
| 6318 | if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
6318 | * @param hdma pointer to DMA handle. |
| 6319 | { |
6319 | * @retval None |
| 6320 | /* Set the clock division */ |
6320 | */ |
| 6321 | tmpcr1 &= ~TIM_CR1_CKD; |
6321 | void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
| 6322 | tmpcr1 |= (uint32_t)Structure->ClockDivision; |
6322 | { |
| 6323 | } |
6323 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| 6324 | 6324 | ||
| 6325 | /* Set the auto-reload preload */ |
6325 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
| 6326 | MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
6326 | { |
| 6327 | 6327 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
|
| 6328 | TIMx->CR1 = tmpcr1; |
6328 | } |
| 6329 | 6329 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
|
| 6330 | /* Set the Autoreload value */ |
6330 | { |
| 6331 | TIMx->ARR = (uint32_t)Structure->Period ; |
6331 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
| 6332 | 6332 | } |
|
| 6333 | /* Set the Prescaler value */ |
6333 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
| 6334 | TIMx->PSC = Structure->Prescaler; |
6334 | { |
| 6335 | 6335 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
|
| 6336 | /* Generate an update event to reload the Prescaler |
6336 | } |
| 6337 | and the repetition counter (only for advanced timer) value immediately */ |
6337 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
| 6338 | TIMx->EGR = TIM_EGR_UG; |
6338 | { |
| 6339 | } |
6339 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
| 6340 | 6340 | } |
|
| 6341 | /** |
6341 | else |
| 6342 | * @brief Timer Output Compare 1 configuration |
6342 | { |
| 6343 | * @param TIMx to select the TIM peripheral |
6343 | /* nothing to do */ |
| 6344 | * @param OC_Config The output configuration structure |
6344 | } |
| 6345 | * @retval None |
6345 | |
| 6346 | */ |
6346 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6347 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6347 | htim->IC_CaptureHalfCpltCallback(htim); |
| 6348 | { |
6348 | #else |
| 6349 | uint32_t tmpccmrx; |
6349 | HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
| 6350 | uint32_t tmpccer; |
6350 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6351 | uint32_t tmpcr2; |
6351 | |
| 6352 | 6352 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
|
| 6353 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6353 | } |
| 6354 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6354 | |
| 6355 | 6355 | /** |
|
| 6356 | /* Get the TIMx CCER register value */ |
6356 | * @brief TIM DMA Period Elapse complete callback. |
| 6357 | tmpccer = TIMx->CCER; |
6357 | * @param hdma pointer to DMA handle. |
| 6358 | /* Get the TIMx CR2 register value */ |
6358 | * @retval None |
| 6359 | tmpcr2 = TIMx->CR2; |
6359 | */ |
| 6360 | 6360 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
|
| 6361 | /* Get the TIMx CCMR1 register value */ |
6361 | { |
| 6362 | tmpccmrx = TIMx->CCMR1; |
6362 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| 6363 | 6363 | ||
| 6364 | /* Reset the Output Compare Mode Bits */ |
6364 | if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
| 6365 | tmpccmrx &= ~TIM_CCMR1_OC1M; |
6365 | { |
| 6366 | tmpccmrx &= ~TIM_CCMR1_CC1S; |
6366 | htim->State = HAL_TIM_STATE_READY; |
| 6367 | /* Select the Output Compare Mode */ |
6367 | } |
| 6368 | tmpccmrx |= OC_Config->OCMode; |
6368 | |
| 6369 | 6369 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 6370 | /* Reset the Output Polarity level */ |
6370 | htim->PeriodElapsedCallback(htim); |
| 6371 | tmpccer &= ~TIM_CCER_CC1P; |
6371 | #else |
| 6372 | /* Set the Output Compare Polarity */ |
6372 | HAL_TIM_PeriodElapsedCallback(htim); |
| 6373 | tmpccer |= OC_Config->OCPolarity; |
6373 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6374 | 6374 | } |
|
| 6375 | /* Write to TIMx CR2 */ |
6375 | |
| 6376 | TIMx->CR2 = tmpcr2; |
6376 | /** |
| 6377 | 6377 | * @brief TIM DMA Period Elapse half complete callback. |
|
| 6378 | /* Write to TIMx CCMR1 */ |
6378 | * @param hdma pointer to DMA handle. |
| 6379 | TIMx->CCMR1 = tmpccmrx; |
6379 | * @retval None |
| 6380 | 6380 | */ |
|
| 6381 | /* Set the Capture Compare Register value */ |
6381 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
| 6382 | TIMx->CCR1 = OC_Config->Pulse; |
6382 | { |
| 6383 | 6383 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
| 6384 | /* Write to TIMx CCER */ |
6384 | |
| 6385 | TIMx->CCER = tmpccer; |
6385 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6386 | } |
6386 | htim->PeriodElapsedHalfCpltCallback(htim); |
| 6387 | 6387 | #else |
|
| 6388 | /** |
6388 | HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
| 6389 | * @brief Timer Output Compare 2 configuration |
6389 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6390 | * @param TIMx to select the TIM peripheral |
6390 | } |
| 6391 | * @param OC_Config The output configuration structure |
6391 | |
| 6392 | * @retval None |
6392 | /** |
| 6393 | */ |
6393 | * @brief TIM DMA Trigger callback. |
| 6394 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6394 | * @param hdma pointer to DMA handle. |
| 6395 | { |
6395 | * @retval None |
| 6396 | uint32_t tmpccmrx; |
6396 | */ |
| 6397 | uint32_t tmpccer; |
6397 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
| 6398 | uint32_t tmpcr2; |
6398 | { |
| 6399 | 6399 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
| 6400 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6400 | |
| 6401 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6401 | if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
| 6402 | 6402 | { |
|
| 6403 | /* Get the TIMx CCER register value */ |
6403 | htim->State = HAL_TIM_STATE_READY; |
| 6404 | tmpccer = TIMx->CCER; |
6404 | } |
| 6405 | /* Get the TIMx CR2 register value */ |
6405 | |
| 6406 | tmpcr2 = TIMx->CR2; |
6406 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
| 6407 | 6407 | htim->TriggerCallback(htim); |
|
| 6408 | /* Get the TIMx CCMR1 register value */ |
6408 | #else |
| 6409 | tmpccmrx = TIMx->CCMR1; |
6409 | HAL_TIM_TriggerCallback(htim); |
| 6410 | 6410 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| 6411 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6411 | } |
| 6412 | tmpccmrx &= ~TIM_CCMR1_OC2M; |
6412 | |
| 6413 | tmpccmrx &= ~TIM_CCMR1_CC2S; |
6413 | /** |
| 6414 | 6414 | * @brief TIM DMA Trigger half complete callback. |
|
| 6415 | /* Select the Output Compare Mode */ |
6415 | * @param hdma pointer to DMA handle. |
| 6416 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6416 | * @retval None |
| 6417 | 6417 | */ |
|
| 6418 | /* Reset the Output Polarity level */ |
6418 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
| 6419 | tmpccer &= ~TIM_CCER_CC2P; |
6419 | { |
| 6420 | /* Set the Output Compare Polarity */ |
6420 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| 6421 | tmpccer |= (OC_Config->OCPolarity << 4U); |
6421 | |
| 6422 | 6422 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| 6423 | /* Write to TIMx CR2 */ |
6423 | htim->TriggerHalfCpltCallback(htim); |
| 6424 | TIMx->CR2 = tmpcr2; |
6424 | #else |
| 6425 | 6425 | HAL_TIM_TriggerHalfCpltCallback(htim); |
|
| 6426 | /* Write to TIMx CCMR1 */ |
6426 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
| 6427 | TIMx->CCMR1 = tmpccmrx; |
6427 | } |
| 6428 | 6428 | ||
| 6429 | /* Set the Capture Compare Register value */ |
6429 | /** |
| 6430 | TIMx->CCR2 = OC_Config->Pulse; |
6430 | * @brief Time Base configuration |
| 6431 | 6431 | * @param TIMx TIM peripheral |
|
| 6432 | /* Write to TIMx CCER */ |
6432 | * @param Structure TIM Base configuration structure |
| 6433 | TIMx->CCER = tmpccer; |
6433 | * @retval None |
| 6434 | } |
6434 | */ |
| 6435 | 6435 | static void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure) |
|
| 6436 | /** |
6436 | { |
| 6437 | * @brief Timer Output Compare 3 configuration |
6437 | uint32_t tmpcr1; |
| 6438 | * @param TIMx to select the TIM peripheral |
6438 | tmpcr1 = TIMx->CR1; |
| 6439 | * @param OC_Config The output configuration structure |
6439 | |
| 6440 | * @retval None |
6440 | /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
| 6441 | */ |
6441 | if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
| 6442 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6442 | { |
| 6443 | { |
6443 | /* Select the Counter Mode */ |
| 6444 | uint32_t tmpccmrx; |
6444 | tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
| 6445 | uint32_t tmpccer; |
6445 | tmpcr1 |= Structure->CounterMode; |
| 6446 | uint32_t tmpcr2; |
6446 | } |
| 6447 | 6447 | ||
| 6448 | /* Disable the Channel 3: Reset the CC2E Bit */ |
6448 | if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
| 6449 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6449 | { |
| 6450 | 6450 | /* Set the clock division */ |
|
| 6451 | /* Get the TIMx CCER register value */ |
6451 | tmpcr1 &= ~TIM_CR1_CKD; |
| 6452 | tmpccer = TIMx->CCER; |
6452 | tmpcr1 |= (uint32_t)Structure->ClockDivision; |
| 6453 | /* Get the TIMx CR2 register value */ |
6453 | } |
| 6454 | tmpcr2 = TIMx->CR2; |
6454 | |
| 6455 | 6455 | /* Set the auto-reload preload */ |
|
| 6456 | /* Get the TIMx CCMR2 register value */ |
6456 | MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
| 6457 | tmpccmrx = TIMx->CCMR2; |
6457 | |
| 6458 | 6458 | TIMx->CR1 = tmpcr1; |
|
| 6459 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6459 | |
| 6460 | tmpccmrx &= ~TIM_CCMR2_OC3M; |
6460 | /* Set the Autoreload value */ |
| 6461 | tmpccmrx &= ~TIM_CCMR2_CC3S; |
6461 | TIMx->ARR = (uint32_t)Structure->Period ; |
| 6462 | /* Select the Output Compare Mode */ |
6462 | |
| 6463 | tmpccmrx |= OC_Config->OCMode; |
6463 | /* Set the Prescaler value */ |
| 6464 | 6464 | TIMx->PSC = Structure->Prescaler; |
|
| 6465 | /* Reset the Output Polarity level */ |
6465 | |
| 6466 | tmpccer &= ~TIM_CCER_CC3P; |
6466 | /* Generate an update event to reload the Prescaler |
| 6467 | /* Set the Output Compare Polarity */ |
6467 | and the repetition counter (only for advanced timer) value immediately */ |
| 6468 | tmpccer |= (OC_Config->OCPolarity << 8U); |
6468 | TIMx->EGR = TIM_EGR_UG; |
| 6469 | 6469 | } |
|
| 6470 | /* Write to TIMx CR2 */ |
6470 | |
| 6471 | TIMx->CR2 = tmpcr2; |
6471 | /** |
| 6472 | 6472 | * @brief Timer Output Compare 1 configuration |
|
| 6473 | /* Write to TIMx CCMR2 */ |
6473 | * @param TIMx to select the TIM peripheral |
| 6474 | TIMx->CCMR2 = tmpccmrx; |
6474 | * @param OC_Config The output configuration structure |
| 6475 | 6475 | * @retval None |
|
| 6476 | /* Set the Capture Compare Register value */ |
6476 | */ |
| 6477 | TIMx->CCR3 = OC_Config->Pulse; |
6477 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
| 6478 | 6478 | { |
|
| 6479 | /* Write to TIMx CCER */ |
6479 | uint32_t tmpccmrx; |
| 6480 | TIMx->CCER = tmpccer; |
6480 | uint32_t tmpccer; |
| 6481 | } |
6481 | uint32_t tmpcr2; |
| 6482 | 6482 | ||
| 6483 | /** |
6483 | /* Get the TIMx CCER register value */ |
| 6484 | * @brief Timer Output Compare 4 configuration |
6484 | tmpccer = TIMx->CCER; |
| 6485 | * @param TIMx to select the TIM peripheral |
6485 | |
| 6486 | * @param OC_Config The output configuration structure |
6486 | /* Disable the Channel 1: Reset the CC1E Bit */ |
| 6487 | * @retval None |
6487 | TIMx->CCER &= ~TIM_CCER_CC1E; |
| 6488 | */ |
6488 | |
| 6489 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
6489 | /* Get the TIMx CR2 register value */ |
| 6490 | { |
6490 | tmpcr2 = TIMx->CR2; |
| 6491 | uint32_t tmpccmrx; |
6491 | |
| 6492 | uint32_t tmpccer; |
6492 | /* Get the TIMx CCMR1 register value */ |
| 6493 | uint32_t tmpcr2; |
6493 | tmpccmrx = TIMx->CCMR1; |
| 6494 | 6494 | ||
| 6495 | /* Disable the Channel 4: Reset the CC4E Bit */ |
6495 | /* Reset the Output Compare Mode Bits */ |
| 6496 | TIMx->CCER &= ~TIM_CCER_CC4E; |
6496 | tmpccmrx &= ~TIM_CCMR1_OC1M; |
| 6497 | 6497 | tmpccmrx &= ~TIM_CCMR1_CC1S; |
|
| 6498 | /* Get the TIMx CCER register value */ |
6498 | /* Select the Output Compare Mode */ |
| 6499 | tmpccer = TIMx->CCER; |
6499 | tmpccmrx |= OC_Config->OCMode; |
| 6500 | /* Get the TIMx CR2 register value */ |
6500 | |
| 6501 | tmpcr2 = TIMx->CR2; |
6501 | /* Reset the Output Polarity level */ |
| 6502 | 6502 | tmpccer &= ~TIM_CCER_CC1P; |
|
| 6503 | /* Get the TIMx CCMR2 register value */ |
6503 | /* Set the Output Compare Polarity */ |
| 6504 | tmpccmrx = TIMx->CCMR2; |
6504 | tmpccer |= OC_Config->OCPolarity; |
| 6505 | 6505 | ||
| 6506 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
6506 | /* Write to TIMx CR2 */ |
| 6507 | tmpccmrx &= ~TIM_CCMR2_OC4M; |
6507 | TIMx->CR2 = tmpcr2; |
| 6508 | tmpccmrx &= ~TIM_CCMR2_CC4S; |
6508 | |
| 6509 | 6509 | /* Write to TIMx CCMR1 */ |
|
| 6510 | /* Select the Output Compare Mode */ |
6510 | TIMx->CCMR1 = tmpccmrx; |
| 6511 | tmpccmrx |= (OC_Config->OCMode << 8U); |
6511 | |
| 6512 | 6512 | /* Set the Capture Compare Register value */ |
|
| 6513 | /* Reset the Output Polarity level */ |
6513 | TIMx->CCR1 = OC_Config->Pulse; |
| 6514 | tmpccer &= ~TIM_CCER_CC4P; |
6514 | |
| 6515 | /* Set the Output Compare Polarity */ |
6515 | /* Write to TIMx CCER */ |
| 6516 | tmpccer |= (OC_Config->OCPolarity << 12U); |
6516 | TIMx->CCER = tmpccer; |
| 6517 | 6517 | } |
|
| 6518 | /* Write to TIMx CR2 */ |
6518 | |
| 6519 | TIMx->CR2 = tmpcr2; |
6519 | /** |
| 6520 | 6520 | * @brief Timer Output Compare 2 configuration |
|
| 6521 | /* Write to TIMx CCMR2 */ |
6521 | * @param TIMx to select the TIM peripheral |
| 6522 | TIMx->CCMR2 = tmpccmrx; |
6522 | * @param OC_Config The output configuration structure |
| 6523 | 6523 | * @retval None |
|
| 6524 | /* Set the Capture Compare Register value */ |
6524 | */ |
| 6525 | TIMx->CCR4 = OC_Config->Pulse; |
6525 | static void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
| 6526 | 6526 | { |
|
| 6527 | /* Write to TIMx CCER */ |
6527 | uint32_t tmpccmrx; |
| 6528 | TIMx->CCER = tmpccer; |
6528 | uint32_t tmpccer; |
| 6529 | } |
6529 | uint32_t tmpcr2; |
| 6530 | 6530 | ||
| 6531 | /** |
6531 | /* Get the TIMx CCER register value */ |
| 6532 | * @brief Slave Timer configuration function |
6532 | tmpccer = TIMx->CCER; |
| 6533 | * @param htim TIM handle |
6533 | |
| 6534 | * @param sSlaveConfig Slave timer configuration |
6534 | /* Disable the Channel 2: Reset the CC2E Bit */ |
| 6535 | * @retval None |
6535 | TIMx->CCER &= ~TIM_CCER_CC2E; |
| 6536 | */ |
6536 | |
| 6537 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
6537 | /* Get the TIMx CR2 register value */ |
| 6538 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
6538 | tmpcr2 = TIMx->CR2; |
| 6539 | { |
6539 | |
| 6540 | uint32_t tmpsmcr; |
6540 | /* Get the TIMx CCMR1 register value */ |
| 6541 | uint32_t tmpccmr1; |
6541 | tmpccmrx = TIMx->CCMR1; |
| 6542 | uint32_t tmpccer; |
6542 | |
| 6543 | 6543 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
|
| 6544 | /* Get the TIMx SMCR register value */ |
6544 | tmpccmrx &= ~TIM_CCMR1_OC2M; |
| 6545 | tmpsmcr = htim->Instance->SMCR; |
6545 | tmpccmrx &= ~TIM_CCMR1_CC2S; |
| 6546 | 6546 | ||
| 6547 | /* Reset the Trigger Selection Bits */ |
6547 | /* Select the Output Compare Mode */ |
| 6548 | tmpsmcr &= ~TIM_SMCR_TS; |
6548 | tmpccmrx |= (OC_Config->OCMode << 8U); |
| 6549 | /* Set the Input Trigger source */ |
6549 | |
| 6550 | tmpsmcr |= sSlaveConfig->InputTrigger; |
6550 | /* Reset the Output Polarity level */ |
| 6551 | 6551 | tmpccer &= ~TIM_CCER_CC2P; |
|
| 6552 | /* Reset the slave mode Bits */ |
6552 | /* Set the Output Compare Polarity */ |
| 6553 | tmpsmcr &= ~TIM_SMCR_SMS; |
6553 | tmpccer |= (OC_Config->OCPolarity << 4U); |
| 6554 | /* Set the slave mode */ |
6554 | |
| 6555 | tmpsmcr |= sSlaveConfig->SlaveMode; |
6555 | /* Write to TIMx CR2 */ |
| 6556 | 6556 | TIMx->CR2 = tmpcr2; |
|
| 6557 | /* Write to TIMx SMCR */ |
6557 | |
| 6558 | htim->Instance->SMCR = tmpsmcr; |
6558 | /* Write to TIMx CCMR1 */ |
| 6559 | 6559 | TIMx->CCMR1 = tmpccmrx; |
|
| 6560 | /* Configure the trigger prescaler, filter, and polarity */ |
6560 | |
| 6561 | switch (sSlaveConfig->InputTrigger) |
6561 | /* Set the Capture Compare Register value */ |
| 6562 | { |
6562 | TIMx->CCR2 = OC_Config->Pulse; |
| 6563 | case TIM_TS_ETRF: |
6563 | |
| 6564 | { |
6564 | /* Write to TIMx CCER */ |
| 6565 | /* Check the parameters */ |
6565 | TIMx->CCER = tmpccer; |
| 6566 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
6566 | } |
| 6567 | assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
6567 | |
| 6568 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6568 | /** |
| 6569 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6569 | * @brief Timer Output Compare 3 configuration |
| 6570 | /* Configure the ETR Trigger source */ |
6570 | * @param TIMx to select the TIM peripheral |
| 6571 | TIM_ETR_SetConfig(htim->Instance, |
6571 | * @param OC_Config The output configuration structure |
| 6572 | sSlaveConfig->TriggerPrescaler, |
6572 | * @retval None |
| 6573 | sSlaveConfig->TriggerPolarity, |
6573 | */ |
| 6574 | sSlaveConfig->TriggerFilter); |
6574 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
| 6575 | break; |
6575 | { |
| 6576 | } |
6576 | uint32_t tmpccmrx; |
| 6577 | 6577 | uint32_t tmpccer; |
|
| 6578 | case TIM_TS_TI1F_ED: |
6578 | uint32_t tmpcr2; |
| 6579 | { |
6579 | |
| 6580 | /* Check the parameters */ |
6580 | /* Get the TIMx CCER register value */ |
| 6581 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6581 | tmpccer = TIMx->CCER; |
| 6582 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6582 | |
| 6583 | 6583 | /* Disable the Channel 3: Reset the CC2E Bit */ |
|
| 6584 | if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
6584 | TIMx->CCER &= ~TIM_CCER_CC3E; |
| 6585 | { |
6585 | |
| 6586 | return HAL_ERROR; |
6586 | /* Get the TIMx CR2 register value */ |
| 6587 | } |
6587 | tmpcr2 = TIMx->CR2; |
| 6588 | 6588 | ||
| 6589 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6589 | /* Get the TIMx CCMR2 register value */ |
| 6590 | tmpccer = htim->Instance->CCER; |
6590 | tmpccmrx = TIMx->CCMR2; |
| 6591 | htim->Instance->CCER &= ~TIM_CCER_CC1E; |
6591 | |
| 6592 | tmpccmr1 = htim->Instance->CCMR1; |
6592 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
| 6593 | 6593 | tmpccmrx &= ~TIM_CCMR2_OC3M; |
|
| 6594 | /* Set the filter */ |
6594 | tmpccmrx &= ~TIM_CCMR2_CC3S; |
| 6595 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6595 | /* Select the Output Compare Mode */ |
| 6596 | tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
6596 | tmpccmrx |= OC_Config->OCMode; |
| 6597 | 6597 | ||
| 6598 | /* Write to TIMx CCMR1 and CCER registers */ |
6598 | /* Reset the Output Polarity level */ |
| 6599 | htim->Instance->CCMR1 = tmpccmr1; |
6599 | tmpccer &= ~TIM_CCER_CC3P; |
| 6600 | htim->Instance->CCER = tmpccer; |
6600 | /* Set the Output Compare Polarity */ |
| 6601 | break; |
6601 | tmpccer |= (OC_Config->OCPolarity << 8U); |
| 6602 | } |
6602 | |
| 6603 | 6603 | /* Write to TIMx CR2 */ |
|
| 6604 | case TIM_TS_TI1FP1: |
6604 | TIMx->CR2 = tmpcr2; |
| 6605 | { |
6605 | |
| 6606 | /* Check the parameters */ |
6606 | /* Write to TIMx CCMR2 */ |
| 6607 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
6607 | TIMx->CCMR2 = tmpccmrx; |
| 6608 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6608 | |
| 6609 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6609 | /* Set the Capture Compare Register value */ |
| 6610 | 6610 | TIMx->CCR3 = OC_Config->Pulse; |
|
| 6611 | /* Configure TI1 Filter and Polarity */ |
6611 | |
| 6612 | TIM_TI1_ConfigInputStage(htim->Instance, |
6612 | /* Write to TIMx CCER */ |
| 6613 | sSlaveConfig->TriggerPolarity, |
6613 | TIMx->CCER = tmpccer; |
| 6614 | sSlaveConfig->TriggerFilter); |
6614 | } |
| 6615 | break; |
6615 | |
| 6616 | } |
6616 | /** |
| 6617 | 6617 | * @brief Timer Output Compare 4 configuration |
|
| 6618 | case TIM_TS_TI2FP2: |
6618 | * @param TIMx to select the TIM peripheral |
| 6619 | { |
6619 | * @param OC_Config The output configuration structure |
| 6620 | /* Check the parameters */ |
6620 | * @retval None |
| 6621 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6621 | */ |
| 6622 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
6622 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config) |
| 6623 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
6623 | { |
| 6624 | 6624 | uint32_t tmpccmrx; |
|
| 6625 | /* Configure TI2 Filter and Polarity */ |
6625 | uint32_t tmpccer; |
| 6626 | TIM_TI2_ConfigInputStage(htim->Instance, |
6626 | uint32_t tmpcr2; |
| 6627 | sSlaveConfig->TriggerPolarity, |
6627 | |
| 6628 | sSlaveConfig->TriggerFilter); |
6628 | /* Get the TIMx CCER register value */ |
| 6629 | break; |
6629 | tmpccer = TIMx->CCER; |
| 6630 | } |
6630 | |
| 6631 | 6631 | /* Disable the Channel 4: Reset the CC4E Bit */ |
|
| 6632 | case TIM_TS_ITR0: |
6632 | TIMx->CCER &= ~TIM_CCER_CC4E; |
| 6633 | case TIM_TS_ITR1: |
6633 | |
| 6634 | case TIM_TS_ITR2: |
6634 | /* Get the TIMx CR2 register value */ |
| 6635 | case TIM_TS_ITR3: |
6635 | tmpcr2 = TIMx->CR2; |
| 6636 | { |
6636 | |
| 6637 | /* Check the parameter */ |
6637 | /* Get the TIMx CCMR2 register value */ |
| 6638 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
6638 | tmpccmrx = TIMx->CCMR2; |
| 6639 | break; |
6639 | |
| 6640 | } |
6640 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
| 6641 | 6641 | tmpccmrx &= ~TIM_CCMR2_OC4M; |
|
| 6642 | default: |
6642 | tmpccmrx &= ~TIM_CCMR2_CC4S; |
| 6643 | break; |
6643 | |
| 6644 | } |
6644 | /* Select the Output Compare Mode */ |
| 6645 | return HAL_OK; |
6645 | tmpccmrx |= (OC_Config->OCMode << 8U); |
| 6646 | } |
6646 | |
| 6647 | 6647 | /* Reset the Output Polarity level */ |
|
| 6648 | /** |
6648 | tmpccer &= ~TIM_CCER_CC4P; |
| 6649 | * @brief Configure the TI1 as Input. |
6649 | /* Set the Output Compare Polarity */ |
| 6650 | * @param TIMx to select the TIM peripheral. |
6650 | tmpccer |= (OC_Config->OCPolarity << 12U); |
| 6651 | * @param TIM_ICPolarity The Input Polarity. |
6651 | |
| 6652 | * This parameter can be one of the following values: |
6652 | /* Write to TIMx CR2 */ |
| 6653 | * @arg TIM_ICPOLARITY_RISING |
6653 | TIMx->CR2 = tmpcr2; |
| 6654 | * @arg TIM_ICPOLARITY_FALLING |
6654 | |
| 6655 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6655 | /* Write to TIMx CCMR2 */ |
| 6656 | * @param TIM_ICSelection specifies the input to be used. |
6656 | TIMx->CCMR2 = tmpccmrx; |
| 6657 | * This parameter can be one of the following values: |
6657 | |
| 6658 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
6658 | /* Set the Capture Compare Register value */ |
| 6659 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
6659 | TIMx->CCR4 = OC_Config->Pulse; |
| 6660 | * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
6660 | |
| 6661 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6661 | /* Write to TIMx CCER */ |
| 6662 | * This parameter must be a value between 0x00 and 0x0F. |
6662 | TIMx->CCER = tmpccer; |
| 6663 | * @retval None |
6663 | } |
| 6664 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
6664 | |
| 6665 | * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
6665 | /** |
| 6666 | * protected against un-initialized filter and polarity values. |
6666 | * @brief Slave Timer configuration function |
| 6667 | */ |
6667 | * @param htim TIM handle |
| 6668 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6668 | * @param sSlaveConfig Slave timer configuration |
| 6669 | uint32_t TIM_ICFilter) |
6669 | * @retval None |
| 6670 | { |
6670 | */ |
| 6671 | uint32_t tmpccmr1; |
6671 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
| 6672 | uint32_t tmpccer; |
6672 | const TIM_SlaveConfigTypeDef *sSlaveConfig) |
| 6673 | 6673 | { |
|
| 6674 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6674 | HAL_StatusTypeDef status = HAL_OK; |
| 6675 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6675 | uint32_t tmpsmcr; |
| 6676 | tmpccmr1 = TIMx->CCMR1; |
6676 | uint32_t tmpccmr1; |
| 6677 | tmpccer = TIMx->CCER; |
6677 | uint32_t tmpccer; |
| 6678 | 6678 | ||
| 6679 | /* Select the Input */ |
6679 | /* Get the TIMx SMCR register value */ |
| 6680 | if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
6680 | tmpsmcr = htim->Instance->SMCR; |
| 6681 | { |
6681 | |
| 6682 | tmpccmr1 &= ~TIM_CCMR1_CC1S; |
6682 | /* Reset the Trigger Selection Bits */ |
| 6683 | tmpccmr1 |= TIM_ICSelection; |
6683 | tmpsmcr &= ~TIM_SMCR_TS; |
| 6684 | } |
6684 | /* Set the Input Trigger source */ |
| 6685 | else |
6685 | tmpsmcr |= sSlaveConfig->InputTrigger; |
| 6686 | { |
6686 | |
| 6687 | tmpccmr1 |= TIM_CCMR1_CC1S_0; |
6687 | /* Reset the slave mode Bits */ |
| 6688 | } |
6688 | tmpsmcr &= ~TIM_SMCR_SMS; |
| 6689 | 6689 | /* Set the slave mode */ |
|
| 6690 | /* Set the filter */ |
6690 | tmpsmcr |= sSlaveConfig->SlaveMode; |
| 6691 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6691 | |
| 6692 | tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
6692 | /* Write to TIMx SMCR */ |
| 6693 | 6693 | htim->Instance->SMCR = tmpsmcr; |
|
| 6694 | /* Select the Polarity and set the CC1E Bit */ |
6694 | |
| 6695 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6695 | /* Configure the trigger prescaler, filter, and polarity */ |
| 6696 | tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
6696 | switch (sSlaveConfig->InputTrigger) |
| 6697 | 6697 | { |
|
| 6698 | /* Write to TIMx CCMR1 and CCER registers */ |
6698 | case TIM_TS_ETRF: |
| 6699 | TIMx->CCMR1 = tmpccmr1; |
6699 | { |
| 6700 | TIMx->CCER = tmpccer; |
6700 | /* Check the parameters */ |
| 6701 | } |
6701 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
| 6702 | 6702 | assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
|
| 6703 | /** |
6703 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| 6704 | * @brief Configure the Polarity and Filter for TI1. |
6704 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| 6705 | * @param TIMx to select the TIM peripheral. |
6705 | /* Configure the ETR Trigger source */ |
| 6706 | * @param TIM_ICPolarity The Input Polarity. |
6706 | TIM_ETR_SetConfig(htim->Instance, |
| 6707 | * This parameter can be one of the following values: |
6707 | sSlaveConfig->TriggerPrescaler, |
| 6708 | * @arg TIM_ICPOLARITY_RISING |
6708 | sSlaveConfig->TriggerPolarity, |
| 6709 | * @arg TIM_ICPOLARITY_FALLING |
6709 | sSlaveConfig->TriggerFilter); |
| 6710 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6710 | break; |
| 6711 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6711 | } |
| 6712 | * This parameter must be a value between 0x00 and 0x0F. |
6712 | |
| 6713 | * @retval None |
6713 | case TIM_TS_TI1F_ED: |
| 6714 | */ |
6714 | { |
| 6715 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
6715 | /* Check the parameters */ |
| 6716 | { |
6716 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 6717 | uint32_t tmpccmr1; |
6717 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| 6718 | uint32_t tmpccer; |
6718 | |
| 6719 | 6719 | if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
|
| 6720 | /* Disable the Channel 1: Reset the CC1E Bit */ |
6720 | { |
| 6721 | tmpccer = TIMx->CCER; |
6721 | return HAL_ERROR; |
| 6722 | TIMx->CCER &= ~TIM_CCER_CC1E; |
6722 | } |
| 6723 | tmpccmr1 = TIMx->CCMR1; |
6723 | |
| 6724 | 6724 | /* Disable the Channel 1: Reset the CC1E Bit */ |
|
| 6725 | /* Set the filter */ |
6725 | tmpccer = htim->Instance->CCER; |
| 6726 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
6726 | htim->Instance->CCER &= ~TIM_CCER_CC1E; |
| 6727 | tmpccmr1 |= (TIM_ICFilter << 4U); |
6727 | tmpccmr1 = htim->Instance->CCMR1; |
| 6728 | 6728 | ||
| 6729 | /* Select the Polarity and set the CC1E Bit */ |
6729 | /* Set the filter */ |
| 6730 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
6730 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
| 6731 | tmpccer |= TIM_ICPolarity; |
6731 | tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
| 6732 | 6732 | ||
| 6733 | /* Write to TIMx CCMR1 and CCER registers */ |
6733 | /* Write to TIMx CCMR1 and CCER registers */ |
| 6734 | TIMx->CCMR1 = tmpccmr1; |
6734 | htim->Instance->CCMR1 = tmpccmr1; |
| 6735 | TIMx->CCER = tmpccer; |
6735 | htim->Instance->CCER = tmpccer; |
| 6736 | } |
6736 | break; |
| 6737 | 6737 | } |
|
| 6738 | /** |
6738 | |
| 6739 | * @brief Configure the TI2 as Input. |
6739 | case TIM_TS_TI1FP1: |
| 6740 | * @param TIMx to select the TIM peripheral |
6740 | { |
| 6741 | * @param TIM_ICPolarity The Input Polarity. |
6741 | /* Check the parameters */ |
| 6742 | * This parameter can be one of the following values: |
6742 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
| 6743 | * @arg TIM_ICPOLARITY_RISING |
6743 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| 6744 | * @arg TIM_ICPOLARITY_FALLING |
6744 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| 6745 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6745 | |
| 6746 | * @param TIM_ICSelection specifies the input to be used. |
6746 | /* Configure TI1 Filter and Polarity */ |
| 6747 | * This parameter can be one of the following values: |
6747 | TIM_TI1_ConfigInputStage(htim->Instance, |
| 6748 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
6748 | sSlaveConfig->TriggerPolarity, |
| 6749 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
6749 | sSlaveConfig->TriggerFilter); |
| 6750 | * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
6750 | break; |
| 6751 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6751 | } |
| 6752 | * This parameter must be a value between 0x00 and 0x0F. |
6752 | |
| 6753 | * @retval None |
6753 | case TIM_TS_TI2FP2: |
| 6754 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
6754 | { |
| 6755 | * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
6755 | /* Check the parameters */ |
| 6756 | * protected against un-initialized filter and polarity values. |
6756 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 6757 | */ |
6757 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
| 6758 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6758 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
| 6759 | uint32_t TIM_ICFilter) |
6759 | |
| 6760 | { |
6760 | /* Configure TI2 Filter and Polarity */ |
| 6761 | uint32_t tmpccmr1; |
6761 | TIM_TI2_ConfigInputStage(htim->Instance, |
| 6762 | uint32_t tmpccer; |
6762 | sSlaveConfig->TriggerPolarity, |
| 6763 | 6763 | sSlaveConfig->TriggerFilter); |
|
| 6764 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6764 | break; |
| 6765 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6765 | } |
| 6766 | tmpccmr1 = TIMx->CCMR1; |
6766 | |
| 6767 | tmpccer = TIMx->CCER; |
6767 | case TIM_TS_ITR0: |
| 6768 | 6768 | case TIM_TS_ITR1: |
|
| 6769 | /* Select the Input */ |
6769 | case TIM_TS_ITR2: |
| 6770 | tmpccmr1 &= ~TIM_CCMR1_CC2S; |
6770 | case TIM_TS_ITR3: |
| 6771 | tmpccmr1 |= (TIM_ICSelection << 8U); |
6771 | { |
| 6772 | 6772 | /* Check the parameter */ |
|
| 6773 | /* Set the filter */ |
6773 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
| 6774 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
6774 | break; |
| 6775 | tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
6775 | } |
| 6776 | 6776 | ||
| 6777 | /* Select the Polarity and set the CC2E Bit */ |
6777 | default: |
| 6778 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6778 | status = HAL_ERROR; |
| 6779 | tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
6779 | break; |
| 6780 | 6780 | } |
|
| 6781 | /* Write to TIMx CCMR1 and CCER registers */ |
6781 | |
| 6782 | TIMx->CCMR1 = tmpccmr1 ; |
6782 | return status; |
| 6783 | TIMx->CCER = tmpccer; |
6783 | } |
| 6784 | } |
6784 | |
| 6785 | 6785 | /** |
|
| 6786 | /** |
6786 | * @brief Configure the TI1 as Input. |
| 6787 | * @brief Configure the Polarity and Filter for TI2. |
6787 | * @param TIMx to select the TIM peripheral. |
| 6788 | * @param TIMx to select the TIM peripheral. |
6788 | * @param TIM_ICPolarity The Input Polarity. |
| 6789 | * @param TIM_ICPolarity The Input Polarity. |
6789 | * This parameter can be one of the following values: |
| 6790 | * This parameter can be one of the following values: |
6790 | * @arg TIM_ICPOLARITY_RISING |
| 6791 | * @arg TIM_ICPOLARITY_RISING |
6791 | * @arg TIM_ICPOLARITY_FALLING |
| 6792 | * @arg TIM_ICPOLARITY_FALLING |
6792 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 6793 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6793 | * @param TIM_ICSelection specifies the input to be used. |
| 6794 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6794 | * This parameter can be one of the following values: |
| 6795 | * This parameter must be a value between 0x00 and 0x0F. |
6795 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
| 6796 | * @retval None |
6796 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
| 6797 | */ |
6797 | * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
| 6798 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
6798 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
| 6799 | { |
6799 | * This parameter must be a value between 0x00 and 0x0F. |
| 6800 | uint32_t tmpccmr1; |
6800 | * @retval None |
| 6801 | uint32_t tmpccer; |
6801 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
| 6802 | 6802 | * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
|
| 6803 | /* Disable the Channel 2: Reset the CC2E Bit */ |
6803 | * protected against un-initialized filter and polarity values. |
| 6804 | TIMx->CCER &= ~TIM_CCER_CC2E; |
6804 | */ |
| 6805 | tmpccmr1 = TIMx->CCMR1; |
6805 | static void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 6806 | tmpccer = TIMx->CCER; |
6806 | uint32_t TIM_ICFilter) |
| 6807 | 6807 | { |
|
| 6808 | /* Set the filter */ |
6808 | uint32_t tmpccmr1; |
| 6809 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
6809 | uint32_t tmpccer; |
| 6810 | tmpccmr1 |= (TIM_ICFilter << 12U); |
6810 | |
| 6811 | 6811 | /* Disable the Channel 1: Reset the CC1E Bit */ |
|
| 6812 | /* Select the Polarity and set the CC2E Bit */ |
6812 | tmpccer = TIMx->CCER; |
| 6813 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
6813 | TIMx->CCER &= ~TIM_CCER_CC1E; |
| 6814 | tmpccer |= (TIM_ICPolarity << 4U); |
6814 | tmpccmr1 = TIMx->CCMR1; |
| 6815 | 6815 | ||
| 6816 | /* Write to TIMx CCMR1 and CCER registers */ |
6816 | /* Select the Input */ |
| 6817 | TIMx->CCMR1 = tmpccmr1 ; |
6817 | if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
| 6818 | TIMx->CCER = tmpccer; |
6818 | { |
| 6819 | } |
6819 | tmpccmr1 &= ~TIM_CCMR1_CC1S; |
| 6820 | 6820 | tmpccmr1 |= TIM_ICSelection; |
|
| 6821 | /** |
6821 | } |
| 6822 | * @brief Configure the TI3 as Input. |
6822 | else |
| 6823 | * @param TIMx to select the TIM peripheral |
6823 | { |
| 6824 | * @param TIM_ICPolarity The Input Polarity. |
6824 | tmpccmr1 |= TIM_CCMR1_CC1S_0; |
| 6825 | * This parameter can be one of the following values: |
6825 | } |
| 6826 | * @arg TIM_ICPOLARITY_RISING |
6826 | |
| 6827 | * @arg TIM_ICPOLARITY_FALLING |
6827 | /* Set the filter */ |
| 6828 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6828 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
| 6829 | * @param TIM_ICSelection specifies the input to be used. |
6829 | tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
| 6830 | * This parameter can be one of the following values: |
6830 | |
| 6831 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
6831 | /* Select the Polarity and set the CC1E Bit */ |
| 6832 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
6832 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
| 6833 | * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
6833 | tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
| 6834 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6834 | |
| 6835 | * This parameter must be a value between 0x00 and 0x0F. |
6835 | /* Write to TIMx CCMR1 and CCER registers */ |
| 6836 | * @retval None |
6836 | TIMx->CCMR1 = tmpccmr1; |
| 6837 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
6837 | TIMx->CCER = tmpccer; |
| 6838 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
6838 | } |
| 6839 | * protected against un-initialized filter and polarity values. |
6839 | |
| 6840 | */ |
6840 | /** |
| 6841 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6841 | * @brief Configure the Polarity and Filter for TI1. |
| 6842 | uint32_t TIM_ICFilter) |
6842 | * @param TIMx to select the TIM peripheral. |
| 6843 | { |
6843 | * @param TIM_ICPolarity The Input Polarity. |
| 6844 | uint32_t tmpccmr2; |
6844 | * This parameter can be one of the following values: |
| 6845 | uint32_t tmpccer; |
6845 | * @arg TIM_ICPOLARITY_RISING |
| 6846 | 6846 | * @arg TIM_ICPOLARITY_FALLING |
|
| 6847 | /* Disable the Channel 3: Reset the CC3E Bit */ |
6847 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 6848 | TIMx->CCER &= ~TIM_CCER_CC3E; |
6848 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
| 6849 | tmpccmr2 = TIMx->CCMR2; |
6849 | * This parameter must be a value between 0x00 and 0x0F. |
| 6850 | tmpccer = TIMx->CCER; |
6850 | * @retval None |
| 6851 | 6851 | */ |
|
| 6852 | /* Select the Input */ |
6852 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
| 6853 | tmpccmr2 &= ~TIM_CCMR2_CC3S; |
6853 | { |
| 6854 | tmpccmr2 |= TIM_ICSelection; |
6854 | uint32_t tmpccmr1; |
| 6855 | 6855 | uint32_t tmpccer; |
|
| 6856 | /* Set the filter */ |
6856 | |
| 6857 | tmpccmr2 &= ~TIM_CCMR2_IC3F; |
6857 | /* Disable the Channel 1: Reset the CC1E Bit */ |
| 6858 | tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
6858 | tmpccer = TIMx->CCER; |
| 6859 | 6859 | TIMx->CCER &= ~TIM_CCER_CC1E; |
|
| 6860 | /* Select the Polarity and set the CC3E Bit */ |
6860 | tmpccmr1 = TIMx->CCMR1; |
| 6861 | tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
6861 | |
| 6862 | tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
6862 | /* Set the filter */ |
| 6863 | 6863 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
|
| 6864 | /* Write to TIMx CCMR2 and CCER registers */ |
6864 | tmpccmr1 |= (TIM_ICFilter << 4U); |
| 6865 | TIMx->CCMR2 = tmpccmr2; |
6865 | |
| 6866 | TIMx->CCER = tmpccer; |
6866 | /* Select the Polarity and set the CC1E Bit */ |
| 6867 | } |
6867 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
| 6868 | 6868 | tmpccer |= TIM_ICPolarity; |
|
| 6869 | /** |
6869 | |
| 6870 | * @brief Configure the TI4 as Input. |
6870 | /* Write to TIMx CCMR1 and CCER registers */ |
| 6871 | * @param TIMx to select the TIM peripheral |
6871 | TIMx->CCMR1 = tmpccmr1; |
| 6872 | * @param TIM_ICPolarity The Input Polarity. |
6872 | TIMx->CCER = tmpccer; |
| 6873 | * This parameter can be one of the following values: |
6873 | } |
| 6874 | * @arg TIM_ICPOLARITY_RISING |
6874 | |
| 6875 | * @arg TIM_ICPOLARITY_FALLING |
6875 | /** |
| 6876 | * @arg TIM_ICPOLARITY_BOTHEDGE |
6876 | * @brief Configure the TI2 as Input. |
| 6877 | * @param TIM_ICSelection specifies the input to be used. |
6877 | * @param TIMx to select the TIM peripheral |
| 6878 | * This parameter can be one of the following values: |
6878 | * @param TIM_ICPolarity The Input Polarity. |
| 6879 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
6879 | * This parameter can be one of the following values: |
| 6880 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
6880 | * @arg TIM_ICPOLARITY_RISING |
| 6881 | * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
6881 | * @arg TIM_ICPOLARITY_FALLING |
| 6882 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
6882 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 6883 | * This parameter must be a value between 0x00 and 0x0F. |
6883 | * @param TIM_ICSelection specifies the input to be used. |
| 6884 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
6884 | * This parameter can be one of the following values: |
| 6885 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
6885 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
| 6886 | * protected against un-initialized filter and polarity values. |
6886 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
| 6887 | * @retval None |
6887 | * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
| 6888 | */ |
6888 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
| 6889 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
6889 | * This parameter must be a value between 0x00 and 0x0F. |
| 6890 | uint32_t TIM_ICFilter) |
6890 | * @retval None |
| 6891 | { |
6891 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
| 6892 | uint32_t tmpccmr2; |
6892 | * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
| 6893 | uint32_t tmpccer; |
6893 | * protected against un-initialized filter and polarity values. |
| 6894 | 6894 | */ |
|
| 6895 | /* Disable the Channel 4: Reset the CC4E Bit */ |
6895 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 6896 | TIMx->CCER &= ~TIM_CCER_CC4E; |
6896 | uint32_t TIM_ICFilter) |
| 6897 | tmpccmr2 = TIMx->CCMR2; |
6897 | { |
| 6898 | tmpccer = TIMx->CCER; |
6898 | uint32_t tmpccmr1; |
| 6899 | 6899 | uint32_t tmpccer; |
|
| 6900 | /* Select the Input */ |
6900 | |
| 6901 | tmpccmr2 &= ~TIM_CCMR2_CC4S; |
6901 | /* Disable the Channel 2: Reset the CC2E Bit */ |
| 6902 | tmpccmr2 |= (TIM_ICSelection << 8U); |
6902 | tmpccer = TIMx->CCER; |
| 6903 | 6903 | TIMx->CCER &= ~TIM_CCER_CC2E; |
|
| 6904 | /* Set the filter */ |
6904 | tmpccmr1 = TIMx->CCMR1; |
| 6905 | tmpccmr2 &= ~TIM_CCMR2_IC4F; |
6905 | |
| 6906 | tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
6906 | /* Select the Input */ |
| 6907 | 6907 | tmpccmr1 &= ~TIM_CCMR1_CC2S; |
|
| 6908 | /* Select the Polarity and set the CC4E Bit */ |
6908 | tmpccmr1 |= (TIM_ICSelection << 8U); |
| 6909 | tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
6909 | |
| 6910 | tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
6910 | /* Set the filter */ |
| 6911 | 6911 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
|
| 6912 | /* Write to TIMx CCMR2 and CCER registers */ |
6912 | tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
| 6913 | TIMx->CCMR2 = tmpccmr2; |
6913 | |
| 6914 | TIMx->CCER = tmpccer ; |
6914 | /* Select the Polarity and set the CC2E Bit */ |
| 6915 | } |
6915 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
| 6916 | 6916 | tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
|
| 6917 | /** |
6917 | |
| 6918 | * @brief Selects the Input Trigger source |
6918 | /* Write to TIMx CCMR1 and CCER registers */ |
| 6919 | * @param TIMx to select the TIM peripheral |
6919 | TIMx->CCMR1 = tmpccmr1 ; |
| 6920 | * @param InputTriggerSource The Input Trigger source. |
6920 | TIMx->CCER = tmpccer; |
| 6921 | * This parameter can be one of the following values: |
6921 | } |
| 6922 | * @arg TIM_TS_ITR0: Internal Trigger 0 |
6922 | |
| 6923 | * @arg TIM_TS_ITR1: Internal Trigger 1 |
6923 | /** |
| 6924 | * @arg TIM_TS_ITR2: Internal Trigger 2 |
6924 | * @brief Configure the Polarity and Filter for TI2. |
| 6925 | * @arg TIM_TS_ITR3: Internal Trigger 3 |
6925 | * @param TIMx to select the TIM peripheral. |
| 6926 | * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
6926 | * @param TIM_ICPolarity The Input Polarity. |
| 6927 | * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
6927 | * This parameter can be one of the following values: |
| 6928 | * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
6928 | * @arg TIM_ICPOLARITY_RISING |
| 6929 | * @arg TIM_TS_ETRF: External Trigger input |
6929 | * @arg TIM_ICPOLARITY_FALLING |
| 6930 | * @retval None |
6930 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 6931 | */ |
6931 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
| 6932 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
6932 | * This parameter must be a value between 0x00 and 0x0F. |
| 6933 | { |
6933 | * @retval None |
| 6934 | uint32_t tmpsmcr; |
6934 | */ |
| 6935 | 6935 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
|
| 6936 | /* Get the TIMx SMCR register value */ |
6936 | { |
| 6937 | tmpsmcr = TIMx->SMCR; |
6937 | uint32_t tmpccmr1; |
| 6938 | /* Reset the TS Bits */ |
6938 | uint32_t tmpccer; |
| 6939 | tmpsmcr &= ~TIM_SMCR_TS; |
6939 | |
| 6940 | /* Set the Input Trigger source and the slave mode*/ |
6940 | /* Disable the Channel 2: Reset the CC2E Bit */ |
| 6941 | tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
6941 | tmpccer = TIMx->CCER; |
| 6942 | /* Write to TIMx SMCR */ |
6942 | TIMx->CCER &= ~TIM_CCER_CC2E; |
| 6943 | TIMx->SMCR = tmpsmcr; |
6943 | tmpccmr1 = TIMx->CCMR1; |
| 6944 | } |
6944 | |
| 6945 | /** |
6945 | /* Set the filter */ |
| 6946 | * @brief Configures the TIMx External Trigger (ETR). |
6946 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
| 6947 | * @param TIMx to select the TIM peripheral |
6947 | tmpccmr1 |= (TIM_ICFilter << 12U); |
| 6948 | * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
6948 | |
| 6949 | * This parameter can be one of the following values: |
6949 | /* Select the Polarity and set the CC2E Bit */ |
| 6950 | * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
6950 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
| 6951 | * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
6951 | tmpccer |= (TIM_ICPolarity << 4U); |
| 6952 | * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
6952 | |
| 6953 | * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
6953 | /* Write to TIMx CCMR1 and CCER registers */ |
| 6954 | * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
6954 | TIMx->CCMR1 = tmpccmr1 ; |
| 6955 | * This parameter can be one of the following values: |
6955 | TIMx->CCER = tmpccer; |
| 6956 | * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
6956 | } |
| 6957 | * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
6957 | |
| 6958 | * @param ExtTRGFilter External Trigger Filter. |
6958 | /** |
| 6959 | * This parameter must be a value between 0x00 and 0x0F |
6959 | * @brief Configure the TI3 as Input. |
| 6960 | * @retval None |
6960 | * @param TIMx to select the TIM peripheral |
| 6961 | */ |
6961 | * @param TIM_ICPolarity The Input Polarity. |
| 6962 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
6962 | * This parameter can be one of the following values: |
| 6963 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
6963 | * @arg TIM_ICPOLARITY_RISING |
| 6964 | { |
6964 | * @arg TIM_ICPOLARITY_FALLING |
| 6965 | uint32_t tmpsmcr; |
6965 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 6966 | 6966 | * @param TIM_ICSelection specifies the input to be used. |
|
| 6967 | tmpsmcr = TIMx->SMCR; |
6967 | * This parameter can be one of the following values: |
| 6968 | 6968 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
|
| 6969 | /* Reset the ETR Bits */ |
6969 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
| 6970 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
6970 | * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
| 6971 | 6971 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
|
| 6972 | /* Set the Prescaler, the Filter value and the Polarity */ |
6972 | * This parameter must be a value between 0x00 and 0x0F. |
| 6973 | tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
6973 | * @retval None |
| 6974 | 6974 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
|
| 6975 | /* Write to TIMx SMCR */ |
6975 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
| 6976 | TIMx->SMCR = tmpsmcr; |
6976 | * protected against un-initialized filter and polarity values. |
| 6977 | } |
6977 | */ |
| 6978 | 6978 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
|
| 6979 | /** |
6979 | uint32_t TIM_ICFilter) |
| 6980 | * @brief Enables or disables the TIM Capture Compare Channel x. |
6980 | { |
| 6981 | * @param TIMx to select the TIM peripheral |
6981 | uint32_t tmpccmr2; |
| 6982 | * @param Channel specifies the TIM Channel |
6982 | uint32_t tmpccer; |
| 6983 | * This parameter can be one of the following values: |
6983 | |
| 6984 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
6984 | /* Disable the Channel 3: Reset the CC3E Bit */ |
| 6985 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
6985 | tmpccer = TIMx->CCER; |
| 6986 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
6986 | TIMx->CCER &= ~TIM_CCER_CC3E; |
| 6987 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
6987 | tmpccmr2 = TIMx->CCMR2; |
| 6988 | * @param ChannelState specifies the TIM Channel CCxE bit new state. |
6988 | |
| 6989 | * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
6989 | /* Select the Input */ |
| 6990 | * @retval None |
6990 | tmpccmr2 &= ~TIM_CCMR2_CC3S; |
| 6991 | */ |
6991 | tmpccmr2 |= TIM_ICSelection; |
| 6992 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
6992 | |
| 6993 | { |
6993 | /* Set the filter */ |
| 6994 | uint32_t tmp; |
6994 | tmpccmr2 &= ~TIM_CCMR2_IC3F; |
| 6995 | 6995 | tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
|
| 6996 | /* Check the parameters */ |
6996 | |
| 6997 | assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
6997 | /* Select the Polarity and set the CC3E Bit */ |
| 6998 | assert_param(IS_TIM_CHANNELS(Channel)); |
6998 | tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); |
| 6999 | 6999 | tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); |
|
| 7000 | tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
7000 | |
| 7001 | 7001 | /* Write to TIMx CCMR2 and CCER registers */ |
|
| 7002 | /* Reset the CCxE Bit */ |
7002 | TIMx->CCMR2 = tmpccmr2; |
| 7003 | TIMx->CCER &= ~tmp; |
7003 | TIMx->CCER = tmpccer; |
| 7004 | 7004 | } |
|
| 7005 | /* Set or reset the CCxE Bit */ |
7005 | |
| 7006 | TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
7006 | /** |
| 7007 | } |
7007 | * @brief Configure the TI4 as Input. |
| 7008 | 7008 | * @param TIMx to select the TIM peripheral |
|
| 7009 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
7009 | * @param TIM_ICPolarity The Input Polarity. |
| 7010 | /** |
7010 | * This parameter can be one of the following values: |
| 7011 | * @brief Reset interrupt callbacks to the legacy weak callbacks. |
7011 | * @arg TIM_ICPOLARITY_RISING |
| 7012 | * @param htim pointer to a TIM_HandleTypeDef structure that contains |
7012 | * @arg TIM_ICPOLARITY_FALLING |
| 7013 | * the configuration information for TIM module. |
7013 | * @arg TIM_ICPOLARITY_BOTHEDGE |
| 7014 | * @retval None |
7014 | * @param TIM_ICSelection specifies the input to be used. |
| 7015 | */ |
7015 | * This parameter can be one of the following values: |
| 7016 | void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
7016 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
| 7017 | { |
7017 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
| 7018 | /* Reset the TIM callback to the legacy weak callbacks */ |
7018 | * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
| 7019 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
7019 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
| 7020 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
7020 | * This parameter must be a value between 0x00 and 0x0F. |
| 7021 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
7021 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
| 7022 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
7022 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
| 7023 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
7023 | * protected against un-initialized filter and polarity values. |
| 7024 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
7024 | * @retval None |
| 7025 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
7025 | */ |
| 7026 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
7026 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
| 7027 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
7027 | uint32_t TIM_ICFilter) |
| 7028 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
7028 | { |
| 7029 | } |
7029 | uint32_t tmpccmr2; |
| 7030 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
7030 | uint32_t tmpccer; |
| 7031 | 7031 | ||
| 7032 | /** |
7032 | /* Disable the Channel 4: Reset the CC4E Bit */ |
| 7033 | * @} |
7033 | tmpccer = TIMx->CCER; |
| 7034 | */ |
7034 | TIMx->CCER &= ~TIM_CCER_CC4E; |
| 7035 | 7035 | tmpccmr2 = TIMx->CCMR2; |
|
| 7036 | #endif /* HAL_TIM_MODULE_ENABLED */ |
7036 | |
| 7037 | /** |
7037 | /* Select the Input */ |
| 7038 | * @} |
7038 | tmpccmr2 &= ~TIM_CCMR2_CC4S; |
| 7039 | */ |
7039 | tmpccmr2 |= (TIM_ICSelection << 8U); |
| 7040 | 7040 | ||
| 7041 | /** |
7041 | /* Set the filter */ |
| 7042 | * @} |
7042 | tmpccmr2 &= ~TIM_CCMR2_IC4F; |
| 7043 | */ |
7043 | tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
| 7044 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
7044 | |
| - | 7045 | /* Select the Polarity and set the CC4E Bit */ |
|
| - | 7046 | tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); |
|
| - | 7047 | tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); |
|
| - | 7048 | ||
| - | 7049 | /* Write to TIMx CCMR2 and CCER registers */ |
|
| - | 7050 | TIMx->CCMR2 = tmpccmr2; |
|
| - | 7051 | TIMx->CCER = tmpccer ; |
|
| - | 7052 | } |
|
| - | 7053 | ||
| - | 7054 | /** |
|
| - | 7055 | * @brief Selects the Input Trigger source |
|
| - | 7056 | * @param TIMx to select the TIM peripheral |
|
| - | 7057 | * @param InputTriggerSource The Input Trigger source. |
|
| - | 7058 | * This parameter can be one of the following values: |
|
| - | 7059 | * @arg TIM_TS_ITR0: Internal Trigger 0 |
|
| - | 7060 | * @arg TIM_TS_ITR1: Internal Trigger 1 |
|
| - | 7061 | * @arg TIM_TS_ITR2: Internal Trigger 2 |
|
| - | 7062 | * @arg TIM_TS_ITR3: Internal Trigger 3 |
|
| - | 7063 | * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
|
| - | 7064 | * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
|
| - | 7065 | * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
|
| - | 7066 | * @arg TIM_TS_ETRF: External Trigger input |
|
| - | 7067 | * @retval None |
|
| - | 7068 | */ |
|
| - | 7069 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
|
| - | 7070 | { |
|
| - | 7071 | uint32_t tmpsmcr; |
|
| - | 7072 | ||
| - | 7073 | /* Get the TIMx SMCR register value */ |
|
| - | 7074 | tmpsmcr = TIMx->SMCR; |
|
| - | 7075 | /* Reset the TS Bits */ |
|
| - | 7076 | tmpsmcr &= ~TIM_SMCR_TS; |
|
| - | 7077 | /* Set the Input Trigger source and the slave mode*/ |
|
| - | 7078 | tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
|
| - | 7079 | /* Write to TIMx SMCR */ |
|
| - | 7080 | TIMx->SMCR = tmpsmcr; |
|
| - | 7081 | } |
|
| - | 7082 | /** |
|
| - | 7083 | * @brief Configures the TIMx External Trigger (ETR). |
|
| - | 7084 | * @param TIMx to select the TIM peripheral |
|
| - | 7085 | * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
|
| - | 7086 | * This parameter can be one of the following values: |
|
| - | 7087 | * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
|
| - | 7088 | * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
|
| - | 7089 | * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
|
| - | 7090 | * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
|
| - | 7091 | * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
|
| - | 7092 | * This parameter can be one of the following values: |
|
| - | 7093 | * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
|
| - | 7094 | * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
|
| - | 7095 | * @param ExtTRGFilter External Trigger Filter. |
|
| - | 7096 | * This parameter must be a value between 0x00 and 0x0F |
|
| - | 7097 | * @retval None |
|
| - | 7098 | */ |
|
| - | 7099 | static void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
|
| - | 7100 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
|
| - | 7101 | { |
|
| - | 7102 | uint32_t tmpsmcr; |
|
| - | 7103 | ||
| - | 7104 | tmpsmcr = TIMx->SMCR; |
|
| - | 7105 | ||
| - | 7106 | /* Reset the ETR Bits */ |
|
| - | 7107 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
|
| - | 7108 | ||
| - | 7109 | /* Set the Prescaler, the Filter value and the Polarity */ |
|
| - | 7110 | tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
|
| - | 7111 | ||
| - | 7112 | /* Write to TIMx SMCR */ |
|
| - | 7113 | TIMx->SMCR = tmpsmcr; |
|
| - | 7114 | } |
|
| - | 7115 | ||
| - | 7116 | /** |
|
| - | 7117 | * @brief Enables or disables the TIM Capture Compare Channel x. |
|
| - | 7118 | * @param TIMx to select the TIM peripheral |
|
| - | 7119 | * @param Channel specifies the TIM Channel |
|
| - | 7120 | * This parameter can be one of the following values: |
|
| - | 7121 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
|
| - | 7122 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
|
| - | 7123 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
|
| - | 7124 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
|
| - | 7125 | * @param ChannelState specifies the TIM Channel CCxE bit new state. |
|
| - | 7126 | * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
|
| - | 7127 | * @retval None |
|
| - | 7128 | */ |
|
| - | 7129 | static void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
|
| - | 7130 | { |
|
| - | 7131 | uint32_t tmp; |
|
| - | 7132 | ||
| - | 7133 | /* Check the parameters */ |
|
| - | 7134 | assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
|
| - | 7135 | assert_param(IS_TIM_CHANNELS(Channel)); |
|
| - | 7136 | ||
| - | 7137 | tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
|
| - | 7138 | ||
| - | 7139 | /* Reset the CCxE Bit */ |
|
| - | 7140 | TIMx->CCER &= ~tmp; |
|
| - | 7141 | ||
| - | 7142 | /* Set or reset the CCxE Bit */ |
|
| - | 7143 | TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
|
| - | 7144 | } |
|
| - | 7145 | ||
| - | 7146 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
|
| - | 7147 | /** |
|
| - | 7148 | * @brief Reset interrupt callbacks to the legacy weak callbacks. |
|
| - | 7149 | * @param htim pointer to a TIM_HandleTypeDef structure that contains |
|
| - | 7150 | * the configuration information for TIM module. |
|
| - | 7151 | * @retval None |
|
| - | 7152 | */ |
|
| - | 7153 | void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
|
| - | 7154 | { |
|
| - | 7155 | /* Reset the TIM callback to the legacy weak callbacks */ |
|
| - | 7156 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
|
| - | 7157 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
|
| - | 7158 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
|
| - | 7159 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
|
| - | 7160 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
|
| - | 7161 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
|
| - | 7162 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
|
| - | 7163 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
|
| - | 7164 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
|
| - | 7165 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
|
| - | 7166 | } |
|
| - | 7167 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
|
| - | 7168 | ||
| - | 7169 | /** |
|
| - | 7170 | * @} |
|
| - | 7171 | */ |
|
| - | 7172 | ||
| - | 7173 | #endif /* HAL_TIM_MODULE_ENABLED */ |
|
| - | 7174 | /** |
|
| - | 7175 | * @} |
|
| - | 7176 | */ |
|
| - | 7177 | ||
| - | 7178 | /** |
|
| - | 7179 | * @} |
|
| - | 7180 | */ |
|