Rev 4 | Rev 6 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | #include <cstdint> |
2 | #include <assert.h> |
||
3 | #include "libIgnTiming/timing.h" |
||
4 | |||
5 | namespace |
||
6 | { |
||
7 | |||
8 | unsigned constexpr INTERP_SCALE = 256; |
||
9 | |||
5 | mjames | 10 | unsigned constexpr MAX_TIMING_POINTS = 10; |
11 | unsigned constexpr MAX_VACUUM_POINTS = 10; |
||
4 | mjames | 12 | int constexpr TimingScale = TIMING_SCALE; |
5 | mjames | 13 | int16_t constexpr NO_DATA = -1; |
2 | mjames | 14 | |
5 | mjames | 15 | static int8_t const timingAdjust __attribute((section(".nvram"))) = 0; // in TIMING_SCALE |
16 | int16_t const rpmMap[MAX_TIMING_POINTS] __attribute__((section(".nvram"))) = {400, 750, 1000, 1500, 2500, 3500, 4500, 6000, NO_DATA, NO_DATA}; |
||
17 | int16_t const vacuumMap[MAX_VACUUM_POINTS] __attribute__((section(".nvram"))) = {0, 166, 225, 300, 700, NO_DATA, NO_DATA, NO_DATA, NO_DATA, NO_DATA}; |
||
18 | uint8_t const mapping[MAX_VACUUM_POINTS][MAX_TIMING_POINTS] __attribute__((section(".nvram"))) = { |
||
2 | mjames | 19 | /* Table in degrees. */ |
20 | /* row for 0mb = centrifugal only */ |
||
5 | mjames | 21 | {12, 7, 7, 19, 25, 29, 29, 22, 22, 22}, |
2 | mjames | 22 | /* row for 166 mB*/ |
5 | mjames | 23 | {12, 7, 7, 21, 27, 31, 31, 24, 24, 22}, |
2 | mjames | 24 | /* row for 225 mB */ |
5 | mjames | 25 | {12, 7, 7, 25, 31, 35, 35, 28, 24, 22}, |
2 | mjames | 26 | /* row for 300 mB*/ |
5 | mjames | 27 | {12, 7, 7, 29, 35, 39, 39, 33, 28, 22}, |
2 | mjames | 28 | /* row for 700 mB*/ |
5 | mjames | 29 | {12, 7, 7, 29, 35, 39, 39, 33, 28, 22}, |
2 | mjames | 30 | /* unused */ |
5 | mjames | 31 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
2 | mjames | 32 | /* unused */ |
5 | mjames | 33 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
2 | mjames | 34 | /* unused */ |
5 | mjames | 35 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
36 | /* unused */ |
||
37 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||
38 | /* unused */ |
||
39 | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
||
40 | }; |
||
2 | mjames | 41 | |
5 | mjames | 42 | } |
2 | mjames | 43 | /// @brief Lookup a point using linear interpolation |
44 | /// @param point value to lookup |
||
45 | /// @param curve data point list |
||
46 | /// @param size number of data points in list |
||
47 | /// @param [out] frac fraction of distance between points |
||
48 | /// @return index of first point |
||
49 | int lookup(int point, int16_t const curve[], int size, int16_t *frac) |
||
50 | |||
51 | { |
||
52 | // check lower bounds |
||
53 | if (point < curve[0]) |
||
54 | { |
||
55 | *frac = 0; |
||
56 | return 0; |
||
57 | } |
||
58 | // check upper bounds |
||
59 | // find the upper boundary by looking for non -1 points |
||
60 | int upper = size - 1; |
||
61 | while (curve[upper] <= 0) |
||
62 | upper--; |
||
63 | |||
64 | if (point >= curve[upper]) |
||
65 | { |
||
66 | frac = 0; |
||
67 | return upper; |
||
68 | } |
||
69 | for (int pt = 1; pt <= upper; pt++) |
||
70 | { |
||
71 | if ((point >= curve[pt - 1]) && (point < curve[pt])) |
||
72 | { |
||
73 | // how far along axis ? |
||
74 | int offset = point - curve[pt - 1]; |
||
75 | |||
76 | int range1 = curve[pt] - curve[pt - 1]; |
||
77 | |||
78 | int range2 = INTERP_SCALE; |
||
79 | |||
80 | *frac = ((offset * range2) / range1); |
||
81 | return pt - 1; |
||
82 | } |
||
83 | } |
||
84 | *frac = 0; |
||
85 | return -1; // give up. |
||
86 | }; |
||
87 | |||
88 | extern "C" |
||
89 | { |
||
90 | |||
91 | int mapTiming(int rpm, int vacuumMb) |
||
92 | { |
||
93 | int angle = 0; |
||
94 | /* lookup the interpolated RPM point */ |
||
95 | int16_t rpm_frac = 0; |
||
96 | int rpm_index = lookup(rpm, rpmMap, MAX_TIMING_POINTS, &rpm_frac); |
||
97 | |||
98 | /* lookup the interpolated vacuum point */ |
||
99 | int16_t vacuum_frac = 0; |
||
100 | int vacuum_index = lookup(vacuumMb, vacuumMap, MAX_VACUUM_POINTS, &vacuum_frac); |
||
101 | |||
102 | /* perform a bilinear mapping */ |
||
103 | int top_advance; |
||
104 | // we now have a position between two points in X and Y |
||
105 | if (rpm_frac == 0) |
||
106 | top_advance = mapping[vacuum_index][rpm_index] * INTERP_SCALE; |
||
107 | // if fractional part then interpolate points off the map |
||
108 | else |
||
109 | top_advance = mapping[vacuum_index][rpm_index] * (INTERP_SCALE - rpm_frac) + mapping[vacuum_index][rpm_index + 1] * rpm_frac; |
||
110 | |||
111 | int bottom_advance; |
||
112 | // if no fractional part, then the top and bottom advance point is the same |
||
113 | if (vacuum_frac == 0) |
||
114 | { |
||
5 | mjames | 115 | angle = top_advance * TimingScale / INTERP_SCALE; |
2 | mjames | 116 | } |
117 | else |
||
118 | { |
||
119 | bottom_advance = mapping[vacuum_index + 1][rpm_index] * (INTERP_SCALE - rpm_frac) + mapping[vacuum_index + 1][rpm_index + 1] * rpm_frac; |
||
120 | /* interpolate down Y axis this time */ |
||
121 | int advance = top_advance * (INTERP_SCALE - vacuum_frac) + bottom_advance * vacuum_frac; |
||
122 | /* point is scaled by two multiplications */ |
||
123 | angle = advance * TimingScale / (INTERP_SCALE * INTERP_SCALE); |
||
124 | } |
||
125 | |||
5 | mjames | 126 | assert((angle >= TimingScale * 7) && (angle < TimingScale * 50)); |
127 | return angle + timingAdjust; |
||
2 | mjames | 128 | } |
129 | } |