Rev 7 | Rev 11 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 6 | mjames | 1 | /* |
| 2 | * timer2.c |
||
| 3 | * |
||
| 4 | * Created on: 2 Apr 2018 |
||
| 5 | * Author: Mike |
||
| 6 | */ |
||
| 7 | |||
| 8 | #include "ch.h" // needs for all ChibiOS programs |
||
| 9 | #include "hal.h" // hardware abstraction layer header |
||
| 10 | |||
| 11 | #include "timer2.h" |
||
| 12 | #define MICROSECS_PULSE 10 |
||
| 13 | |||
| 14 | |||
| 15 | |||
| 16 | |||
| 17 | |||
| 18 | |||
| 19 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
||
| 20 | // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the |
||
| 21 | // first pulse longer than 1/300 of a second as being a proper closure . |
||
| 22 | // the TIM2 counter counts in 10uS increments, |
||
| 23 | #define BREAKER_COUNT_MIN (1E6/(MICROSECS_PULSE * 300)) |
||
| 24 | |||
| 25 | #define SAMPLE_BUFF_SIZE 256 |
||
| 26 | uint16_t halfRot; |
||
| 27 | uint16_t nominal = 0; |
||
| 28 | uint16_t phase10 = 100; // 10 degrees |
||
| 29 | volatile uint16_t sampleCount = 0; |
||
| 30 | uint16_t outSampleCount = 0; |
||
| 31 | volatile uint16_t sampleBuff[SAMPLE_BUFF_SIZE]; |
||
| 32 | typedef enum { WAIT_GAP, SKIP_BOUNCE } sampleState_t ; |
||
| 33 | sampleState_t sampleState = WAIT_GAP; |
||
| 34 | |||
| 35 | |||
| 36 | uint16_t rpm; |
||
| 37 | |||
| 38 | void initTimer2() |
||
| 39 | { |
||
| 40 | rccEnableTIM2(FALSE); |
||
| 41 | rccResetTIM2(); |
||
| 42 | |||
| 43 | TIM2->PSC = 72*MICROSECS_PULSE; |
||
| 44 | TIM2->ARR = 60000; |
||
| 45 | TIM2->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | |
||
| 46 | TIM_CR1_ARPE ); |
||
| 47 | |||
| 7 | mjames | 48 | /// pulse width 200 uS |
| 49 | TIM2->CCR1 = 200/MICROSECS_PULSE; |
||
| 6 | mjames | 50 | |
| 51 | TIM2->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P ; //enabled and low |
||
| 52 | |||
| 53 | TIM2->CCMR1 = TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 | |
||
| 54 | TIM_CCMR1_OC1PE ; |
||
| 55 | |||
| 56 | |||
| 57 | TIM2->CR2 = TIM_CR2_MMS_1 ; // trigger out is 010 = update |
||
| 58 | |||
| 59 | |||
| 60 | // change the TIM2 CC2 to TIM3 CC1 |
||
| 61 | rccEnableTIM3(FALSE); |
||
| 62 | rccResetTIM3(); |
||
| 63 | // TIM3 on the PA6 ... pins : remap code 00 |
||
| 64 | AFIO->MAPR &= ~ AFIO_MAPR_TIM3_REMAP; |
||
| 65 | |||
| 66 | TIM3->PSC = 72*MICROSECS_PULSE; |
||
| 67 | TIM3->ARR = 0xFFFF; |
||
| 68 | |||
| 69 | |||
| 70 | TIM3->CCMR1 = TIM_CCMR1_CC1S_0 /* | TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_2 */ ; // filter 16, input |
||
| 71 | |||
| 72 | TIM3->CCER = TIM_CCER_CC1E; |
||
| 73 | |||
| 74 | // link TIM3 ITR1 to TIM2 reload |
||
| 75 | // use CCR3 |
||
| 76 | TIM3->CCMR2 = TIM_CCMR2_CC3S_1 | TIM_CCMR2_CC3S_0 ; // The |
||
| 77 | |||
| 78 | |||
| 79 | TIM3->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | TIM_CR1_ARPE ); |
||
| 80 | |||
| 81 | |||
| 82 | nvicEnableVector(TIM3_IRQn, |
||
| 7 | mjames | 83 | 4); |
| 6 | mjames | 84 | |
| 85 | |||
| 86 | |||
| 87 | TIM3->DIER |= TIM_DIER_CC1IE ; |
||
| 88 | } |
||
| 89 | |||
| 90 | |||
| 91 | void recalcPhase(void) |
||
| 92 | { |
||
| 93 | nominal = halfRot * (long) (phase10)/ 1800; |
||
| 94 | } |
||
| 95 | |||
| 96 | void adjustRPM(void) |
||
| 97 | { |
||
| 98 | if(rpm < 600) |
||
| 99 | rpm = 600; |
||
| 100 | if(rpm > 5000) |
||
| 101 | rpm = 5000; |
||
| 102 | |||
| 103 | |||
| 104 | float pulseSec = rpm /30; |
||
| 105 | |||
| 106 | halfRot = 1e6 / (pulseSec * MICROSECS_PULSE) ; |
||
| 107 | |||
| 108 | TIM2->ARR = halfRot; |
||
| 109 | recalcPhase(); |
||
| 110 | } |
||
| 111 | |||
| 112 | uint16_t setRPM(uint16_t rpm_ ) |
||
| 113 | { |
||
| 114 | if(rpm_ >= 600 && rpm_ < 5000) |
||
| 115 | { |
||
| 116 | rpm = rpm_; |
||
| 117 | adjustRPM(); |
||
| 118 | } |
||
| 119 | return halfRot; |
||
| 120 | } |
||
| 121 | |||
| 122 | uint16_t getRPM(void) |
||
| 123 | { |
||
| 124 | return rpm; |
||
| 125 | } |
||
| 126 | |||
| 127 | uint16_t wrapIndex(uint16_t index) |
||
| 128 | { |
||
| 129 | if (index > SAMPLE_BUFF_SIZE) |
||
| 130 | index -= SAMPLE_BUFF_SIZE; |
||
| 131 | return index; |
||
| 132 | } |
||
| 133 | |||
| 134 | |||
| 135 | // allows for wrapping |
||
| 136 | uint16_t getSampleBuff(uint16_t index) |
||
| 137 | { |
||
| 138 | return sampleBuff[wrapIndex(index)]; |
||
| 139 | } |
||
| 140 | |||
| 141 | // waits for ignition pulse , debounces readings |
||
| 142 | uint16_t getNextPulse(void) |
||
| 143 | { |
||
| 144 | static uint16_t lastVal = 0; |
||
| 145 | uint16_t retVal ; |
||
| 146 | uint8_t done = 0; |
||
| 147 | while(done == 0) |
||
| 148 | { |
||
| 149 | uint16_t diff; |
||
| 150 | // wait until there are enough samples |
||
| 151 | while(1) |
||
| 152 | { |
||
| 153 | |||
| 154 | diff = sampleCount - outSampleCount; |
||
| 8 | mjames | 155 | if(outSampleCount >= sampleCount) |
| 6 | mjames | 156 | diff = sampleCount - outSampleCount; |
| 157 | else |
||
| 158 | diff = SAMPLE_BUFF_SIZE + sampleCount - outSampleCount; |
||
| 159 | |||
| 160 | if(diff > 1) |
||
| 161 | break; |
||
| 8 | mjames | 162 | chThdSleep(10); |
| 6 | mjames | 163 | } |
| 164 | |||
| 165 | // pick the next out of gap sample |
||
| 166 | if(sampleState == WAIT_GAP) |
||
| 167 | { |
||
| 168 | done = 1; |
||
| 169 | retVal = getSampleBuff(outSampleCount); |
||
| 170 | } |
||
| 171 | // see how many samples are too close together |
||
| 172 | sampleState = SKIP_BOUNCE; |
||
| 173 | uint16_t endCount = sampleCount; |
||
| 174 | while((sampleState == SKIP_BOUNCE) && (outSampleCount != endCount)) |
||
| 175 | { |
||
| 176 | uint16_t thisTime = getSampleBuff(outSampleCount); |
||
| 177 | outSampleCount = wrapIndex(outSampleCount + 1); |
||
| 178 | uint16_t nextTime = getSampleBuff(outSampleCount); |
||
| 179 | |||
| 180 | uint16_t deltaTime; |
||
| 181 | |||
| 182 | // calculate wrapped time delta : should be > than bounce time to allow |
||
| 183 | if(nextTime > thisTime) |
||
| 184 | deltaTime = nextTime - thisTime; |
||
| 185 | else |
||
| 186 | deltaTime = 65536 + nextTime - thisTime; |
||
| 187 | |||
| 188 | if(deltaTime > BREAKER_COUNT_MIN) |
||
| 189 | { |
||
| 190 | sampleState = WAIT_GAP; |
||
| 191 | break; |
||
| 192 | } |
||
| 193 | |||
| 194 | } |
||
| 195 | } |
||
| 196 | |||
| 197 | // at this point we should try to phase lock |
||
| 198 | uint32_t period; |
||
| 199 | if(retVal > lastVal) |
||
| 200 | period = retVal - lastVal; |
||
| 201 | else |
||
| 202 | period = 65536 + retVal - lastVal; |
||
| 203 | |||
| 204 | lastVal = retVal; |
||
| 205 | |||
| 206 | float nomRPM = 30E6 / (MICROSECS_PULSE * period) ; |
||
| 207 | |||
| 208 | rpm = rpm + (nomRPM -rpm)/10; |
||
| 209 | |||
| 210 | |||
| 211 | |||
| 212 | |||
| 213 | uint16_t skew = 32768 - nominal; |
||
| 214 | |||
| 215 | long delta = (retVal+skew) - (nominal+skew); |
||
| 216 | |||
| 217 | if(delta > 10) |
||
| 218 | rpm = rpm - 1; |
||
| 219 | if(delta -10) |
||
| 220 | rpm = rpm + 1; |
||
| 221 | |||
| 222 | // rpm += delta / 256; |
||
| 223 | |||
| 224 | adjustRPM(); |
||
| 225 | |||
| 226 | return retVal; |
||
| 227 | } |
||
| 228 | |||
| 229 | |||
| 230 | // set the timing advance from reference to |
||
| 231 | void setAdvance(int16_t deg10) |
||
| 232 | { |
||
| 233 | phase10 = deg10; |
||
| 234 | recalcPhase(); |
||
| 235 | |||
| 236 | } |
||
| 237 | |||
| 238 | // timer 3 interrupt |
||
| 239 | void VectorB4(void) |
||
| 240 | { |
||
| 241 | uint16_t stat = TIM3->SR; |
||
| 242 | if(stat & TIM_SR_CC1IF) |
||
| 243 | { |
||
| 244 | TIM3->SR &= ~TIM_SR_CC1IF; |
||
| 245 | uint16_t sample = TIM3->CCR1; |
||
| 246 | sampleBuff[sampleCount++] = sample; |
||
| 247 | if (sampleCount > SAMPLE_BUFF_SIZE) |
||
| 248 | sampleCount = 0; |
||
| 249 | } |
||
| 250 | } |
||
| 251 | |||
| 252 | |||
| 253 |