Rev 7 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
6 | mjames | 1 | /* |
2 | * timer2.c |
||
3 | * |
||
4 | * Created on: 2 Apr 2018 |
||
5 | * Author: Mike |
||
6 | */ |
||
7 | |||
8 | #include "ch.h" // needs for all ChibiOS programs |
||
9 | #include "hal.h" // hardware abstraction layer header |
||
10 | |||
11 | #include "timer2.h" |
||
12 | #define MICROSECS_PULSE 10 |
||
13 | |||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
||
20 | // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the |
||
21 | // first pulse longer than 1/300 of a second as being a proper closure . |
||
22 | // the TIM2 counter counts in 10uS increments, |
||
23 | #define BREAKER_COUNT_MIN (1E6/(MICROSECS_PULSE * 300)) |
||
24 | |||
25 | #define SAMPLE_BUFF_SIZE 256 |
||
26 | uint16_t halfRot; |
||
27 | uint16_t nominal = 0; |
||
28 | uint16_t phase10 = 100; // 10 degrees |
||
29 | volatile uint16_t sampleCount = 0; |
||
30 | uint16_t outSampleCount = 0; |
||
31 | volatile uint16_t sampleBuff[SAMPLE_BUFF_SIZE]; |
||
32 | typedef enum { WAIT_GAP, SKIP_BOUNCE } sampleState_t ; |
||
33 | sampleState_t sampleState = WAIT_GAP; |
||
34 | |||
35 | |||
36 | uint16_t rpm; |
||
37 | |||
38 | void initTimer2() |
||
39 | { |
||
40 | rccEnableTIM2(FALSE); |
||
41 | rccResetTIM2(); |
||
42 | |||
43 | TIM2->PSC = 72*MICROSECS_PULSE; |
||
44 | TIM2->ARR = 60000; |
||
45 | TIM2->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | |
||
46 | TIM_CR1_ARPE ); |
||
47 | |||
48 | TIM2->CCR1 = 100/MICROSECS_PULSE; |
||
49 | |||
50 | TIM2->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P ; //enabled and low |
||
51 | |||
52 | TIM2->CCMR1 = TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 | |
||
53 | TIM_CCMR1_OC1PE ; |
||
54 | |||
55 | |||
56 | TIM2->CR2 = TIM_CR2_MMS_1 ; // trigger out is 010 = update |
||
57 | |||
58 | |||
59 | // change the TIM2 CC2 to TIM3 CC1 |
||
60 | rccEnableTIM3(FALSE); |
||
61 | rccResetTIM3(); |
||
62 | // TIM3 on the PA6 ... pins : remap code 00 |
||
63 | AFIO->MAPR &= ~ AFIO_MAPR_TIM3_REMAP; |
||
64 | |||
65 | TIM3->PSC = 72*MICROSECS_PULSE; |
||
66 | TIM3->ARR = 0xFFFF; |
||
67 | |||
68 | |||
69 | TIM3->CCMR1 = TIM_CCMR1_CC1S_0 /* | TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_2 */ ; // filter 16, input |
||
70 | |||
71 | TIM3->CCER = TIM_CCER_CC1E; |
||
72 | |||
73 | // link TIM3 ITR1 to TIM2 reload |
||
74 | // use CCR3 |
||
75 | TIM3->CCMR2 = TIM_CCMR2_CC3S_1 | TIM_CCMR2_CC3S_0 ; // The |
||
76 | |||
77 | |||
78 | TIM3->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | TIM_CR1_ARPE ); |
||
79 | |||
80 | |||
81 | nvicEnableVector(TIM3_IRQn, |
||
82 | CORTEX_PRIORITY_MASK(4)); |
||
83 | |||
84 | |||
85 | |||
86 | TIM3->DIER |= TIM_DIER_CC1IE ; |
||
87 | } |
||
88 | |||
89 | |||
90 | void recalcPhase(void) |
||
91 | { |
||
92 | nominal = halfRot * (long) (phase10)/ 1800; |
||
93 | } |
||
94 | |||
95 | void adjustRPM(void) |
||
96 | { |
||
97 | if(rpm < 600) |
||
98 | rpm = 600; |
||
99 | if(rpm > 5000) |
||
100 | rpm = 5000; |
||
101 | |||
102 | |||
103 | float pulseSec = rpm /30; |
||
104 | |||
105 | halfRot = 1e6 / (pulseSec * MICROSECS_PULSE) ; |
||
106 | |||
107 | TIM2->ARR = halfRot; |
||
108 | recalcPhase(); |
||
109 | } |
||
110 | |||
111 | uint16_t setRPM(uint16_t rpm_ ) |
||
112 | { |
||
113 | if(rpm_ >= 600 && rpm_ < 5000) |
||
114 | { |
||
115 | rpm = rpm_; |
||
116 | adjustRPM(); |
||
117 | } |
||
118 | return halfRot; |
||
119 | } |
||
120 | |||
121 | uint16_t getRPM(void) |
||
122 | { |
||
123 | return rpm; |
||
124 | } |
||
125 | |||
126 | uint16_t wrapIndex(uint16_t index) |
||
127 | { |
||
128 | if (index > SAMPLE_BUFF_SIZE) |
||
129 | index -= SAMPLE_BUFF_SIZE; |
||
130 | return index; |
||
131 | } |
||
132 | |||
133 | |||
134 | // allows for wrapping |
||
135 | uint16_t getSampleBuff(uint16_t index) |
||
136 | { |
||
137 | return sampleBuff[wrapIndex(index)]; |
||
138 | } |
||
139 | |||
140 | // waits for ignition pulse , debounces readings |
||
141 | uint16_t getNextPulse(void) |
||
142 | { |
||
143 | static uint16_t lastVal = 0; |
||
144 | uint16_t retVal ; |
||
145 | uint8_t done = 0; |
||
146 | while(done == 0) |
||
147 | { |
||
148 | uint16_t diff; |
||
149 | // wait until there are enough samples |
||
150 | while(1) |
||
151 | { |
||
152 | |||
153 | diff = sampleCount - outSampleCount; |
||
154 | if(outSampleCount > sampleCount) |
||
155 | diff = sampleCount - outSampleCount; |
||
156 | else |
||
157 | diff = SAMPLE_BUFF_SIZE + sampleCount - outSampleCount; |
||
158 | |||
159 | if(diff > 1) |
||
160 | break; |
||
161 | chThdSleep(1); |
||
162 | } |
||
163 | |||
164 | // pick the next out of gap sample |
||
165 | if(sampleState == WAIT_GAP) |
||
166 | { |
||
167 | done = 1; |
||
168 | retVal = getSampleBuff(outSampleCount); |
||
169 | } |
||
170 | // see how many samples are too close together |
||
171 | sampleState = SKIP_BOUNCE; |
||
172 | uint16_t endCount = sampleCount; |
||
173 | while((sampleState == SKIP_BOUNCE) && (outSampleCount != endCount)) |
||
174 | { |
||
175 | uint16_t thisTime = getSampleBuff(outSampleCount); |
||
176 | outSampleCount = wrapIndex(outSampleCount + 1); |
||
177 | uint16_t nextTime = getSampleBuff(outSampleCount); |
||
178 | |||
179 | uint16_t deltaTime; |
||
180 | |||
181 | // calculate wrapped time delta : should be > than bounce time to allow |
||
182 | if(nextTime > thisTime) |
||
183 | deltaTime = nextTime - thisTime; |
||
184 | else |
||
185 | deltaTime = 65536 + nextTime - thisTime; |
||
186 | |||
187 | if(deltaTime > BREAKER_COUNT_MIN) |
||
188 | { |
||
189 | sampleState = WAIT_GAP; |
||
190 | break; |
||
191 | } |
||
192 | |||
193 | } |
||
194 | } |
||
195 | |||
196 | // at this point we should try to phase lock |
||
197 | uint32_t period; |
||
198 | if(retVal > lastVal) |
||
199 | period = retVal - lastVal; |
||
200 | else |
||
201 | period = 65536 + retVal - lastVal; |
||
202 | |||
203 | lastVal = retVal; |
||
204 | |||
205 | float nomRPM = 30E6 / (MICROSECS_PULSE * period) ; |
||
206 | |||
207 | rpm = rpm + (nomRPM -rpm)/10; |
||
208 | |||
209 | |||
210 | |||
211 | |||
212 | uint16_t skew = 32768 - nominal; |
||
213 | |||
214 | long delta = (retVal+skew) - (nominal+skew); |
||
215 | |||
216 | if(delta > 10) |
||
217 | rpm = rpm - 1; |
||
218 | if(delta -10) |
||
219 | rpm = rpm + 1; |
||
220 | |||
221 | // rpm += delta / 256; |
||
222 | |||
223 | adjustRPM(); |
||
224 | |||
225 | return retVal; |
||
226 | } |
||
227 | |||
228 | |||
229 | // set the timing advance from reference to |
||
230 | void setAdvance(int16_t deg10) |
||
231 | { |
||
232 | phase10 = deg10; |
||
233 | recalcPhase(); |
||
234 | |||
235 | } |
||
236 | |||
237 | // timer 3 interrupt |
||
238 | void VectorB4(void) |
||
239 | { |
||
240 | uint16_t stat = TIM3->SR; |
||
241 | if(stat & TIM_SR_CC1IF) |
||
242 | { |
||
243 | TIM3->SR &= ~TIM_SR_CC1IF; |
||
244 | uint16_t sample = TIM3->CCR1; |
||
245 | sampleBuff[sampleCount++] = sample; |
||
246 | if (sampleCount > SAMPLE_BUFF_SIZE) |
||
247 | sampleCount = 0; |
||
248 | } |
||
249 | } |
||
250 | |||
251 | |||
252 |